151
|
Ventura J, Eron SJ, González-Toro DC, Raghupathi K, Wang F, Hardy JA, Thayumanavan S. Reactive Self-Assembly of Polymers and Proteins to Reversibly Silence a Killer Protein. Biomacromolecules 2015; 16:3161-71. [PMID: 26331939 PMCID: PMC4838044 DOI: 10.1021/acs.biomac.5b00779] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conjugation of biologically active proteins to polymeric materials is of great interest in the treatment of cancer and other diseases of protein deficiency. The conjugation of such biomacromolecules is challenging both due to their hydrophilicity and propensity to denature under non-native conditions. We describe a novel reactive self-assembly approach to "wrap" a protein with polymers, simultaneously protecting its delicate folded state and silencing its enzymatic activity. This approach has been demonstrated using caspase-3, an apoptosis-inducing protein, as the first case study. The protein-polymer conjugation is designed to be reversed under the native conditions for caspase-3, that is, the reducing environment found in the cytosol. The current strategy allowed release and recovery of up to 86% of caspase activity and nanogel-caspase-3 conjugates induced 70-80% apoptotic cell death shortly thereafter. This approach is widely generalizable and should be applicable to the intracellular delivery of a wide range of therapeutic proteins for treatment of complex and genetic diseases.
Collapse
Affiliation(s)
- Judy Ventura
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Scott J. Eron
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | | | | | - Feng Wang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
152
|
Moatsou D, Li J, Ranji A, Pitto-Barry A, Ntai I, Jewett MC, O’Reilly RK. Self-Assembly of Temperature-Responsive Protein-Polymer Bioconjugates. Bioconjug Chem 2015; 26:1890-9. [PMID: 26083370 PMCID: PMC4577958 DOI: 10.1021/acs.bioconjchem.5b00264] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/12/2015] [Indexed: 12/13/2022]
Abstract
We report a simple temperature-responsive bioconjugate system comprising superfolder green fluorescent protein (sfGFP) decorated with poly[(oligo ethylene glycol) methyl ether methacrylate] (PEGMA) polymers. We used amber suppression to site-specifically incorporate the non-canonical azide-functional amino acid p-azidophenylalanine (pAzF) into sfGFP at different positions. The azide moiety on modified sfGFP was then coupled using copper-catalyzed "click" chemistry with the alkyne terminus of a PEGMA synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The protein in the resulting bioconjugate was found to remain functionally active (i.e., fluorescent) after conjugation. Turbidity measurements revealed that the point of attachment of the polymer onto the protein scaffold has an impact on the thermoresponsive behavior of the resultant bioconjugate. Furthermore, small-angle X-ray scattering analysis showed the wrapping of the polymer around the protein in a temperature-dependent fashion. Our work demonstrates that standard genetic manipulation combined with an expanded genetic code provides an easy way to construct functional hybrid biomaterials where the location of the conjugation site on the protein plays an important role in determining material properties. We anticipate that our approach could be generalized for the synthesis of complex functional materials with precisely defined domain orientation, connectivity, and composition.
Collapse
Affiliation(s)
- Dafni Moatsou
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Jian Li
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Arnaz Ranji
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Anaïs Pitto-Barry
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ioanna Ntai
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel K. O’Reilly
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
153
|
Cserép GB, Herner A, Kele P. Bioorthogonal fluorescent labels: a review on combined forces. Methods Appl Fluoresc 2015; 3:042001. [DOI: 10.1088/2050-6120/3/4/042001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
154
|
Abstract
PEGylation is the covalent conjugation of PEG to therapeutic molecules. Protein PEGylation is a clinically proven approach for extending the circulation half-life and reducing the immunogenicity of protein therapeutics. Most clinically used PEGylated proteins are heterogeneous mixtures of PEG positional isomers conjugated to different residues on the protein main chain. Current research is focused to reduce product heterogeneity and to preserve bioactivity. Recent advances and possible future directions in PEGylation are described in this review. So far protein PEGylation has yielded more than 10 marketed products and in view of the lack of equally successful alternatives to extend the circulation half-life of proteins, PEGylation will still play a major role in drug delivery for many years to come.
Collapse
|
155
|
Chumsae C, Hossler P, Raharimampionona H, Zhou Y, McDermott S, Racicot C, Radziejewski C, Zhou ZS. When Good Intentions Go Awry: Modification of a Recombinant Monoclonal Antibody in Chemically Defined Cell Culture by Xylosone, an Oxidative Product of Ascorbic Acid. Anal Chem 2015; 87:7529-34. [DOI: 10.1021/acs.analchem.5b00801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chris Chumsae
- Protein
Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Patrick Hossler
- Cell
Culture, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Haly Raharimampionona
- Protein
Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Yu Zhou
- Protein
Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Sean McDermott
- Cell
Culture, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Chris Racicot
- Cell
Culture, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Czeslaw Radziejewski
- Protein
Analytics, Process Sciences Department, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Zhaohui Sunny Zhou
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
156
|
Zhao W, Liu F, Chen Y, Bai J, Gao W. Synthesis of well-defined protein–polymer conjugates for biomedicine. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
157
|
Raj M, Wu H, Blosser SL, Vittoria MA, Arora PS. Aldehyde capture ligation for synthesis of native peptide bonds. J Am Chem Soc 2015; 137:6932-40. [PMID: 25966041 DOI: 10.1021/jacs.5b03538] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemoselective reactions for amide bond formation have transformed the ability to access synthetic proteins and other bioconjugates through ligation of fragments. In these ligations, amide bond formation is accelerated by transient enforcement of an intramolecular reaction between the carboxyl and the amine termini of two fragments. Building on this principle, we introduce an aldehyde capture ligation that parlays the high chemoselective reactivity of aldehydes and amines to enforce amide bond formation between amino acid residues and peptides that are difficult to ligate by existing technologies.
