151
|
Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res 2014; 152:325-32. [PMID: 24418122 PMCID: PMC3951718 DOI: 10.1016/j.schres.2013.12.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 01/13/2023]
Abstract
The last fifteen years have seen a great increase in our understanding of the role of glutamate in schizophrenia (SCZ). The glutamate hypothesis focuses on disturbances in brain glutamatergic pathways and impairment in signaling at glutamate receptors. Proton Magnetic Resonance Spectroscopy ((1)H-MRS) is an MR-based technique that affords investigators the ability to study glutamate function by measuring in vivo glutamatergic indices in the brains of individuals with SCZ. (1)H-MRS studies have been performed comparing glutamatergic levels of individuals with SCZ and healthy control subjects or studying the effect of antipsychotic medications on glutamatergic levels. In this article we summarize the results of these studies by brain region. We will review the contribution of (1)H-MRS studies to our knowledge about glutamatergic abnormalities in the brains of individuals with SCZ and discuss the implications for future research and clinical care.
Collapse
|
152
|
Poels EMP, Kegeles LS, Kantrowitz JT, Slifstein M, Javitt DC, Lieberman JA, Abi-Dargham A, Girgis RR. Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry 2014; 19:20-9. [PMID: 24166406 DOI: 10.1038/mp.2013.136] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/25/2013] [Accepted: 09/09/2013] [Indexed: 12/11/2022]
Abstract
Currently, all treatments for schizophrenia (SCZ) function primarily by blocking D(2)-type dopamine receptors. Given the limitations of these medications, substantial efforts have been made to identify alternative neurochemical targets for treatment development in SCZ. One such target is brain glutamate. The objective of this article is to review and synthesize the proton magnetic resonance spectroscopy ((1)H MRS) and positron emission tomography (PET)/single-photon emission computed tomography (SPECT) investigations that have examined glutamatergic indices in SCZ, including those of modulatory compounds such as glutathione (GSH) and glycine, as well as data from ketamine challenge studies. The reviewed (1)H MRS and PET/SPECT studies support the theory of hypofunction of the N-methyl-D-aspartate receptor (NMDAR) in SCZ, as well as the convergence between the dopamine and glutamate models of SCZ. We also review several advances in MRS and PET technologies that have opened the door for new opportunities to investigate the glutamate system in SCZ and discuss some ways in which these imaging tools can be used to facilitate a greater understanding of the glutamate system in SCZ and the successful and efficient development of new glutamate-based treatments for SCZ.
Collapse
Affiliation(s)
- E M P Poels
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - L S Kegeles
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - J T Kantrowitz
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - M Slifstein
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - D C Javitt
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - J A Lieberman
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - A Abi-Dargham
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA [3] Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - R R Girgis
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
153
|
Gruber O, Chadha Santuccione A, Aach H. Magnetic resonance imaging in studying schizophrenia, negative symptoms, and the glutamate system. Front Psychiatry 2014; 5:32. [PMID: 24765078 PMCID: PMC3982059 DOI: 10.3389/fpsyt.2014.00032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/14/2014] [Indexed: 01/27/2023] Open
Abstract
Schizophrenia is characterized by positive, negative, and cognitive symptoms. While positive symptoms occur periodically during psychotic exacerbations, negative and cognitive symptoms often emerge before the first psychotic episode and persist with low functional outcome and poor prognosis. This review article outlines the importance of modern functional magnetic resonance imaging techniques for developing a stratified therapy of schizophrenic disorders. Functional neuroimaging evidence on the neural correlates of positive and particularly negative symptoms and cognitive deficits in schizophrenic disorders is briefly reviewed. Acute dysregulation of dopaminergic neurotransmission is crucially involved in the occurrence of psychotic symptoms. However, increasing evidence also implicates glutamatergic pathomechanisms, in particular N-methyl-d-aspartate (NMDA) receptor dysfunction in the pathogenesis of schizophrenia and in the appearance of negative symptoms and cognitive dysfunctions. In line with this notion, several gene variants affecting the NMDA receptor's pathway have been reported to increase susceptibility for schizophrenia, and have been investigated using the imaging genetics approach. In recent years, several attempts have been made to develop medications modulating the glutamatergic pathway with modest evidences for efficacy. The most successful approaches were those that aimed at influencing this pathway using compounds that enhance NMDA receptor function. More recently, the selective glycine reuptake inhibitor bitopertin has been shown to improve NMDA receptor hypofunction by increasing glycine concentrations in the synaptic cleft. Further research is required to test whether pharmacological agents with effects on the glutamatergic system can help to improve the treatment of negative symptoms in schizophrenic disorders.
Collapse
Affiliation(s)
- Oliver Gruber
- Center for Translational Research in Systems Neuroscience and Psychiatry, Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen , Göttingen , Germany
| | | | - Helmut Aach
- Medical Affairs - Psychiatry, Roche Pharma AG , Grenzach-Wyhlen , Germany
| |
Collapse
|
154
|
Merritt K, McGuire P, Egerton A. Relationship between Glutamate Dysfunction and Symptoms and Cognitive Function in Psychosis. Front Psychiatry 2013; 4:151. [PMID: 24324444 PMCID: PMC3840324 DOI: 10.3389/fpsyt.2013.00151] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/07/2013] [Indexed: 11/13/2022] Open
Abstract
The glutamate hypothesis of schizophrenia, proposed over two decades ago, originated following the observation that administration of drugs that block NMDA glutamate receptors, such as ketamine, could induce schizophrenia-like symptoms. Since then, this hypothesis has been extended to describe how glutamate abnormalities may disturb brain function and underpin psychotic symptoms and cognitive impairments. The glutamatergic system is now a major focus for the development of new compounds in schizophrenia. Relationships between regional brain glutamate function and symptom severity can be investigated using proton magnetic resonance spectroscopy (1H-MRS) to estimate levels of glutamatergic metabolites in vivo. Here we briefly review the 1H-MRS studies that have explored relationships between glutamatergic metabolites, symptoms, and cognitive function in clinical samples. While some of these studies suggest that more severe symptoms may be associated with elevated glutamatergic function in the anterior cingulate, studies in larger patient samples selected on the basis of symptom severity are required.
Collapse
Affiliation(s)
- Kate Merritt
- Department of Psychosis Studies, Institute of Psychiatry, King's College London , London , UK
| | | | | |
Collapse
|