151
|
Paganoni S, Deng J, Jaffa M, Cudkowicz ME, Wills AM. Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve 2011; 44:20-4. [PMID: 21607987 DOI: 10.1002/mus.22114] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2011] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Recent studies have provided conflicting data regarding the role of dyslipidemia in amyotrophic lateral sclerosis (ALS). The aim of this study was to determine whether cholesterol level are an independent predictor of survival in ALS. METHODS Cholesterol levels were measured in 427 ALS subjects from three clinical trial databases. RESULTS The LDL/HDL ratio did not decrease over time, despite significant declines in body mass index (BMI), forced vital capacity (FVC), and ALSFRS-R. After adjusting for BMI, FVC, and age, the lipid ratio was not associated with survival. There was a "U"-shaped association between BMI and mortality, with the highest survival at 30-35 kg/m(2). The adjusted hazard ratio for the linear association between BMI and survival was 0.860 (95% CI 0.80-0.93, P = 0.0001). CONCLUSIONS We found that dyslipidemia is not an independent predictor of survival in ALS. BMI is an independent prognostic factor for survival after adjusting for markers of disease severity.
Collapse
Affiliation(s)
- Sabrina Paganoni
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
152
|
Atassi N, Cudkowicz ME, Schoenfeld DA. Advanced statistical methods to study the effects of gastric tube and non-invasive ventilation on functional decline and survival in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 12:272-7. [PMID: 21554030 DOI: 10.3109/17482968.2011.577786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A few studies suggest that non-invasive ventilation (1) and gastric tube (G-tube) may have a positive impact on survival but the effect on functional decline is unclear. Confounding by indication may have produced biased estimates of the benefit seen in some of these retrospective studies. The objective of this study was to evaluate the effects of G-tube and NIV on survival and functional decline using advanced statistical models that adjust for confounding by indications. A database of 331 subjects enrolled in previous clinical trials in ALS was available for analysis. Marginal structural models (MSM) were used to compare the mortality hazards and ALSFRS-R slopes between treatment and non-treatment groups, after adjusting for confounding by indication. Results showed that the placement of a G-tube was associated with an additional 1.42 units/month decline in the ALSFRS-R slope (p < 0.0001) and increased mortality hazard of 0.28 (p = 0.02). The use of NIV had no significant effect on ALSFRS-R decline or mortality. In conclusion, marginal structural models can be used to adjust for confounding by indication in retrospective ALS studies. G-tube placement could be followed by a faster rate of functional decline and increased mortality. Our results may suffer from some of the limitations of retrospective analyses.
Collapse
Affiliation(s)
- Nazem Atassi
- Massachusetts General Hospital, Harvard Medical School, USA.
| | | | | |
Collapse
|
153
|
Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 2011; 10:253-63. [PMID: 21349440 DOI: 10.1016/s1474-4422(11)70015-1] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS) are characterised by the appearance of reactive microglial and astroglial cells, a process referred to as neuroinflammation. In transgenic mouse models of mutant SOD1-associated familial ALS, reactive microglial cells and astrocytes actively contribute to the death of motor neurons. The biological processes that drive this glial reaction are complex and have both beneficial and deleterious effects on motor neurons. Therapeutic interventions targeting these cells are being explored. An improved understanding of the biological processes that cause neuroinflammation will help to define its medical importance and to identify the therapeutic potential of interfering with this reaction.
Collapse
|
154
|
Lange DJ, Nijjar R, Voustianiouk A, Seidel G, Panchal J, Wang AK. Do A-waves help predict intravenous immunoglobulin response in multifocal motor neuropathy without block? Muscle Nerve 2011; 43:537-42. [PMID: 21305570 DOI: 10.1002/mus.21914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2010] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Are there electrophysiological findings that predict response to intravenous immunoglobulin (IVIg) in patients with lower motor neuron (LMN) syndromes without multifocal conduction block (MCB)? METHODS We enrolled 9 patients with LMN syndromes without MCB to receive 18 weeks of IVIg therapy. Response was measured at weeks 2 and 18 using the Appel Amyotrophic Lateral Sclerosis (AALS) score (includes grip and pincer strength measures), ALS Functional Rating Scale (ALSFRS), and electrophysiological measures, including motor unit estimates (MUNEs). RESULTS No change occurred in AALS or ALSFRS scores posttreatment. Grip/pincer strength increased in 7 patients (P = 0.028) after initial treatment (responders); 2 showed no improvement (non-responders). No electrophysiological measure changed after treatment in either group but MUNEs trended higher (P = 0.055). "Abnormal A-waves" (complex, repetitive biphasic, or present in multiple nerves) occurred in pretreatment studies more often in responders (P = 0.028). DISCUSSION "Abnormal A-waves" may signal IVIg-responsive LMN syndromes even if conduction block is absent.
Collapse
Affiliation(s)
- Dale J Lange
- Department of Neurology, Division of Neuromuscular Disease, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
155
|
Li X, Cudaback E, Keene CD, Breyer RM, Montine TJ. Suppressed microglial E prostanoid receptor 1 signaling selectively reduces tumor necrosis factor alpha and interleukin 6 secretion from toll-like receptor 3 activation. Glia 2011; 59:569-76. [PMID: 21319223 DOI: 10.1002/glia.21125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/22/2010] [Indexed: 01/10/2023]
Abstract
Activation of innate immunity via toll-like receptors (TLRs) is associated with neurodegenerative diseases, and some effectors, like tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), directly contribute to neurodegeneration. We tested the hypothesis that prostaglandin (PG) E(2) receptor subtype 1 (EP1) was necessary for the induction of microglial cytokines following the activation of innate immunity. Primary murine microglia had cytokine secretion by activators of TLR3 > TLR9 > TLR4 > TLR2. TLR3 activation induced early expression of cyclooxygenase 2 (COX2) and delayed expression of membranous PGE synthase and secretion of PGE(2) . Nonselective and COX2-selective inhibitors blocked TLR3 induction of TNFα and IL-6. Moreover, of the nine of twenty cytokines and chemokines induced by TLR3 activation, only TNFα and IL-6 were significantly dependent on EP1 signaling as determined using microglia from mice homozygous deficient for EP1 gene or wild-type microglia coincubated with an EP1 antagonist. These results were confirmed by blocking intracellular Ca(2+) release with 2-aminoethoxy-diphenyl borate or Xestospongin C, inhibitors of IP3 receptors. Our results show that suppression of microglial EP1 signaling achieves much of the desired effect of COX inhibitors by selectively blocking TLR3-induced microglial secretion of two major effectors of paracrine neuron damage. In combination with the ability of EP1 suppression to ameliorate excitotoxicity, these data point to blockade of EP1 as an attractive candidate therapeutic for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Pathology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
156
|
Nassif M, Matus S, Castillo K, Hetz C. Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway. Antioxid Redox Signal 2010; 13:1955-89. [PMID: 20560784 DOI: 10.1089/ars.2009.2991] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motoneuron degenerative disease characterized by the selective loss of motoneurons in the spinal ventral horn, most brainstem nuclei, and the cerebral cortex. Although approximately 90% of ALS cases are sporadic (sALS), analyses of familial ALS (fALS)-causative genes have generated relevant insight into molecular events involved in the pathology. Here we overview an emerging concept indicating the occurrence of secretory pathway stress in the disease process. These alterations include a failure in the protein folding machinery at the endoplasmic reticulum (ER), engagement of the unfolded protein response (UPR), modifications of the Golgi apparatus network, impaired vesicular trafficking, inhibition of protein quality control mechanisms, oxidative damage to ER proteins, and sustained activation of degradative pathways such as autophagy. A common feature predicted for most of these alterations is abnormal protein homeostasis associated with the accumulation of misfolded proteins at the ER, possibly leading to chronic ER stress and neuronal dysfunction. Signs of ER stress are observed even during presymptomatic stages in fALS mouse models, and pharmacological strategies to alleviate protein misfolding slow disease progression. Because the secretory pathway stress occurs in both sALS and several forms of fALS, it may offer a unique common target for possible therapeutic strategies to treat this devastating disease.