Collapse
Affiliation(s)
- Monika Raj
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Huabin Wu
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Sarah L Blosser
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Marc A Vittoria
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
158
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
159
|
One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. Nat Chem Biol 2015; 11:326-31. [PMID: 25822913 DOI: 10.1038/nchembio.1792] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/06/2015] [Indexed: 01/01/2023]
Abstract
The chemical modification of proteins is an enabling technology for many scientific fields, including chemical biology, biophysics, bioengineering and materials science. These methods allow the attachment of strategically selected detection probes, polymers, drug molecules and analysis platforms. However, organic reactions that can proceed under conditions mild enough to maintain biomolecular function are limited. Even more rare are chemical strategies that can target a single site, leading to products with uniform properties and optimal function. We present a versatile method for the selective modification of protein N termini that does not require any genetic engineering of the protein target. This reaction is demonstrated for 12 different proteins, including the soluble domain of the human estrogen receptor. The function of this protein was confirmed through the binding of a fluorescent estrogen mimic, and the modified protein was explored as a prototype for the detection of endocrine-disrupting chemicals in water.
Collapse
|
160
|
Wang P, Zhang S, Meng Q, Liu Y, Shang L, Yin Z. Site-Specific Chemical Modification of Peptide and Protein by Thiazolidinediones. Org Lett 2015; 17:1361-4. [DOI: 10.1021/acs.orglett.5b00005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Wang
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shumei Zhang
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qiuyue Meng
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ying Liu
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Luqing Shang
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Zheng Yin
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
161
|
Obermeyer AC, Olsen BD. Synthesis and Application of Protein-Containing Block Copolymers. ACS Macro Lett 2015; 4:101-110. [PMID: 35596389 DOI: 10.1021/mz500732e] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins possess an impressive array of functionality ranging from catalytic activity to selective binding and mechanical strength, making them highly attractive for materials engineering. Conjugation of synthetic polymers to proteins has the potential to improve the physical properties of the protein as well as provide functionality not typically found in native proteins, such as stimuli-responsive behavior and the programmable ability to self-assemble. This viewpoint discusses the design of protein-polymer conjugates, an important class of block copolymers. Use of these hybrid molecules in biological and catalytic applications is highlighted, and the ability of the polymer to direct the solution and solid-state self-assembly of the hybrid block copolymers is reviewed. Future challenges in polymer and material science that will enable these hybrid molecules to reach their potential as protein-based materials are outlined.
Collapse
Affiliation(s)
- Allie C. Obermeyer
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
162
|
Palla KS, Witus LS, Mackenzie KJ, Netirojjanakul C, Francis MB. Optimization and expansion of a site-selective N-methylpyridinium-4-carboxaldehyde-mediated transamination for bacterially expressed proteins. J Am Chem Soc 2015; 137:1123-9. [PMID: 25486267 DOI: 10.1021/ja509955n] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Site-selective bioconjugation methods are valuable because of their ability to confer new properties to proteins by the chemical attachment of specific functional groups. Well-defined bioconjugates obtained through these methods have found utility for the study of protein function and the creation of protein-based materials. We have previously reported a protein modification strategy to modify the N-terminus of peptides and proteins using N-methylpyridinium-4-carboxaldehyde benzenesulfonate (Rapoport's salt, RS) as a transamination reagent, which oxidizes the N-terminal amino group to provide a uniquely reactive aldehyde or ketone. This functional handle can subsequently be modified with an alkoxyamine reagent of choice. Previous work had found glutamate terminal sequences to be highly reactive toward RS-mediated transamination. However, proteins of interest are often recombinantly expressed in E. coli, where the expression of a glutamate-terminal protein is rendered difficult because the N-terminal methionine derived from the start codon is not cleaved when Glu is in the second position. In this work, we describe a way to overcome this difficulty via the insertion of a Factor Xa proteolytic cleavage site to acquire the optimal glutamate residue at the N-terminus. Additionally, we present studies on alternative high-yielding sequences containing N-terminal residues that can be expressed directly. We have used site-directed mutagenesis to validate these findings on a model cellulase enzyme, an endoglucanase from the thermophilic Pyrococcus horikoshii. Activity assays performed with these mutants show that RS transamination and subsequent modification with alkoxyamines have no negative impact on cellulolytic ability.
Collapse
Affiliation(s)
- Kanwal S Palla
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | | | | | | | |
Collapse
|
163
|
Nivala J, Mulroney L, Li G, Schreiber J, Akeson M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS NANO 2014; 8:12365-75. [PMID: 25402970 DOI: 10.1021/nn5049987] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Previously we showed that the protein unfoldase ClpX could facilitate translocation of individual proteins through the α-hemolysin nanopore. This results in ionic current fluctuations that correlate with unfolding and passage of intact protein strands through the pore lumen. It is plausible that this technology could be used to identify protein domains and structural modifications at the single-molecule level that arise from subtle changes in primary amino acid sequence (e.g., point mutations). As a test, we engineered proteins bearing well-characterized domains connected in series along an ∼700 amino acid strand. Point mutations in a titin immunoglobulin domain (titin I27) and point mutations, proteolytic cleavage, and rearrangement of beta-strands in green fluorescent protein (GFP), caused ionic current pattern changes for single strands predicted by bulk phase and force spectroscopy experiments. Among these variants, individual proteins could be classified at 86-99% accuracy using standard machine learning tools. We conclude that a ClpXP-nanopore device can discriminate among distinct protein domains, and that sequence-dependent variations within those domains are detectable.
