151
|
Moon S, Kato M, Nishii Y, Miura M. Synthesis of Benzo[
b
]thiophenes through Rhodium‐Catalyzed Three‐Component Reaction using Elemental Sulfur. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sanghun Moon
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Moena Kato
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Yuji Nishii
- Frontier Research Base for Global Young ResearchersGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Masahiro Miura
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
152
|
Schweicher G, Garbay G, Jouclas R, Vibert F, Devaux F, Geerts YH. Molecular Semiconductors for Logic Operations: Dead-End or Bright Future? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905909. [PMID: 31965662 DOI: 10.1002/adma.201905909] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/18/2019] [Indexed: 05/26/2023]
Abstract
The field of organic electronics has been prolific in the last couple of years, leading to the design and synthesis of several molecular semiconductors presenting a mobility in excess of 10 cm2 V-1 s-1 . However, it is also started to recently falter, as a result of doubtful mobility extractions and reduced industrial interest. This critical review addresses the community of chemists and materials scientists to share with it a critical analysis of the best performing molecular semiconductors and of the inherent charge transport physics that takes place in them. The goal is to inspire chemists and materials scientists and to give them hope that the field of molecular semiconductors for logic operations is not engaged into a dead end. To the contrary, it offers plenty of research opportunities in materials chemistry.
Collapse
Affiliation(s)
- Guillaume Schweicher
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Guillaume Garbay
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Rémy Jouclas
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - François Vibert
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Félix Devaux
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Yves H Geerts
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| |
Collapse
|
153
|
Verbitskiy EV, Dinastiya EM, Eltsov OS, Zhilina EF, Schepochkin AV, Rusinov GL, Chupakhin ON, Charushin VN. Assembly of annulated 1,3-diazapyrenes by consecutive cross-coupling and cyclodehydrogenation of (het)arene moieties. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
154
|
Duan S, Wang T, Geng B, Gao X, Li C, Zhang J, Xi Y, Zhang X, Ren X, Hu W. Solution-Processed Centimeter-Scale Highly Aligned Organic Crystalline Arrays for High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908388. [PMID: 32053256 DOI: 10.1002/adma.201908388] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Solution-printed organic single-crystalline films hold great potential for achieving low-cost manufacturing of large-area and flexible electronics. For practical applications, organic field-effect transistor arrays must exhibit high performance and small device-to-device variation. However, scalable fabrication of highly aligned organic crystalline arrays is rather difficult due to the lack of control over the crystallographic orientation, crystal uniformity, and thickness. Here, a facile solution-printing method to fabricate centimeter-sized highly aligned organic crystalline arrays with a thickness of a few molecular layers is reported. In this study, the solution shearing technique is used to produce large-area, organic highly crystalline thin films. Water-soluble ink is printed on the hydrophobic surface of organic crystalline films, to selectively protect it, followed by etching. It is shown that the addition of a surfactant dramatically changes the fluid drying dynamics and increases the contact line friction of the aqueous solution to the underlying nonwetting organic crystalline film. As a result, centimeter-scale highly aligned organic crystalline arrays are successfully prepared on different substrates. The devices based on organic crystalline arrays show good performance and uniformity. This study demonstrates that solution printing is close to industrial application and also expands its applicability to various printed flexible electronics.
Collapse
Affiliation(s)
- Shuming Duan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Tao Wang
- School of Microelectronics, Tianjin University, Tianjin, 300072, China
| | - Bowen Geng
- School of Microelectronics, Tianjin University, Tianjin, 300072, China
| | - Xiong Gao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chenguang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yue Xi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiaochen Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
155
|
Tripathi A, Prabhakar C. Optical and charge transport properties of chalcogen (O, S and Se) based acene molecules. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
156
|
Takimiya K, Ogaki T, Wang C, Kawabata K. Crystal Structures of Dimethoxyanthracens: A Clue to a Rational Design of Packing Structures of π‐Conjugated Molecules. Chem Asian J 2020; 15:915-919. [DOI: 10.1002/asia.201901756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/20/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Kazuo Takimiya
- Department of Chemistry Graduate School of ScienceTohoku University 6-3 Aoba Aramaki, Aoba-Ku, Sendai, Miyagi 980-8578 Japan
- Emergent Molecular Function Research TeamRIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Takuya Ogaki
- Emergent Molecular Function Research TeamRIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Chengyuan Wang
- Emergent Molecular Function Research TeamRIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Kohsuke Kawabata
- Department of Chemistry Graduate School of ScienceTohoku University 6-3 Aoba Aramaki, Aoba-Ku, Sendai, Miyagi 980-8578 Japan
- Emergent Molecular Function Research TeamRIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| |
Collapse
|
157
|
Jiang W, Zhuge J, Li J, Histand G, Lin D. Direct Sulfenylation of the Purine C 8-H Bond with Thiophenols. J Org Chem 2020; 85:2415-2425. [PMID: 31898455 DOI: 10.1021/acs.joc.9b03115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The one-step copper-mediated regioselective formation of the C8-S bond for purine derivatives with arylthiols was achieved using air as the green oxidant in the presence of 1.0 equiv of Na2CO3 and stoichiometric CuCl and 1,10-phenanthroline monohydrate. This method provides an economical, easy-to-handle, and effective method for the synthesis of 8-sulfenylpurine derivatives in moderate to excellent yields. The reaction is selective for C8 over C2 and C6. It also tolerates a free amine on the purine, and it has a wide substrate scope.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China
