1551
|
Abstract
A versatile tool for selecting particles from electron micrographs, intended for single particle analysis and three-dimensional reconstruction, is presented. It is based on a local real-space correlation method. Real-space correlations calculated over a local area are suitable for finding small objects or patterns in a larger field. They provide a very sensitive measure-of-fit, partly due to local optimisation of the numerical scaling. It is equivalent to least squares with optimised scaling between the two objects being correlated. The only disadvantage of real-space methods is that they are slow to compute. A fast local correlation algorithm based on Fourier transforms has been developed, which is approximately two orders of magnitude faster than the explicit real-space formulation. The algorithm is demonstrated by application to the problem of locating images of macromolecules in transmission electron micrographs of unstained frozen hydrated specimens. This is a challenging computational problem because these images have low contrast and a low signal-to-noise ratio. Picking particles by hand is very time consuming and can be less accurate. The automated procedure gives a significant increase in speed, which is important if large numbers of particles have to be picked.
Collapse
Affiliation(s)
- Alan M Roseman
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.
| |
Collapse
|
1552
|
Heikinheimo P, Helland R, Leiros HKS, Leiros I, Karlsen S, Evjen G, Ravelli R, Schoehn G, Ruigrok R, Tollersrud OK, McSweeney S, Hough E. The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low-pH activation. J Mol Biol 2003; 327:631-44. [PMID: 12634058 DOI: 10.1016/s0022-2836(03)00172-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lysosomal alpha-mannosidase (LAM: EC 3.2.1.24) belongs to the sequence-based glycoside hydrolase family 38 (GH38). Two other mammalian GH38 members, Golgi alpha-mannosidase II (GIIAM) and cytosolic alpha-mannosidase, are expressed in all tissues. In humans, cattle, cat and guinea pig, lack of lysosomal alpha-mannosidase activity causes the autosomal recessive disease alpha-mannosidosis. Here, we describe the three-dimensional structure of bovine lysosomal alpha-mannosidase (bLAM) at 2.7A resolution and confirm the solution state dimer by electron microscopy. We present the first structure of a mammalian GH38 enzyme that offers indications for the signal areas for mannose phosphorylation, suggests a previously undetected mechanism of low-pH activation and provides a template for further biochemical studies of the family 38 glycoside hydrolases as well as lysosomal transport. Furthermore, it provides a basis for understanding the human form of alpha-mannosidosis at the atomic level. The atomic coordinates and structure factors have been deposited in the Protein Data Bank (accession codes 1o7d and r1o7dsf).
Collapse
|
1553
|
Peng G, Fritzsch G, Zickermann V, Schägger H, Mentele R, Lottspeich F, Bostina M, Radermacher M, Huber R, Stetter KO, Michel H. Isolation, characterization and electron microscopic single particle analysis of the NADH:ubiquinone oxidoreductase (complex I) from the hyperthermophilic eubacterium Aquifex aeolicus. Biochemistry 2003; 42:3032-9. [PMID: 12627969 DOI: 10.1021/bi026876v] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence. The purified detergent solubilized enzyme is highly active above 50 degrees C. The specific activity for electron transfer from NADH to decylubiquinone is 29 U/mg at 80 degrees C. The A. aeolicus complex I is completely sensitive to rotenone and 2-n-decyl-quinazoline-4-yl-amine. SDS polyacrylamide gel electrophoresis shows that it may contain up to 14 subunits. N-terminal amino acid sequencing of the bands indicates the presence of a stable subcomplex, which is composed of subunits E, F, and G. The isolated complex is highly stable and active in a temperature range from 50 to 90 degrees C, with a half-life of about 10 h at 80 degrees C. The activity shows a linear Arrhenius plot at 50-85 degrees C with an activation energy at 31.92 J/mol K. Single particle electron microscopy shows that the A. aeolicus complex I has the typical L-shape. However, visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources. In addition, the angle (90 degrees ) between the cytoplasmic peripheral arm and the membrane intrinsic arm of the complex appears to be invariant.
Collapse
Affiliation(s)
- Guohong Peng
- Max-Planck-Institut für Biophysik, Frankfurt a. M., Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1554
|
Zhao L, Kanamaru S, Chaidirek C, Arisaka F. P15 and P3, the tail completion proteins of bacteriophage T4, both form hexameric rings. J Bacteriol 2003; 185:1693-700. [PMID: 12591887 PMCID: PMC148078 DOI: 10.1128/jb.185.5.1693-1700.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two proteins, gp15 and gp3 (gp for gene product), are required to complete the assembly of the T4 tail. gp15 forms the connector which enables the tail to bind to the head, whereas gp3 is involved in terminating the elongation of the tail tube. In this work, genes 15 and 3 were cloned and overexpressed, and the purified gene products were studied by analytical ultracentrifugation, electron microscopy, and circular dichroism. Determination of oligomerization state by sedimentation equilibrium revealed that both gp15 and gp3 are hexamers of the respective polypeptide chains. Electron microscopy of the negatively stained P15 and P3 (P denotes the oligomeric state of the gene product) revealed that both proteins form hexameric rings, the diameter of which is close to that of the tail tube. The differential roles between gp15 and gp3 upon completion of the tail are discussed.
Collapse
Affiliation(s)
- Li Zhao
- Department of Molecular and Cellular Assembly, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
1555
|
Timmins J, Schoehn G, Ricard-Blum S, Scianimanico S, Vernet T, Ruigrok RWH, Weissenhorn W. Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J Mol Biol 2003; 326:493-502. [PMID: 12559917 DOI: 10.1016/s0022-2836(02)01406-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Ebola virus matrix protein VP40 is a major viral structural protein and plays a central role in virus assembly and budding at the plasma membrane of infected cells. For efficient budding, a full amino terminus of VP40 is required, which includes a PPXY and a PT/SAP motif, both of which have been proposed to interact with cellular proteins. Here, we report that Ebola VP40 can interact with cellular factors human Nedd4 and Tsg101 in vitro. We show that WW domain 3 of human Nedd4 is necessary and sufficient for binding to the PPXY motif of VP40, which requires an oligomeric conformation of VP40. Single particle electron microscopy reconstructions indicate that WW3 of Nedd4 is in close contact with the N-terminal domain of hexameric VP40. In contrast, the ubiquitin enzyme variant domain of Tsg101 was sufficient for binding to the PT/SAP motif of VP40, regardless of the oligomeric state of the matrix protein. These results suggest that hNedd4 and Tsg101 may play complimentary roles at a late stage of the assembly process, by recruiting cellular factors of two independent pathways to the site of budding at the plasma membrane.
Collapse
Affiliation(s)
- Joanna Timmins
- European Molecular Biology Laboratory, 6 rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
1556
|
VanLoock MS, Yu X, Yang S, Lai AL, Low C, Campbell MJ, Egelman EH. ATP-mediated conformational changes in the RecA filament. Structure 2003; 11:187-96. [PMID: 12575938 DOI: 10.1016/s0969-2126(03)00003-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The crystal structure of the E. coli RecA protein was solved more than 10 years ago, but it has provided limited insight into the mechanism of homologous genetic recombination. Using electron microscopy, we have reconstructed five different states of RecA-DNA filaments. The C-terminal lobe of the RecA protein is modulated by the state of the distantly bound nucleotide, and this allosteric coupling can explain how mutations and truncations of this C-terminal lobe enhance RecA's activity. A model generated from these reconstructions shows that the nucleotide binding core is substantially rotated from its position in the RecA crystal filament, resulting in ATP binding between subunits. This simple rotation can explain the large cooperativity in ATP hydrolysis observed for RecA-DNA filaments.
Collapse
Affiliation(s)
- Margaret S VanLoock
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
1557
|
Bertenshaw GP, Norcum MT, Bond JS. Structure of homo- and hetero-oligomeric meprin metalloproteases. Dimers, tetramers, and high molecular mass multimers. J Biol Chem 2003; 278:2522-32. [PMID: 12399461 DOI: 10.1074/jbc.m208808200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meprin A and B, metalloproteases consisting of evolutionarily related alpha and/or beta subunits, are membrane-bound and secreted enzymes expressed by kidney and intestinal epithelial cells, leukocytes, and cancer cells. Previous work established that the multidomain meprin subunits (each approximately 80 kDa) form disulfide-bridged homo- and heterodimers, and differ in substrate and peptide bond specificities. The work herein clearly demonstrates that meprin dimers differ markedly in their ability to oligomerize. Electrophoresis, light scattering, size exclusion chromatography, and electron microscopy were used to characterize quaternary structures of recombinant rat meprins. Meprin B, consisting of meprin beta subunits only, was dimeric under a wide range of conditions. By contrast, meprin alpha homodimers formed heterogeneous multimers (ring-, circle-, spiral-, and tube-like structures) containing up to 100 subunits, with molecular masses at protein peaks ranging from approximately 1.0 to 6.0 MDa. The size of the meprin alpha homo-oligomers was dependent on protein concentration, ionic strength, and activation state. Meprin alphabeta heterodimers tended to form tetramers but not higher oligomers. Thus, the presence of meprin beta, which has a transmembrane domain in vivo, restricts the oligomerization potential of meprin molecules and localizes meprins to the plasma membrane. By contrast, the propensity of secreted meprin alpha homodimers to self-associate concentrates proteolytic potential into high molecular mass multimers and thus allows for autocompartmentalization. The work indicates that different mechanisms exist to localize and concentrate the proteolytic activity of membrane-bound and secreted meprin metalloproteinases.
