1501
|
Bond-Watts BB, Bellerose RJ, Chang MCY. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011; 7:222-7. [PMID: 21358636 DOI: 10.1038/nchembio.537] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/28/2011] [Indexed: 11/09/2022]
Abstract
Living systems have evolved remarkable molecular functions that can be redesigned for in vivo chemical synthesis as we gain a deeper understanding of the underlying biochemical principles for de novo construction of synthetic pathways. We have focused on developing pathways for next-generation biofuels as they require carbon to be channeled to product at quantitative yields. However, these fatty acid-inspired pathways must manage the highly reversible nature of the enzyme components. For targets in the biodiesel range, the equilibrium can be driven to completion by physical sequestration of an insoluble product, which is a mechanism unavailable to soluble gasoline-sized products. In this work, we report the construction of a chimeric pathway assembled from three different organisms for the high-level production of n-butanol (4,650 ± 720 mg l⁻¹) that uses an enzymatic chemical reaction mechanism in place of a physical step as a kinetic control element to achieve high yields from glucose (28%).
Collapse
Affiliation(s)
- Brooks B Bond-Watts
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | | | | |
Collapse
|
1502
|
Galdzicki M, Rodriguez C, Chandran D, Sauro HM, Gennari JH. Standard biological parts knowledgebase. PLoS One 2011; 6:e17005. [PMID: 21390321 PMCID: PMC3044748 DOI: 10.1371/journal.pone.0017005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/19/2011] [Indexed: 11/19/2022] Open
Abstract
We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.
Collapse
Affiliation(s)
- Michal Galdzicki
- Biomedical & Health Informatics, University of Washington, Seattle, Washington, United States of America
| | - Cesar Rodriguez
- BIOFAB, University of California, Berkeley, California, United States of America
| | - Deepak Chandran
- Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Herbert M. Sauro
- Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - John H. Gennari
- Biomedical & Health Informatics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
1503
|
Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, Tristani EM, Crumbliss AL, Ferdig MT, Checkley L, Edwards RL, Boshoff HI. Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc 2011; 133:2076-9. [PMID: 21275374 PMCID: PMC3045749 DOI: 10.1021/ja109665t] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the antimalarial agent artemisinin itself is not active against tuberculosis, conjugation to a mycobacterial-specific siderophore (microbial iron chelator) analogue induces significant and selective antituberculosis activity, including activity against multi- and extensively drug-resistant strains of Mycobacterium tuberculosis. The conjugate also retains potent antimalarial activity. Physicochemical and whole-cell studies indicated that ferric-to-ferrous reduction of the iron complex of the conjugate initiates the expected bactericidal Fenton-type radical chemistry on the artemisinin component. Thus, this "Trojan horse" approach demonstrates that new pathogen-selective therapeutic agents in which the iron component of the delivery vehicle also participates in triggering the antibiotic activity can be generated. The result is that one appropriate conjugate has potent and selective activity against two of the most deadly diseases in the world.
Collapse
Affiliation(s)
- Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1504
|
Abstract
In this feature, leading researchers in the field of microbial biotechnology speculate on the technical and conceptual developments that will drive innovative research and open new vistas over the next few years.
Collapse
|
1505
|
Krivoruchko A, Siewers V, Nielsen J. Opportunities for yeast metabolic engineering: Lessons from synthetic biology. Biotechnol J 2011; 6:262-76. [DOI: 10.1002/biot.201000308] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/06/2011] [Accepted: 01/13/2011] [Indexed: 11/08/2022]
|
1506
|
Misirli G, Hallinan JS, Yu T, Lawson JR, Wimalaratne SM, Cooling MT, Wipat A. Model annotation for synthetic biology: automating model to nucleotide sequence conversion. Bioinformatics 2011; 27:973-9. [PMID: 21296753 PMCID: PMC3065685 DOI: 10.1093/bioinformatics/btr048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motivation: The need for the automated computational design of genetic circuits is becoming increasingly apparent with the advent of ever more complex and ambitious synthetic biology projects. Currently, most circuits are designed through the assembly of models of individual parts such as promoters, ribosome binding sites and coding sequences. These low level models are combined to produce a dynamic model of a larger device that exhibits a desired behaviour. The larger model then acts as a blueprint for physical implementation at the DNA level. However, the conversion of models of complex genetic circuits into DNA sequences is a non-trivial undertaking due to the complexity of mapping the model parts to their physical manifestation. Automating this process is further hampered by the lack of computationally tractable information in most models. Results: We describe a method for automatically generating DNA sequences from dynamic models implemented in CellML and Systems Biology Markup Language (SBML). We also identify the metadata needed to annotate models to facilitate automated conversion, and propose and demonstrate a method for the markup of these models using RDF. Our algorithm has been implemented in a software tool called MoSeC. Availability: The software is available from the authors' web site http://research.ncl.ac.uk/synthetic_biology/downloads.html. Contact:anil.wipat@ncl.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Goksel Misirli
- School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
1507
|
Abstract
Over the past decade, resistance to antibiotics has emerged as a crisis of global proportion. Microbes resistant to many and even all clinically approved antibiotics are increasingly common and easily spread across continents. At the same time there are fewer new antibiotic drugs coming to market. We are reaching a point where we are no longer able to confidently treat a growing number of bacterial infections. The molecular mechanisms of drug resistance provide the essential knowledge on new drug development and clinical use. These mechanisms include enzyme catalyzed antibiotic modifications, bypass of antibiotic targets and active efflux of drugs from the cell. Understanding the chemical rationale and underpinnings of resistance is an essential component of our response to this clinical challenge.