| | - Juanping Zhuge
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China
| | - Gary Histand
- International School of Advanced Materials , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Dongen Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China
| |
Collapse
|
158
|
Matsuzawa NN, Arai H, Sasago M, Fujii E, Goldberg A, Mustard TJ, Kwak HS, Giesen DJ, Ranalli F, Halls MD. Massive Theoretical Screen of Hole Conducting Organic Materials in the Heteroacene Family by Using a Cloud-Computing Environment. J Phys Chem A 2020; 124:1981-1992. [PMID: 32069044 DOI: 10.1021/acs.jpca.9b10998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nobuyuki N. Matsuzawa
- Engineering Division, Industrial Solutions Company, Panasonic Corp., 1006 Kadoma, Kadoma, Osaka 571-8506, Japan
| | - Hideyuki Arai
- Engineering Division, Industrial Solutions Company, Panasonic Corp., 1006 Kadoma, Kadoma, Osaka 571-8506, Japan
| | - Masaru Sasago
- Engineering Division, Industrial Solutions Company, Panasonic Corp., 1006 Kadoma, Kadoma, Osaka 571-8506, Japan
| | - Eiji Fujii
- Engineering Division, Industrial Solutions Company, Panasonic Corp., 1006 Kadoma, Kadoma, Osaka 571-8506, Japan
| | - Alexander Goldberg
- Schrödinger Inc., 10201 Wateridge Circle, Suite 220, San Diego, California 92121, United States
| | - Thomas J. Mustard
- Schrödinger Inc., 120 West 45th Street, 17th Floor, Portland, Oregon 97204, United States
| | - H. Shaun Kwak
- Schrödinger Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States
| | - David J. Giesen
- Schrödinger Inc., 120 West 45th Street, 17th Floor, Portland, Oregon 97204, United States
| | - Fabio Ranalli
- Schrödinger Inc., 120 West 45th Street, 17th Floor, Portland, Oregon 97204, United States
| | - Mathew D. Halls
- Schrödinger Inc., 10201 Wateridge Circle, Suite 220, San Diego, California 92121, United States
| |
Collapse
|
159
|
Hydrogen bond modulation in 1,10-phenanthroline derivatives for versatile electron transport materials with high thermal stability, large electron mobility and excellent n-doping ability. Sci Bull (Beijing) 2020; 65:153-160. [PMID: 36659079 DOI: 10.1016/j.scib.2019.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 01/21/2023]
Abstract
4,7-Bisphenyl-1,10-phenanthroline (BPhen) is a promising electron transport material (ETM) and has been widely used in organic light-emitting diodes (OLEDs) because of the large electron mobility and easy fabrication process. However, its low glass transition temperature would lead to poor device stability. In the past decades, various attempts have been carried out to improve its thermal stability though always be accomplished by the reduced electron mobility. Here, we present a molecular engineering to modulate the properties of BPhen, and through which, a versatile BPhen derivative (4,7-bis(naphthalene-β-yl)-1,10-phenanthroline, β-BNPhen) with high thermal stability (glass transition temperature = 111.9 °C), large electron mobility (7.8 × 10-4 cm2/(V s) under an electrical field of 4.5 × 105 V/cm) and excellent n-doping ability with an air-stable metal of Ag is developed and used as multifunctional layers to improve the efficiency and enhance the stability of OLEDs. This work elucidates the great importance of our molecular engineering methodology and device structure optimization strategy, unlocking the potential of 1,10-phenanthroline derivatives towards practical applications.
Collapse
|
160
|
Wang C, Hashizume D, Nakano M, Ogaki T, Takenaka H, Kawabata K, Takimiya K. "Disrupt and induce" intermolecular interactions to rationally design organic semiconductor crystals: from herringbone to rubrene-like pitched π-stacking. Chem Sci 2020; 11:1573-1580. [PMID: 34084388 PMCID: PMC8148081 DOI: 10.1039/c9sc05902d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The packing structures of organic semiconductors in the solid state play critical roles in determining the performances of their optoelectronic devices, such as organic field-effect transistors (OFETs). It is a formidable challenge to rationally design molecular packing in the solid state owing to the difficulty of controlling intermolecular interactions. Here we report a unique materials design strategy based on the β-methylthionation of acenedithiophenes to generally and selectively control the packing structures of materials to create organic semiconductors rivalling rubrene, a benchmark high-mobility material with a characteristic pitched π-stacking structure in the solid state. Furthermore, the effect of the β-methylthionation on the packing structure was analyzed by Hirshfeld surface analysis together with theoretical calculations based on symmetry-adapted perturbation theory (SAPT). The results clearly demonstrated that the β-methylthionation of acenedithiophenes can universally alter the intermolecular interactions by disrupting the favorable edge-to-face manner in the parent acenedithiophenes and simultaneously inducing face-to-face and end-to-face interactions in the β-methylthionated acenedithiophenes. This “disrupt and induce” strategy to manipulate intermolecular interactions can open a door to rational packing design based on the molecular structure. The rational design of organic semiconductor crystals is realized by β-methylthionation of acenedithiophenes through manipulating intermolecular interactions in a “disrupt and induce” manner.![]()
Collapse
Affiliation(s)
- Chengyuan Wang
- Emergent Molecular Function Research Team, RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Daisuke Hashizume
- Materials Characterization Support Team, RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Masahiro Nakano
- Emergent Molecular Function Research Team, RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Takuya Ogaki
- Emergent Molecular Function Research Team, RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Hiroyuki Takenaka
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Kohsuke Kawabata
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Kazuo Takimiya
- Emergent Molecular Function Research Team, RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako Saitama 351-0198 Japan .,Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai Miyagi 980-8578 Japan
| |
Collapse
|
161
|
Pigulski B, Ximenis M, Shoyama K, Würthner F. Synthesis of polycyclic aromatic hydrocarbons by palladium-catalysed [3 + 3] annulation. Org Chem Front 2020. [DOI: 10.1039/d0qo00968g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new [3 + 3] annulation method for the synthesis of polycyclic aromatic hydrocarbons (PAHs) from two smaller aromatic fragments is reported. Packing structures for four products were obtained and relation to that of parent perylene was discussed.