Collapse
Affiliation(s)
- Melissa Nassif
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences , Faculty of Medicine, NEMO Millennium Nucleus, Santiago, Chile
| | | | | | | |
Collapse
|
157
|
Nefussy B, Hirsch J, Cudkowicz ME, Drory VE. Gender-based effect of statins on functional decline in amyotrophic lateral sclerosis. J Neurol Sci 2010; 300:23-7. [PMID: 21056430 DOI: 10.1016/j.jns.2010.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/20/2010] [Accepted: 10/08/2010] [Indexed: 12/12/2022]
Abstract
Recently an association between statins and the onset and more rapid disease course of amyotrophic lateral sclerosis (ALS) was reported, while other studies rejected such a link. The role of gender in that controversy is unclear. We evaluated the gender-specific effect of statins on the rate of functional decline in patients with ALS, based on data retrieved from the medical records of all ALS patients who participated in two previously reported clinical trials on the efficacy of topiramate and of celecoxib in ALS. The topiramate trial enrolled 294 patients, 28 (9.5%) of whom were statin users (20 males). The celecoxib trial enrolled 300 patients, 25 (8.3%) of whom were statin users (17 males). Statins had no effect on the functional decline in the celecoxib trial, but they did have a negative impact on disease course in the topiramate trial. When males and females were analyzed separately, the functional decline of females taking statins was significantly greater than that of males in both trials. Our results indicate that statins affect possibly negatively ALS progression among females but not males. They emphasize the need to consider gender in future analyses of drug effects.
Collapse
Affiliation(s)
- Beatrice Nefussy
- Department of Neurology and ALS Clinic, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
158
|
Deregulation of the hypoxia inducible factor-1α pathway in monocytes from sporadic amyotrophic lateral sclerosis patients. Neuroscience 2010; 172:110-7. [PMID: 20977930 DOI: 10.1016/j.neuroscience.2010.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 01/08/2023]
Abstract
The clinical course of the degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS) is closely related to hypoxia. The normal response to hypoxia involves two pathways in particular: the hypoxia inducible factor 1α (HIF-1α) pathway (which notably controls the synthesis of vascular endothelial growth factor (VEGF)) and the nuclear factor kappa B (NF-κb) pathway (responsible for the production of inflammatory mediators, including prostaglandin E2 (PGE2)). Defects in VEGF gene expression are known to cause motor neuron degeneration in animal models. Circulating monocytes are precursors of the microglia, which are involved in the pathogenesis of ALS. To establish whether the HIF-1 and/or NF-κB pathways are deregulated during hypoxia in early-stage, sporadic ALS, we analyzed the response to acute (1 h) and prolonged (24 h) hypoxia in monocytes from ALS and healthy controls. We measured protein expression and mRNA transcription for VEGF, HIF-1, HIF-2, prolyl hydroxylases 1 and 2 (PHD-1 and -2, part of the HIF proteasome-dependent degradation pathway) and their modulation by PGE2. Our results showed that (i) the HIF-1 (but not HIF-2) and VEGF production induced by acute and prolonged hypoxia was selectively and markedly altered in ALS patients and (ii) this defect was not compensated for by PGE2 addition. Moreover, altered HIF-1α activation was associated with low levels of proteolysis by PHD-2 in cells from sporadic ALS patients (relative to controls). For the first time, we have demonstrated clinical and functional abnormalities in the HIF-1 pathway during hypoxia in monocytes from sporadic ALS patients.
Collapse
|
159
|
Would riluzole be efficacious in the new ALS trial design? – Authors' reply. Lancet Neurol 2010. [DOI: 10.1016/s1474-4422(10)70231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
160
|
Vargas MR, Johnson JA. Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics 2010; 7:471-81. [PMID: 20880509 PMCID: PMC2967019 DOI: 10.1016/j.nurt.2010.05.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/29/2010] [Accepted: 05/10/2010] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disorder characterized by the progressive loss of motor neurons. Although the molecular mechanism underlying motor neuron degeneration remains unknown; non-neuronal cells (including astrocytes) shape motor neuron survival in ALS. Astrocytes closely interact with neurons to provide an optimized environment for neuronal function and respond to all forms of injury in a typical manner known as reactive astrogliosis. A strong reactive astrogliosis surrounds degenerating motor neurons in ALS patients and ALS-animal models. Although reactive astrogliosis in ALS is probably both primary and secondary to motor neuron degeneration; astrocytes are not passive observers and they can influence motor neuron fate. Due to the important functions that astrocytes perform in the central nervous system; it is of key importance to understand how these functions are altered when astrocytes become reactive in ALS. Here; we review the current evidences supporting a potential toxic role of astrocytes and their viability as therapeutic targets to alter motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Marcelo R. Vargas
- grid.14003.360000000099041312Division of Pharmaceutical Sciences, University of Wisconsin, 53705 Madison, Wisconsin
| | - Jeffrey A. Johnson
- grid.14003.360000000099041312Division of Pharmaceutical Sciences, University of Wisconsin, 53705 Madison, Wisconsin
- grid.14003.360000000099041312Waisman Center, University of Wisconsin, 53705 Madison, Wisconsin
- grid.14003.360000000099041312Molecular and Environmental Toxicology Center, University of Wisconsin, 53705 Madison, Wisconsin
- grid.14003.360000000099041312Center for Neuroscience, University of Wisconsin, 53705 Madison, Wisconsin
| |
Collapse
|
161
|
Polazzi E, Monti B. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 2010; 92:293-315. [PMID: 20609379 DOI: 10.1016/j.pneurobio.2010.06.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 12/12/2022]
Abstract
Microglia are the main immune cells in the brain, playing a role in both physiological and pathological conditions. Microglial involvement in neurodegenerative diseases is well-established, being microglial activation and neuroinflammation common features of these neuropathologies. Microglial activation has been considered harmful for neurons, but inflammatory state is not only associated with neurotoxic consequences, but also with neuroprotective effects, such as phagocytosis of dead neurons and clearance of debris. This brought to the idea of protective autoimmunity in the brain and to devise immunomodulatory therapies, aimed to specifically increase neuroprotective aspects of microglia. During the last years, several data supported the intrinsic neuroprotective function of microglia through the release of neuroprotective molecules. These data led to change the traditional view of microglia in neurodegenerative diseases: from the idea that these cells play an detrimental role for neurons due to a gain of their inflammatory function, to the proposal of a loss of microglial neuroprotective function as a causing factor in neuropathologies. This "microglial dysfunction hypothesis" points at the importance of understanding the mechanisms of microglial-mediated neuroprotection to develop new therapies for neurodegenerative diseases. In vitro models are very important to clarify the basic mechanisms of microglial-mediated neuroprotection, mainly for the identification of potentially effective neuroprotective molecules, and to design new approaches in a gene therapy set-up. Microglia could act as both a target and a vehicle for CNS gene delivery of neuroprotective factors, endogenously produced by microglia in physiological conditions, thus strengthening the microglial neuroprotective phenotype, even in a pathological situation.
