151
|
Zhang D, Hou LK, Zhang Q, He JW, Feng HJ, Würthner F, Yang XJ, Wu B. Anion-Coordination-Assisted Assembly of Supramolecular Charge-Transfer Complexes Based on Tris(urea) Ligands. Chemistry 2020; 26:1414-1421. [PMID: 31762095 DOI: 10.1002/chem.201905021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Indexed: 01/04/2023]
Abstract
Charge-transfer (CT) complexes, formed by noncovalent bonding between electron-rich (donor, D) and electron-deficient (acceptor, A) molecules (or moieties) have attracted considerable attention due to their fascinating structures and potential applications. Herein, we demonstrate that anion coordination is a promising strategy to promote CT complex formation between anion-binding, electron-rich tris(urea) donor ligands (D) and electron-deficient viologen cation acceptors (A), which form co-crystals featuring infinite ⋅⋅⋅DADA⋅⋅⋅ or discrete (circular DADA or three-decker DAD) π-stacking interactions. These CT complexes were studied by X-ray diffraction, UV/Vis spectroscopy, electric conductivity measurements, charge displacement curve (CDC) calculations, and DFT computations.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Le-Kai Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Qiang Zhang
- School of Physics, Northwest University, Xi'an, 710127, P. R. China
| | - Jia-Wei He
- School of Physics, Northwest University, Xi'an, 710127, P. R. China
| | - Hong-Jian Feng
- School of Physics, Northwest University, Xi'an, 710127, P. R. China
| | - Frank Würthner
- Center for Nanosystems Chemistry & Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
152
|
Zheng K, He C, Nour HF, Zhang Z, Yuan T, Traboulsi H, Mazher J, Trabolsi A, Fang L, Olson MA. Augmented polyhydrazone formation in water by template-assisted polymerization using dual-purpose supramolecular templates. Polym Chem 2020. [DOI: 10.1039/c9py01476d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Template-assisted polymerization using donor–acceptor supramolecular templates results in higher Mw and Mn values, decreased critical hydrogelation concentrations, and increased gel recovery velocity following shear-induced breakdown.
Collapse
|
153
|
Orenha RP, Cintra CH, Peixoto LB, da Silva ÉH, Caramori GF, Ortolan AO, Piotrowski MJ, Parreira RLT. The anionic recognition mechanism based on polyol and boronic acid receptors. NEW J CHEM 2020. [DOI: 10.1039/c9nj06200a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chloride, fluoride, dihydrogen phosphate, acetate, bromide, and hydrogen sulfate recognition from polyol and boronic acid receptors is elucidated.
Collapse
Affiliation(s)
- Renato Pereira Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | - Claudia Haber Cintra
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | | | | | | | | | | | | |
Collapse
|
154
|
Affiliation(s)
- Jean‐François Lutz
- Université de Strasbourg, CNRSInstitut Charles Sadron, UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
155
|
Solà J, Jimeno C, Alfonso I. Exploiting complexity to implement function in chemical systems. Chem Commun (Camb) 2020; 56:13273-13286. [DOI: 10.1039/d0cc04170j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This feature article reflects a personal overview of the importance of complexity as an additional parameter to be considered in chemical research, being illustrated with selected examples in molecular recognition and catalysis.
Collapse
Affiliation(s)
- Jordi Solà
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- 08034 Barcelona
- Spain
| | - Ciril Jimeno
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- 08034 Barcelona
- Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- 08034 Barcelona
- Spain
| |
Collapse
|
156
|
Route to Useful Metallomonomers: Step-Wise Construction of Bimetallic Triangles by Site-Specific Metalation. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
157
|
Blanco-Gómez A, Cortón P, Barravecchia L, Neira I, Pazos E, Peinador C, García MD. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem Soc Rev 2020; 49:3834-3862. [DOI: 10.1039/d0cs00109k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthetic supramolecular chemistry pursues not only the construction of new matter, but also control over its inherently dynamic behaviour.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Pablo Cortón
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Liliana Barravecchia
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Iago Neira
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Elena Pazos
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Carlos Peinador
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Marcos D. García
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| |
Collapse
|
158
|
Ayme JF, Lehn JM. Self-sorting of two imine-based metal complexes: balancing kinetics and thermodynamics in constitutional dynamic networks. Chem Sci 2019; 11:1114-1121. [PMID: 34084368 PMCID: PMC8146771 DOI: 10.1039/c9sc04988f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
A major hurdle in the development of complex constitutional dynamic networks (CDNs) is the lack of strategies to simultaneously control the output of two (or more) interconnected dynamic processes over several species, namely reversible covalent imine bond formation and dynamic metal-ligand coordination. We have studied in detail the self-sorting process of 11 constitutional dynamic libraries containing two different amines, aldehydes and metal salts into two imine-based metal complexes, having no overlap in terms of their compositions. This study allowed us to determine the factors influencing the fidelity of this process (concentration, electronic and steric parameters of the organic components, and nature of the metal cations). In all 11 systems, the outcome of the process was primarily determined by the ability of the octahedral metal ion to select its pair of components from the initial pool of components, with the composition of the weaker tetrahedral complex being imposed by the components rejected by the octahedral metal ions. Different octahedral metal ions required different levels of precision in the "assembling instructions" provided by the organic components of the CDN to guide it towards a sorted output. The concentration of the reaction mixture, and the electronic and steric properties of the initial components of the library were all found to influence the lifetime of unwanted metastable intermediates formed during the assembling of the two complexes.