Collapse
Affiliation(s)
| | - Marta Ximenis
- Institut für Organische Chemie
- Universität Würzburg
- 97074 Würzburg
- Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie
- Universität Würzburg
- 97074 Würzburg
- Germany
- Center for Nanosystems Chemistry (CNC)
| | - Frank Würthner
- Institut für Organische Chemie
- Universität Würzburg
- 97074 Würzburg
- Germany
- Center for Nanosystems Chemistry (CNC)
| |
Collapse
|
162
|
Bhowmik A, Yadav M, Fernandes RA. Room temperature nickel-catalyzed cross-coupling of aryl-boronic acids with thiophenols: synthesis of diarylsulfides. Org Biomol Chem 2020; 18:2447-2458. [DOI: 10.1039/d0ob00244e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and easy to operate NiCl2/2,2′-bipyridine-catalyzed cross-coupling of thiophenols with arylboronic acids has been developed for the synthesis of symmetric and unsymmetric diarylsulfides at room temperature and in air.
Collapse
Affiliation(s)
- Amit Bhowmik
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Mahesh Yadav
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Rodney A. Fernandes
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| |
Collapse
|
163
|
Sumimoto Y, Iijima K, Yoo D, Kawamoto T, Le Gal Y, Lorcy D, Mori T. Structures and transistor properties of extended and unsymmetrical birhodanines. CrystEngComm 2020. [DOI: 10.1039/d0ce01133a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extended and unsymmetrical birhodanines, including phenyl and unsubstituted parts, are prepared and show characteristic molecular packing and n-channel transistor properties.
Collapse
Affiliation(s)
- Yuji Sumimoto
- Department of Materials Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Kodai Iijima
- Department of Materials Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Dongho Yoo
- Department of Materials Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Tadashi Kawamoto
- Department of Materials Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Yann Le Gal
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F35000 Rennes
- France
| | - Dominique Lorcy
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F35000 Rennes
- France
| | - Takehiko Mori
- Department of Materials Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| |
Collapse
|
164
|
Yao L, Liao H, Ravva MK, Guo Y, Duan J, Wang Y, Yu Y, Li Z, McCulloch I, Yue W. Metal-free polymerization: synthesis and properties of fused benzo[1,2-b:4,5-b′]bis[b]benzothiophene (BBBT) polymers. Polym Chem 2020. [DOI: 10.1039/d0py00623h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A family of fused semiconducting polymers containing the thienoacenes BBBT has been synthesized efficiently by non-metal and environmentally benign polymerization.
Collapse
Affiliation(s)
- Liping Yao
- College of Chemistry and Chemical Engineering
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products
- Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products
- Guangxi University for Nationalities
- Nanning 530006
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials and Engineering
- Sun Yet-Sen University
- Guangzhou 510275
| | | | - Yanjun Guo
- State Key Laboratory of Optoelectronic Materials and Technologies
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials and Engineering
- Sun Yet-Sen University
- Guangzhou 510275
| | - Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials and Engineering
- Sun Yet-Sen University
- Guangzhou 510275
| | - Yazhou Wang
- State Key Laboratory of Optoelectronic Materials and Technologies
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials and Engineering
- Sun Yet-Sen University
- Guangzhou 510275
| | - Yaping Yu
- State Key Laboratory of Optoelectronic Materials and Technologies
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials and Engineering
- Sun Yet-Sen University
- Guangzhou 510275
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials and Engineering
- Sun Yet-Sen University
- Guangzhou 510275
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Centre
- Thuwal
- Saudi Arabia
- Department of Chemistry and Centre for Plastic Electronics
- Imperial College London
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- School of Materials and Engineering
- Sun Yet-Sen University
- Guangzhou 510275
| |
Collapse
|
165
|
Higashino T, Arai S, Inoue S, Tsuzuki S, Shimoi Y, Horiuchi S, Hasegawa T, Azumi R. Architecting layered molecular packing in substituted benzobisbenzothiophene (BBBT) semiconductor crystals. CrystEngComm 2020. [DOI: 10.1039/d0ce00285b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of layered molecular packing structures in a non-layered crystalline material, benzobisbenzothiophene (BBBT), was achieved by employing long-alkyl and phenyl substituents, leading to high-performance organic thin-film transistors.
Collapse
Affiliation(s)
- Toshiki Higashino
- Electronics and Photonics Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Shunto Arai
- Department of Applied Physics
- The University of Tokyo
- Tokyo
- Japan
| | - Satoru Inoue
- Department of Applied Physics
- The University of Tokyo
- Tokyo
- Japan
| | - Seiji Tsuzuki
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat)
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Yukihiro Shimoi
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat)
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Sachio Horiuchi
- Electronics and Photonics Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Tatsuo Hasegawa
- Department of Applied Physics
- The University of Tokyo
- Tokyo
- Japan
| | - Reiko Azumi
- Electronics and Photonics Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| |
Collapse
|
166
|
Fernandes RA, Bhowmik A, Yadav SS. Advances in Cu and Ni-catalyzed Chan–Lam-type coupling: synthesis of diarylchalcogenides, Ar2–X (X = S, Se, Te). Org Biomol Chem 2020; 18:9583-9600. [DOI: 10.1039/d0ob02035d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in the Cu and Ni-catalyzed Chan–Lam-type coupling of aryl/heteroarylboronic acids with various chalcogen sources for diarylsulfide, diarylselenide and diaryltelluride synthesis are covered in this review.