Collapse
Affiliation(s)
- Greg P Bertenshaw
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
1558
|
Mavrakis M, Iseni F, Mazza C, Schoehn G, Ebel C, Gentzel M, Franz T, Ruigrok RWH. Isolation and characterisation of the rabies virus N degrees-P complex produced in insect cells. Virology 2003; 305:406-14. [PMID: 12573586 DOI: 10.1006/viro.2002.1748] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When the nucleoprotein (N) of nonsegmented negative-strand RNA viruses is expressed in insect cells, it binds to cellular RNA and forms N-RNA complexes just like viral nucleocapsids. However, in virus-infected cells, N is prevented from binding to cellular RNA because a soluble complex is formed between N and the viral phosphoprotein (P), the N degrees -P complex. N is only released from this complex for binding to newly made viral or complementary RNA. We coexpressed rabies virus N and P proteins in insect cells and purified the N degrees -P complex. Characterisation by gel filtration, polyacrylamide gel electrophoresis, analytical ultracentrifugation, native mass spectroscopy, and electron microscopy showed that the complex consists of one N protein plus two P proteins, i.e., an N degrees -P(2) complex.
Collapse
Affiliation(s)
- Manos Mavrakis
- EMBL Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
1559
|
Mayo K, Huseby D, McDermott J, Arvidson B, Finlay L, Barklis E. Retrovirus capsid protein assembly arrangements. J Mol Biol 2003; 325:225-37. [PMID: 12473464 DOI: 10.1016/s0022-2836(02)01176-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During retrovirus particle assembly and morphogenesis, the retrovirus structural (Gag) proteins organize into two different arrangements: an immature form assembled by precursor Gag (PrGag) proteins; and a mature form, composed of proteins processed from PrGag. Central to both Gag protein arrangements is the capsid (CA) protein, a domain of PrGag, which is cleaved from the precursor to yield a mature Gag protein composed of an N-terminal domain (NTD), a flexible linker region, and a C-terminal domain (CTD). Because Gag interactions have proven difficult to examine in virions, a number of investigations have focused on the analysis of structures assembled in vitro. We have used electron microscope (EM) image reconstruction techniques to examine assembly products formed by two different CA variants of both human immunodeficiency virus type 1 (HIV-1) and the Moloney murine leukemia virus (M-MuLV). Interestingly, two types of hexameric protein arrangements were observed for each virus type. One organizational scheme featured hexamers composed of putative NTD dimer subunits, with sharing of subunits between neighbor hexamers. The second arrangement used apparent NTD monomers to coordinate hexamers, involved no subunit sharing, and employed putative CTD interactions to connect hexamers. Conversion between the two assembly forms may be achieved by making or breaking the proposed symmetric NTD dimer contacts in a process that appears to mimic viral morphogenesis.
Collapse
Affiliation(s)
- Keith Mayo
- Vollum Institute and Department of Microbiology MC L220, Oregon Health and Science University, 31814 SW Sam Jackson Park Rd, Portland, OR 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
1560
|
Rizzo VF, Coskun U, Radermacher M, Ruiz T, Armbruster A, Gruber G. Resolution of the V1 ATPase from Manduca sexta into subcomplexes and visualization of an ATPase-active A3B3EG complex by electron microscopy. J Biol Chem 2003; 278:270-5. [PMID: 12414800 DOI: 10.1074/jbc.m208623200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The effect of the ATPase activity of Manduca sexta V(1) ATPase by the amphipathic detergent lauryldimethylamine oxide (LDAO) and the relationship of these activities to the subunit composition of V(1) were studied. The V(1) was highly activated in the presence of 0.04-0.06% LDAO combined with release of the subunits H, C, and F from the enzyme. Increase of LDAO concentration to 0.1-0.2% caused the characterized subcomplexes A(3)B(3)HEGF and A(3)B(3)EG with a remaining ATPase activity of 52 and 65%, respectively. The hydrolytic-active A(3)B(3)EG subcomplex has been visualized by electron microscopy showing six major masses of density in a pseudo-hexagonal arrangement surrounding a seventh mass. The compositions of the various subcomplexes and fragments of V(1) provide an organization of the subunits in the enzyme in the framework of the known three-dimensional reconstruction of the V(1) ATPase from M. sexta (Radermacher, M., Ruiz, T., Wieczorek, H., and Grüber, G. (2001) J. Struct. Biol. 135, 26-37).
Collapse
Affiliation(s)
- Vincenzo F Rizzo
- Universität des Saarlandes, Fachrichtung 2.5-Biophysik, D-66421 Homburg, Germany
| | | | | | | | | | | |
Collapse
|
1561
|
Rawat UBS, Zavialov AV, Sengupta J, Valle M, Grassucci RA, Linde J, Vestergaard B, Ehrenberg M, Frank J. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 2003; 421:87-90. [PMID: 12511960 DOI: 10.1038/nature01224] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2002] [Accepted: 10/04/2002] [Indexed: 11/09/2022]
Abstract
Protein synthesis takes place on the ribosome, where genetic information carried by messenger RNA is translated into a sequence of amino acids. This process is terminated when a stop codon moves into the ribosomal decoding centre (DC) and is recognized by a class-1 release factor (RF). RFs have a conserved GGQ amino-acid motif, which is crucial for peptide release and is believed to interact directly with the peptidyl-transferase centre (PTC) of the 50S ribosomal subunit. Another conserved motif of RFs (SPF in RF2) has been proposed to interact directly with stop codons in the DC of the 30S subunit. The distance between the DC and PTC is approximately 73 A. However, in the X-ray structure of RF2, SPF and GGQ are only 23 A apart, indicating that they cannot be at DC and PTC simultaneously. Here we show that RF2 is in an open conformation when bound to the ribosome, allowing GGQ to reach the PTC while still allowing SPF-stop-codon interaction. The results indicate new interpretations of accuracy in termination, and have implications for how the presence of a stop codon in the DC is signalled to PTC.
Collapse
Affiliation(s)
- Urmila B S Rawat
- Howard Hughes Medical Institute, Health Research, Inc., Empire State Plaza, Albany NY 12201-0509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1562
|
Burgess S, Walker M, Wang F, Sellers JR, White HD, Knight PJ, Trinick J. The prepower stroke conformation of myosin V. J Cell Biol 2002; 159:983-91. [PMID: 12499355 PMCID: PMC2173995 DOI: 10.1083/jcb.200208172] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Revised: 11/08/2002] [Accepted: 11/14/2002] [Indexed: 11/22/2022] Open
Abstract
We have used electron microscopy and single-particle image processing to study head conformation in myosin V molecules. We find that in the presence of ATP, many heads have a sharply angled conformation that is rare in its absence. The sharply angled conformation is similar to a myosin II atomic structure proposed to mimic the prepower stroke state. The leading head in molecules attached to actin by both heads has a similar conformation, but is also sharply angled in a second plane by tethering through the trail head. The lead head lever joins the motor domain approximately 5 nm axially from where it joins the trail motor. These positions locate the converter subdomain and show the lead motor is in the prepower stroke conformation. Tethering by the trail head places the lead head motor domain at the correct axial position along the actin for binding, but at the wrong orientation. Attachment is achieved either by bending the lead head lever throughout its length or at the pliant point. The microscopy shows that most of the walking stride is produced by changes in lever angle brought about by converter movement, but is augmented by distortion produced by thermal energy.
Collapse
Affiliation(s)
- Stan Burgess
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
1563
|
Wang L, Lashuel HA, Walz T, Colon W. Murine apolipoprotein serum amyloid A in solution forms a hexamer containing a central channel. Proc Natl Acad Sci U S A 2002; 99:15947-52. [PMID: 12456883 PMCID: PMC138545 DOI: 10.1073/pnas.252508399] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serum amyloid A (SAA) is a small apolipoprotein that binds to high-density lipoproteins in the serum. Although SAA seems to play a role in host defense and lipid transport and metabolism, its specific functions have not been defined. Despite the growing implications that SAA plays a role in the pathology of various diseases, a high-resolution structure of SAA is lacking because of limited solubility in the high-density lipoprotein-free form. In this study, complementary methods including glutaraldehyde cross-linking, size-exclusion chromatography, and sedimentation-velocity analytical ultracentrifugation were used to show that murine SAA2.2 in aqueous solution exists in a monomer-hexamer equilibrium. Electron microscopy of hexameric SAA2.2 revealed that the subunits are arranged in a ring forming a putative central channel. Limited trypsin proteolysis and mass spectrometry analysis identified a significantly protease-resistant SAA2.2 region comprising residues 39-86. The isolated 39-86 SAA2.2 fragment did not hexamerize, suggesting that part of the N terminus is involved in SAA2.2 hexamer formation. Circular-dichroism spectrum deconvolution and secondary-structure prediction suggest that SAA2.2 contains approximately 50% of its residues in alpha-helical conformation and <10% in beta-structure. These findings are consistent with the recent discovery that human SAA1.1 forms a membrane channel and have important implications for understanding the 3D structure, multiple functions, and pathological roles of this highly conserved protein.