Collapse
Affiliation(s)
- Jeff Nivala
- Nanopore Group, Department of Biomolecular Engineering, University of California , Santa Cruz, California 95064, United States
| | | | | | | | | |
Collapse
|
164
|
Murar CE, Thuaud F, Bode JW. KAHA Ligations That Form Aspartyl Aldehyde Residues as Synthetic Handles for Protein Modification and Purification. J Am Chem Soc 2014; 136:18140-8. [DOI: 10.1021/ja511231f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Claudia E. Murar
- Laboratorium
für Organische Chemie, Department of Chemistry and Applied
Biosciences, ETH−Zürich, 8093 Zürich, Switzerland
| | - Frédéric Thuaud
- Laboratorium
für Organische Chemie, Department of Chemistry and Applied
Biosciences, ETH−Zürich, 8093 Zürich, Switzerland
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Jeffrey W. Bode
- Laboratorium
für Organische Chemie, Department of Chemistry and Applied
Biosciences, ETH−Zürich, 8093 Zürich, Switzerland
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
165
|
Lee SH, Kyung H, Yokota R, Goto T, Oe T. Hydroxyl Radical-Mediated Novel Modification of Peptides: N-Terminal Cyclization through the Formation of α-Ketoamide. Chem Res Toxicol 2014; 28:59-70. [DOI: 10.1021/tx500332y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hyunsook Kyung
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Yokota
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takaaki Goto
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
166
|
Averick S, Mehl RA, Das SR, Matyjaszewski K. Well-defined biohybrids using reversible-deactivation radical polymerization procedures. J Control Release 2014; 205:45-57. [PMID: 25483427 DOI: 10.1016/j.jconrel.2014.11.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/20/2023]
Abstract
The use of reversible deactivation radical polymerization (RDRP) methods has significantly expanded the field of bioconjugate synthesis. RDRP procedures have allowed the preparation of a broad range of functional materials that could not be realized using prior art poly(ethylene glycol) functionalization. The review of procedures for synthesis of biomaterials is presented with a special focus on the use of RDRP to prepare biohybrids with proteins, DNA and RNA.
Collapse
Affiliation(s)
- Saadyah Averick
- Laboratory for Bimolecular Medicine, Allegheny Health Network Research Institute, 320 E. North St., Pittsburgh, PA 15212, USA.
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| | - Subha R Das
- Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
167
|
Pelegri-O'Day EM, Lin EW, Maynard HD. Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J Am Chem Soc 2014; 136:14323-32. [PMID: 25216406 DOI: 10.1021/ja504390x] [Citation(s) in RCA: 472] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-polymer conjugates are widely used as therapeutics. All Food and Drug Administration (FDA)-approved protein conjugates are covalently linked to poly(ethylene glycol) (PEG). These PEGylated drugs have longer half-lives in the bloodstream, leading to less frequent dosing, which is a significant advantage for patients. However, there are some potential drawbacks to PEG that are driving the development of alternatives. Polymers that display enhanced pharmacokinetic properties along with additional advantages such as improved stability or degradability will be important to advance the field of protein therapeutics. This perspective presents a summary of protein-PEG conjugates for therapeutic use and alternative technologies in various stages of development as well as suggestions for future directions. Established methods of producing protein-PEG conjugates and new approaches utilizing controlled radical polymerization are also covered.
Collapse
Affiliation(s)
- Emma M Pelegri-O'Day
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
168
|
McKay CS, Finn MG. Click chemistry in complex mixtures: bioorthogonal bioconjugation. CHEMISTRY & BIOLOGY 2014; 21:1075-101. [PMID: 25237856 PMCID: PMC4331201 DOI: 10.1016/j.chembiol.2014.09.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/18/2023]
Abstract
The selective chemical modification of biological molecules drives a good portion of modern drug development and fundamental biological research. While a few early examples of reactions that engage amine and thiol groups on proteins helped establish the value of such processes, the development of reactions that avoid most biological molecules so as to achieve selectivity in desired bond-forming events has revolutionized the field. We provide an update on recent developments in bioorthogonal chemistry that highlights key advances in reaction rates, biocompatibility, and applications. While not exhaustive, we hope this summary allows the reader to appreciate the rich continuing development of good chemistry that operates in the biological setting.
Collapse
Affiliation(s)
- Craig S McKay
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M G Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
169
|
Chumsae C, Zhou LL, Shen Y, Wohlgemuth J, Fung E, Burton R, Radziejewski C, Zhou ZS. Discovery of a chemical modification by citric acid in a recombinant monoclonal antibody. Anal Chem 2014; 86:8932-6. [PMID: 25136741 PMCID: PMC4165448 DOI: 10.1021/ac502179m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023]
Abstract
Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called "acidic species" that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity.