Collapse
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Amit Bhowmik
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Sandhya S. Yadav
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| |
Collapse
|
167
|
Su F, Chen S, Mo X, Wu K, Wu J, Lin W, Lin Z, Lin J, Zhang HJ, Wen TB. Trisulfur radical anion-triggered stitching thienannulation: rapid access to largely π-extended thienoacenes. Chem Sci 2019; 11:1503-1509. [PMID: 34084379 PMCID: PMC8148024 DOI: 10.1039/c9sc05332h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Largely π-extended rylene diimide-fused thienoacenes, a new family of fully fused electron donor-acceptor (D-A) molecules, have been readily synthesized by a novel trisulfur radical anion (S3˙-)-triggered stitching thienannulation strategy. The ladder-type fused thiophene cores are constructed in a stitching manner through multiple carbon-sulfur bond formation between acetylenic rylene dyes and S3˙-. A detailed mechanistic study of these stitching thienannulations unveiled the multiple reactivities of S3˙-. Physical properties of the newly formed D-A, A-D-A, and D-A-D type thienoacenes have also been investigated, which revealed their precisely controllable electronic properties.
Collapse
Affiliation(s)
- Feng Su
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Shuqi Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Xiaogang Mo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Kongchuan Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Jiajun Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Weidong Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Zhiwei Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
| | - Ting-Bin Wen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian P. R. China
| |
Collapse
|
168
|
Tan A, Zhang P. Tailoring the growth and electronic structures of organic molecular thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:503001. [PMID: 31422957 DOI: 10.1088/1361-648x/ab3c22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the rapidly developing electronics industry, it has become increasingly necessary to explore materials that are cheap, flexible and versatile which have led to significant research efforts towards organic molecular thin films. Organic molecules are unique compared to their inorganic atomic counterparts as their properties can be tuned drastically through chemical functionalization, offering versatility, though their extended shape and weak intermolecular interactions bring significant challenges to the control of both the growth and the electronic structures of molecular thin films. In this paper, we will review the self-assembly process and how to establish long-range ordered organic molecular thin films. We will also discuss how the electronic structures of thin films are impacted by the molecule's local electrostatic environment and its interaction with the substrate, within the context of controlling interfacial energy level alignment between organic semiconductors and electrodes in electronic devices.
Collapse
Affiliation(s)
- Andrew Tan
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, United States of America
| | | |
Collapse
|
169
|
Sahoo SR, Sharma S, Sahu S. A computational study of anisotropic charge transport in air-stable fluorinated benzobisbenzothiophene (FBBBT) derivatives. J Mol Model 2019; 26:14. [PMID: 31853659 DOI: 10.1007/s00894-019-4251-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023]
Abstract
A computational study of anisotropical charge transport properties of fluorinated benzobisbenzothiohphene derivatives (FBBBT) is presented. The values of IPadia of all FBBBTs are found in the range of 6.00-6.20 eV inferring the fact that the investigated compounds have ambient air-stability. In addition, the energy levels of FBBBT s are found to be lower than those of benzobisbenzothiophene (BBBT) compound indicating higher charge carrier stability in the former. Hirshfield surface analyses showed that, in all the studied compounds, the principal identifiable interaction were mostly due to F⋯H and H⋯H intermolecular couplings with no contribution from S⋯S bondings. The calculated maximum μhole(μelec) value of the compounds FBBBT-a and FBBBT-b was found to be 0.483 (0.794) cm2V- 1s- 1 and 0.688 (0.542) cm2V- 1s- 1 respectively in the direction of transistor channel (Φ = 93.39 ∘(273.30∘) for FBBBT-a and Φ = 92.24 ∘/272.72 ∘ for FBBBT-b). For FBBBT-c, the maximum μelec(μhole) value of 0.933 (0.233) cm2V- 1s- 1 appeared for Φ = 0 ∘/179.90 ∘. In addition, the compounds FBBBT-a and FBBBT-b possess two additional fluorine atoms attached at the X positions in the backbone, which result in an increment in μelec values (1.4 times and 0.78 times higher than μhole) in these two compounds at a particular crystal direction.
Collapse
Affiliation(s)
- Smruti Ranjan Sahoo
- High Performance Computing Lab, Department of Applied Physics, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India
| | - Sagar Sharma
- Department of Chemistry, School of Fundamental and Applied Sciences, Assam Don Bosco University, Tapesia Gardens, Guwahati, Assam, 782402, India
| | - Sridhar Sahu
- High Performance Computing Lab, Department of Applied Physics, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
170
|
Sheng W, Chang F, Wu Q, Hao E, Jiao L, Wang JY, Pei J. Synthesis and Semiconducting Characteristics of the BF2 Complexes of Bisbenzothiophene-Fused Azadipyrromethenes. Org Lett 2019; 22:185-189. [DOI: 10.1021/acs.orglett.9b04142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wanle Sheng
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- Department of Chemistry, BengBu Medical College, Bengbu 233030, China
| | - Fei Chang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry, Peking University, Peking 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences, College of Chemistry, Peking University, Peking 100871, China
| |
Collapse
|
171
|
Demina NS, Kazin NA, Rasputin NA, Irgashev RA, Rusinov GL. Synthesis of aryl-substituted thieno[3,2- b]thiophene derivatives and their use for N,S-heterotetracene construction. Beilstein J Org Chem 2019; 15:2678-2683. [PMID: 31807203 PMCID: PMC6880844 DOI: 10.3762/bjoc.15.261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Fiesselmann thiophene synthesis was applied for the convenient construction of thieno[3,2-b]thiophene derivatives. Thus, new 5- or 6-aryl-3-hydroxythieno[3,2-b]thiophene-2-carboxylates were obtained by condensation of 5- or 4-aryl-3-chlorothiophene-2-carboxylates, respectively, with methyl thioglycolate in the presence of potassium tert-butoxide. The saponification of the resulting esters, with decarboxylation of the intermediating acids, gave the corresponding thieno[3,2-b]thiophen-3(2H)-ones. The latter ketones were used to synthesize new N,S-heterotetracenes, namely 9H-thieno[2',3':4,5]thieno[3,2-b]indoles by their treatment with arylhydrazines in accordance with the Fischer indolization reaction.