Collapse
Affiliation(s)
- Limin Wang
- Department of Chemistry, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
1564
|
Morgan DG, Ménétret JF, Neuhof A, Rapoport TA, Akey CW. Structure of the mammalian ribosome-channel complex at 17A resolution. J Mol Biol 2002; 324:871-86. [PMID: 12460584 DOI: 10.1016/s0022-2836(02)01111-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The co-translational translocation of proteins into the endoplasmic reticulum (ER) lumen and the biogenesis of membrane proteins require ribosome binding to a membrane channel formed by the Sec61p complex. We now report the 17A structure of a mammalian ribosome-channel complex derived from ER membranes. Atomic models of the ribosomal subunits were aligned to the programmed ribosome from Thermus thermophilus, to provide a common reference frame. The T.thermophilus ribosome, and by extension all known high resolution subunit models, were then docked within our map of the ribosome-channel complex. The structure shows that the ribosome contains a putative tRNA in the exit site, and a comparison with a non-programmed, yeast ribosome suggests that the L1 stalk may function as a gate in the tRNA exit path. We have localized six major expansion segments in the large subunit of the vertebrate ribosome including ES27, and suggest a function for ES30. The large ribosomal subunit is linked to the channel by four connections. We identified regions in the large subunit rRNA and four proteins that may help form the connections. These regions of the ribosome probably serve as a template to guide the assembly of the asymmetric translocation channel. Three of the connections form a picket fence that separates the putative translocation pore from the attachment site of an additional membrane component. The ribosome-channel connections also create an open junction that would allow egress of a nascent chain into the cytosol. At a threshold that is appropriate for the entire complex, the channel is rather solid and the lumenal half of the putative translocation pore is closed. These data suggest that the flow of small molecules across the membrane may be impeded by the channel itself, rather than the ribosome-channel junction.
Collapse
Affiliation(s)
- David Gene Morgan
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118-2526, USA
| | | | | | | | | |
Collapse
|
1565
|
Liu Z, Zhang J, Li P, Chen SRW, Wagenknecht T. Three-dimensional reconstruction of the recombinant type 2 ryanodine receptor and localization of its divergent region 1. J Biol Chem 2002; 277:46712-9. [PMID: 12324472 DOI: 10.1074/jbc.m208124200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoform 2 of the ryanodine receptor (RyR2) is the major calcium release channel in cardiac muscle. In the present study, two kinds of RyR2 cDNA were constructed, one encoding the wild type mouse RyR2 (RyR2(wt)) and the other encoding modified RyR2, into which was inserted a cDNA encoding green fluorescent protein (GFP). GFP was inserted into the divergent region 1 (DR1) of RyR2, after the Asp-4365 (RyR2(D4365-GFP)). HEK293 cells expressing both RyR2(wt) and RyR2(D4365-GFP) cDNAs showed caffeine- and ryanodine-sensitive calcium release, demonstrating that both wild type and modified RyR2s form functional calcium release channels. Cells expressing the fusion protein, RyR2(D4365-GFP), were readily identified by their fluorescence due to the presence of GFP, indicating that the inserted GFP folded properly. Both expressed RyR2s were purified from cell lysates in a single step by affinity chromatography using a GST-FKBP12.6 as the affinity ligand. Cryoelectron microscopy of purified RyR2s showed structurally intact receptors, and three-dimensional reconstructions were obtained by single particle image processing. The three-dimensional reconstruction of RyR2(wt) appeared very similar to that of the native RyR2 purified from dog heart. The location of the inserted GFP, and consequently of DR1, was mapped on the three-dimensional structure of RyR2 to one of the subunit's characteristic domains, domain 3, also known as the "handle" domain. This study describes the first internal fusion of a protein into a ryanodine receptor, and it demonstrates the potential of this technology for localizing functional and structural domains on the three-dimensional structure of RyR.
Collapse
Affiliation(s)
- Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA.
| | | | | | | | | |
Collapse
|
1566
|
Gao H, Spahn CMT, Grassucci RA, Frank J. An assay for local quality in cryo-electron micrographs of single particles. Ultramicroscopy 2002; 93:169-78. [PMID: 12425594 DOI: 10.1016/s0304-3991(02)00157-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High quality of the cryo-electron micrographs is of crucial importance for the success of single particle three-dimensional reconstruction methods. In analyzing some micrographs from cryo-electron microscopy specimens, we found an extraordinary variability, within the same micrograph, in the appearance of particles. We developed a method for analyzing the variability of local image quality, using correspondence analysis of local power spectra. With this technique, we discovered a strong systematic variation of the envelope modulating an otherwise unchanged contrast transfer function. The underlying causes may be uncontrollable effects, such as variations in the thickness of ice, instability of the holey carbon, and charging. The method of assaying, resulting in "local quality maps", may be useful as a general tool for screening micrographs used as input for reconstructions.
Collapse
Affiliation(s)
- Haixiao Gao
- Howard Hughes Medical Institute, Wadsworth Center, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
1567
|
Asturias FJ, Chung WH, Kornberg RD, Lorch Y. Structural analysis of the RSC chromatin-remodeling complex. Proc Natl Acad Sci U S A 2002; 99:13477-80. [PMID: 12368485 PMCID: PMC129698 DOI: 10.1073/pnas.162504299] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2002] [Indexed: 11/18/2022] Open
Abstract
Electron microscopy of the RSC chromatin-remodeling complex reveals a ring of protein densities around a central cavity. The size and shape of the cavity correspond closely to those of a nucleosome. Results of nuclease protection analysis are consistent with nucleosome binding in the cavity. Such binding could explain the ability of RSC to expose nucleosomal DNA in the presence of ATP without loss of associated histones.
Collapse
Affiliation(s)
- Francisco J Asturias
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
1568
|
Wang MC, Velarde G, Ford RC, Berrow NS, Dolphin AC, Kitmitto A. 3D structure of the skeletal muscle dihydropyridine receptor. J Mol Biol 2002; 323:85-98. [PMID: 12368101 DOI: 10.1016/s0022-2836(02)00890-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dihydropyridine receptors (DHPR) are L-type voltage-gated calcium channels that regulate the flux of calcium ions across the cell membrane. Here we present the three-dimensional (3D) structure at approximately 27A resolution of purified skeletal muscle DHPR, as determined by electron microscopy and single particle analysis. Here both biochemical and 3D structural data indicate that DHPR is dimeric. DHPR dimers are composed of two arch-shaped monomers approximately 210A across and approximately 75A thick, that interact very tightly at each end of the arch. The roughly toroidal structure of the two monomers encloses a cylindrical space of approximately 80A diameter, which is then closed on each side by two dome-shaped protein densities reaching over from each monomer arch. The dome-shaped domains have a length of approximately 80-90A and a maximum height of approximately 45A. Small orifices punctuate their exterior surface. The 3D structure disclosed here may have important implications for the understanding of DHPR Ca(2+) channel function. We also propose a model for its in vivo interactions with the calcium release channel at the junctional sarcoplasmic recticulum.
Collapse
Affiliation(s)
- Ming-Chuan Wang
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), P.O. Box 88, Manchester, M60 1QD, UK
| | | | | | | | | | | |
Collapse
|
1569
|
Matoba K, Mayanagi K, Nakasu S, Kikuchi A, Morikawa K. Three-dimensional electron microscopy of the reverse gyrase from Sulfolobus tokodaii. Biochem Biophys Res Commun 2002; 297:749-55. [PMID: 12359215 DOI: 10.1016/s0006-291x(02)02255-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reverse gyrase is a type IA topoisomerase, found in various hyperthermophiles and promotes ATP-dependent positive supercoiling of DNA. Electron microscopy combined with single particle analyses revealed the three-dimensional structure of the DNA-free Sulfolobus tokodaii reverse gyrase and two-dimensional average images of both the protein alone and that complexed with double-stranded DNA. The 23A resolution map exhibited a parallelogrammatic morphology of 110 x 87 x 43A, which is in good agreement with the crystal structure of the Archaeoglobus fulgidus reverse gyrase. The average image of the complex revealed that the monomeric enzyme binds DNA duplex. Together with this average image of the complex, the three-dimensional map implies that, at the beginning of the supercoiling reaction, DNA is bound within a 10-20A wide cleft in the helicase-like domain. We also speculate that DNA may pass through a 20A wide hole at the end of the cleft.