Collapse
|
162
|
Motor neuron-immune interactions: the vicious circle of ALS. J Neural Transm (Vienna) 2010; 117:981-1000. [PMID: 20552235 DOI: 10.1007/s00702-010-0429-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 05/22/2010] [Indexed: 12/12/2022]
Abstract
Because microglial cells, the resident macrophages of the CNS, react to any lesion of the nervous system, they have for long been regarded as potential players in the pathogenesis of several neurodegenerative disorders including amyotrophic lateral sclerosis, the most common motor neuron disease in the adult. In recent years, this microglial reaction to motor neuron injury, in particular, and the innate immune response, in general, has been implicated in the progression of the disease, in mouse models of ALS. The mechanisms by which microglial cells influence motor neuron death in ALS are still largely unknown. Microglial activation increases over the course of the disease and is associated with an alteration in the production of toxic factors and also neurotrophic factors. Adding to the microglial/macrophage response to motor neuron degeneration, the adaptive immune system can likewise influence the disease process. Exploring these motor neuron-immune interactions could lead to a better understanding in the physiopathology of ALS to find new pathways to slow down motor neuron degeneration.
Collapse
|
163
|
Schwartz M, Shechter R. Systemic inflammatory cells fight off neurodegenerative disease. Nat Rev Neurol 2010; 6:405-10. [DOI: 10.1038/nrneurol.2010.71] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
164
|
Ganesalingam J, Bowser R. The application of biomarkers in clinical trials for motor neuron disease. Biomark Med 2010; 4:281-97. [PMID: 20406070 DOI: 10.2217/bmm.09.71] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interest and research into disease-related biomarkers has greatly accelerated over the last 10 years. The potential clinical benefits for disease-specific biomarkers include a more rapid and accurate disease diagnosis, and potential reduction in size and duration of clinical drug trials, which would speed up drug development. The application of biomarkers into the clinical arena of motor neuron disease should both determine if a drug hits its proposed target and whether the drug alters the course of disease. This article will highlight the progress made in discovering suitable biomarker candidates from a variety of sources, including imaging, neurophysiology and proteomics. For biomarkers to have clinical utility, specific criteria must be satisfied. While there has been tremendous effort to discover biomarkers, very few have been translated to the clinic. The bottlenecks in the biomarker pipeline will be highlighted as well as lessons that can be learned from other disciplines, such as oncology.
Collapse
Affiliation(s)
- Jeban Ganesalingam
- Department of Clinical Neurosciences, Institute of Psychiatry, Kings College London, UK
| | | |
Collapse
|
165
|
Matousek SB, Hein AM, Shaftel SS, Olschowka JA, Kyrkanides S, O'Banion MK. Cyclooxygenase-1 mediates prostaglandin E(2) elevation and contextual memory impairment in a model of sustained hippocampal interleukin-1beta expression. J Neurochem 2010; 114:247-58. [PMID: 20412387 DOI: 10.1111/j.1471-4159.2010.06759.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Interleukin (IL)-1beta is a proinflammatory cytokine implicated in several neurodegenerative disorders. Downstream actions of IL-1beta include production of prostaglandin (PG) E(2) by increasing expression of cyclooxygenase (COX) enzymes and prostaglandin E synthase (PGES) isoforms. We recently developed a transgenic mouse carrying a dormant human IL-1beta eXcisional Activation Transgene (XAT) for conditional and chronic up-regulation of IL-1beta in selected brain regions. This model is characterized by regionally specific glial activation, immune cell recruitment, and induction of cytokines and chemokines. Here, we aimed to elucidate the effects of long-term IL-1beta expression on the PGE(2) synthetic pathway and to determine the effects of PGs on inflammation and memory in our model. As expected, PGE(2) levels were significantly elevated after IL-1beta up-regulation. Quantitative real-time PCR analysis indicated significant induction of mRNAs for COX-1 and membranous PGES-1, but not COX-2 or other PGES isoforms. Immunohistochemistry revealed elevation of COX-1 but no change in COX-2 following sustained IL-1beta production. Furthermore, pharmacological inhibition of COX-1 and use of COX-1 knockout mice abrogated IL-1beta-mediated PGE(2) increases. Although COX-1 deficient mice did not present a dramatically altered neuroinflammatory phenotype, they did exhibit improved contextual fear memory. This data suggests a unique role for COX-1 in mediating chronic neuroinflammatory effects through PGE(2) production.
Collapse
Affiliation(s)
- Sarah B Matousek
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | | | | | |
Collapse
|
166
|
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140:918-34. [PMID: 20303880 DOI: 10.1016/j.cell.2010.02.016] [Citation(s) in RCA: 2665] [Impact Index Per Article: 177.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/25/2010] [Accepted: 02/05/2010] [Indexed: 02/08/2023]
Abstract
Inflammation is associated with many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. In this Review, we discuss inducers, sensors, transducers, and effectors of neuroinflammation that contribute to neuronal dysfunction and death. Although inducers of inflammation may be generated in a disease-specific manner, there is evidence for a remarkable convergence in the mechanisms responsible for the sensing, transduction, and amplification of inflammatory processes that result in the production of neurotoxic mediators. A major unanswered question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease.
Collapse
Affiliation(s)
- Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, 92093, USA.
| | | | | | | | | |
Collapse
|
167
|
Aggarwal SP, Zinman L, Simpson E, McKinley J, Jackson KE, Pinto H, Kaufman P, Conwit RA, Schoenfeld D, Shefner J, Cudkowicz M. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2010; 9:481-8. [PMID: 20363190 DOI: 10.1016/s1474-4422(10)70068-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In a pilot study, lithium treatment slowed progression of amyotrophic lateral sclerosis (ALS). We aimed to confirm or disprove these findings by assessing the safety and efficacy of lithium in combination with riluzole in patients with ALS. METHODS We did a double-blind, placebo-controlled trial with a time-to-event design. Between January and June, 2009, patients with ALS who were taking a stable dose of riluzole for at least 30 days were randomly assigned (1:1) by a centralised computer to receive either lithium or placebo. Patients, caregivers, investigators, and all site study staff with the exception of site pharmacists were masked to treatment assignment. The primary endpoint was the time to an event, defined as a decrease of at least six points on the revised ALS functional rating scale score or death. Interim analyses were planned for when 84 patients had been allocated treatment, 6 months later or after 55 events, and after 100 events. Analysis was by intention to treat. The stopping boundary for futility at the first interim analysis was a p value of at least 0.68. We used a log-rank test to compare the distributions of the time to an event between the lithium and placebo groups. This trial is registered with ClinicalTrials.gov, NCT00818389. FINDINGS At the first interim analysis, 22 of 40 patients in the lithium group had an event compared with 20 of 44 patients in the placebo group (log rank p=0.51). The hazard ratio of reaching the primary endpoint was 1.13 (95% CI 0.61-2.07). The study was stopped at the first interim analysis because criterion for futility was met (p=0.78). The difference in mean decline in the ALS functional rating scale score between the lithium group and the placebo group was 0.15 (95% CI -0.43 to 0.73, p=0.61). There were no major safety concerns. Falls (p=0.04) and back pain (p=0.05) were more common in the lithium group than in the placebo group. INTERPRETATION We found no evidence that lithium in combination with riluzole slows progression of ALS more than riluzole alone. The time-to-event endpoint and use of prespecified interim analyses enabled a clear result to be obtained rapidly. This design should be considered for future trials testing the therapeutic efficacy of drugs that are easily accessible to people with ALS. FUNDING National Institute of Neurological Disorders and Stroke, ALS Association, and ALS Society of Canada.