Collapse
Affiliation(s)
- Chris Chumsae
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Liqiang Lisa Zhou
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Yang Shen
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Jessica Wohlgemuth
- NBE
Analytical Research and Development, AbbVie, Ludwigshafen 67061, Germany
| | - Emma Fung
- Biologics, AbbVie
Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Randall Burton
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Czeslaw Radziejewski
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Zhaohui Sunny Zhou
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000, United States
| |
Collapse
|
170
|
An extracorporeal blood-cleansing device for sepsis therapy. Nat Med 2014; 20:1211-6. [PMID: 25216635 DOI: 10.1038/nm.3640] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/25/2014] [Indexed: 11/09/2022]
Abstract
Here we describe a blood-cleansing device for sepsis therapy inspired by the spleen, which can continuously remove pathogens and toxins from blood without first identifying the infectious agent. Blood flowing from an infected individual is mixed with magnetic nanobeads coated with an engineered human opsonin--mannose-binding lectin (MBL)--that captures a broad range of pathogens and toxins without activating complement factors or coagulation. Magnets pull the opsonin-bound pathogens and toxins from the blood; the cleansed blood is then returned back to the individual. The biospleen efficiently removes multiple Gram-negative and Gram-positive bacteria, fungi and endotoxins from whole human blood flowing through a single biospleen unit at up to 1.25 liters per h in vitro. In rats infected with Staphylococcus aureus or Escherichia coli, the biospleen cleared >90% of bacteria from blood, reduced pathogen and immune cell infiltration in multiple organs and decreased inflammatory cytokine levels. In a model of endotoxemic shock, the biospleen increased survival rates after a 5-h treatment.
Collapse
|
171
|
Spicer CD, Davis BG. Selective chemical protein modification. Nat Commun 2014; 5:4740. [PMID: 25190082 DOI: 10.1038/ncomms5740] [Citation(s) in RCA: 724] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/21/2014] [Indexed: 02/06/2023] Open
Abstract
Chemical modification of proteins is an important tool for probing natural systems, creating therapeutic conjugates and generating novel protein constructs. Site-selective reactions require exquisite control over both chemo- and regioselectivity, under ambient, aqueous conditions. There are now various methods for achieving selective modification of both natural and unnatural amino acids--each with merits and limitations--providing a 'toolkit' that until 20 years ago was largely limited to reactions at nucleophilic cysteine and lysine residues. If applied in a biologically benign manner, this chemistry could form the basis of true Synthetic Biology.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Benjamin G Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
172
|
Diethelm S, Schafroth MA, Carreira EM. Amine-Selective Bioconjugation Using Arene Diazonium Salts. Org Lett 2014; 16:3908-11. [DOI: 10.1021/ol5016509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefan Diethelm
- Laboratorium für Organische
Chemie, ETH Zürich, HCI H335, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Michael A. Schafroth
- Laboratorium für Organische
Chemie, ETH Zürich, HCI H335, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische
Chemie, ETH Zürich, HCI H335, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
173
|
Obermeyer A, Jarman JB, Francis MB. N-terminal modification of proteins with o-aminophenols. J Am Chem Soc 2014; 136:9572-9. [PMID: 24963951 PMCID: PMC4353012 DOI: 10.1021/ja500728c] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 01/10/2023]
Abstract
The synthetic modification of proteins plays an important role in chemical biology and biomaterials science. These fields provide a constant need for chemical tools that can introduce new functionality in specific locations on protein surfaces. In this work, an oxidative strategy is demonstrated for the efficient modification of N-terminal residues on peptides and N-terminal proline residues on proteins. The strategy uses o-aminophenols or o-catechols that are oxidized to active coupling species in situ using potassium ferricyanide. Peptide screening results have revealed that many N-terminal amino acids can participate in this reaction, and that proline residues are particularly reactive. When applied to protein substrates, the reaction shows a stronger requirement for the proline group. Key advantages of the reaction include its fast second-order kinetics and ability to achieve site-selective modification in a single step using low concentrations of reagent. Although free cysteines are also modified by the coupling reaction, they can be protected through disulfide formation and then liberated after N-terminal coupling is complete. This allows access to doubly functionalized bioconjugates that can be difficult to access using other methods.
Collapse
Affiliation(s)
- Allie
C. Obermeyer
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - John B. Jarman
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
174
|
Rodda AE, Meagher L, Nisbet DR, Forsythe JS. Specific control of cell–material interactions: Targeting cell receptors using ligand-functionalized polymer substrates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
175
|
Früh SM, Spycher PR, Mitsi M, Burkhardt MA, Vogel V, Schoen I. Functional Modification of Fibronectin by N-Terminal FXIIIa-Mediated Transamidation. Chembiochem 2014; 15:1481-6. [DOI: 10.1002/cbic.201402099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Indexed: 01/09/2023]
|
176
|
Dettin M, Zamuner A, Iucci G, Messina GML, Battocchio C, Picariello G, Gallina G, Marletta G, Castagliuolo I, Brun P. Driving h-osteoblast adhesion and proliferation on titania: peptide hydrogels decorated with growth factors and adhesive conjugates. J Pept Sci 2014; 20:585-94. [DOI: 10.1002/psc.2652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 11/07/2022]
Affiliation(s)
- M. Dettin
- Department of Industrial Engineering; University of Padua; Padua 35131 Italy
| | - A. Zamuner
- Department of Industrial Engineering; University of Padua; Padua 35131 Italy
| | - G. Iucci
- Department of Physics; University ‘Roma Tre’; Rome 00146 Italy
| | - G. M. L. Messina