Collapse
Affiliation(s)
- Kyoko Matoba
- Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita-city, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
1570
|
Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT. Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 2002; 322:1089-102. [PMID: 12367530 DOI: 10.1016/s0022-2836(02)00735-0] [Citation(s) in RCA: 637] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two mutations in the alpha-synuclein gene (A30P and A53T) have been linked to autosomal dominant early-onset Parkinson's disease (PD). Both mutations promote the formation of transient protofibrils (prefibrillar oligomers), suggesting that protofibrils are linked to cytotoxicity. In this work, the effect of these mutations on the structure of alpha-synuclein oligomers was investigated using electron microscopy and digital image processing. The PD-linked mutations (A30P and A53T) were observed to affect both the morphology and the size distribution of alpha-synuclein protofibrils (measured by analytical ultracentrifugation and scanning transmission electron microscopy). The A30P variant was observed to promote the formation of annular, pore-like protofibrils, whereas A53T promotes formation of annular and tubular protofibrillar structures. Wild-type alpha-synuclein also formed annular protofibrils, but only after extended incubation. The formation of pore-like oligomeric structures may explain the membrane permeabilization activity of alpha-synuclein protofibrils. These structures may contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Center for Neurologic Diseases, Brigham and Women's Hospital and Department of Neurology, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
1571
|
Abstract
We have obtained a 3D reconstruction of intact microtubules, using cryoelectron microscopy and image processing, at a resolution of about 8 A, sufficient to resolve much of the secondary structure. The level of detail in the map allows docking of the tubulin structure previously determined by electron crystallography, with very strong constraints, providing several important insights not previously available through docking tubulin into lower-resolution maps. This work provides an improved picture of the interactions between adjacent protofilaments, which are responsible for microtubule stability, and also suggests that some structural features are different in microtubules from those in the zinc sheets with which the tubulin structure was determined.
Collapse
Affiliation(s)
- Huilin Li
- Life Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA
| | | | | | | | | |
Collapse
|
1572
|
Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110:599-11. [PMID: 12230977 DOI: 10.1016/s0092-8674(02)00935-2] [Citation(s) in RCA: 904] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
How ligand binding alters integrin conformation in outside-in signaling, and how inside-out signals alter integrin affinity for ligand, have been mysterious. We address this with electron microscopy, physicochemical measurements, mutational introduction of disulfides, and ligand binding to alphaVbeta3 and alphaIIbbeta3 integrins. We show that a highly bent integrin conformation is physiological and has low affinity for biological ligands. Addition of a high affinity ligand mimetic peptide or Mn(2+) results in a switchblade-like opening to an extended structure. An outward swing of the hybrid domain at its junction with the I-like domain shows conformational change within the headpiece that is linked to ligand binding. Breakage of a C-terminal clasp between the alpha and beta subunits enhances Mn(2+)-induced unbending and ligand binding.
Collapse
Affiliation(s)
- Junichi Takagi
- The Center for Blood Research, Departments of Pathology and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
1573
|
Yamada K, Miyata T, Tsuchiya D, Oyama T, Fujiwara Y, Ohnishi T, Iwasaki H, Shinagawa H, Ariyoshi M, Mayanagi K, Morikawa K. Crystal structure of the RuvA-RuvB complex: a structural basis for the Holliday junction migrating motor machinery. Mol Cell 2002; 10:671-81. [PMID: 12408833 DOI: 10.1016/s1097-2765(02)00641-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present the X-ray structure of the RuvA-RuvB complex, which plays a crucial role in ATP-dependent branch migration. Two RuvA tetramers form the symmetric and closed octameric shell, where four RuvA domain IIIs spring out in the two opposite directions to be individually caught by a single RuvB. The binding of domain III deforms the protruding beta hairpin in the N-terminal domain of RuvB and thereby appears to induce a functional and less symmetric RuvB hexameric ring. The model of the RuvA-RuvB junction DNA ternary complex, constructed by fitting the X-ray structure into the averaged electron microscopic images of the RuvA-RuvB junction, appears to be more compatible with the branch migration mode of a fixed RuvA-RuvB interaction than with a rotational interaction mode.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Biomolecular Engineering Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1574
|
Mu XQ, Egelman EH, Bullitt E. Structure and function of Hib pili from Haemophilus influenzae type b. J Bacteriol 2002; 184:4868-74. [PMID: 12169612 PMCID: PMC135281 DOI: 10.1128/jb.184.17.4868-4874.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria are specifically adapted to bind to their customary host. Disease is then caused by subsequent colonization and/or invasion of the local environmental niche. Initial binding of Haemophilus influenzae type b to the human nasopharynx is facilitated by Hib pili, filaments expressed on the bacterial surface. With three-dimensional reconstruction of electron micrograph images, we show that Hib pili comprise a helix 70 A in diameter with threefold symmetry. The Hib pilus filament has 3.0 subunits per turn, with each set of three subunits translated 26.9 A along and rotated 53 degrees about the helical axis. Amino acid sequence analysis of pilins from Hib pili and from P-pili expressed on uropathogenic Escherichia coli were used to predict the physical location of the highly variable and immunogenic region of the HifA pilin in the Hib pilus structure. Structural differences between Hib pili and P-pili suggest a difference in the strategies by which bacteria remain bound to their host cells: P-pili were shown to be capable of unwinding to five times their original length (E. Bullitt and L. Makowski, Nature 373:164-167, 1995), while damage to Hib pili occurs by slight shearing of subunits with respect to those further along the helical axis. This capacity to resist unwinding may be important for continued adherence of H. influenzae type b to the nasopharynx, where the three-stranded Hib pilus filaments provide a robust tether to withstand coughs and sneezes.
Collapse
Affiliation(s)
- Xiang-Qi Mu
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
| | | | | |
Collapse
|
1575
|
Yang S, Yu X, VanLoock MS, Jezewska MJ, Bujalowski W, Egelman EH. Flexibility of the rings: structural asymmetry in the DnaB hexameric helicase. J Mol Biol 2002; 321:839-49. [PMID: 12206765 DOI: 10.1016/s0022-2836(02)00711-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DnaB is the primary replicative helicase in Escherichia coli and the hexameric DnaB ring has previously been shown to exist in two states in the presence of nucleotides. In one, all subunits are equivalent, while in the other, there are two different subunit conformations resulting in a trimer of dimers. Under all conditions that we have used for electron microscopy, including the absence of nucleotide, some rings exist as trimers of dimers, showing that the symmetry of the DnaB hexamer can be broken prior to nucleotide binding. Three-dimensional reconstructions reveal that the N-terminal domain of DnaB makes two very different contacts with neighboring subunits in the trimer of dimers, but does not form a predicted dimer with a neighboring N-terminal domain. Within the trimer of dimers, the helicase domain exists in two alternate conformations, each of which can form symmetrical hexamers depending upon the nucleotide cofactor used. These results provide new information about the modular architecture and domain dynamics of helicases, and suggest, by comparison with the hexameric bacteriophage T7 gp4 and SV40 large T-antigen helicases, that a great structural and mechanistic diversity may exist among the hexameric helicases.
Collapse
Affiliation(s)
- Shixin Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Jordan Hall, Box 800773, Charlottesville 22908-0733, USA
| | | | | | | | | | | |
Collapse
|
1576
|
Morsomme P, Chami M, Marco S, Nader J, Ketchum KA, Goffeau A, Rigaud JL. Characterization of a hyperthermophilic P-type ATPase from Methanococcus jannaschii expressed in yeast. J Biol Chem 2002; 277:29608-16. [PMID: 12048206 DOI: 10.1074/jbc.m203871200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report on the biochemical and structural properties of a putative P-type H(+)-ATPase, MJ1226p, from the anaerobic hyperthermophilic Archaea Methanococcus jannaschii. An efficient heterologous expression system was developed in Saccharomyces cerevisiae and a four-step purification protocol, using n-dodecyl beta-d-maltoside, led to a homogeneous detergent-solubilized protein fraction with a yield of over 2 mg of protein per liter of culture. The three-dimensional structure of the purified detergent-solubilized protein obtained at 2.4 nm resolution by electron microscopy showed a dimeric organization in which the size and the shape of each monomer was compatible with the reported structures of P-type ATPases. The purified MJ1226p ATPase was inactive at 40 degrees C and was active at elevated temperature reaching high specific activity, up to 180 micromol of P(i) x min(-1) x mg(-1) at 95 degrees C. Maximum ATPase activity was observed at pH 4.2 and required up to 200 mm monovalent salts. The ATPase activity was stable for several days upon storage at 65 degrees C and was highly resistant to urea and guanidine hydrochloride. The protein formed catalytic phosphoenzyme intermediates from MgATP or P(i), a functional characteristic specific of P-type ATPases. The highly purified, homogeneous, stable, and active MJ1226p ATPase provides a new model for further structure-function studies of P-type ATPases.