Collapse
Affiliation(s)
- Swati P Aggarwal
- Neurology Clinical Trials Unit, Massachusetts General Hospital, Charlestown, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Graber DJ, Hickey WF, Harris BT. Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis. J Neuroinflammation 2010; 7:8. [PMID: 20109233 PMCID: PMC2825214 DOI: 10.1186/1742-2094-7-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/28/2010] [Indexed: 12/13/2022] Open
Abstract
Background The role of neuroinflammation in motor neuron death of amyotrophic lateral sclerosis (ALS) is unclear. The human mutant superoxide dismutase-1 (hmSOD1)-expressing murine transgenic model of ALS has provided some insight into changes in microglia activity during disease progression. The purpose of this study was to gain further knowledge by characterizing the immunological changes during disease progression in the spinal cord and peripheral nerve using the more recently developed hmSOD1 rat transgenic model of ALS. Methods Using immunohistochemistry, the extent and intensity of tissue CD11b expression in spinal cord, lumbar nerve roots, and sciatic nerve were evaluated in hmSOD1 rats that were pre-clinical, at clinical onset, and near disease end-stage. Changes in CD11b expression were compared to the detection of MHC class II and CD68 microglial activation markers in the ventral horn of the spinal cord, as well as to the changes in astrocytic GFAP expression. Results Our study reveals an accumulation of microglia/macrophages both in the spinal cord and peripheral nerve prior to clinical onset based on CD11b tissue expression. The microglia formed focal aggregates in the ventral horn and became more widespread as the disease progressed. Hypertrophic astrocytes were not prominent in the ventral horn until after clinical onset, and the enhancement of GFAP did not have a strong correlation to increased CD11b expression. Detection of MHC class II and CD68 expression was found in the ventral horn only after clinical onset. The macrophages in the ventral nerve root and sciatic nerve of hmSOD1 rats were observed encircling axons. Conclusions These findings describe for the first time in the hmSOD1 rat transgenic model of ALS that enhancement of microglia/macrophage activity occurs pre-clinically both in the peripheral nerve and in the spinal cord. CD11b expression is shown to be a superior indicator for early immunological changes compared to other microglia activation markers and astrogliosis. Furthermore, we suggest that the early activity of microglia/macrophages is involved in the early phase of motor neuron degeneration and propose that studies involving immunomodulation in hmSOD1transgenic models need to consider effects on macrophages in peripheral nerves as well as to microglia in the spinal cord.
Collapse
Affiliation(s)
- David J Graber
- Department of Pathology, Dartmouth Medical School, One Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | | | | |
Collapse
|
169
|
Mosley RL, Gendelman HE. Control of neuroinflammation as a therapeutic strategy for amyotrophic lateral sclerosis and other neurodegenerative disorders. Exp Neurol 2010; 222:1-5. [PMID: 20044993 DOI: 10.1016/j.expneurol.2009.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, Alzheimer's and Parkinson's diseases, and amyotrophic lateral sclerosis (ALS) are progressive and devastating disorders of the nervous system without cure. Although a number of distinct, but not mutually exclusive, mechanisms can affect disease pathogenesis, neuroinflammation stands in common. Neuroinflammatory responses occur as a consequence of oxidative and excitotoxic neuronal damage, mitochondrial dysfunction, and protein aggregation. Thus, it is believed drugs that modulate inflammation may combat disease progression. Such strategies include those commented on in the report by Arie Neymotin et al. demonstrating lenalidomide's anti-inflammatory and neuroprotective responses in the G93A mutant superoxide dismutase-1 mouse model of ALS (Neymotin et al., 2009). While anti-inflammatory interventions may be required, they may not be sufficient to positively affect clinical outcomes. The targeting of combinations of pathogenic events including clearance of disaggregated proteins together with neuroprotective and immune modulatory strategies may all be required to facilitate positive therapeutic outcomes. This may include the targeting of both innate and adaptive neurotoxic immune responses. This commentary is designed to summarize the promises and perils in achieving immunoregulation for brain homeostatic responses and inevitable therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are discussed with a particular focus on ALS.
Collapse
Affiliation(s)
- R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | |
Collapse
|
170
|
Cudkowicz ME, Katz J, Moore DH, O’neill G, Glass JD, Mitsumoto H, Appel S, Ravina B, Kieburtz K, Shoulson I, Kaufmann P, Khan J, Simpson E, Shefner J, Levin B, Cwik V, Schoenfeld D, Aggarwal S, McDermott MP, Miller RG. Toward more efficient clinical trials for amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 11:259-65. [DOI: 10.3109/17482960903358865] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
171
|
Rutkove SB. Electrical impedance myography: Background, current state, and future directions. Muscle Nerve 2009; 40:936-46. [PMID: 19768754 DOI: 10.1002/mus.21362] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electrical impedance myography (EIM) is a non-invasive technique for the evaluation of neuromuscular disease that relies upon the application and measurement of high-frequency, low-intensity electrical current. EIM assesses disease-induced changes to the normal composition and architecture of muscle, including myocyte atrophy and loss, edema, reinnervation, and deposition of endomysial connective tissue and fat. With application of single-frequency electrical current, EIM can be used to help grade the severity of neuromuscular disease. Assessing electrical impedance across a spectrum of applied frequencies and with current flow at multiple orientations relative to major muscle fiber direction can provide a more complete picture of the condition of muscle. EIM holds the promise of serving as an indicator of disease status. It may be useful in clinical trials and in monitoring effectiveness of treatment in individual patients; ultimately, it may also find diagnostic application. Ongoing efforts have been focused on obtaining a deeper understanding of the basic mechanisms of impedance change, studying EIM in a variety of clinical contexts, and further refining the methods of EIM data acquisition and analysis.