Collapse
Affiliation(s)
- Nadezhda S Demina
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the first President of Russia B. N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Nikita A Kazin
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the first President of Russia B. N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Nikolay A Rasputin
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the first President of Russia B. N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Roman A Irgashev
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the first President of Russia B. N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Gennady L Rusinov
- Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the first President of Russia B. N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| |
Collapse
|
172
|
Dyachenko NV, Khoroshutin AV, Sotnikova YA, Karnoukhova VA, Tokarev SD, Anisimov AV, Fedorov YV, Fedorova OA. Synthesis of fused heterocyclic systems via the Mallory photoreaction of arylthienylethenes. Photochem Photobiol Sci 2019; 18:2901-2911. [PMID: 31657424 DOI: 10.1039/c9pp00289h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photochemical oxidative cyclization of 2- and 3-thienylstilbenes (heterostilbenes) containing mono-, di- and trimethoxy groups in the benzene ring or heterocyclic fragment results in the formation of isomeric thieno-annelated polycyclic aromatic compounds demonstrating optical properties that differ from those of initial stilbene derivatives. The structures of cyclic products were evaluated via1H and 13C NMR, HRMS, elemental analysis and X-ray crystallography. The research was aimed to study the effect of substituents in stilbene derivatives of thiophene as well as the position of the styryl fragment in the thiophene nucleus on the occurrence of photocyclization reactions.
Collapse
Affiliation(s)
- Natalia V Dyachenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119992 Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, Russia.
| | - Andrey V Khoroshutin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119992 Moscow, Russia.
| | - Yulia A Sotnikova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119992 Moscow, Russia.
| | - Valentina A Karnoukhova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, Russia.
| | - Sergey D Tokarev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119992 Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, Russia.
| | - Alexander V Anisimov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119992 Moscow, Russia.
| | - Yurii V Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, Russia.
| | - Olga A Fedorova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 119992 Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, Russia.
| |
Collapse
|
173
|
Baldoli C, Cauteruccio S, Licandro E. Synthesis of Benzo[1,2‐
b
:4,5‐
b’
]dithiophene and Benzocondensed Thiaheterocycles. ChemistrySelect 2019. [DOI: 10.1002/slct.201903811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Clara Baldoli
- Institute of Molecular Science and Technology (ISTM)National Research Council (CNR) Via C. Golgi 19 20133 Milano Italy
| | - Silvia Cauteruccio
- Dipartimento di ChimicaUniversità degli Studi di Milano Via C. Golgi 19. 20133. Milano Italy
| | - Emanuela Licandro
- Dipartimento di ChimicaUniversità degli Studi di Milano Via C. Golgi 19. 20133. Milano Italy
| |
Collapse
|
174
|
An L, Tong J, Yang C, Zhao X, Wang X, Xia Y. Impact of alkyl side chain on the photostability and optoelectronic properties of indacenodithieno[3,2‐
b
]thiophene‐
alt
‐naphtho[1,2‐
c
:5,6‐
c
′]bis[1,2,5]thiadiazole medium bandgap copolymers. POLYM INT 2019. [DOI: 10.1002/pi.5936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lili An
- School of Chemical Engineering, Northwest Minzu UniversityKey Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province Lanzhou P. R. China
| | - Junfeng Tong
- School of Materials Science and EngineeringLanzhou Jiaotong University Lanzhou P. R. China
| | - Chunyan Yang
- School of Materials Science and EngineeringLanzhou Jiaotong University Lanzhou P. R. China
| | - Xu Zhao
- Institute of Soil, Fertilizer and Water‐saving AgricultureGansu Academy of Agricultural Sciences Lanzhou P. R. China
| | - Xunchang Wang
- CAS Key Laboratory of Bio‐based Materials, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao P. R. China
| | - Yangjun Xia
- School of Materials Science and EngineeringLanzhou Jiaotong University Lanzhou P. R. China
| |
Collapse
|
175
|
Zou J, Chen J, Shi T, Hou Y, Cao F, Wang Y, Wang X, Jia Z, Zhao Q, Wang Z. Phthalimide-Carried Disulfur Transfer To Synthesize Unsymmetrical Disulfanes via Copper Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiaoxia Zou
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Yongsheng Hou
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yongqiang Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Zhong Jia
- The Second People’s Hospital of Lanzhou City, Lanzhou 730000, Gansu, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
176
|
|
177
|
Panda SS, Shmilovich K, Ferguson AL, Tovar JD. Controlling Supramolecular Chirality in Peptide-π-Peptide Networks by Variation of the Alkyl Spacer Length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14060-14073. [PMID: 31566986 DOI: 10.1021/acs.langmuir.9b02683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembled supramolecular organic materials with π-functionalities are of great interest because of their applications as biocompatible nanoelectronics. A detailed understanding of molecular parameters to modulate the formation of hierarchical structures can inform design principles for materials with engineered optical and electronic properties. In this work, we combine molecular-level characterization techniques with all-atom molecular simulations to investigate the subtle relationship between the chemical structure of peptide-π-peptide molecules and the emergent supramolecular chirality of their spontaneously self-assembled nanoaggregates. We demonstrate through circular dichroism measurements that we can modulate the chirality by incorporating alkyl spacers of various lengths in between the peptides and thienylene-phenylene π-system chromophores: even numbers of alkyl carbons in the spacer units (0, 2) induce M-type helical character whereas odd numbers (1, 3) induce P-type. Corroborating molecular dynamics simulations and explicating machine learning analysis techniques identify hydrogen bonding and hydrophobic packing to be the principal discriminants of the observed chirality switches. Our results present a molecular-level design rule to engineer chirality into optically and electronically active nanoaggregates of these peptidic building blocks by exploiting systematic variations in the alkyl spacer length.