Collapse
Affiliation(s)
- Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, 1200 Main St W, Hamilton, ON, Canada.
| |
Collapse
|
1508
|
Møldrup ME, Geu-Flores F, Olsen CE, Halkier BA. Modulation of sulfur metabolism enables efficient glucosinolate engineering. BMC Biotechnol 2011; 11:12. [PMID: 21281472 PMCID: PMC3042935 DOI: 10.1186/1472-6750-11-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 01/31/2011] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Metabolic engineering in heterologous organisms is an attractive approach to achieve efficient production of valuable natural products. Glucosinolates represent a good example of such compounds as they are thought to be the cancer-preventive agents in cruciferous plants. We have recently demonstrated that it is feasible to engineer benzylglucosinolate (BGLS) in the non-cruciferous plant Nicotiana benthamiana by transient expression of five genes from Arabidopsis thaliana. In the same study, we showed that co-expression of a sixth Arabidopsis gene, γ-glutamyl peptidase 1 (GGP1), resolved a metabolic bottleneck, thereby increasing BGLS accumulation. However, the accumulation did not reach the expected levels, leaving room for further optimization. RESULTS To optimize heterologous glucosinolate production, we have in this study performed a comparative metabolite analysis of BGLS-producing N. benthamiana leaves in the presence or absence of GGP1. The analysis revealed that the increased BGLS levels in the presence of GGP1 were accompanied by a high accumulation of the last intermediate, desulfoBGLS, and a derivative thereof. This evidenced a bottleneck in the last step of the pathway, the transfer of sulfate from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to desulfoBGLS by the sulfotransferase AtSOT16. While substitution of AtSOT16 with alternative sulfotransferases did not alleviate the bottleneck, experiments with the three genes involved in the formation and recycling of PAPS showed that co-expression of adenosine 5'-phosphosulfate kinase 2 (APK2) alone reduced the accumulation of desulfoBGLS and its derivative by more than 98% and increased BGLS accumulation 16-fold. CONCLUSION Adjusting sulfur metabolism by directing sulfur from primary to secondary metabolism leads to a remarkable improvement in BGLS accumulation and thereby represents an important step towards a clean and efficient production of glucosinolates in heterologous hosts. Our study emphasizes the importance of considering co-substrates and their biological nature in metabolic engineering projects.
Collapse
Affiliation(s)
- Morten E Møldrup
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
- VKR Research Centre for Pro-Active Plants, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Fernando Geu-Flores
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
- VKR Research Centre for Pro-Active Plants, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Carl E Olsen
- VKR Research Centre for Pro-Active Plants, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
- Department of Natural Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Barbara A Halkier
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
- VKR Research Centre for Pro-Active Plants, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
1509
|
Ignea C, Cvetkovic I, Loupassaki S, Kefalas P, Johnson CB, Kampranis SC, Makris AM. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microb Cell Fact 2011; 10:4. [PMID: 21276210 PMCID: PMC3042375 DOI: 10.1186/1475-2859-10-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 01/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. RESULTS S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence) at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R) variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330) in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1) also improved production levels, pointing to an additional means to improve production. CONCLUSIONS Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.
Collapse
Affiliation(s)
- Codruta Ignea
- Department of Natural Products and Biotechnology, Centre International de Hautes Etudes Agronomiques Méditerranéennes, Mediterranean Agronomic Institute of Chania, PO Box 85, Chania 73100, Greece
| | | | | | | | | | | | | |
Collapse
|
1510
|
Bartoli G, Marcantoni E, Marcolini M, Sambri L. Applications of CeCl(3) as an environmental friendly promoter in organic chemistry. Chem Rev 2011; 110:6104-43. [PMID: 20731375 DOI: 10.1021/cr100084g] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Giuseppe Bartoli
- Department of Organic Chemistry A. Mangini, University of Bologna, viale Risorgimento 4, I-40156 Bologna, Italy
| | | | | | | |
Collapse
|
1511
|
Ellis T, Adie T, Baldwin GS. DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 2011; 3:109-18. [DOI: 10.1039/c0ib00070a] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Tom Ellis
- Centre for Synthetic Biology and Innovation, South Kensington, Imperial College London, SW7 2AZ, UK
- Department of Bioengineering, South Kensington, Imperial College London, SW7 2AZ, UK. Fax: +44 (0)20-7594-7615
| | - Tom Adie
- Centre for Synthetic Biology and Innovation, South Kensington, Imperial College London, SW7 2AZ, UK
- Division of Molecular Biosciences, South Kensington, Imperial College London, SW7 2AZ, UK. Fax: +44 (0)20-7594-5288
| | - Geoff S. Baldwin
- Centre for Synthetic Biology and Innovation, South Kensington, Imperial College London, SW7 2AZ, UK
- Division of Molecular Biosciences, South Kensington, Imperial College London, SW7 2AZ, UK. Fax: +44 (0)20-7594-5288
| |
Collapse
|
1512
|
|
1513
|
Cankar K, van Houwelingen A, Bosch D, Sonke T, Bouwmeester H, Beekwilder J. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett 2011; 585:178-82. [PMID: 21115006 DOI: 10.1016/j.febslet.2010.11.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/10/2010] [Accepted: 11/22/2010] [Indexed: 12/01/2022]
Abstract
Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene.