Collapse
Affiliation(s)
- Seward B Rutkove
- Department of Neurology, Division of Neuromuscular Diseases, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| |
Collapse
|
172
|
Lanka V, Wieland S, Barber J, Cudkowicz M. Arimoclomol: a potential therapy under development for ALS. Expert Opin Investig Drugs 2009; 18:1907-18. [DOI: 10.1517/13543780903357486] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
173
|
Qureshi M, Schoenfeld DA, Paliwal Y, Shui A, Cudkowicz ME. The natural history of ALS is changing: Improved survival. ACTA ACUST UNITED AC 2009; 10:324-31. [DOI: 10.3109/17482960903009054] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
174
|
|
175
|
Shefner JM. Muscle as a therapeutic target in amyotrophic lateral sclerosis. Exp Neurol 2009; 219:373-5. [DOI: 10.1016/j.expneurol.2009.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 12/12/2022]
|
176
|
Piepers S, Veldink JH, de Jong SW, van der Tweel I, van der Pol WL, Uijtendaal EV, Schelhaas HJ, Scheffer H, de Visser M, de Jong JMBV, Wokke JHJ, Groeneveld GJ, van den Berg LH. Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis. Ann Neurol 2009; 66:227-34. [PMID: 19743466 DOI: 10.1002/ana.21620] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine whether valproic acid (VPA), a histone deacetylase inhibitor that showed antioxidative and antiapoptotic properties and reduced glutamate toxicity in preclinical studies, is safe and effective in amyotrophic lateral sclerosis (ALS) using a sequential trial design. METHODS Between April 2005 and January 2007, 163 ALS patients received VPA 1,500mg or placebo daily. Primary end point was survival. Secondary outcome measure was decline of functional status measured by the revised ALS Functional Rating Scale. Analysis was by intention to treat and according to a sequential trial design. This trial was registered with ClinicalTrials.gov (number NCT00136110). RESULTS VPA did not affect survival (cumulative survival probability of 0.72 in the VPA group [standard error (SE), 0.06] vs 0.88 in the placebo group [SE, 0.04] at 12 months, and 0.59 in the VPA group [SE, 0.07] vs 0.68 in the placebo group [SE, 0.08] at 16 months) or the rate of decline of functional status. VPA intake did not cause serious adverse reactions. INTERPRETATION Our finding that VPA, at a dose used in epilepsy, does not show a beneficial effect on survival or disease progression in patients with ALS has implications for future trials with histone deacetylase inhibitors in ALS and other neurodegenerative diseases. The use of a sequential trial design allowed inclusion of only half the number of patients required for a classic trial design and prevented patients from unnecessarily continuing potentially harmful study medication.
Collapse
Affiliation(s)
- Sanne Piepers
- Department of Neurology, Rudolf Magnus Institute of Neuroscience University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Ehrnhoefer DE, Butland SL, Pouladi MA, Hayden MR. Mouse models of Huntington disease: variations on a theme. Dis Model Mech 2009; 2:123-9. [PMID: 19259385 DOI: 10.1242/dmm.002451] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An accepted prerequisite for clinical trials of a compound in humans is the successful alleviation of the disease in animal models. For some diseases, however, successful translation of drug effects from mouse models to the bedside has been limited. One question is whether the current models accurately reproduce the human disease. Here, we examine the mouse models that are available for therapeutic testing in Huntington disease (HD), a late-onset neurodegenerative disorder for which there is no effective treatment. The current mouse models show different degrees of similarity to the human condition. Significant phenotypic differences are seen in mouse models that express either truncated or full-length human, or full-length mouse, mutant huntingtin (mHTT). These differences in phenotypic expression may be attributable to the influences of protein context, mouse strain and a difference in regulatory sequences between the mouse Htt and human HTT genes.
Collapse
Affiliation(s)
- Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
178
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease with limited treatment options. Controlled studies are a necessary part of Phase II and Phase III assessments of proposed therapies. Due to the relatively small number of patients with ALS, several study designs have been proposed to improve the efficiency of Phase II studies. Some of these advocate the use of historical controls in place of placebo controls. However, the characteristics of historical controls may not mirror those of patients in the treatment group. Novel study designs can be used to decrease the number of patients required for Phase II studies. The use of placebo controls rather than historical controls in these novel study designs likely leads to better predictions of treatments that will be successful in Phase III studies. There is general agreement on the necessity of placebo controls in Phase III studies.
Collapse
Affiliation(s)
- Zachary Simmons
- Department of Neurology, EC037, 30 Hope Drive, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
| |
Collapse
|
179
|
Lanka V, Cudkowicz M. Therapy development for ALS: Lessons learned and path forward. ACTA ACUST UNITED AC 2009; 9:131-40. [DOI: 10.1080/17482960802112819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
180
|
Qureshi M, Shui A, Dibernardo AB, Brown RH, Schoenfeld DA, Cudkowicz ME. Medications and laboratory parameters as prognostic factors in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 9:369-74. [DOI: 10.1080/17482960802163614] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
181
|
Mosley RL, Gordon PH, Hasiak CM, Van Wetering FJ, Mitsumoto H, Gendelman HE. Glatiramer acetate immunization induces specific antibody and cytokine responses in ALS patients. ACTA ACUST UNITED AC 2009; 8:235-42. [PMID: 17653922 DOI: 10.1080/17482960701374601] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We assessed humoral and cytokine responses in monthly plasma samples from ALS patients who received glatiramer acetate (GA) immunization every day or every other week, or remained untreated (control) from a six-month phase II trial. Samples were evaluated by GA-specific ELISA assays for detection of combined immunoglobulin (Ig) classes (IgM,A,G), IgG alone, and IgG subclasses (IgG1, IgG2, IgG3, and IgG4). T-helper (Th) type 1 and 2 (Th1 and Th2) cytokine levels were determined by flow cytometric cytokine bead arrays. Fourteen of 21 GA-immunized patients produced anti-GA Ig responses. Those treated every day produced anti-GA responses within one month, while those treated every other week exhibited responses by month two. All anti-GA IgG subclass concentrations were increased in excess of 4.2-fold in plasma from treated patients, and anti-GA IgG1 comprised the majority of the humoral response. Mean plasma cytokine levels were statistically indistinguishable between treatment regimens; however, stratification by patient and time on study showed more prevalent trends in changes of Th1 or Th2 cytokine levels following GA treatment every other week or every day, respectively. These data show significant humoral responses and cytokine trends following GA immunization in ALS patients.
Collapse
Affiliation(s)
- R Lee Mosley
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| | | | | | | | | | | |
Collapse
|
182
|
Shefner JM, Nigel Leigh P. Commentary on ‘A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS’. ACTA ACUST UNITED AC 2009; 9:254-6. [DOI: 10.1080/17482960802192324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
183
|
Tsuji-Akimoto S, Yabe I, Niino M, Kikuchi S, Sasaki H. Cystatin C in cerebrospinal fluid as a biomarker of ALS. Neurosci Lett 2009; 452:52-5. [PMID: 19444952 DOI: 10.1016/j.neulet.2009.01.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is diagnosed on the basis of progressive symptoms in both the upper and lower motor neurons. Because there are no specific biomarkers for ALS, it is difficult to diagnose this disease in its early stages. Cerebrospinal fluid (CSF) samples were obtained from 14 patients in the early stages of ALS, from 13 with polyneuropathy, and from 16 with other neurological disorders. The concentration of cystatin C in the CSF was measured using a sandwich enzyme-linked immunosorbent assay (ELISA) kit. The concentration of cystatin C in the CSF was significantly lower in ALS patients than in the control subjects who were patients with polyneuropathy or other neurological diseases (patients with ALS, polyneuropathy, and other diseases exhibited 5.5 +/- 0.3, 6.7 +/- 0.4, and 6.9 +/- 0.3 mg/L cystatin C, respectively; ALS patients vs. control subjects: p = 0.014 and ALS patients vs. polyneuropathy patients: p = 0.024). Cystatin C may be a useful biomarker of ALS and can be used to distinguish between ALS and polyneuropathy.