- Department of Chemistry; University of Catania; Catania 95125 Italy
| | - C. Battocchio
- Department of Physics; University ‘Roma Tre’; Rome 00146 Italy
| | - G. Picariello
- Institute of Food Sciences; CNR; Avellino 83100 Italy
| | - G. Gallina
- Department of Industrial Engineering; University of Padua; Padua 35131 Italy
| | - G. Marletta
- Department of Chemistry; University of Catania; Catania 95125 Italy
| | - I. Castagliuolo
- Department of Molecular Medicine; University of Padua; Padua 35121 Italy
| | - P. Brun
- Department of Molecular Medicine; University of Padua; Padua 35121 Italy
| |
Collapse
|
177
|
King M, Wagner A. Developments in the Field of Bioorthogonal Bond Forming Reactions—Past and Present Trends. Bioconjug Chem 2014; 25:825-39. [DOI: 10.1021/bc500028d] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mathias King
- Laboratory of Functional
Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg - CNRS, 74 Route du Rhin, BP 60024, 67401 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Laboratory of Functional
Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg - CNRS, 74 Route du Rhin, BP 60024, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
178
|
Lang K, Chin JW. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 2014; 114:4764-806. [PMID: 24655057 DOI: 10.1021/cr400355w] [Citation(s) in RCA: 817] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathrin Lang
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
179
|
Patterson DM, Nazarova LA, Prescher JA. Finding the right (bioorthogonal) chemistry. ACS Chem Biol 2014; 9:592-605. [PMID: 24437719 DOI: 10.1021/cb400828a] [Citation(s) in RCA: 534] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistries can be used to tag diverse classes of biomolecules in cells and other complex environments. With over 20 unique transformations now available, though, selecting an appropriate reaction for a given experiment is challenging. In this article, we compare and contrast the most common classes of bioorthogonal chemistries and provide a framework for matching the reactions with downstream applications. We also discuss ongoing efforts to identify novel biocompatible reactions and methods to control their reactivity. The continued expansion of the bioorthogonal toolkit will provide new insights into biomolecule networks and functions and thus refine our understanding of living systems.
Collapse
Affiliation(s)
- David M. Patterson
- Departments of †Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Lidia A. Nazarova
- Departments of †Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Jennifer A. Prescher
- Departments of †Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
180
|
Lee SH, Kyung H, Yokota R, Goto T, Oe T. N-terminal α-ketoamide peptides: formation and transamination. Chem Res Toxicol 2014; 27:637-48. [PMID: 24568234 DOI: 10.1021/tx400469x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have previously reported that N-terminal α-ketoamide peptides can be formed through 4-oxo-2(E)-nonenal (ONE)-derived oxidative decarboxylation of aspartic acid (Asp), which converts angiotensin (Ang) II (DRVYIHPF) to pyruvamide-Ang II (Ang P, CH3COCONH-RVYIHPF). The pyruvamide group significantly inhibits Ang P binding to the Ang II type 1 receptor, which mediates the major biological effects of Ang II. In the present study, we found that ONE can also introduce an α-ketoamide moiety at the N-terminus of peptides containing N-terminal residues other than Asp. Subsequent investigation of alternative biosynthetic pathways for N-terminal α-ketoamide peptides revealed that hydroxyl radical-mediated formation is a much more efficient route. The proposed mechanism involves initial abstraction of the N-terminal α-hydrogen and hydrolysis of the ketimine intermediate. The resulting N-terminal α-ketoamide is then converted to the D- and L-amino acids by nonenzymatic transamination in the presence of pyridoxamine (PM). The formation of the epimeric N-terminus depended on the incubation time and the concentration of PM, and increased further upon the addition of Cu(II) ions. A conversion of approximately 60% after three days of incubation was observed for Ang P. We propose that the reaction intermediate contains a prochiral α-carbon and is stabilized by the chelate effect of Cu(II) ions. The ONE- and hydroxyl radical-derived formation of N-terminal α-ketoamide and its transamination in the presence of PM were also observed in amyloid β 1-11 (DAEFRHDSGYE), where the N-terminal Asp was converted to epimeric alanine. This suggests that these N-terminal modifications could occur in vivo and modulate the biological functions of peptides and proteins.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University , Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
181
|
van Vught R, Pieters RJ, Breukink E. Site-specific functionalization of proteins and their applications to therapeutic antibodies. Comput Struct Biotechnol J 2014; 9:e201402001. [PMID: 24757499 PMCID: PMC3995230 DOI: 10.5936/csbj.201402001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/28/2014] [Accepted: 02/04/2014] [Indexed: 12/19/2022] Open
Abstract
Protein modifications are often required to study structure and function relationships. Instead of the random labeling of lysine residues, methods have been developed to (sequence) specific label proteins. Next to chemical modifications, tools to integrate new chemical groups for bioorthogonal reactions have been applied. Alternatively, proteins can also be selectively modified by enzymes. Herein we review the methods available for site-specific modification of proteins and their applications for therapeutic antibodies.
Collapse
Affiliation(s)
- Remko van Vught
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology. Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Eefjan Breukink
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|
182
|
Kung KKY, Wong KF, Leung KC, Wong MK. N-Terminal α-amino group modification of peptides by an oxime formation-exchange reaction sequence. Chem Commun (Camb) 2014; 49:6888-90. [PMID: 23792565 DOI: 10.1039/c3cc42261e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A site-specific and efficient method for N-terminal modification of peptides using oxone for selective oxidation of N-terminal α-amino groups of peptides to oximes followed by transoximation with O-substituted hydroxylamines has been developed.