Collapse
Affiliation(s)
- Katarina Cankar
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
1514
|
Bridging the gap between fluxomics and industrial biotechnology. J Biomed Biotechnol 2011; 2010:460717. [PMID: 21274256 PMCID: PMC3022177 DOI: 10.1155/2010/460717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/08/2010] [Indexed: 12/30/2022] Open
Abstract
Metabolic flux analysis is a vital tool used to determine the ultimate output of cellular metabolism and thus detect biotechnologically relevant bottlenecks in productivity. 13C-based metabolic flux analysis (13C-MFA) and flux balance analysis (FBA) have many potential applications in biotechnology. However, noteworthy hurdles in fluxomics study are still present. First, several technical difficulties in both 13C-MFA and FBA severely limit the scope of fluxomics findings and the applicability of obtained metabolic information. Second, the complexity of metabolic regulation poses a great challenge for precise prediction and analysis of metabolic networks, as there are gaps between fluxomics results and other omics studies. Third, despite identified metabolic bottlenecks or sources of host stress from product synthesis, it remains difficult to overcome inherent metabolic robustness or to efficiently import and express nonnative pathways. Fourth, product yields often decrease as the number of enzymatic steps increases. Such decrease in yield may not be caused by rate-limiting enzymes, but rather is accumulated through each enzymatic reaction. Fifth, a high-throughput fluxomics tool hasnot been developed for characterizing nonmodel microorganisms and maximizing their application in industrial biotechnology. Refining fluxomics tools and understanding these obstacles will improve our ability to engineer highlyefficient metabolic pathways in microbial hosts.
Collapse
|
1515
|
Maes L, Van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, Vande Casteele SRF, Inzé D, Covello PS, Deforce DLD, Goossens A. Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. THE NEW PHYTOLOGIST 2011; 189:176-89. [PMID: 20874804 DOI: 10.1111/j.1469-8137.2010.03466.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Biosynthesis of the sesquiterpene lactone and potent antimalarial drug artemisinin occurs in glandular trichomes of Artemisia annua plants and is subjected to a strict network of developmental and other regulatory cues. • The effects of three hormones, jasmonate, gibberellin and cytokinin, were studied at the structural and molecular levels in two different A. annua chemotypes by microscopic analysis of gland development, and by targeted metabolite and transcript profiling. Furthermore, a genome-wide cDNA-amplified fragment length polymorphism (AFLP)-based transcriptome profiling was carried out of jasmonate-elicited leaves at different developmental stages. • Although cytokinin and gibberellin positively affected at least one aspect of gland formation, these two hormones did not stimulate artemisinin biosynthesis. Only jasmonate simultaneously promoted gland formation and coordinated transcriptional activation of biosynthetic gene expression, which ultimately led to increased sesquiterpenoid accumulation with chemotype-dependent effects on the distinct pathway branches. Transcriptome profiling revealed a trichome-specific fatty acyl- coenzyme A reductase, trichome-specific fatty acyl-CoA reductase 1 (TFAR1), the expression of which correlates with trichome development and sesquiterpenoid biosynthesis. • TFAR1 is potentially involved in cuticular wax formation during glandular trichome expansion in leaves and flowers of A. annua plants. Analysis of phytohormone-modulated transcriptional regulons provides clues to dissect the concerted regulation of metabolism and development of plant trichomes.
Collapse
Affiliation(s)
- Lies Maes
- Department of Plant Systems Biology, VIB, Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1516
|
Murphy AC. Metabolic engineering is key to a sustainable chemical industry. Nat Prod Rep 2011; 28:1406-25. [DOI: 10.1039/c1np00029b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
1517
|
O'Reilly E, Köhler V, Flitsch SL, Turner NJ. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 2011; 47:2490-501. [DOI: 10.1039/c0cc03165h] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
1518
|
Abstract
In this chapter, we present an up-to-date view of the optimal characteristics of the yeast Saccharomyces cerevisiae as a model eukaryote for systems biology studies, with main molecular mechanisms, biological networks, and sub-cellular organization essentially conserved in all eukaryotes, derived from a complex common ancestor. The existence of advanced tools for molecular studies together with high-throughput experimental and computational methods, most of them being implemented and validated in yeast, with new ones being developed, is opening the way to the characterization of the core modular architecture and complex networks essential to all eukaryotes. Selected examples of the latest discoveries in eukaryote complexity and systems biology studies using yeast as a reference model and their applications in biotechnology and medicine are presented.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB21GA, UK.
| | | |
Collapse
|
1519
|
Zhang H, Boghigian BA, Armando J, Pfeifer BA. Methods and options for the heterologous production of complex natural products. Nat Prod Rep 2011; 28:125-51. [PMID: 21060956 PMCID: PMC9896020 DOI: 10.1039/c0np00037j] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review will detail the motivations, experimental approaches, and growing list of successful cases associated with the heterologous production of complex natural products.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Chemical & Biological Engineering, Science & Technology Center, Tufts University, Medford, MA 02155, USA.
| | | | | | | |
Collapse
|
1520
|
Synthetic biology: From the first synthetic cell to see its current situation and future development. ACTA ACUST UNITED AC 2011; 56:229-237. [PMID: 32214738 PMCID: PMC7088918 DOI: 10.1007/s11434-010-4304-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/19/2010] [Indexed: 10/31/2022]
Abstract
Synthetic biology is an emerging field, which, since its birth, has shown great value and potential in many fields including medicine, energy, environment and agriculture. It is also important for the study of the origin and evolution of life. Since the publication of the first synthetic cell in May, 2010, synthetic biology again attracts high attention and leads to extensive discussions all over the world. There have been a number of researches and achievements on synthetic biology in the United States and European countries. While in China, so far there is no systematic research on synthetic biology. In order to promote the development of this new discipline in China, we organized this review to systematically introduce the concept and research content of synthetic biology, summarize the achievements, and investigate the current situation in both China and abroad. We also analyzed the opportunities and challenges in synthetic biology, and looked forward to the future development of synthetic biology, especially its future development in China.