Collapse
Affiliation(s)
| | - Kirill Shmilovich
- Pritzker School of Molecular Engineering , University of Chicago , 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering , University of Chicago , 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | | |
Collapse
|
178
|
Abstract
Azulene, a nonalternant bicyclic aromatic hydrocarbon, has unique chemical and physical properties and is considered to be a promising building block for constructing novel polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics. We present here the first two azulene-based BN-heteroaromatics Az-BN-1 and Az-BN-2. The chemical structures and optical and electrochemical properties of both compounds have been investigated, as well as their sensing behavior in response to fluoride ion. Az-BN-1 and Az-BN-2 show different photophysical properties from other reported BN-embedded PAHs, such as lower band gaps and unusual fluorescence. In addition, Az-BN-1 and Az-BN-2 exhibit unexpected deboronization upon addition of trifluoroacetic acid, which distinguishes them from other reported BN-heteroaromatics and can be ascribed to the unique property of the azulene unit.
Collapse
Affiliation(s)
- Hanshen Xin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Jing Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
179
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019; 58:15675-15679. [DOI: 10.1002/anie.201908319] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
180
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
181
|
He FS, Gong X, Rojsitthisak P, Wu J. Direct C–H Methylsulfonylation of Alkenes with the Insertion of Sulfur Dioxide. J Org Chem 2019; 84:13159-13163. [DOI: 10.1021/acs.joc.9b01729] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Xinxing Gong
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
182
|
Hashimoto S, Tahara K. Theoretical Study on the Geometry, Aromaticity, and Electronic Properties of Benzo[3,4]cyclobutathiophenes and Their Homologues. J Org Chem 2019; 84:9850-9858. [PMID: 31310116 DOI: 10.1021/acs.joc.9b00661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The geometry, aromaticity, and electronic properties of benzo[3,4]cyclobutathiophenes (BCTs) and their homologues have been examined theoretically using density functional theory calculations. The harmonic oscillator measure of aromaticity and nucleus-independent chemical shift analyses revealed the aromaticity characteristics of the two regioisomers benzo[3,4]cyclobuta[1,2-b]thiophene and benzo[3,4]cyclobuta[1,2-c]thiophene. When the aromaticity of one of the six-π-electron rings increases, it concomitantly decreases in the other ring. The anti-aromaticity of the four-membered ring varies depending on the π-electron density of the shared bond with the thiophene ring. This leads to a large difference of the highest occupied molecular orbital-lowest unoccupied molecular orbital gap between the isomers. Linear BCT homologues show medium diradical characters and the smallest EGap values. In the angular and branched homologues, the π-electrons of central benzene rings are localized avoiding the shared bonds, which results in a nonaromatic character. These data were compared to those of the parent hydrocarbons. Because of the diene character of the thiophene ring, the number and position of annulated thiophenocyclobutadieno moieties significantly influence the aromaticity and EGap values of BCT homologues. The present study does not only provide insight into the aromaticity and the properties of organic compounds containing four-membered rings but also affords helpful design guidelines of novel organic semiconductors.
Collapse
Affiliation(s)
- Shingo Hashimoto
- Department of Applied Chemistry, School of Science and Technology , Meiji University , 1-1-1 Higashimita , Tama-ku, Kawasaki , Kanagawa 214-8571 , Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology , Meiji University , 1-1-1 Higashimita , Tama-ku, Kawasaki , Kanagawa 214-8571 , Japan
| |
Collapse
|
183
|
Jiang Y, Feng YY, Zou JX, Lei S, Hu XL, Yin GF, Tan W, Wang Z. Brønsted Base-Switched Selective Mono- and Dithiolation of Benzamides via Copper Catalysis. J Org Chem 2019; 84:10490-10500. [PMID: 31333031 DOI: 10.1021/acs.joc.9b01237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Jiang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Yi-yue Feng
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Jiao-xia Zou
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Shuai Lei
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Xiao-ling Hu
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Gao-feng Yin
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
184
|
Hata T, Hayashi Y, Hasegawa Y, Iwai M, Ishii A, Hasegawa M, Shigeta M, Urabe H. Preparation of Tetrazole-fused π-Conjugated Molecules and Their Fluorescence Behavior. CHEM LETT 2019. [DOI: 10.1246/cl.190150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takeshi Hata
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshiki Hayashi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yuki Hasegawa
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Masaaki Iwai
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ayumi Ishii
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Miki Hasegawa
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Masayuki Shigeta
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hirokazu Urabe
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
185
|
Schwartz PO, Förtsch S, Vogt A, Mena-Osteritz E, Bäuerle P. Selenophene-containing heterotriacenes by a C-Se coupling/cyclization reaction. Beilstein J Org Chem 2019; 15:1379-1393. [PMID: 31293688 PMCID: PMC6604749 DOI: 10.3762/bjoc.15.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/07/2019] [Indexed: 01/28/2023] Open
Abstract
A new novel family of tricyclic sulfur and/or selenium-containing heterotriacenes 2-4 with an increasing number of selenium (Se) atoms is presented. The heterotriacene derivatives were synthesized in multistep synthetic routes and the crucial cyclization steps to the stable and soluble fused systems were achieved by copper-catalyzed C-S and C-Se coupling/cyclization reactions. Structures and packing motifs in the solid state were elucidated by single crystal X-ray analysis and XRD powder measurements. Comparison of the optoelectronic properties provides interesting structure-property relationships and gives valuable insights into the role of heteroatoms within the series of the heterotriacenes. Electrooxidative polymerization led to the corresponding poly(heterotriacene)s P2-P4.