Collapse
Affiliation(s)
- Pierre Morsomme
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Place Croix du Sud 2-20, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
1577
|
Yu X, VanLoock MS, Poplawski A, Kelman Z, Xiang T, Tye BK, Egelman EH. The Methanobacterium thermoautotrophicum MCM protein can form heptameric rings. EMBO Rep 2002; 3:792-7. [PMID: 12151340 PMCID: PMC1084214 DOI: 10.1093/embo-reports/kvf160] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 05/24/2002] [Accepted: 06/24/2002] [Indexed: 11/15/2022] Open
Abstract
Mini-chromosome maintenance (MCM) proteins form a conserved family found in all eukaryotes and are essential for DNA replication. They exist as heteromultimeric complexes containing as many as six different proteins. These complexes are believed to be the replicative helicases, functioning as hexameric rings at replication forks. In most archaea a single MCM protein exists. The protein from Methanobacterium thermoautotrophicum (mtMCM) has been reported to assemble into a large complex consistent with a dodecamer. We show that mtMCM can assemble into a heptameric ring. This ring contains a C-terminal helicase domain that can be fit with crystal structures of ring helicases and an N-terminal domain of unknown function. While the structure of the ring is very similar to that of hexameric replicative helicases such as bacteriophage T7 gp4, our results show that such ring structures may not be constrained to have only six subunits.
Collapse
Affiliation(s)
- Xiong Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, Va 22908, USA
| | | | | | | | | | | | | |
Collapse
|
1578
|
Kolodziej SJ, Wagenknecht T, Strickland DK, Stoops JK. The three-dimensional structure of the human alpha 2-macroglobulin dimer reveals its structural organization in the tetrameric native and chymotrypsin alpha 2-macroglobulin complexes. J Biol Chem 2002; 277:28031-7. [PMID: 12015318 DOI: 10.1074/jbc.m202714200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three-dimensional electron microscopy reconstructions of the human alpha(2)-macroglobulin (alpha(2)M) dimer and chymotrypsin-transformed alpha(2)M reveal the structural arrangement of the two dimers that comprise native and proteinase-transformed molecules. They consist of two side-by-side extended strands that have a clockwise and counterclockwise twist about their major axes in the native and transformed structures, respectively. This and other studies show that there are major contacts between the two strands at both ends of the molecule that evidently sequester the receptor binding domains. Upon proteinase cleavage of the bait domains and subsequent thiol ester cleavages, which occur near the central region of the molecule, the two strands separate by 40 A at both ends of the structure to expose the receptor binding domains and form the arm-like extensions of the transformed alpha(2)M. During the transformation of the structure, the strands untwist to expose the alpha(2)M central cavity to the proteinase. This extraordinary change in the architecture of alpha(2)M functions to completely engulf two molecules of chymotrypsin within its central cavity and to irreversibly encapsulate them.
Collapse
Affiliation(s)
- Steven J Kolodziej
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
1579
|
Craighead JL, Chang WH, Asturias FJ. Structure of yeast RNA polymerase II in solution: implications for enzyme regulation and interaction with promoter DNA. Structure 2002; 10:1117-25. [PMID: 12176389 DOI: 10.1016/s0969-2126(02)00813-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An 18 A resolution structure of the 12-subunit yeast RNA polymerase II (RNAPII) calculated from electron microscope images of single particles preserved in amorphous ice reveals the conformation of the enzyme in solution. The Rpb4/Rpb7 polymerase subunit complex was localized and found to be ideally positioned to determine the path of the nascent RNA transcript. The RNAPII structure suggests a revised mode of interaction with promoter DNA and demonstrates that regulation of RNAPII must involve structural changes that render the enzyme competent for initiation.
Collapse
Affiliation(s)
- John L Craighead
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
1580
|
Hagnerelle X, Plisson C, Lambert O, Marco S, Rigaud JL, Johannes L, Lévy D. Two-dimensional structures of the Shiga toxin B-subunit and of a chimera bound to the glycolipid receptor Gb3. J Struct Biol 2002; 139:113-21. [PMID: 12406693 DOI: 10.1016/s1047-8477(02)00504-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The B-subunit of Shiga toxin has been demonstrated as a powerful vector for carrying attached peptides into cells for intracellular transport studies and for medical research. We have investigated the structure of the B-subunit and of a chimera bearing a peptide extension, bound to the membranous lipidic receptor, the globotriaosylceramide (Gb3). Two-dimensional crystals of both B-subunits have been obtained by the lipid layer method and projection maps have been calculated at 8.5A resolution from ice-embedded samples. The B-subunits as the chimera are organized in a pentameric form similar to the X-ray structure of the B-subunit not bound to Gb3. A difference map of both proteins has been calculated in which no density could be attributed to the peptide extension. Cross-correlations with projections of the B-subunit X-ray structure revealed that pentamers in the 2D crystals were oriented with their binding sites pointing to the lipid layer. Thus, it is likely that the peptide extension was disordered and confined to the surface of the pentamer opposite to the Gb3 binding sites. This location confirms the hypothesis that addition of peptide extension to the C-terminus conserves the ability of the modified B-subunit to bind the membranous receptor Gb3.
Collapse
Affiliation(s)
- Xavier Hagnerelle
- Institut Curie, UMR CNRS 168, 11 rue P.M. Curie, F-75231 Paris, France
| | | | | | | | | | | | | |
Collapse
|
1581
|
Schülke N, Vesanen MS, Sanders RW, Zhu P, Lu M, Anselma DJ, Villa AR, Parren PWHI, Binley JM, Roux KH, Maddon PJ, Moore JP, Olson WC. Oligomeric and conformational properties of a proteolytically mature, disulfide-stabilized human immunodeficiency virus type 1 gp140 envelope glycoprotein. J Virol 2002; 76:7760-76. [PMID: 12097589 PMCID: PMC136400 DOI: 10.1128/jvi.76.15.7760-7776.2002] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the further properties of a protein, designated SOS gp140, wherein the association of the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is stabilized by an intersubunit disulfide bond. HIV-1(JR-FL) SOS gp140, proteolytically uncleaved gp140 (gp140(UNC)), and gp120 were expressed in stably transfected Chinese hamster ovary cells and analyzed for antigenic and structural properties before and after purification. Compared with gp140(UNC), SOS gp140 reacted more strongly in surface plasmon resonance and radioimmunoprecipitation assays with the neutralizing monoclonal antibodies (MAbs) 2G12 (anti-gp120), 2F5 (anti-gp41), and 17b (to a CD4-induced epitope that overlaps the CCR5-binding site). In contrast, gp140(UNC) displayed the greater reactivity with nonneutralizing anti-gp120 and anti-gp41 MAbs. Immunoelectron microscopy studies suggested a model for SOS gp140 wherein the gp41 ectodomain (gp41(ECTO)) occludes the "nonneutralizing" face of gp120, consistent with the antigenic properties of this protein. We also report the application of Blue Native polyacrylamide gel electrophoresis (BN-PAGE), a high-resolution molecular sizing method, to the study of viral envelope proteins. BN-PAGE and other biophysical studies demonstrated that SOS gp140 was monomeric, whereas gp140(UNC) comprised a mixture of noncovalently associated and disulfide-linked dimers, trimers, and tetramers. The oligomeric and conformational properties of SOS gp140 and gp140(UNC) were largely unaffected by purification. An uncleaved gp140 protein containing the SOS cysteine mutations (SOS gp140(UNC)) was also oligomeric. Surprisingly, variable-loop-deleted SOS gp140 proteins were expressed (although not yet purified) as cleaved, noncovalently associated oligomers that were significantly more stable than the full-length protein. Overall, our findings have relevance for rational vaccine design.
Collapse
Affiliation(s)
- Norbert Schülke
- Progenics Pharmaceuticals Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1582
|
Clayton RF, Owsianka A, Aitken J, Graham S, Bhella D, Patel AH. Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles. J Virol 2002; 76:7672-82. [PMID: 12097581 PMCID: PMC136371 DOI: 10.1128/jvi.76.15.7672-7682.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 04/25/2002] [Indexed: 12/24/2022] Open
Abstract
Purification of hepatitis C virus (HCV) from sera of infected patients has proven elusive, hampering efforts to perform structure-function analysis of the viral components. Recombinant forms of the viral glycoproteins have been used instead for functional studies, but uncertainty exists as to whether they closely mimic the virion proteins. Here, we used HCV virus-like particles (VLPs) generated in insect cells infected with a recombinant baculovirus expressing viral structural proteins. Electron microscopic analysis revealed a population of pleomorphic VLPs that were at least partially enveloped with bilayer membranes and had viral glycoprotein spikes protruding from the surface. Immunogold labeling using specific monoclonal antibodies (MAbs) demonstrated these protrusions to be the E1 and E2 glycoproteins. A panel of anti-E2 MAbs was used to probe the surface topology of E2 on the VLPs and to compare the antigenicity of the VLPs with that of truncated E2 (E2(660)) or the full-length (FL) E1E2 complex expressed in mammalian cells. While most MAbs bound to all forms of antigen, a number of others showed striking differences in their abilities to recognize the various E2 forms. All MAbs directed against hypervariable region 1 (HVR-1) recognized both native and denatured E2(660) with comparable affinities, but most bound either weakly or not at all to the FL E1E2 complex or to VLPs. HVR-1 on VLPs was accessible to these MAbs only after denaturation. Importantly, a subset of MAbs specific for amino acids 464 to 475 and 524 to 535 recognized E2(660) but not VLPs or FL E1E2 complex. The antigenic differences between E2(660,) FL E1E2, and VLPs strongly point to the existence of structural differences, which may have functional relevance. Trypsin treatment of VLPs removed the N-terminal part of E2, resulting in a 42-kDa fragment. In the presence of detergent, this was further reduced to a trypsin-resistant 25-kDa fragment, which could be useful for structural studies.