Collapse
Affiliation(s)
- Karen Ka-Yan Kung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | | | | | | |
Collapse
|
183
|
Rosen CB, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat Biotechnol 2014; 32:179-81. [PMID: 24441471 DOI: 10.1038/nbt.2799] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/12/2013] [Indexed: 01/22/2023]
Abstract
We demonstrate single-molecule, site-specific detection of protein phosphorylation with protein nanopore technology. A model protein, thioredoxin, was phosphorylated at two adjacent sites. Analysis of the ionic current amplitude and noise, as the protein unfolds and moves through an α-hemolysin pore, enables the distinction between unphosphorylated, monophosphorylated and diphosphorylated variants. Our results provide a step toward nanopore proteomics.
Collapse
Affiliation(s)
- Christian B Rosen
- 1] Department of Chemistry, University of Oxford, Oxford, UK. [2] Center for DNA Nanotechnology, Department of Chemistry and iNANO, Aarhus University, Aarhus, Denmark. [3]
| | | | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
184
|
Wallat JD, Rose KA, Pokorski JK. Proteins as substrates for controlled radical polymerization. Polym Chem 2014. [DOI: 10.1039/c3py01193c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
185
|
Wang J, Yu Y, Xia J. Short peptide tag for covalent protein labeling based on coiled coils. Bioconjug Chem 2013; 25:178-87. [PMID: 24341800 DOI: 10.1021/bc400498p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To label proteins covalently, one faces a trade-off between labeling a protein specifically and using a small tag. Often one must compromise one parameter for the other or use additional components, such as an enzyme, to satisfy both requirements. Here, we report a new reaction that covalently labels proteins by using engineered coiled-coil peptides. Harnessing the concept of "proximity-induced reactivity", the 21-amino-acid three-heptad peptides CCE/CCK were modified with a nucleophilic cysteine and an α-chloroacetyl group at selected positions. When pairs of coiled coils associated, an irreversible covalent bond spontaneously formed between the peptides. The specificity of the cross-linking reaction was characterized, the probes were improved by making them bivalent, and the system was used to label a protein in vitro and receptors on the surface of mammalian cells.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | | | | |
Collapse
|
186
|
Tolstyka ZP, Richardson W, Bat E, Stevens CJ, Parra DP, Dozier JK, Distefano MD, Dunn B, Maynard HD. Chemoselective immobilization of proteins by microcontact printing and bio-orthogonal click reactions. Chembiochem 2013; 14:2464-71. [PMID: 24166802 PMCID: PMC3962834 DOI: 10.1002/cbic.201300478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 11/09/2022]
Abstract
Herein, a combination of microcontact printing of functionalized alkanethiols and site-specific modification of proteins is utilized to chemoselectively immobilize proteins onto gold surfaces, either by oxime- or copper-catalyzed alkyne-azide click chemistry. Two molecules capable of click reactions were synthesized, an aminooxy-functionalized alkanethiol and an azide-functionalized alkanethiol, and self-assembled monolayer (SAM) formation on gold was confirmed by IR spectroscopy. The alkanethiols were then individually patterned onto gold surfaces by microcontact printing. Site-specifically modified proteins-horse heart myoglobin (HHMb) containing an N-terminal α-oxoamide and a red fluorescent protein (mCherry-CVIA) with a C-terminal alkyne-were immobilized by incubation onto respective stamped functionalized alkanethiol patterns. Pattern formation was confirmed by fluorescence microscopy.
Collapse
Affiliation(s)
- Zachary P. Tolstyka
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Wade Richardson
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering University of California, Los Angeles Los Angeles, California, 90095, USA
| | - Erhan Bat
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Caitlin J. Stevens
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Dayanara P. Parra
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| | - Jonathan K. Dozier
- Department of Chemistry University of Minnesota 207 Pleasant Street S. E. Minneapolis, MN 55455, USA
| | - Mark D. Distefano
- Department of Chemistry University of Minnesota 207 Pleasant Street S. E. Minneapolis, MN 55455, USA
| | - Bruce Dunn
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering University of California, Los Angeles Los Angeles, California, 90095, USA
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Los Angeles, CA, 90095, USA University of California, Los Angeles Los Angeles, CA, 90095, USA
| |
Collapse
|
187
|
Obermeyer AC, Jarman JB, Netirojjanakul C, El Muslemany K, Francis MB. Mild Bioconjugation Through the Oxidative Coupling ofortho-Aminophenols and Anilines with Ferricyanide. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
188
|
Obermeyer AC, Jarman JB, Netirojjanakul C, El Muslemany K, Francis MB. Mild Bioconjugation Through the Oxidative Coupling ofortho-Aminophenols and Anilines with Ferricyanide. Angew Chem Int Ed Engl 2013; 53:1057-61. [DOI: 10.1002/anie.201307386] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 02/02/2023]
|
189
|
Kajita R, Goto T, Lee SH, Oe T. Aldehyde Stress-Mediated Novel Modification of Proteins: Epimerization of the N-Terminal Amino Acid. Chem Res Toxicol 2013; 26:1926-36. [DOI: 10.1021/tx400354d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ryo Kajita
- Department of Bioanalytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | - Takaaki Goto
- Department of Bioanalytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | - Seon Hwa Lee
- Department of Bioanalytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | - Tomoyuki Oe
- Department of Bioanalytical
Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
190
|
Witus LS, Netirojjanakul C, Palla KS, Muehl EM, Weng CH, Iavarone AT, Francis MB. Site-specific protein transamination using N-methylpyridinium-4-carboxaldehyde. J Am Chem Soc 2013; 135:17223-9. [PMID: 24191658 PMCID: PMC4136391 DOI: 10.1021/ja408868a] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The controlled attachment of synthetic groups to proteins is important for a number of fields, including therapeutics, where antibody-drug conjugates are an emerging area of biologic medicines. We have previously reported a site-specific protein modification method using a transamination reaction that chemoselectively oxidizes the N-terminal amine of a polypeptide chain to a ketone or an aldehyde group. The newly introduced carbonyl can be used for conjugation to a synthetic group in one location through the formation of an oxime or a hydrazone linkage. To expand the scope of this reaction, we have used a combinatorial peptide library screening platform as a method to explore new transamination reagents while simultaneously identifying their optimal N-terminal sequences. N-Methylpyridinium-4-carboxaldehyde benzenesulfonate salt (Rapoport's salt, RS) was identified as a highly effective transamination reagent when paired with glutamate-terminal peptides and proteins. This finding establishes RS as a transamination reagent that is particularly well suited for antibody modification. Using a known therapeutic antibody, herceptin, it was demonstrated that RS can be used to modify the heavy chains of the wild-type antibody or to modify both the heavy and the light chains after N-terminal sequence mutation to add additional glutamate residues.