Collapse
Affiliation(s)
- Pierre-Olivier Schwartz
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Alsachim, 160 Rue Tobias Stimmer, 67400 Illkirch-Graffenstaden, France
| | - Sebastian Förtsch
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- DuPont, August-Wolff-Straße 13, 29699 Bomlitz, Germany
| | - Astrid Vogt
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
186
|
Yang S, Cheng R, Zhao T, Luo A, Lan J, You J. Rhodium-Catalyzed C–H/C–H Cross Coupling of Benzylthioethers or Benzylamines with Thiophenes Enabled by Flexible Directing Groups. Org Lett 2019; 21:5086-5090. [DOI: 10.1021/acs.orglett.9b01679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiping Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Rui Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Tingxing Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Anping Luo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| |
Collapse
|
187
|
Kumar S, Pola S, Huang CW, Islam MM, Venkateswarlu S, Tao YT. Polysubstituted Hexa-cata-hexabenzocoronenes: Syntheses, Characterization, and Their Potential as Semiconducting Materials in Transistor Applications. J Org Chem 2019; 84:8562-8570. [PMID: 31180220 DOI: 10.1021/acs.joc.9b00802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of tetra- and octa-substituted hexa-cata-hexabenzocoronenes (cata-HBCs) were synthesized from tetraryl olefins via iodine- and iron chloride-catalyzed oxidative cyclodehydrogenation reactions. The substitutions on the periphery of the parent HBC serve to modify the photophysical properties, highest occupied molecular orbital-lowest unoccupied molecular orbital gaps, and thermal stabilities of the respective derivatives. The crystal structures were determined to display multiple twists in the framework, resulting in different packing motifs depending on the position, type, and number of functional groups on the hexabenzocoronene framework. Nearly perfect co-facial packing to marginally or extensively shifted co-facial stacks were obtained due to substitution. The single crystals of parent HBC were used to fabricate single-crystal field-effect transistors, from which the highest p-channel mobility of 0.51 cm2 V-1 s-1 was measured. Thin-film transistors of selected HBCs were also prepared, and 0.61 cm2 V-1 s-1 was obtained for MeHBC-2. These results attest the potential of these materials as semiconducting materials.
Collapse
Affiliation(s)
| | | | | | - Md Minarul Islam
- Department of Chemistry , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Samala Venkateswarlu
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 300 , Taiwan
| | | |
Collapse
|
188
|
Huang YF, Wang CK, Lai BH, Chung CL, Chen CY, Ciou GT, Wong KT, Wang CL. Influences of Structural Modification of S, N-Hexacenes on the Morphology and OFET Characteristics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21756-21765. [PMID: 31120735 DOI: 10.1021/acsami.9b04284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although chemical modifications on conjugated molecules are widely applied for the purpose of improving processability and device performances, the effect of the modification was far less investigated. Here, five S, N-hexacenes are studied to reveal the influences of (1) the lateral alkyl chain, (2) the terminal group (thiophene vs benzene), and (3) the end-capping phenyl group of the hexacenes on the morphology and organic field-effect transistor (OFET) performances. Crystal arrays of the hexacenes were prepared via polydimethylsiloxane (PDMS)-assisted crystallization (PAC) prior to morphological and OFET characterizations. The lattice structures and crystal quality of the hexacenes were evaluated by microscopy and diffraction techniques including single-crystal diffractometer, electron diffraction, and grazing incidence wide-angle X-ray scattering. The systematic analyses led to the following conclusions: (1) the bulkier alkyl side chain assists to form more densely packed crystals with less structural defects; (2) the terminal thiophene rings bring about higher-lying EHOMO, more ordered phase, and crystal orientation, whereas the terminal benzene rings deteriorate the structural order of the active layer and result in the liquid crystal phase; and (3) the phenyl end caps ameliorate the morphological order, intermolecular overlapping, thermal stability and elevate EHOMO. Thus, EH-DTPTt-Ph delivers the highest μh, contributing to high-lying EHOMO, well-oriented crystal array with a longer correlation length, and suitable lattice orientation. This systematic research provides the aspects about the effects of the functionalized S, N-hexacenes on the morphology and OFET characteristics, which is anticipated to be useful for the molecular design of heteroacenes.