Collapse
|
1521
|
Pollier J, Moses T, Goossens A. Combinatorial biosynthesis in plants: A (p)review on its potential and future exploitation. Nat Prod Rep 2011; 28:1897-916. [DOI: 10.1039/c1np00049g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
1522
|
Bromley EHC, Channon KJ. Alpha-helical peptide assemblies giving new function to designed structures. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:231-75. [PMID: 21999998 PMCID: PMC7150058 DOI: 10.1016/b978-0-12-415906-8.00001-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The design of alpha-helical tectons for self-assembly is maturing as a science. We have now reached the point where many different coiled-coil topologies can be reliably produced and validated in synthetic systems and the field is now moving on towards more complex, discrete structures and applications. Similarly the design of infinite or fiber assemblies has also matured, with the creation fibers that have been modified or functionalized in a variety of ways. This chapter discusses the progress made in both of these areas as well as outlining the challenges still to come.
Collapse
|
1523
|
Wang H, Olofsson L, Lundgren A, Brodelius PE. Trichome-Specific Expression of Amorpha-4,11-Diene Synthase, a Key Enzyme of Artemisinin Biosynthesis in <i>Artemisia annua</i> L., as Reported by a Promoter-GUS Fusion. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ajps.2011.24073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1524
|
MacDonald JT, Barnes C, Kitney RI, Freemont PS, Stan GBV. Computational design approaches and tools for synthetic biology. Integr Biol (Camb) 2011; 3:97-108. [DOI: 10.1039/c0ib00077a] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
1525
|
Tan Y, Lafontaine Rivera JG, Contador CA, Asenjo JA, Liao JC. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab Eng 2011; 13:60-75. [DOI: 10.1016/j.ymben.2010.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/29/2022]
|
1526
|
Caretto S, Quarta A, Durante M, Nisi R, De Paolis A, Blando F, Mita G. Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:51-8. [PMID: 21143725 DOI: 10.1111/j.1438-8677.2009.00306.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Artemisia annua L. is a herb traditionally used for treatment of fevers. The glandular trichomes of this plant accumulate, although at low levels, artemisinin, which is highly effective against malaria. Due to the great importance of this compound, many efforts have been made to improve knowledge on artemisinin production both in plants and in cell cultures. In this study, A. annua suspension cultures were established in order to investigate the effects of methyl jasmonate (MeJA) and miconazole on artemisinin biosynthesis. Twenty-two micro molar MeJA induced a three-fold increase of artemisinin production in around 30 min; while 200 μm miconazole induced a 2.5-fold increase of artemisinin production after 24 h, but had severe effects on cell viability. The influence of these treatments on expression of biosynthetic genes was also investigated. MeJA induced up-regulation of CYP71AV1, while miconazole induced up-regulation of CPR and DBR2.
Collapse
Affiliation(s)
- S Caretto
- Istituto di Scienze delle Produzioni Alimentari, CNR, Lecce, Italy.
| | | | | | | | | | | | | |
Collapse
|
1527
|
|
1528
|
Sawai S, Saito K. Triterpenoid biosynthesis and engineering in plants. FRONTIERS IN PLANT SCIENCE 2011; 2:25. [PMID: 22639586 PMCID: PMC3355669 DOI: 10.3389/fpls.2011.00025] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/16/2011] [Indexed: 05/18/2023]
Abstract
Triterpenoid saponins are a diverse group of natural products in plants and are considered defensive compounds against pathogenic microbes and herbivores. Because of their various beneficial properties for humans, saponins are used in wide-ranging applications in addition to medicinally. Saponin biosynthesis involves three key enzymes: oxidosqualene cyclases, which construct the basic triterpenoid skeletons; cytochrome P450 monooxygenases, which mediate oxidations; and uridine diphosphate-dependent glycosyltransferases, which catalyze glycosylations. The discovery of genes committed to saponin biosynthesis is important for the stable supply and biotechnological application of these compounds. Here, we review the identified genes involved in triterpenoid biosynthesis, summarize the recent advances in the biotechnological production of useful plant terpenoids, and discuss the bioengineering of plant triterpenoids.
Collapse
Affiliation(s)
| | - Kazuki Saito
- Plant Science Center, RIKENYokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- *Correspondence: Kazuki Saito, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. e-mail:
| |
Collapse
|
1529
|
Zhang X, Wang X, Shanmugam KT, Ingram LO. L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 2011; 77:427-34. [PMID: 21097588 PMCID: PMC3020529 DOI: 10.1128/aem.01971-10] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/15/2010] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains (KJ060 and KJ073) that were previously developed for succinate production have now been modified for malate production. Many unexpected changes were observed during this investigation. The initial strategy of deleting fumarase isoenzymes was ineffective, and succinate continued to accumulate. Surprisingly, a mutation in fumarate reductase alone was sufficient to redirect carbon flow into malate even in the presence of fumarase. Further deletions were needed to inactivate malic enzymes (typically gluconeogenic) and prevent conversion to pyruvate. However, deletion of these genes (sfcA and maeB) resulted in the unexpected accumulation of D-lactate despite the prior deletion of mgsA and ldhA and the absence of apparent lactate dehydrogenase activity. Although the metabolic source of this D-lactate was not identified, lactate accumulation was increased by supplementation with pyruvate and decreased by the deletion of either pyruvate kinase gene (pykA or pykF) to reduce the supply of pyruvate. Many of the gene deletions adversely affected growth and cell yield in minimal medium under anaerobic conditions, and volumetric rates of malate production remained low. The final strain (XZ658) produced 163 mM malate, with a yield of 1.0 mol (mol glucose(-1)), half of the theoretical maximum. Using a two-stage process (aerobic cell growth and anaerobic malate production), this engineered strain produced 253 mM malate (34 g liter(-1)) within 72 h, with a higher yield (1.42 mol mol(-1)) and productivity (0.47 g liter(-1) h(-1)). This malate yield and productivity are equal to or better than those of other known biocatalysts.