Collapse
Affiliation(s)
- Jean-François Ayme
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
159
|
Tetrahydroberberine pharmaceutical salts/cocrystals with dicarboxylic acids: Charge-assisted hydrogen bond recognitions and solubility regulation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
160
|
Berrocal JA, Mabesoone MFJ, García Iglesias M, Huizinga A, Meijer EW, Palmans ARA. Selenoamides modulate dipole-dipole interactions in hydrogen bonded supramolecular polymers of 1,3,5-substituted benzenes. Chem Commun (Camb) 2019; 55:14906-14909. [PMID: 31769447 DOI: 10.1039/c9cc08423a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the synthesis and self-assembly behavior of a chiral C3-symmetrical benzene-tricarboselenoamide. The introduction of the selenoamide moiety enhances the dipolar character of the supramolecular interaction and confers a remarkable thermal stability to the supramolecular polymers obtained.
Collapse
Affiliation(s)
- José Augusto Berrocal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Mathijs F J Mabesoone
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Miguel García Iglesias
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O Box 513, 5600 MB Eindhoven, The Netherlands. and Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain and IMDEA Nanociencia, c/Faraday 9, Cantoblanco, Spain
| | - Alex Huizinga
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O Box 513, 5600 MB Eindhoven, The Netherlands.
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
161
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
162
|
Neira I, Alvariño C, Domarco O, Blanco V, Peinador C, García MD, Quintela JM. Tuning of the Self‐Threading of Ring‐in‐Ring Structures in Aqueous Media. Chemistry 2019; 25:14834-14842. [DOI: 10.1002/chem.201902851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Iago Neira
- Departamento de Química and Centro de Investigaciones Científicas, Avanzadas (CICA)Facultad de CienciasUniversidade da Coruña 15071 A Coruña Spain
| | - Cristina Alvariño
- Departamento de Química and Centro de Investigaciones Científicas, Avanzadas (CICA)Facultad de CienciasUniversidade da Coruña 15071 A Coruña Spain
- Institut de ChimieUniversité de Neuchâtel Avenue de Bellevaux 51 2000 Neuchàtel Switzerland
| | - Olaya Domarco
- Departamento de Química and Centro de Investigaciones Científicas, Avanzadas (CICA)Facultad de CienciasUniversidade da Coruña 15071 A Coruña Spain
| | - Víctor Blanco
- Departamento de Química Orgánica and Unidad de Excelencia de Química (UEQ), Universidad de Granada (UGR)Facultad de Ciencias Avda. Fuente Nueva S/N 18071 Granada Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigaciones Científicas, Avanzadas (CICA)Facultad de CienciasUniversidade da Coruña 15071 A Coruña Spain
| | - Marcos D. García
- Departamento de Química and Centro de Investigaciones Científicas, Avanzadas (CICA)Facultad de CienciasUniversidade da Coruña 15071 A Coruña Spain
| | - José M. Quintela
- Departamento de Química and Centro de Investigaciones Científicas, Avanzadas (CICA)Facultad de CienciasUniversidade da Coruña 15071 A Coruña Spain
| |
Collapse
|
163
|
Goswami A, Paululat T, Schmittel M. Switching Dual Catalysis without Molecular Switch: Using A Multicomponent Information System for Reversible Reconfiguration of Catalytic Machinery. J Am Chem Soc 2019; 141:15656-15663. [DOI: 10.1021/jacs.9b07737] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
164
|
Martínez-Bachs B, Rimola A. Prebiotic Peptide Bond Formation Through Amino Acid Phosphorylation. Insights from Quantum Chemical Simulations. Life (Basel) 2019; 9:life9030075. [PMID: 31527465 PMCID: PMC6789625 DOI: 10.3390/life9030075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Condensation reactions between biomolecular building blocks are the main synthetic channels to build biopolymers. However, under highly diluted prebiotic conditions, condensations are thermodynamically hampered since they release water. Moreover, these reactions are also kinetically hindered as, in the absence of any catalyst, they present high activation energies. In living organisms, in the formation of peptides by condensation of amino acids, this issue is overcome by the participation of adenosine triphosphate (ATP), in which, previous to the condensation, phosphorylation of one of the reactants is carried out to convert it as an activated intermediate. In this work, we present for the first time results based on