Collapse
Affiliation(s)
- Sachiko Tsuji-Akimoto
- Department of Neurology, Graduate School of Medicine, Hokkaido University, Sapporo City, Hokkaido, Japan.
| | | | | | | | | |
Collapse
|
184
|
Cudkowicz ME, Andres PL, Macdonald SA, Bedlack RS, Choudry R, Brown RH, Zhang H, Schoenfeld DA, Shefner J, Matson S, Matson WR, Ferrante RJ. Phase 2 study of sodium phenylbutyrate in ALS. ACTA ACUST UNITED AC 2009; 10:99-106. [PMID: 18688762 DOI: 10.1080/17482960802320487] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of the study was to establish the safety and pharmacodynamics of escalating dosages of sodium phenylbutyrate (NaPB) in participants with ALS. Transcription dysregulation may play a role in the pathogenesis of ALS. Sodium phenylbutyrate, a histone deacetylase inhibitor, improves transcription and post-transcriptional pathways, promoting cell survival in a mouse model of motor neuron disease. Forty research participants at eight sites enrolled in an open-label study. Study medication was increased from 9 to 21 g/day. The primary outcome measure was tolerability. Secondary outcome measures included adverse events, blood histone acetylation levels, and NaPB blood levels at each dosage. Twenty-six participants completed the 20-week treatment phase. NaPB was safe and tolerable. No study deaths or clinically relevant laboratory changes occurred with NaPB treatment. Histone acetylation was decreased by approximately 50% in blood buffy-coat specimens at screening and was significantly increased after NaPB administration. Blood levels of NaPB and the primary metabolite, phenylacetate, increased with dosage. While the majority of subjects tolerated higher dosages of NaPB, the lowest dose (9 g/day), was therapeutically efficient in improving histone acetylation levels.
Collapse
Affiliation(s)
- Merit E Cudkowicz
- Massachusetts General Hospital, Neurology Clinical Trials Unit, 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Caraganis A, Benn S, Cudkowicz M, Brown RH. Thrombopoietin is ineffective in a mouse model of motor neuron disease. ACTA ACUST UNITED AC 2009; 9:354-8. [PMID: 18608089 DOI: 10.1080/17482960802103040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study assessed the therapeutic efficacy of thrombopoietin (TPO) in the mouse model of ALS using two treatment paradigms. TPO was administered either daily or in 13-day treatment cycles to SOD1-G93A mice. Quantitative analysis of platelet levels, VEGF and TGF-beta1 trophic factors were assessed. The effect of TPO on disease progression was analyzed by behavioral analysis and clinical examination. TPO treatment increased levels of platelets and TGF-beta1 but not VEGF. This treatment did not affect onset or survival in these mice. Although biologically active, demonstrated by increased platelet and TGF-beta1 levels, rmTPO did not attenuate disease progression in ALS mice.
Collapse
Affiliation(s)
- Andrew Caraganis
- Day Neuromuscular Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | | | | | |
Collapse
|
186
|
Brooks BR. Managing amyotrophic lateral sclerosis: slowing disease progression and improving patient quality of life. Ann Neurol 2009; 65 Suppl 1:S17-23. [PMID: 19191306 DOI: 10.1002/ana.21544] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now possible to slow the disease progression of amyotrophic lateral sclerosis (ALS), but documented improvement in the quality of life of ALS patients has been difficult to quantitate. Putative mechanisms involved in motor neuron degeneration in ALS include oxidative damage, mitochondrial dysfunction, neuroinflammation, growth factor deficiency, and glutamate excitotoxicity. Several pharmacological agents that target these potential targets have demonstrated therapeutic potential in animal models with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Many treatments that have been moderately effective in this animal model have not been successfully translated into effective treatments for humans with ALS. Only the glutamate modulator riluzole has demonstrated efficacy in clinical trials and is approved for treating ALS. Combination treatments may represent a potential therapeutic strategy to more robustly prolong life and preserve function, but only vitamin E with riluzole has been formally studied in clinical trials, and to date, no combination treatments have been found to be more effective than currently available single agents.
Collapse
Affiliation(s)
- Benjamin Rix Brooks
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
187
|
Choi SH, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci 2009; 30:174-81. [PMID: 19269697 DOI: 10.1016/j.tips.2009.01.002] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/18/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
Cyclooxygenases (COX-1 and COX-2) are key enzymes in the conversion of arachidonic acid to prostaglandins and other lipid mediators. Because it can be induced by inflammatory stimuli, COX-2 has been classically considered as the most appropriate target for anti-inflammatory drugs. However, recent data indicate that COX-2 can mediate neuroprotection and that COX-1 is a major player in the neuroinflammatory process. We discuss the specific contributions of COX-1 and COX-2 in various neurodegenerative diseases and in models of neuroinflammation. We suggest that, owing to its predominant localization in microglia, COX-1 might be the major player in neuroinflammation, whereas COX-2, which is localized in neurons, might have a major role in models in which the neurons are directly challenged. Overall, the benefit of using COX-2 inhibitors should be carefully evaluated and COX-1 preferential inhibitors should be further investigated as a potential therapeutic approach in neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Sang-Ho Choi
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
188
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per 100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio approximately 1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1-2 years. Paralysis is progressive and leads to death due to respiratory failure within 2-3 years for bulbar onset cases and 3-5 years for limb onset ALS cases. Most ALS cases are sporadic but 5-10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2-5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in degenerating lower motor neurones. Signs of upper motor neurone and lower motor neurone damage not explained by any other disease process are suggestive of ALS. The management of ALS is supportive, palliative, and multidisciplinary. Non-invasive ventilation prolongs survival and improves quality of life. Riluzole is the only drug that has been shown to extend survival.
Collapse
Affiliation(s)
- Lokesh C Wijesekera
- MRC centre for Neurodegeneration Research, Department of Clinical Neuroscience, Box 41, Institute of Psychiatry, Kings College London, London, SE5 8AF, UK
| | - P Nigel Leigh
- MRC centre for Neurodegeneration Research, Department of Clinical Neuroscience, Box 41, Institute of Psychiatry, Kings College London, London, SE5 8AF, UK
| |
Collapse
|
189
|
ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol 2009; 39:81-9. [PMID: 19184563 DOI: 10.1007/s12035-009-8054-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 01/15/2009] [Indexed: 12/11/2022]
Abstract
Several theories on the pathomechanism of amyotrophic lateral sclerosis (ALS) have been proposed: misfolded protein aggregates, mitochondrial dysfunction, increased glutamate toxicity, increased oxidative stress, disturbance of intracellular trafficking, and so on. In parallel, a number of drugs that have been developed to alleviate the putative key pathomechanism of ALS have been under clinical trials. Unfortunately, however, almost all studies have finished unsuccessfully. This fact indicates that the key ALS pathomechanism still remains a tough enigma. Recent studies with autopsied ALS patients and studies using mutant SOD1 (mSOD1) transgenic mice have suggested that endoplasmic reticulum (ER) stress-related toxicity may be a relevant ALS pathomechanism. Levels of ER stress-related proteins were upregulated in motor neurons in the spinal cords of ALS patients. It was also shown that mSOD1, translocated to the ER, caused ER stress in neurons in the spinal cord of mSOD1 transgenic mice. We recently reported that the newly identified ALS-causative gene, vesicle-associated membrane protein-associated protein B (VAPB), plays a pivotal role in unfolded protein response (UPR), a physiological reaction against ER stress. The ALS-linked P56S mutation in VAPB nullifies the function of VAPB, resulting in motoneuronal vulnerability to ER stress. In this review, we summarize recent advances in research on the ALS pathomechanism especially addressing the putative involvement of ER stress and UPR dysfunction.