Collapse
Affiliation(s)
- Reginald F Clayton
- MRC Virology Unit, Institute of Virology. IBLS, University of Glasgow, Glasgow G11 5JR, United Kingdom
| | | | | | | | | | | |
Collapse
|
1583
|
Davis JA, Takagi Y, Kornberg RD, Asturias FA. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol Cell 2002; 10:409-15. [PMID: 12191485 DOI: 10.1016/s1097-2765(02)00598-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The holoenzyme formed by RNA polymerase II (RNAPII) and the Mediator complex is the target of transcriptional regulators in vivo. A three-dimensional structure of the yeast holoenzyme has been generated from electron microscopic images of single holoenzyme particles. Extensive changes in Mediator conformation required for interaction with RNAPII have been modeled by correlating the polymerase-bound and free Mediator structures. Determination of the precise orientation of the RNAPII in the holoenzyme indicates that Mediator contacts are centered on the RNAPII Rpb3/Rpb11 heterodimer, the eukaryotic homolog of the alpha(2) homodimer involved in transcription regulation in prokaryotes. Implications for the possible mechanism of transcription regulation by Mediator are discussed.
Collapse
Affiliation(s)
- Joshua A Davis
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
1584
|
Bhella D, Ralph A, Murphy LB, Yeo RP. Significant differences in nucleocapsid morphology within the Paramyxoviridae. J Gen Virol 2002; 83:1831-1839. [PMID: 12124447 DOI: 10.1099/0022-1317-83-8-1831] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleocapsid (N) proteins from representative viruses of three genera within the Paramyxoviridae were expressed in insect cells using recombinant baculoviruses. RNA-containing structures, which appear morphologically identical to viral nucleocapsids, were isolated and subsequently imaged under a transmission electron microscope. Analysis of these images revealed marked differences in nucleocapsid morphology among the genera investigated, most notably between viruses of the Paramyxovirinae and the Pneumovirinae subfamilies. Helical pitch measurements were made, revealing that measles virus (MV, a Morbillivirus within the subfamily Paramyxovirinae) N protein produces helices that adopt multiple conformations with varying degrees of flexibility, while that of the Rubulavirus simian virus type 5 (SV5, subfamily Paramyxovirinae) produces more rigid structures with a less heterogeneous pitch distribution. Nucleocapsids produced by respiratory syncytial virus (RSV, subfamily Pneumovirinae) appear significantly narrower than those of MV and SV5 and have a longer pitch than the most extended form of MV. In addition to helical nucleocapsids, ring structures were also produced, image analysis of which has demonstrated that rings assembled from MV N protein consist of 13 subunits. This is consistent with previous reports that Sendai virus nucleocapsids have 13.07 subunits per turn. It was determined, however, that SV5 subnucleocapsid rings have 14 subunits, while rings derived from the radically different RSV nucleocapsid have been found to contain predominantly 10 subunits.
Collapse
Affiliation(s)
- David Bhella
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK1
| | - Adam Ralph
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK1
| | - Lindsay B Murphy
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK1
| | - Robert P Yeo
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK1
| |
Collapse
|
1585
|
Jiang QX, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ. Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 A resolution. EMBO J 2002; 21:3575-81. [PMID: 12110570 PMCID: PMC126125 DOI: 10.1093/emboj/cdf380] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report here the first three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R). From cryo-electron microscopic images of purified receptors embedded in vitreous ice, a three-dimensional structure was determined by use of standard single particle reconstruction techniques. The structure is strikingly different from that of the ryanodine receptor at similar resolution despite molecular similarities between these two calcium release channels. The 24 A resolution structure of the IP(3)R takes the shape of an uneven dumbbell, and is approximately 170 A tall. Its larger end is bulky, with four arms protruding laterally by approximately 50 A and, in comparison with the receptor topology, probably corresponds to the cytoplasmic domain of the receptor. The lateral dimension at the height of the protruding arms is approximately 155 A. The smaller end, whose lateral dimension is approximately 100 A, has structural features indicative of the membrane-spanning domain. A central opening in this domain, which is occluded on the cytoplasmic half, outlines a pathway for calcium flow in the open state of the channel.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - Edwin C. Thrower
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - David W. Chester
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - Barbara E. Ehrlich
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - Fred J. Sigworth
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| |
Collapse
|
1586
|
Jiménez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR. The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci U S A 2002; 99:9196-201. [PMID: 12093917 PMCID: PMC123117 DOI: 10.1073/pnas.142459399] [Citation(s) in RCA: 644] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Indexed: 11/18/2022] Open
Abstract
Under solution conditions where the native state is destabilized, the largely helical polypeptide hormone insulin readily aggregates to form amyloid fibrils with a characteristic cross-beta structure. However, there is a lack of information relating the 4.8 A beta-strand repeat to the higher order assembly of amyloid fibrils. We have used cryo-electron microscopy (EM), combining single particle analysis and helical reconstruction, to characterize these fibrils and to study the three-dimensional (3D) arrangement of their component protofilaments. Low-resolution 3D structures of fibrils containing 2, 4, and 6 protofilaments reveal a characteristic, compact shape of the insulin protofilament. Considerations of protofilament packing indicate that the cross-beta ribbon is composed of relatively flat beta-sheets rather than being the highly twisted, beta-coil structure previously suggested by analysis of globular protein folds. Comparison of the various fibril structures suggests that very small, local changes in beta-sheet twist are important in establishing the long-range coiling of the protofilaments into fibrils of diverse morphology.
Collapse
Affiliation(s)
- José L Jiménez
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | | | | | | | | | |
Collapse
|
1587
|
Abstract
In single particle analysis, the alignment of two-dimensional images is a fundamental step aimed at bringing into register various particle views of biological macromolecules observed with the electron microscope. The computational efficiency of this step is a deciding factor in design of alignment strategies for large sets of noisy data and in development of three-dimensional structure refinement methods. In addition, the accuracy of the alignment method varies depending on the numerical solutions adopted to efficiently perform exhaustive searches for three orientation parameters. The selected alignment methods are analyzed in terms of their computational complexity and the estimates of numbers of arithmetic operations for each method are given. The tests of alignment accuracy are performed using images simulated in accordance with the linear theory of image formation in the electron microscope. It is demonstrated that the efficiency of the alignment methods can be improved if approximate centers of gravity of particle views are known. The accuracy of the methods considered is largely affected, particularly for high noise levels, by the order in which interpolation steps are applied.
Collapse
Affiliation(s)
- Laurent Joyeux
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, 77030, USA
| | | |
Collapse
|
1588
|
Kajimura N, Yamazaki M, Morikawa K, Yamazaki A, Mayanagi K. Three-dimensional structure of non-activated cGMP phosphodiesterase 6 and comparison of its image with those of activated forms. J Struct Biol 2002; 139:27-38. [PMID: 12372317 DOI: 10.1016/s1047-8477(02)00502-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclic GMP phosphodiesterase (PDE6) in rod photoreceptors, a key enzyme in vertebrate phototransduction, consists of two homologous catalytic subunits (Palpha and Pbeta) and two identical regulatory subunits (Pgammas). Pgamma regulates the PDE activity through its direct interaction with transducin. Here, using electron microscopy and image analysis of single particles, we show the three-dimensional organization of the basic form of bovine PDE, Palphabetagammagamma, and compare its average image with those of Pgamma-released PDE. The structure of Palphabetagammagamma appears to be a flattened bell-shape, with dimensions of 150 x 108 x 60A, and with a handle-like protrusion attached to the top of the structure. Except for the protrusion, the organization consists of two homologous structures arranged side by side, with each structure having three distinct regions, showing pseudo twofold symmetry. These characteristics are consistent with a model in which the overall structure of Palphabetagammagamma is determined by hetero-dimerization of Palpha and Pbeta, with each subunit consisting of one catalytic and two GAF regions. A comparison of the average image of Palphabetagammagamma with those of Pgamma-released PDE suggests that Pgamma release does not affect the overall structure of Palphabeta, and that the Palphabeta C-terminus, but not Pgamma, is a determinant for the Palphabeta orientation on carbon-coated grids. These observations suggest that the basic structure of PDE does not change during its regulation, which implies that Palphabeta is regulated by its regional interaction with Pgamma.