Collapse
Affiliation(s)
- X. Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - X. Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - K. T. Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - L. O. Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
1530
|
Dai Z, Cui G, Zhou SF, Zhang X, Huang L. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:148-57. [PMID: 0 DOI: 10.1016/j.jplph.2010.06.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/19/2010] [Accepted: 06/19/2010] [Indexed: 05/03/2023]
|
1531
|
Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 2010; 9:131-7. [DOI: 10.1038/nrmicro2478] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1532
|
Abstract
Metabolic engineering has the potential to produce from simple, readily available, inexpensive starting materials a large number of chemicals that are currently derived from nonrenewable resources or limited natural resources. Microbial production of natural products has been achieved by transferring product-specific enzymes or entire metabolic pathways from rare or genetically intractable organisms to those that can be readily engineered, and production of unnatural specialty chemicals, bulk chemicals, and fuels has been enabled by combining enzymes or pathways from different hosts into a single microorganism and by engineering enzymes to have new function. Whereas existing production routes use well-known, safe, industrial microorganisms, future production schemes may include designer cells that are tailor-made for the desired chemical and production process. In any future, metabolic engineering will soon rival and potentially eclipse synthetic organic chemistry.
Collapse
Affiliation(s)
- Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.
| |
Collapse
|
1533
|
Grand challenge commentary: Transforming biosynthesis into an information science. Nat Chem Biol 2010; 6:859-61. [PMID: 21079588 DOI: 10.1038/nchembio.487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineering biosynthetic pathways to natural products is a challenging endeavor that promises to provide new therapeutics and tools to manipulate biology. Information-guided design strategies and tools could unlock the creativity of a wide spectrum of scientists and engineers by decoupling expertise from implementation.
Collapse
|
1534
|
Perampaladas K, Masum H, Kapoor A, Shah R, Daar AS, Singer PA. The road to commercialization in Africa: lessons from developing the sickle-cell drug Niprisan. BMC INTERNATIONAL HEALTH AND HUMAN RIGHTS 2010; 10 Suppl 1:S11. [PMID: 21144071 PMCID: PMC3001608 DOI: 10.1186/1472-698x-10-s1-s11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Developing novel drugs from traditional medicinal knowledge can serve as a means to improve public health. Yet countries in sub-Saharan Africa face barriers in translating traditional medicinal knowledge into commercially viable health products. Barriers in moving along the road towards making a new drug available include insufficient manufacturing capacity; knowledge sharing between scientists and medical healers; regulatory hurdles; quality control issues; pricing and distribution; and lack of financing. The case study method was used to illustrate efforts to overcome these barriers during the development in Nigeria of Niprisan – a novel drug for the treatment of sickle cell anemia, a chronic blood disorder with few effective therapies. Discussion Building on the knowledge of a traditional medicine practitioner, Nigeria’s National Institute for Pharmaceutical Research and Development (NIPRD) developed the traditional herbal medicine Niprisan. The commercialization of Niprisan reached a number of commercial milestones, including regulatory approval in Nigeria; securing US-based commercial partner XeChem; demonstrating clinical efficacy and safety; being awarded orphan drug status by the US Food and Drug Administration; and striking important relationships with domestic and international groups. Despite these successes, however, XeChem did not achieve mainstream success for Niprisan in Nigeria or in the United States. A number of reasons, including inconsistent funding and manufacturing and management challenges, have been put forth to explain Niprisan’s commercial demise. As of this writing, NIPRD is considering options for another commercial partner to take the drug forward. Summary Evidence from the Niprisan experience suggests that establishing benefit-sharing agreements, fostering partnerships with established research institutions, improving standardization and quality control, ensuring financial and managerial due diligence, and recruiting entrepreneurial leaders capable of holding dual scientific and business responsibilities should be incorporated into future drug development initiatives based on traditional medicines. Country-level supporting policies and conditions are also important. With more experience and support, and an improved environment for innovation, developing new drugs from traditional medicines may be an attractive approach to addressing diseases in sub-Saharan Africa and other regions.