Collapse
|
190
|
Benatar M, Kurent J, Moore DH. Treatment for familial amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 2009; 2009:CD006153. [PMID: 19160266 PMCID: PMC7388919 DOI: 10.1002/14651858.cd006153.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a rare neurodegenerative disease. Approximately 5% to 7% of ALS/MND patients report a family history of a similarly affected relative. Superoxide dismutase-1 gene mutations are the cause in about 20% of familial cases. In those with non-familial (sporadic) ALS/MND the cause is unknown. Also unknown is whether patients with familial and sporadic ALS/MND respond differently to treatment. OBJECTIVES To systematically review the literature and to answer the specific question: 'Is there a difference in the response to treatment between patients with sporadic and familial forms of ALS?' SEARCH STRATEGY In May 2006 we searched the Cochrane Neuromuscular Disease Group Trials Register, MEDLINE (January 1966 to May 2006) and EMBASE (January 1980 to May 2006) for randomized controlled trials (RCTs). Two review authors read the titles and abstracts of all articles and reviewed the full text of all possibly relevant articles. We scanned references of all included trials to identify additional relevant articles. For all trials eligible for inclusion we contacted the authors to request the necessary raw data. SELECTION CRITERIA Studies had to meet two criteria: (a) randomized controlled study design, and (b) inclusion of patients with both familial and sporadic ALS/MND. DATA COLLECTION AND ANALYSIS We attempted to contact authors of all trials that met inclusion criteria. We obtained data regarding ALS/MND type (sporadic versus familial), treatment assignment (active versus placebo), survival and ALS Functional Rating Scale scores for four large RCTs that included 822 sporadic and 41 familial ALS patients. We could not obtain data from 25 potentially eligible studies (17 trial authors could not be contacted and eight were unwilling to provide data). MAIN RESULTS There was no statistical evidence for a different response to treatment in patients with familial ALS/MND compared to those with sporadic ALS/MND. The pooled estimate of the hazard ratio for the interaction term (treatment x familial ALS) suggested a more beneficial response with respect to survival among patients with familial ALS/MND, but the result was not statistically significant. Estimates of the rate of decline on the ALS Functional Rating Scale also suggested a slightly better response to treatment among those with familial ALS/MND, but the result was not statistically significant. AUTHORS' CONCLUSIONS Future RCTs should document whether patients with familial ALS/MND are included and the presence or absence of a mutation in the superoxide dismutase-1 gene amongst those with familial ALS/MND.
Collapse
Affiliation(s)
- Michael Benatar
- Neurology Department, Emory University, Department of Neurology, Woodruff Memorial Building , Suite 6000, 100 Woodruff Circle, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
191
|
Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 2009; 3:637-48. [PMID: 19041780 DOI: 10.1016/j.stem.2008.09.017] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/02/2008] [Accepted: 09/29/2008] [Indexed: 12/22/2022]
Abstract
It has been proposed that human embryonic stem cells could be used to provide an inexhaustible supply of differentiated cell types for the study of disease processes. Although methods for differentiating embryonic stem cells into specific cell types have become increasingly sophisticated, the utility of the resulting cells for modeling disease has not been determined. We have asked whether specific neuronal subtypes produced from human embryonic stem cells can be used to investigate the mechanisms leading to neural degeneration in amyotrophic lateral sclerosis (ALS). We show that human spinal motor neurons, but not interneurons, are selectively sensitive to the toxic effect of glial cells carrying an ALS-causing mutation in the SOD1 gene. Our findings demonstrate the relevance of these non-cell-autonomous effects to human motor neurons and more broadly demonstrate the utility of human embryonic stem cells for studying disease and identifying potential therapeutics.
Collapse
Affiliation(s)
- Francesco Paolo Di Giorgio
- The Harvard Stem Cell Institute, The Stowers Medical Institute, Department of Stem Cell and Regenerative Biology, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
192
|
Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis 2009; 15:473-93. [PMID: 18997301 DOI: 10.3233/jad-2008-15314] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative damage is strongly implicated in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease and stroke (brain ischemia/reperfusion injury). The availability of transgenic and toxin-inducible models of these conditions has facilitated the preclinical evaluation of putative antioxidant agents ranging from prototypic natural antioxidants such as vitamin E (alpha-tocopherol) to sophisticated synthetic free radical traps and catalytic oxidants. Literature review shows that antioxidant therapies have enjoyed general success in preclinical studies across disparate animal models, but little benefit in human intervention studies or clinical trials. Recent high-profile failures of vitamin E trials in Parkinson's disease, and nitrone therapies in stroke, have diminished enthusiasm to pursue antioxidant neuroprotectants in the clinic. The translational disappointment of antioxidants likely arises from a combination of factors including failure to understand the drug candidate's mechanism of action in relationship to human disease, and failure to conduct preclinical studies using concentration and time parameters relevant to the clinical setting. This review discusses the rationale for using antioxidants in the prophylaxis or mitigation of human neurodiseases, with a critical discussion regarding ways in which future preclinical studies may be adjusted to offer more predictive value in selecting agents for translation into human trials.
Collapse
Affiliation(s)
- Chandrashekhar D Kamat
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
193
|
Zoccolella S, Santamato A, Lamberti P. Current and emerging treatments for amyotrophic lateral sclerosis. Neuropsychiatr Dis Treat 2009; 5:577-95. [PMID: 19966906 PMCID: PMC2785861 DOI: 10.2147/ndt.s7788] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a relatively rare neurodegenerative disorder of both upper and lower motoneurons. Currently, the management of ALS is essentially symptoms-based, and riluzole, an antiglutamatergic agent, is the only drug for the treatment of ALS approved by the food and drug administration. OBJECTIVE We reviewed current literature concerning emerging treatments for amyotrophic lateral sclerosis. METHODS A Medline literature search was performed to identify all studies on ALS treatment published from January 1st, 1986 through August 31st, 2009. We selected papers concerning only disease-modifying therapy. RESULTS Forty-eight compounds were identified and reviewed in this study. CONCLUSIONS Riluzole is the only compound that demonstrated a beneficial effect on ALS patients, but with only modest increase in survival. Although several drugs showed effective results in the animal models for ALS, none of them significantly prolonged survival or improved quality of life of ALS patients. Several factors have been implicated in explaining the predominantly negative results of numerous randomized clinical trials in ALS, including methodological problems in the use of animal-drug screening, the lack of assessment of pharmacokinetic profile of the drugs, and methodological pitfalls of clinical trials in ALS patients.