Collapse
Affiliation(s)
- Leah S. Witus
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | | | - Kanwal S. Palla
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Ellen M. Muehl
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Chih-Hisang Weng
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720-3220
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460
| |
Collapse
|
191
|
Sack JT, Stephanopoulos N, Austin DC, Francis MB, Trimmer JS. Antibody-guided photoablation of voltage-gated potassium currents. ACTA ACUST UNITED AC 2013; 142:315-24. [PMID: 23940262 PMCID: PMC3753605 DOI: 10.1085/jgp.201311023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A family of 40 mammalian voltage-gated potassium (Kv) channels control membrane excitability in electrically excitable cells. The contribution of individual Kv channel types to electrophysiological signaling has been difficult to assign, as few selective inhibitors exist for individual Kv subunits. Guided by the exquisite selectivity of immune system interactions, we find potential for antibody conjugates as selective Kv inhibitors. Here, functionally benign anti-Kv channel monoclonal antibodies (mAbs) were chemically modified to facilitate photoablation of K currents. Antibodies were conjugated to porphyrin compounds that upon photostimulation inflict localized oxidative damage. Anti-Kv4.2 mAb–porphyrin conjugates facilitated photoablation of Kv4.2 currents. The degree of K current ablation was dependent on photon dose and conjugate concentration. Kv channel photoablation was selective for Kv4.2 over Kv4.3 or Kv2.1, yielding specificity not present in existing neurotoxins or other Kv channel inhibitors. We conclude that antibody–porphyrin conjugates are capable of selective photoablation of Kv currents. These findings demonstrate that subtype-specific mAbs that in themselves do not modulate ion channel function are capable of delivering functional payloads to specific ion channel targets.
Collapse
Affiliation(s)
- Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
192
|
Ono S, Murai J, Nakai T, Kuroda H, Horino Y, Yoshimura T, Oyama H, Umezaki M. Site-selective Chemical Modification of Chymotrypsin Using a Peptidyl Diphenyl 1-Amino-2-phenylethylphosphonate Derivative. CHEM LETT 2013. [DOI: 10.1246/cl.130244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shin Ono
- Graduate School of Science and Engineering, University of Toyama
| | - Junya Murai
- Graduate School of Science and Engineering, University of Toyama
| | - Takahiko Nakai
- Graduate School of Science and Engineering, University of Toyama
| | | | - Yoshikazu Horino
- Graduate School of Science and Engineering, University of Toyama
| | | | - Hiroshi Oyama
- Faculty of Science and Engineering, Setsunan University
| | | |
Collapse
|
193
|
Witus LS, Francis M. Site-Specific Protein Bioconjugation via a Pyridoxal 5'-Phosphate-Mediated N-Terminal Transamination Reaction. ACTA ACUST UNITED AC 2013; 2:125-34. [PMID: 23836553 DOI: 10.1002/9780470559277.ch100018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The covalent attachment of chemical groups to proteins is a critically important tool for the study of protein function and the creation of protein-based materials. Methods of site-specific protein modification are necessary for the generation of well defined bioconjugates possessing a new functional group in a single position in the amino acid sequence. This article describes a pyridoxal 5'-phosphate (PLP)-mediated transamination reaction that is specific for the N-terminus of a protein. The reaction oxidizes the N-terminal amine to a ketone or an aldehyde, which can form a stable oxime linkage with an alkoxyamine reagent of choice. Screening studies have identified the most reactive N-terminal residues, facilitating the use of site-directed mutagenesis to achieve high levels of conversion. Additionally, this reaction has been shown to be effective for a number of targets that are not easily accessed through heterologous expression, such as monoclonal antibodies. Curr. Protoc. Chem. Biol. 2:125-134 © 2010 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Leah S Witus
- University of California, Berkeley, Department of Chemistry, Berkeley, California
| | | |
Collapse
|
194
|
Bindman NA, van der Donk WA. A general method for fluorescent labeling of the N-termini of lanthipeptides and its application to visualize their cellular localization. J Am Chem Soc 2013; 135:10362-71. [PMID: 23789944 DOI: 10.1021/ja4010706] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Labeling of natural products with biophysical probes has greatly contributed to investigations of their modes of action and has provided tools for visualization of their targets. A general challenge is the availability of a suitable functional group for chemoselective modification. We demonstrate here that an N-terminal ketone is readily introduced into various lanthipeptides by the generation of a cryptic N-terminal dehydro amino acid by the cognate biosynthetic enzymes. Spontaneous hydrolysis of the N-terminal enamines results in α-ketoamides that site-specifically react with an aminooxy-derivatized alkyne or fluorophore. The methodology was successfully applied to prochlorosins 1.7 and 2.8, as well as the lantibiotics lacticin 481, haloduracin α, and haloduracin β. The fluorescently modified lantibiotics were added to bacteria, and their cellular localization was visualized by confocal fluorescence microscopy. Lacticin 481 and haloduracin α localized predominantly at sites of new and old cell division as well as in punctate patterns along the long axis of rod-shaped bacilli, similar to the localization of lipid II. On the other hand, haloduracin β was localized nonspecifically in the absence of haloduracin α, but formed specific patterns when coadministered with haloduracin α. Using two-color labeling, colocalization of both components of the two-component lantibiotic haloduracin was demonstrated. These data with living cells supports a model in which the α component recognizes lipid II and then recruits the β-component.