Collapse
Affiliation(s)
- Kumar Perampaladas
- McLaughlin-Rotman Centre for Global Health, University Health Network and University of Toronto, 101 College Street Suite 406, Toronto ON, M5G 1L7, Canada
| | | | | | | | | | | |
Collapse
|
1535
|
Zhang H, Jiang T. Synthetic circuits, devices and modules. Protein Cell 2010; 1:974-8. [PMID: 21153514 DOI: 10.1007/s13238-010-0133-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/09/2010] [Indexed: 12/19/2022] Open
Abstract
The aim of synthetic biology is to design artificial biological systems for novel applications. From an engineering perspective, construction of biological systems of defined functionality in a hierarchical way is fundamental to this emerging field. Here, we highlight some current advances on design of several basic building blocks in synthetic biology including the artificial gene control elements, synthetic circuits and their assemblies into devices and modules. Such engineered basic building blocks largely expand the synthetic toolbox and contribute to our understanding of the underlying design principles of living cells.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
1536
|
van Herpen TWJM, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ, Beekwilder J. Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS One 2010; 5:e14222. [PMID: 21151979 PMCID: PMC2997059 DOI: 10.1371/journal.pone.0014222] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/12/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of precursors of artemisinin, a sesquiterpenoid compound that is used for malaria treatment. METHODOLOGY/PRINCIPAL FINDINGS Biosynthetic genes leading to artemisinic acid, a precursor of artemisinin, were combined and expressed in N. benthamiana by agro-infiltration. The first committed precursor of artemisinin, amorpha-4,11-diene, was produced upon infiltration of a construct containing amorpha-4,11-diene synthase, accompanied by 3-hydroxy-3-methylglutaryl-CoA reductase and farnesyl diphosphate synthase. Amorpha-4,11-diene was detected both in extracts and in the headspace of the N. benthamiana leaves. When the amorphadiene oxidase CYP71AV1 was co-infiltrated with the amorphadiene-synthesizing construct, the amorpha-4,11-diene levels strongly decreased, suggesting it was oxidized. Surprisingly, no anticipated oxidation products, such as artemisinic acid, were detected upon GC-MS analysis. However, analysis of leaf extracts with a non-targeted metabolomics approach, using LC-QTOF-MS, revealed the presence of another compound, which was identified as artemisinic acid-12-β-diglucoside. This compound accumulated to 39.5 mg x kg(-1) fwt. Apparently the product of the heterologous pathway that was introduced, artemisinic acid, is further metabolized efficiently by glycosyl transferases that are endogenous to N. benthamiana. CONCLUSION/SIGNIFICANCE This work shows that agroinfiltration of N. bentamiana can be used as a model to study the production of sesquiterpenoid pharmaceutical compounds. The interaction between the ectopically introduced pathway and the endogenous metabolism of the plant is discussed.
Collapse
Affiliation(s)
| | - Katarina Cankar
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Marilise Nogueira
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Dirk Bosch
- Plant Research International, Wageningen, The Netherlands
- Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jules Beekwilder
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
- Plant Research International, Wageningen, The Netherlands
| |
Collapse
|
1537
|
The yin and yang of yeast: biodiversity research and systems biology as complementary forces driving innovation in biotechnology. Biotechnol Lett 2010; 33:477-87. [PMID: 21125415 DOI: 10.1007/s10529-010-0482-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
Abstract
The aim of this article is to review how yeast has contributed to contemporary biotechnology and to seek underlying principles relevant to its future exploitation for human benefit. Recent advances in systems biology combined with new knowledge of genome diversity promise to make yeast the eukaryotic workhorse of choice for production of everything from probiotics and pharmaceuticals to fuels and chemicals. The ability to engineer new capabilities through introduction of controlled diversity based on a complete understanding of genome complexity and metabolic flux is key. Here, we briefly summarise the history that has led to these apparently simple organisms being employed in such a broad range of commercial applications. Subsequently, we discuss the likely consequences of current yeast research for the future of biotechnological innovation.
Collapse
|
1538
|
Ayukawa S, Kobayashi A, Nakashima Y, Takagi H, Hamada S, Uchiyama M, Yugi K, Murata S, Sakakibara Y, Hagiya M, Yamamura M, Kiga D. Construction of a genetic AND gate under a new standard for assembly of genetic parts. BMC Genomics 2010; 11 Suppl 4:S16. [PMID: 21143799 PMCID: PMC3005925 DOI: 10.1186/1471-2164-11-s4-s16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Appropriate regulation of respective gene expressions is a bottleneck for the realization of artificial biological systems inside living cells. The modification of several promoter sequences is required to achieve appropriate regulation of the systems. However, a time-consuming process is required for the insertion of an operator, a binding site of a protein for gene expression, to the gene regulatory region of a plasmid. Thus, a standardized method for integrating operator sequences to the regulatory region of a plasmid is required. Results We developed a standardized method for integrating operator sequences to the regulatory region of a plasmid and constructed a synthetic promoter that functions as a genetic AND gate. By standardizing the regulatory region of a plasmid and the operator parts, we established a platform for modular assembly of the operator parts. Moreover, by assembling two different operator parts on the regulatory region, we constructed a regulatory device with an AND gate function. Conclusions We implemented a new standard to assemble operator parts for construction of functional genetic logic gates. The logic gates at the molecular scale have important implications for reprogramming cellular behavior.
Collapse
Affiliation(s)
- Shotaro Ayukawa
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1539
|
Park S, Kang K, Lee SW, Ahn MJ, Bae JM, Back K. Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Appl Microbiol Biotechnol 2010; 89:1387-94. [DOI: 10.1007/s00253-010-2994-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|
1540
|
Hu X, Hu H, Beratan DN, Yang W. A gradient-directed Monte Carlo approach for protein design. J Comput Chem 2010; 31:2164-8. [PMID: 20186860 DOI: 10.1002/jcc.21506] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We develop a new global optimization strategy, gradient-directed Monte Carlo (GDMC) sampling, to optimize protein sequence for a target structure using RosettaDesign. GDMC significantly improves the sampling of sequence space, compared to the classical Monte Carlo search protocol, for a fixed backbone conformation as well as for the simultaneous optimization of sequence and structure. As such, GDMC sampling enhances the efficiency of protein design.
Collapse
Affiliation(s)
- Xiangqian Hu
- Department of Chemistry, French Family Science Center, Duke University, Durham, North Carolina 27708-0346, USA
| | | | | | | |
Collapse
|
1541
|
Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR. Improved vanillin production in baker's yeast through in silico design. Microb Cell Fact 2010; 9:84. [PMID: 21059201 PMCID: PMC2992047 DOI: 10.1186/1475-2859-9-84] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. RESULTS Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. CONCLUSION Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.