Collapse
Affiliation(s)
- Stefano Zoccolella
- Azienda Ospedaliero-Universitaria Ospedali Riuniti, Department of Medical and Neurological Sciences, Clinic of Nervous System Diseases, University of Foggia, Italy.
| | | | | |
Collapse
|
194
|
Shefner JM. Statistical motor unit number estimation and ALS trials: the effect of motor unit instability. MOTOR UNIT NUMBER ESTIMATION (MUNE) AND QUANTITATIVE EMG - SELECTED PRESENTATIONS FROM THE SECOND INTERNATIONAL SYMPOSIUM ON MUNE AND QEMG, SNOWBIRD, UTAH, USA, 18–20 AUGUST 2006 2009; 60:135-41. [DOI: 10.1016/s1567-424x(08)00013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
195
|
Liang X, Wang Q, Shi J, Lokteva L, Breyer RM, Montine TJ, Andreasson K. The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann Neurol 2008; 64:304-14. [PMID: 18825663 DOI: 10.1002/ana.21437] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Inflammation has emerged as an important factor in disease progression in human and transgenic models of amyotrophic lateral sclerosis (ALS). Recent studies demonstrate that the prostaglandin E(2) EP2 receptor is a major regulator of inflammatory oxidative injury in innate immunity. We tested whether EP2 signaling participated in disease pathogenesis in the G93A superoxide dismutase (SOD) model of familial ALS. METHODS We examined the phenotype of G93A SOD mice lacking the EP2 receptor and performed immunocytochemistry, quantitative reverse transcriptase polymerase chain reaction, and Western analyses to determine the mechanism of EP2 toxicity in this model. RESULTS EP2 receptor is significantly induced in G93A SOD mice in astrocytes and microglia in parallel with increases in expression of proinflammatory enzymes and lipid peroxidation. In human ALS, EP2 receptor immunoreactivity was upregulated in astrocytes in ventral spinal cord. In aging G93A SOD mice, genetic deletion of the prostaglandin E(2)EP2 receptor improved motor strength and extended survival. Deletion of the EP2 receptor in G93A SOD mice resulted in significant reductions in levels of proinflammatory effectors, including cyclooxygenase-1, cyclooxygenase-2, inducible nitric oxide synthase, and components of the NADPH oxidase complex. In alternate models of inflammation, including the lipopolysaccharide model of innate immunity and the APPSwe-PS1DeltaE9 model of amyloidosis, deletion of EP2 also reduced expression of proinflammatory genes. INTERPRETATION These data suggest that prostaglandin E(2) signaling via the EP2 receptor functions in the mutant SOD model and more broadly in inflammatory neurodegeneration to regulate expression of a cassette of proinflammatory genes. Inhibition of EP2 signaling may represent a novel strategy to downregulate the inflammatory response in neurodegenerative disease.
Collapse
Affiliation(s)
- Xibin Liang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Cimino PJ, Keene CD, Breyer RM, Montine KS, Montine TJ. Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr Med Chem 2008; 15:1863-9. [PMID: 18691044 DOI: 10.2174/092986708785132915] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandins (PGs) are potent autocrine and paracrine oxygenated lipid molecules that contribute appreciably to physiologic and pathophysiologic responses in almost all organs, including brain. Emerging data indicate that the PGs, and more specifically PGE2, play a central role in brain diseases including ischemic injury and several neurodegenerative diseases. Given concerns over the potential toxicity from protracted use of cyclooxygenase inhibitors in the elderly, attention is now focused on blocking PGE2 signaling that is mediated by interactions with four distinct G protein-coupled receptors, EP1-4, which are differentially expressed on neuronal and glial cells throughout the central nervous system. EP1 activation has been shown to mediate Ca2+-dependent neurotoxicity in ischemic injury. EP2 activation has been shown to mediate microglial-induced paracrine neurotoxicity as well as suppress microglia internalization of aggregated neurotoxic peptides. Animal models support the potential efficacy of targeting specific EP receptor subtypes in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and ischemic stroke. However promising these preclinical studies are, they have yet to be followed by clinical trials targeting any EP receptor in neurologic diseases.
Collapse
Affiliation(s)
- P J Cimino
- Division of Neuropathology, University of Washington School of Medicine, Box 359791, Harborview Medical Center, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
197
|
Abstract
Tremendous advances in our understanding of pathogenesis of amyotrophic lateral sclerosis (ALS) have provided a rich pipeline of drugs for clinical trialists. At least 32 unique compounds have been tested. Nevertheless, riluzole is currently the only treatment that prolongs survival. We present a critical overview of past clinical trials, how therapies are selected for testing in people, challenges with ALS clinical trial design and conduct, and ways to best move forward.
Collapse
Affiliation(s)
- Swati Aggarwal
- Department of Neurology, Massachusetts General Hospital, Neurology Clinical Trials Unit, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
198
|
Abstract
Amyotrophic lateral sclerosis (ALS) was initially known as Charcot's sclerosis, named after the French neurobiologist and physician Jean-Martin Charcot who first described this type of muscular atrophy in the early nineteenth century. In the United States, ALS became widely known as Lou Gehrig's disease after the famous baseball player who succumbed to the disease in the late 1930s. Currently, ALS is the most common motor neuron disease, with a worldwide incidence of 8 cases per 100,000 population per year. Familial forms constitute approximately 5% to 10% of all cases. Onset increases with age, with a peak in the seventh decade and a slight preponderance (relative risk, 1.3-1.5) among men compared with women. Rapid progression of motor neuron loss leads to death an average of 3 to 5 years after symptom onset. The cause of ALS remains unknown and there is still no curative therapy.
Collapse
Affiliation(s)
- Elsa Raibon
- Department of Neurology, University of Washington, Box 356465, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | |
Collapse
|
199
|
Abstract
Clinical trials in amyotrophic lateral sclerosis have significantly evolved over the last decade. New outcome measures have been developed that have reduced the sample size requirement as compared with survival studies. There has been increasing recognition that dose-ranging studies are crucial to full evaluation of experimental agents. While the requirements of late stage trials have not changed, many new designs have been suggested for earlier phase development. While no design achieves the perfect balance of sensitivity and efficiency, clinical trialists continue to work toward the goals of smaller and shorter trials so that more compounds can be studied concurrently.
Collapse
|
200
|
Distad BJ, Meekins GD, Liou LL, Weiss MD, Carter GT, Miller RG. Drug therapy in amyotrophic lateral sclerosis. Phys Med Rehabil Clin N Am 2008; 19:633-51, xi-xii. [PMID: 18625421 DOI: 10.1016/j.pmr.2008.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating condition characterized by progressive muscle wasting, inanition, respiratory failure, and death within approximately 2 to 5 years of onset. ALS is among the most common neuromuscular conditions, with an overall prevalence in the world of approximately 5 to 7 cases/100,000 population. Epidemiologic studies have identified some potential risk factors for developing ALS, including a high-fat, low-fiber diet; cigarette smoking; slimness and athleticism; and living in urban areas. Between 5% and 10% of ALS is genetic, with up to 11 genetic loci identified. Although understanding of the pathophysiology of this disease has advanced over the past 60 years, scant progress has been made regarding effective treatment. The authors review the current understanding of the pathogenic mechanisms of ALS and approaches to treating the disease.
Collapse
Affiliation(s)
- B Jane Distad
- Department of Neurology, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|