Collapse
Affiliation(s)
- Yi-Fan Huang
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Chun-Kai Wang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Bo-Han Lai
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Chin-Lung Chung
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Chin-Yi Chen
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Guan-Ting Ciou
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
- Institute of Atomic and Molecular Science , Academia Sinica , Taipei 10617 , Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30010 , Taiwan
| |
Collapse
|
189
|
|
190
|
Meguro T, Chen S, Kanemoto K, Yoshida S, Hosoya T. Modular Synthesis of Unsymmetrical Doubly-ring-fused Benzene Derivatives Based on a Sequential Ring Construction Strategy Using Oxadiazinones as a Platform Molecule. CHEM LETT 2019. [DOI: 10.1246/cl.190118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shengnan Chen
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazuya Kanemoto
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
191
|
Yang S, Cheng R, Zhang M, Bin Z, You J. Rh/Ag-Mediated Peri-Selective Heteroarylation/Single Electron Transfer Annulation Cascade of 1-(Methylthio)naphthalenes and Analogues: Road Less Traveled to Benzo[de]thioacenes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01426] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shiping Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Rui Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Min Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
192
|
|
193
|
Zhang J, Jung H, Kim D, Park S, Chang S. Sequential C−H Borylation and N‐Demethylation of 1,1′‐Biphenylamines: Alternative Route to Polycyclic BN‐Heteroarenes. Angew Chem Int Ed Engl 2019; 58:7361-7365. [DOI: 10.1002/anie.201902499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Jianbo Zhang
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sehoon Park
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
194
|
Zhang J, Jung H, Kim D, Park S, Chang S. Sequential C−H Borylation and N‐Demethylation of 1,1′‐Biphenylamines: Alternative Route to Polycyclic BN‐Heteroarenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianbo Zhang
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sehoon Park
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
195
|
Wu D, Zheng J, Xu C, Kang D, Hong W, Duan Z, Mathey F. Phosphindole fused pyrrolo[3,2-b]pyrroles: a new single-molecule junction for charge transport. Dalton Trans 2019; 48:6347-6352. [PMID: 30994138 DOI: 10.1039/c9dt01299k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of phosphindole fused ladder-type heteroacenes with a pyrrolo[3,2-b]pyrrole core were synthesized and characterized, which show good luminescence efficiency, high thermostability and tunable conductance.
Collapse
Affiliation(s)
- Di Wu
- International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
196
|
New approach to unsymmetrical 1,3-diazatriphenylenes through intramolecular oxidative cyclodehydrogenation. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
197
|
Nguyen LH, Nguyen TH, Truong TN. Quantum Mechanical-Based Quantitative Structure-Property Relationships for Electronic Properties of Two Large Classes of Organic Semiconductor Materials: Polycyclic Aromatic Hydrocarbons and Thienoacenes. ACS OMEGA 2019; 4:7516-7523. [PMID: 31459846 PMCID: PMC6649276 DOI: 10.1021/acsomega.9b00513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/11/2019] [Indexed: 06/10/2023]
Abstract
In this study, the degree of the π-orbital overlap (DPO) model proposed earlier for polycyclic aromatic hydrocarbons (PAH) was employed to develop quantitative structure-property relationships (QSPRs) for band gaps, ionization potentials, and electron affinities of thienoacenes. DPO is based on two-dimensional topological draw of aromatic molecules. The B3LYP/6-31+G(d) level of density functional theory (DFT) was used to provide chemical data for developing QSPRs. We found that the DPO model is able to capture the correct physics of electronic properties of aromatic molecules so that with only six nonzero topological parameters (four for PAH and additional two for thienoacenes), the DPO model yields the linear dependence of electronic properties of both the PAH and thienoacenes classes by a single set of QSPRs with the accuracy to within 0.1 eV of the DFT results. The results suggest that within the DPO framework, all aromatic molecules can share the same set of QSPRs.
Collapse
Affiliation(s)
- Lam H. Nguyen
- Institute
for Computational Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Tuan H. Nguyen
- Institute
for Computational Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Thanh N. Truong
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
198
|
Ikeda S, Shintani R. Rhodium‐Catalyzed Stitching Polymerization of 1,5‐Hexadiynes and Related Oligoalkynes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sho Ikeda
- Division of ChemistryDepartment of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Ryo Shintani
- Division of ChemistryDepartment of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
199
|
Ikeda S, Shintani R. Rhodium-Catalyzed Stitching Polymerization of 1,5-Hexadiynes and Related Oligoalkynes. Angew Chem Int Ed Engl 2019; 58:5734-5738. [PMID: 30838747 DOI: 10.1002/anie.201901148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 11/08/2022]
Abstract
A new mode of polymerization, rhodium-catalyzed stitching polymerization, has been developed for the synthesis of π-conjugated polymers with bridged repeating units from nonconjugated 1,5-hexadiynes containing both terminal and internal alkyne moieties as monomers. The polymerization proceeded smoothly with a high degree of stitching efficiency under mild conditions, and 1,5,9-decatriyne and 1,5,9,13-tetradecatetrayne monomers could also be employed. The present polymerization strategy would be particularly beneficial for the synthesis of polymers consisting of a repeating unit that is difficult to prepare as a stable monomer because it does not require the use of a preformed bridged π-conjugated monomer.
Collapse
Affiliation(s)
- Sho Ikeda
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
200
|
Higashino T, Ishida K, Sakurai T, Seki S, Konishi T, Kamada K, Kamada K, Imahori H. Pluripotent Features of Doubly Thiophene‐Fused Benzodiphospholes as Organic Functional Materials. Chemistry 2019; 25:6425-6438. [DOI: 10.1002/chem.201900661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/07/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Tomohiro Higashino
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Keiichi Ishida
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Tsuneaki Sakurai
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Tatsuki Konishi
- Inorganic Functional Materials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 Japan
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Kenji Kamada
- Inorganic Functional Materials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 Japan
| | - Kenji Kamada
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Hiroshi Imahori
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|