Collapse
Affiliation(s)
- Ana Rita Brochado
- Center for Microbial Biotechnology, Technical University of Denmark, DK - 2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
1542
|
Mannan A, Ahmed I, Arshad W, Asim MF, Qureshi RA, Hussain I, Mirza B. Survey of artemisinin production by diverse Artemisia species in northern Pakistan. Malar J 2010; 9:310. [PMID: 21047440 PMCID: PMC2989329 DOI: 10.1186/1475-2875-9-310] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022] Open
Abstract
Background Artemisinin is the current drug of choice for treatment of malaria and a number of other diseases. It is obtained from the annual herb, Artemisia annua and some microbial sources by genetic engineering. There is a great concern that the artemisinin production at current rate will not meet the increasing demand by the pharmaceutical industry, so looking for additional sources is imperative. Methods In current study, artemisinin concentration was analysed and compared in the flowers, leaves, roots and stems of Artemisia annua and 14 other Artemisia species including two varieties each for Artemisia roxburghiana and Artemisia dracunculus using high performance liquid chromatography (HPLC). Results The highest artemisinin concentration was detected in the leaves (0.44 ± 0.03%) and flowers (0.42 ± 0.03%) of A. annua, followed by the flowers (0.34 ± .02%) of A. bushriences and leaves (0.27 ± 0%) of A. dracunculus var dracunculus. The average concentration of artemisinin varied in the order of flowers > leaves > stems > roots. Conclusion This study identifies twelve novel plant sources of artemisinin, which may be helpful for pharmaceutical production of artemisinin. This is the first report of quantitative comparison of artemisinin among a large number of Artemisia species.
Collapse
Affiliation(s)
- Abdul Mannan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
1543
|
Fritz BR, Timmerman LE, Daringer NM, Leonard JN, Jewett MC. Biology by design: from top to bottom and back. J Biomed Biotechnol 2010; 2010:232016. [PMID: 21052559 PMCID: PMC2971569 DOI: 10.1155/2010/232016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/22/2010] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology is a nascent technical discipline that seeks to enable the design and construction of novel biological systems to meet pressing societal needs. However, engineering biology still requires much trial and error because we lack effective approaches for connecting basic "parts" into higher-order networks that behave as predicted. Developing strategies for improving the performance and sophistication of our designs is informed by two overarching perspectives: "bottom-up" and "top-down" considerations. Using this framework, we describe a conceptual model for developing novel biological systems that function and interact with existing biological components in a predictable fashion. We discuss this model in the context of three topical areas: biochemical transformations, cellular devices and therapeutics, and approaches that expand the chemistry of life. Ten years after the construction of synthetic biology's first devices, the drive to look beyond what does exist to what can exist is ushering in an era of biology by design.
Collapse
Affiliation(s)
- Brian R. Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| | - Laura E. Timmerman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| | - Nichole M. Daringer
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
1544
|
Brown GD. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 2010; 15:7603-98. [PMID: 21030913 PMCID: PMC6259225 DOI: 10.3390/molecules15117603] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/17/2010] [Indexed: 12/27/2022] Open
Abstract
The Chinese medicinal plant Artemisia annua L. (Qinghao) is the only known source of the sesquiterpene artemisinin (Qinghaosu), which is used in the treatment of malaria. Artemisinin is a highly oxygenated sesquiterpene, containing a unique 1,2,4-trioxane ring structure, which is responsible for the antimalarial activity of this natural product. The phytochemistry of A. annua is dominated by both sesquiterpenoids and flavonoids, as is the case for many other plants in the Asteraceae family. However, A. annua is distinguished from the other members of the family both by the very large number of natural products which have been characterised to date (almost six hundred in total, including around fifty amorphane and cadinane sesquiterpenes), and by the highly oxygenated nature of many of the terpenoidal secondary metabolites. In addition, this species also contains an unusually large number of terpene allylic hydroperoxides and endoperoxides. This observation forms the basis of a proposal that the biogenesis of many of the highly oxygenated terpene metabolites from A. annua - including artemisinin itself - may proceed by spontaneous oxidation reactions of terpene precursors, which involve these highly reactive allyllic hydroperoxides as intermediates. Although several studies of the biosynthesis of artemisinin have been reported in the literature from the 1980s and early 1990s, the collective results from these studies were rather confusing because they implied that an unfeasibly large number of different sesquiterpenes could all function as direct precursors to artemisinin (and some of the experiments also appeared to contradict one another). As a result, the complete biosynthetic pathway to artemisinin could not be stated conclusively at the time. Fortunately, studies which have been published in the last decade are now providing a clearer picture of the biosynthetic pathways in A. annua. By synthesising some of the sesquiterpene natural products which have been proposed as biogenetic precursors to artemisinin in such a way that they incorporate a stable isotopic label, and then feeding these precursors to intact A. annua plants, it has now been possible to demonstrate that dihydroartemisinic acid is a late-stage precursor to artemisinin and that the closely related secondary metabolite, artemisinic acid, is not (this approach differs from all the previous studies, which used radio-isotopically labelled precursors that were fed to a plant homogenate or a cell-free preparation). Quite remarkably, feeding experiments with labeled dihydroartemisinic acid and artemisinic acid have resulted in incorporation of label into roughly half of all the amorphane and cadinane sesquiterpenes which were already known from phytochemical studies of A. annua. These findings strongly support the hypothesis that many of the highly oxygenated sesquiterpenoids from this species arise by oxidation reactions involving allylic hydroperoxides, which seem to be such a defining feature of the chemistry of A. annua. In the particular case of artemisinin, these in vivo results are also supported by in vitro studies, demonstrating explicitly that the biosynthesis of artemisinin proceeds via the tertiary allylic hydroperoxide, which is derived from oxidation of dihydroartemisinic acid. There is some evidence that the autoxidation of dihydroartemisinic acid to this tertiary allylic hydroperoxide is a non-enzymatic process within the plant, requiring only the presence of light; and, furthermore, that the series of spontaneous rearrangement reactions which then convert this allylic hydroperoxide to the 1,2,4-trioxane ring of artemisinin are also non-enzymatic in nature.