Collapse
Affiliation(s)
- Naoko Kajimura
- Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
1589
|
Fulgenzi G, Graciotti L, Corsi A, Granata AL. Reversible binding of glycolytic enzymes and size change in the actin-containing filaments of the frog skeletal muscle. J Muscle Res Cell Motil 2002; 22:391-7. [PMID: 11964065 DOI: 10.1023/a:1014553718306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electron microscopy was used in order to study the change of the actin-containing filaments when the bound glycolytic enzymes were removed by a high ionic strength solution. The effectiveness of the extraction medium was checked by estimating the aldolase activity released. Evidence was provided that the larger diameter of the actin filaments in the I-bands in comparison with the A-bands can be accounted for by the bound glycolytic enzymes.
Collapse
Affiliation(s)
- G Fulgenzi
- Institute of Experimental Pathology, Faculty of Medicine, University of Ancona, Italy
| | | | | | | |
Collapse
|
1590
|
Chen YJ, Yu X, Egelman EH. The hexameric ring structure of the Escherichia coli RuvB branch migration protein. J Mol Biol 2002; 319:587-91. [PMID: 12054856 DOI: 10.1016/s0022-2836(02)00353-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The RuvB protein is part of the homologous recombination machinery in prokaryotic cells. Many studies have shown that RuvB is organized into hexameric rings functioning as DNA pumps at Holliday junctions, using ATP hydrolysis to drive branch migration. Structures now exist for two RuvB proteins, as well as for several structurally homologous proteins, including the replication factor-C small subunit (RFCS). Two models for the possible hexameric organization of RuvB subunits have been proposed, based upon the hexameric structures of NSF and HslU, two AAA-ATPases involved in vesicle fusion and proteolysis, respectively. We have used electron microscopy to generate an improved three-dimensional reconstruction of the double hexamers formed by Escherichia coli RuvB on double-stranded DNA. We find that an atomic model of the hexameric RFCS provides a significantly better fit to the RuvB hexamer than do the models for RuvB generated from NSF and HslU. This suggests that there may be a highly conserved structure for many proteins involved in different aspects of DNA replication, recombination, transcription and repair.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences, Box 800733, Charlottesville, VA 22908-0733, USA
| | | | | |
Collapse
|
1591
|
Cascio P, Call M, Petre BM, Walz T, Goldberg AL. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J 2002; 21:2636-45. [PMID: 12032076 PMCID: PMC126027 DOI: 10.1093/emboj/21.11.2636] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Revised: 03/26/2002] [Accepted: 04/03/2002] [Indexed: 11/12/2022] Open
Abstract
PA28 is a gamma-interferon-induced complex that associates with the 20S proteasome and stimulates breakdown of small peptides. Recent immunoprecipitation studies indicate that, in vivo, PA28 also exists in larger complexes that also contain the 19S particle, which is required for ATP-ubiquitin-dependent degradation of proteins. However, because of its lability, the structure and properties of this larger complex remain unclear. Here, we demonstrate that, in vitro, PA28 can associate with 'singly capped' 26S (i.e. 19S-20S) proteasomes. Electron microscopy of the resulting structures revealed one PA28 ring at one end of the 20S particle and a 19S complex at the other. These hybrid complexes show enhanced hydrolysis of small peptides, but no significant increase in rates of protein breakdown. Nevertheless, during breakdown of proteins, the complexes containing PA28alphabeta or PA28alpha generated a pattern of peptides different from those generated by 26S proteasomes, without altering mean product length. Presumably, this change in peptides produced accounts for the capacity of PA28 to enhance antigen presentation.
Collapse
Affiliation(s)
| | | | | | | | - Alfred L. Goldberg
- Department of Cell Biology, Harvard Medical School,240 Longwood Avenue, Boston, MA 02115, USA
Corresponding author e-mail:
| |
Collapse
|
1592
|
Näär AM, Taatjes DJ, Zhai W, Nogales E, Tjian R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev 2002; 16:1339-44. [PMID: 12050112 PMCID: PMC186316 DOI: 10.1101/gad.987602] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of gene transcription in mammalian cells requires several classes of coactivators that participate in different steps of the activation cascade. Using conventional and affinity chromatography, we have isolated a human coactivator complex that interacts directly with the C-terminal domain (CTD) of RNA polymerase II (Pol II). The CTD-binding complex is structurally and functionally indistinguishable from our previously isolated CRSP coactivator complex. The closely related, but transcriptionally inactive, ARC-L complex failed to interact with the CTD, indicating a significant biochemical difference between CRSP and ARC-L that may, in part, explain their functional divergence. Electron microscopy and three-dimensional single-particle reconstruction reveals a conformation for CTD-CRSP that is structurally distinct from unliganded CRSP or CRSP bound to SREBP-1a, but highly similar to CRSP bound to the VP16 activator. Together, our findings suggest that the human CRSP coactivator functions, at least in part, by mediating activator-dependent recruitment of RNA Pol II via the CTD.
Collapse
Affiliation(s)
- Anders M Näär
- Department of Cell Biology, Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown 02129, USA
| | | | | | | | | |
Collapse
|
1593
|
Tang L, Lin CS, Krishna NK, Yeager M, Schneemann A, Johnson JE. Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. J Virol 2002; 76:6370-5. [PMID: 12021370 PMCID: PMC136213 DOI: 10.1128/jvi.76.12.6370-6375.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of recombinant virus-like particles of malabaricus grouper nervous necrosis virus (MGNNV), a fish nodavirus isolated from the grouper Epinephelus malabaricus, was determined by electron cryomicroscopy (cryoEM) and three-dimensional reconstruction at 23-A resolution. The cryoEM structure, sequence comparison, and protein fold recognition analysis indicate that the coat protein of MGNNV has two domains resembling those of tomato bushy stunt virus and Norwalk virus, rather than the expected single-domain coat protein of insect nodaviruses. The analysis implies that residues 83 to 216 fold as a beta-sandwich which forms the inner shell of the T=3 capsid and residues 217 to 308 form the trimeric surface protrusions observed in the cryoEM map. The structural similarities between fish nodaviruses and members of the tombusvirus and calicivirus groups provide significant new data for understanding the evolution of the nodavirus family.
Collapse
Affiliation(s)
- Liang Tang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
1594
|
Hourdez S, Weber RE, Green BN, Kenney JM, Fisher CR. Respiratory adaptations in a deep-sea orbiniid polychaete from Gulf of Mexico brine pool NR-1: metabolic rates and hemoglobin structure/function relationships. J Exp Biol 2002; 205:1669-81. [PMID: 12000811 DOI: 10.1242/jeb.205.11.1669] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Methanoaricia dendrobranchiata Blake (Polychaeta; Orbiniidae)occurs in large numbers in association with communities of the mussel Bathymodiolus childressi at hydrocarbon seeps on the Louisiana Slope of the Gulf of Mexico. Its microhabitat can be strongly hypoxic (oxygen is often undetectable) and sulfidic (sulfide concentrations can reach millimolar levels), which may seriously challenge aerobic metabolism. We describe a suite of adaptations to its low-oxygen environment. The worms are capable of regulating their rate of oxygen consumption down to partial pressures of approximately 870 Pa oxygen. This capability correlates with a large gill surface area, a small diffusion distance from sea water to blood, a very high hemoglobin oxygen-affinity (P50=27.8 Pa at 10°C and pH 7.6) and a Bohr effect that is pronounced at high oxygen saturations. When fully saturated, the hemoglobin binds sufficient oxygen for only 31 min of aerobic metabolism. However, these polychaetes can withstand extended periods of anoxia both in the absence and presence of 1 mmoll-1 sulfide(TL50=approx. 5.5 and 4 days, respectively).
Collapse
Affiliation(s)
- Stéphane Hourdez
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
1595
|
De Carlo S, El-Bez C, Alvarez-Rúa C, Borge J, Dubochet J. Cryo-negative staining reduces electron-beam sensitivity of vitrified biological particles. J Struct Biol 2002; 138:216-26. [PMID: 12217660 DOI: 10.1016/s1047-8477(02)00035-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Beam damage is the main resolution-limiting factor when biological particles are observed by cryoelectron microscopy in a thin vitrified solution film. Furthermore, the low contrast of the specimen frequently makes observation difficult and limits the possibility of image processing. Cryo-negative staining, in which the particles are vitrified in a thin layer of concentrated ammonium molybdate solution, makes it possible to visualize the particles with a much better signal-to-noise ratio (SNR) while keeping the specimen in a good state of preservation. We have observed the Escherichia coli GroEL chaperonin, prepared in a native vitrified solution and by cryo-negative staining after electron exposure from 1000 to 3000e(-)/nm(2). We have compared the resulting three-dimensional models obtained from these different conditions and have tested their fit with the atomic model of the protein subunit obtained from X-ray crystallography. It is found that, down to 1.5-nm resolution, the particles appear to be faithfully represented in the cryo-negatively stained preparation, but there is an approximately 10-fold increase of SNR compared with the native vitrified preparation. Furthermore, for the same range of irradiation and down to the same resolution, the particles seem unaffected by beam damage, whereas the damage is severe in the native vitrified particles.