Collapse
Affiliation(s)
- Noah A Bindman
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | |
Collapse
|
195
|
Agarwal P, Kudirka R, Albers AE, Barfield RM, de Hart GW, Drake PM, Jones LC, Rabuka D. Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem 2013; 24:846-51. [PMID: 23731037 DOI: 10.1021/bc400042a] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aldehyde- and ketone-functionalized biomolecules have found widespread use in biochemical and biotechnological fields. They are typically conjugated with hydrazide or aminooxy nucleophiles under acidic conditions to yield hydrazone or oxime products that are relatively stable, but susceptible to hydrolysis over time. We introduce a new reaction, the hydrazino-Pictet-Spengler (HIPS) ligation, which has two distinct advantages over hydrazone and oxime ligations. First, the HIPS ligation proceeds quickly near neutral pH, allowing for one-step labeling of aldehyde-functionalized proteins under mild conditions. Second, the HIPS ligation product is very stable (>5 days) in human plasma relative to an oxime-linked conjugate (∼1 day), as demonstrated by monitoring protein-fluorophore conjugates by ELISA. Thus, the HIPS ligation exhibits a combination of product stability and speed near neutral pH that is unparalleled by current carbonyl bioconjugation chemistries.
Collapse
Affiliation(s)
- Paresh Agarwal
- Redwood Bioscience, 5703 Hollis Street, Emeryville, California 94608, United States
| | | | | | | | | | | | | | | |
Collapse
|
196
|
El-Mahdi O, Melnyk O. α-Oxo aldehyde or glyoxylyl group chemistry in peptide bioconjugation. Bioconjug Chem 2013; 24:735-65. [PMID: 23578008 DOI: 10.1021/bc300516f] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the 1990s, α-oxo aldehyde or glyoxylic acid chemistry has inspired a vast array of synthetic tools for tailoring peptide or protein structures, for developing peptides endowed with novel physicochemical properties or biological functions, for assembling a large diversity of bioconjugates or hybrid materials, or for designing peptide-based micro or nanosystems. This past decade, important developments have enriched the α-oxo aldehyde synthetic tool box in peptide bioconjugation chemistry and explored novel applications. The aim of this review is to give a large overview of this creative field.
Collapse
Affiliation(s)
- Ouafâa El-Mahdi
- Université Sidi Mohamed Ben Abdellah, Faculté Polydisciplinaire de Taza, Morocco
| | | |
Collapse
|
197
|
Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew Chem Int Ed Engl 2013; 52:4849-53. [PMID: 23554263 DOI: 10.1002/anie.201300170] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/09/2013] [Indexed: 02/02/2023]
|
198
|
Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB. Molecular Imaging of Cancer Cells Using a Bacteriophage-Based129Xe NMR Biosensor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
199
|
Wang YS, Fang X, Chen HY, Wu B, Wang ZU, Hilty C, Liu WR. Genetic incorporation of twelve meta-substituted phenylalanine derivatives using a single pyrrolysyl-tRNA synthetase mutant. ACS Chem Biol 2013; 8:405-15. [PMID: 23138887 DOI: 10.1021/cb300512r] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When coexpressed with its cognate amber suppressing tRNACUAPyl(CUA), a pyrrolysyltRNA synthetase mutant N346A/C348A is able to genetically incorporate 12 meta-substituted phenylalanine derivatives into proteins site-specifically at amber mutation sites in Escherichia coli. These genetically encoded noncanonical amino acids resemble phenylalanine in size and contain diverse bioorthogonal functional groups such as halide, trifluoromethyl, nitrile, nitro,ketone, alkyne, and azide moieties. The genetic installation of these functional groups in proteins provides multiple ways to site-selectively label proteins with biophysical and biochemical probes for their functional investigations. We demonstrate that a genetically incorporated trifluoromethyl group can be used as a sensitive 19F NMR probe to study protein folding/unfolding, and that genetically incorporated reactive functional groups such as ketone,alkyne, and azide moieties can be applied to site-specifically label proteins with fluorescent probes. This critical discovery allows the synthesis of proteins with diverse bioorthogonal functional groups for a variety of basic studies and biotechnology development using a single recombinant expression system.
Collapse
Affiliation(s)
- Yane-Shih Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xinqiang Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hsueh-Ying Chen
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Bo Wu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhiyong U. Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christian Hilty
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
200
|
Munch HK, Rasmussen JE, Popa G, Christensen JB, Jensen KJ. Site-selective three-component reaction for dual-functionalization of peptides. Chem Commun (Camb) 2013; 49:1936-8. [DOI: 10.1039/c3cc38673b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|