Collapse
Affiliation(s)
- Geoffrey D Brown
- Department of Chemistry, The University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| |
Collapse
|
1545
|
|
1546
|
A golden phoenix arising from the herbal nest — A review and reflection on the study of antimalarial drug Qinghaosu. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11458-010-0214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
1547
|
Eudes A, Baidoo EEK, Yang F, Burd H, Hadi MZ, Collins FW, Keasling JD, Loqué D. Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 89:989-1000. [DOI: 10.1007/s00253-010-2939-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
1548
|
Abstract
Engineering efficient, directional electronic communication between living and nonliving systems has the potential to combine the unique characteristics of both materials for advanced biotechnological applications. However, the cell membrane is designed by nature to be an insulator, restricting the flow of charged species; therefore, introducing a biocompatible pathway for transferring electrons across the membrane without disrupting the cell is a significant challenge. Here we describe a genetic strategy to move intracellular electrons to an inorganic extracellular acceptor along a molecularly defined route. To do so, we reconstitute a portion of the extracellular electron transfer chain of Shewanella oneidensis MR-1 into the model microbe Escherichia coli. This engineered E. coli can reduce metal ions and solid metal oxides ∼8× and ∼4× faster than its parental strain. We also find that metal oxide reduction is more efficient when the extracellular electron acceptor has nanoscale dimensions. This work demonstrates that a genetic cassette can create a conduit for electronic communication from living cells to inorganic materials, and it highlights the importance of matching the size scale of the protein donors to inorganic acceptors.
Collapse
|
1549
|
Characterization of the kaurene oxidase CYP701A3, a multifunctional cytochrome P450 from gibberellin biosynthesis. Biochem J 2010; 431:337-44. [DOI: 10.1042/bj20100597] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
KO (kaurene oxidase) is a multifunctional cytochrome P450 catalysing three sequential oxidations in gibberellin phytohormone biosynthesis. These serve to transform the C4α methyl of the ent-kaurene olefin intermediate into the carboxylic acid moiety of ent-kauren-19-oic acid. To investigate the unknown catalytic mechanism and properties of KO, we have engineered the corresponding CYP701A3 from Arabidopsis thaliana (AtKO) for functional recombinant expression in Escherichia coli, involving use of a fully codon-optimized construct, along with additional N-terminal deletion and modification. This recombinant AtKO (rAtKO) was used to carry out 18O2 labelling studies with ent-kaurene, and the intermediates ent-kaurenol and ent-kaurenal, to investigate the multifunctional reaction sequence; revealing catalysis of three hydroxylation reactions, which further requires dehydration at some stage. Accordingly, following initial hydroxylation, ent-kaurenol must then be further hydroxylated to a gem-diol intermediate, and our data indicate that the subsequent reactions proceed via dehydration of the gem-diol to ent-kaurenal, followed by an additional hydroxylation to directly form ent-kaurenoic acid. Kinetic analysis indicates that these intermediates are all retained in the active site during the course of the reaction series, with the first hydroxylation being rate-limiting. In addition, investigation of alternative substrates demonstrated that ent-beyerene, which differs in ring structure distal to the C4α methyl, is only hydroxylated by rAtKO, indicating the importance of the exact tetracyclic ring structure of kaurane for multifunctional KO activity. Thus the results of the present study clarify the reaction sequence and enzymatic mechanism of KO, as well as substrate features critical for the catalysed multiple reaction sequence.
Collapse
|
1550
|
Arsenault PR, Vail D, Wobbe KK, Erickson K, Weathers PJ. Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua. PLANT PHYSIOLOGY 2010; 154:958-68. [PMID: 20724645 PMCID: PMC2949044 DOI: 10.1104/pp.110.162552] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/16/2010] [Indexed: 05/19/2023]
Abstract
The relationship between the transition to budding and flowering in Artemisia annua and the production of the antimalarial sesquiterpene, artemisinin (AN), the dynamics of artemisinic metabolite changes, AN-related transcriptional changes, and plant and trichome developmental changes were measured. Maximum production of AN occurs during full flower stage within floral tissues, but that changes in the leafy bracts and nonbolt leaves as the plant shifts from budding to full flower. Expression levels of early pathway genes known to be involved in isopentenyl diphosphate and farnesyl diphosphate biosynthesis leading to AN were not immediately positively correlated with either AN or its precursors. However, we found that the later AN pathway genes, amorpha-4,11-diene synthase (ADS) and the cytochrome P450, CYP71AV1 (CYP), were more highly correlated with AN's immediate precursor, dihydroartemisinic acid, within all leaf tissues tested. In addition, leaf trichome formation throughout the developmental phases of the plant also appears to be more complex than originally thought. Trichome changes correlated closely with the levels of AN but not its precursors. Differences were observed in trichome densities that are dependent both on developmental stage (vegetative, budding, and flowering) and on position (upper and lower leaf tissue). AN levels declined significantly as plants matured, as did ADS and CYP transcripts. Spraying leaves with AN or artemisinic acid inhibited CYP transcription; artemisinic acid also inhibited ADS transcription. These data allow us to present a novel model for the differential control of AN biosynthesis as it relates to developmental stage and trichome maturation and collapse.
Collapse
|