Collapse
Affiliation(s)
- S De Carlo
- Centre de Microscopie Electronique, 27 rue du Bugnon, 1005, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
1596
|
Hu Z, Gogol EP, Lutkenhaus J. Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci U S A 2002; 99:6761-6. [PMID: 11983867 PMCID: PMC124476 DOI: 10.1073/pnas.102059099] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Indexed: 11/18/2022] Open
Abstract
Selection of the division site in Escherichia coli is regulated by the min system and requires the rapid oscillation of MinD between the two halves of the cell under the control of MinE. In this study we have further investigated the molecular basis for this oscillation by examining the interaction of MinD with phospholipid vesicles. We found that MinD bound to phospholipid vesicles in the presence of ATP and, upon binding, assembled into a well-ordered helical array that deformed the vesicles into tubes. Stimulation of the MinD ATPase by addition of MinE led to disassembly of the tubes and the release of MinD from the vesicles. It is proposed that this MinE-regulated dynamic assembly of MinD underlies MinD oscillation.
Collapse
Affiliation(s)
- Zonglin Hu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
1597
|
Scheuring S, Stahlberg H, Chami M, Houssin C, Rigaud JL, Engel A. Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope. Mol Microbiol 2002; 44:675-84. [PMID: 11994150 DOI: 10.1046/j.1365-2958.2002.02864.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial surface layers (S-layers) are extracellular protein networks that act as molecular sieves and protect a large variety of archaea and bacteria from hostile environments. Atomic force microscopy (AFM) was used to asses the S-layer of Coryne-bacterium glutamicum formed of PS2 proteins that assemble into hexameric complexes within a hexagonal lattice. Native and trypsin-treated S-layers were studied. Using the AFM stylus as a nanodissector, native arrays that adsorbed to mica as double layers were separated. All surfaces of native and protease-digested S-layers were imaged at better than 1 nm lateral resolution. Difference maps of the topographies of native and proteolysed samples revealed the location of the cleaved C-terminal fragment and the sidedness of the S-layer. Because the corrugation depths determined from images of both sides span the total thickness of the S-layer, a three-dimensional reconstruction of the S-layer could be calculated. Lattice defects visualized at 1 nm resolution revealed the molecular boundaries of PS2 proteins. The combination of AFM imaging and single molecule force spectroscopy allowed the mechanical properties of the Corynebacterium glutamicum S-layer to be examined. The results provide a basis for understanding the amazing stability of this protective bacterial surface coat.
Collapse
Affiliation(s)
- Simon Scheuring
- M. E. Müller Institute for Microscopy at the Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Switzerland
| | | | | | | | | | | |
Collapse
|
1598
|
Solodukhin AS, Caldwell HL, Sando JJ, Kretsinger RH. Two-dimensional crystal structures of protein kinase C-delta, its regulatory domain, and the enzyme complexed with myelin basic protein. Biophys J 2002; 82:2700-8. [PMID: 11964256 PMCID: PMC1302058 DOI: 10.1016/s0006-3495(02)75611-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two-dimensional crystals of protein kinase C (PKC) delta, its regulatory domain (RDdelta), and the enzyme complexed with the substrate myelin basic protein have been grown on lipid monolayers composed of phosphatidylcholine: phosphatidylserine: diolein (45:50:5, molar ratio). Images have been reconstructed to 10-A resolution. The unit cells of all three proteins have cell edges a = b and interedge angle gamma = 60 degrees. RDdelta has an edge length of 33 +/- 1 A, and its reconstruction is donut shaped. The three-dimensional reconstructions from the PKCdelta C1b crystal structure () can be accommodated in this two-dimensional projection. Intact PKCdelta has an edge length of 46 +/- 1 A in the presence or absence of a nonhydrolyzable ATP analog, AMP-PnP. Its reconstruction has a similar donut shape, which can accommodate the C1b domain, but the spacing between donuts is greater than that in RDdelta; some additional structure is visible between the donuts. The complex of PKCdelta and myelin basic protein, with or without AMP-PnP, has an edge length of 43 +/- 1 A and a distinct structure. These results indicate that the C1 domains of RDdelta are tightly packed in the plane of the membrane in the two-dimensional crystals, that there is a single molecule of PKCdelta in the unit cell, and that its interaction with myelin basic protein induces a shift in conformation and/or packing of the enzyme.
Collapse
Affiliation(s)
- Alexander S Solodukhin
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
1599
|
Franzetti B, Schoehn G, Hernandez JF, Jaquinod M, Ruigrok R, Zaccai G. Tetrahedral aminopeptidase: a novel large protease complex from archaea. EMBO J 2002; 21:2132-8. [PMID: 11980710 PMCID: PMC125989 DOI: 10.1093/emboj/21.9.2132] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A dodecameric protease complex with a tetrahedral shape (TET) was isolated from Haloarcula marismortui, a salt-loving archaeon. The 42 kDa monomers in the complex are homologous to metal-binding, bacterial aminopeptidases. TET has a broad aminopeptidase activity and can process peptides of up to 30-35 amino acids in length. TET has a central cavity that is accessible through four narrow channels (<17 A wide) and through four wider channels (21 A wide). This architecture is different from that of all the proteolytic complexes described to date that are made up by rings or barrels with a single central channel and only two openings.
Collapse
Affiliation(s)
- B. Franzetti
- Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1 and EMBL Grenoble Outstation, BP181, F-38042 Grenoble Cedex 9, and Laboratoire de Virologie Moléculaire et Structurale EA F-2939, UJF, Faculté de Médecine de Grenoble, F-38700 La Tronche, France Corresponding author e-mail:
| | - G. Schoehn
- Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1 and EMBL Grenoble Outstation, BP181, F-38042 Grenoble Cedex 9, and Laboratoire de Virologie Moléculaire et Structurale EA F-2939, UJF, Faculté de Médecine de Grenoble, F-38700 La Tronche, France Corresponding author e-mail:
| | - J.-F. Hernandez
- Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1 and EMBL Grenoble Outstation, BP181, F-38042 Grenoble Cedex 9, and Laboratoire de Virologie Moléculaire et Structurale EA F-2939, UJF, Faculté de Médecine de Grenoble, F-38700 La Tronche, France Corresponding author e-mail:
| | - M. Jaquinod
- Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1 and EMBL Grenoble Outstation, BP181, F-38042 Grenoble Cedex 9, and Laboratoire de Virologie Moléculaire et Structurale EA F-2939, UJF, Faculté de Médecine de Grenoble, F-38700 La Tronche, France Corresponding author e-mail:
| | - R.W.H. Ruigrok
- Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1 and EMBL Grenoble Outstation, BP181, F-38042 Grenoble Cedex 9, and Laboratoire de Virologie Moléculaire et Structurale EA F-2939, UJF, Faculté de Médecine de Grenoble, F-38700 La Tronche, France Corresponding author e-mail:
| | - G. Zaccai
- Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1 and EMBL Grenoble Outstation, BP181, F-38042 Grenoble Cedex 9, and Laboratoire de Virologie Moléculaire et Structurale EA F-2939, UJF, Faculté de Médecine de Grenoble, F-38700 La Tronche, France Corresponding author e-mail:
| |
Collapse
|
1600
|
Galkin VE, VanLoock MS, Orlova A, Egelman EH. A new internal mode in F-actin helps explain the remarkable evolutionary conservation of actin's sequence and structure. Curr Biol 2002; 12:570-5. [PMID: 11937026 DOI: 10.1016/s0960-9822(02)00742-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actin is one of the most highly conserved eukaryotic proteins. There are no amino acid changes between the chicken and human skeletal muscle isoforms, and the most dissimilar actins still share more than 85% sequence identity [1]. We suggest that large discrete internal modes of freedom within the actin filament may account for a significant component of this conservation, since each subunit must make multiple specific interactions with neighboring subunits. In support of this, we find that the same state of tilt of the actin subunit exists in both yeast and vertebrate striated muscle actin, and that in both the two domains undergo a "propeller rotation." A similar movement of domains has also been seen in hexokinase, Hsc70, and Arp2/3, all structural homologs of actin, suggesting that such an interdomain hinge motion is common to proteins in this superfamily. Subunit-subunit interactions within the actin filament involve sequence insertions that are not present in MreB, a bacterial homolog of actin. Remarkably, we find that in the tilted state actin subunits make new contacts with neighboring subunits that also involve these inserts, suggesting a key role for these elements in F-actin polymorphism.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|