density functional theory (DFT) calculations on the peptide bond formation between two glycine (Gly) molecules adopting this phosphorylation-based mechanism considering a prebiotic context. Here, ATP has been modeled by a triphosphate (TP) component, and different scenarios have been considered: (i) gas-phase conditions, (ii) in the presence of a Mg2+ ion available within the layer of clays, and (iii) in the presence of a Mg2+ ion in watery environments. For all of them, the free energy profiles have been fully characterized. Energetics derived from the quantum chemical calculations indicate that none of the processes seem to be feasible in the prebiotic context. In scenarios (i) and (ii), the reactions are inhibited due to unfavorable thermodynamics associated with the formation of high energy intermediates, while in scenario (iii), the reaction is inhibited due to the high free energy barrier associated with the condensation reactions. As a final consideration, the role of clays in this TP-mediated peptide bond formation route is advocated, since the interaction of the phosphorylated intermediate with the internal clay surfaces could well favor the reaction free energies.
Collapse
Affiliation(s)
- Berta Martínez-Bachs
- Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Albert Rimola
- Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
165
|
Astumian RD. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat Commun 2019; 10:3837. [PMID: 31444340 PMCID: PMC6707331 DOI: 10.1038/s41467-019-11402-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/11/2019] [Indexed: 11/09/2022] Open
Abstract
Molecular machines carry out their function by equilibrium mechanical motions in environments that are far from thermodynamic equilibrium. The mechanically equilibrated character of the trajectories of the macromolecule has allowed development of a powerful theoretical description, reminiscent of Onsager’s trajectory thermodynamics, that is based on the principle of microscopic reversibility. Unlike the situation at thermodynamic equilibrium, kinetic parameters play a dominant role in determining steady-state concentrations away from thermodynamic equilibrium, and kinetic asymmetry provides a mechanism by which chemical free-energy released by catalysis can drive directed motion, molecular adaptation, and self-assembly. Several examples drawn from the recent literature, including a catenane-based chemically driven molecular rotor and a synthetic molecular assembler or pump, are discussed. The mechanism by which macromolecular catalysts use energy from exergonic reactions to move, adapt, and assemble has been unclear. In this Perspective article, R. Dean Astumian shows that in addition to disequilibrium of the catalyzed reaction, kinetic asymmetry is the essential feature required to drive non-equilibrium response by an information ratchet mechanism.
Collapse
Affiliation(s)
- R Dean Astumian
- Department of Physics, University of Maine, Orono, ME, 04469-5709, USA.
| |
Collapse
|
166
|
Schaffter SW, Schulman R. Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules. Nat Chem 2019; 11:829-838. [PMID: 31427767 DOI: 10.1038/s41557-019-0292-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/13/2019] [Indexed: 02/04/2023]
Abstract
The regulation of cellular dynamics and responses to stimuli by genetic regulatory networks suggests how in vitro chemical reaction networks might analogously direct the dynamics of synthetic materials or chemistries. A key step in developing genetic regulatory network analogues capable of this type of sophisticated regulation is the integration of multiple coordinated functions within a single network. Here, we demonstrate how such functional integration can be achieved using in vitro transcriptional genelet circuits that emulate essential features of cellular genetic regulatory networks. By successively incorporating functional genelet modules into a bistable circuit, we construct an integrated regulatory network that dynamically changes its state in response to upstream stimuli and coordinates the timing of downstream signal expression. We use quantitative models to guide module integration and develop strategies to mitigate undesired interactions between network components that arise as the size of the network increases. This approach could enable the construction of in vitro networks capable of multifaceted chemical and material regulation.
Collapse
Affiliation(s)
- Samuel W Schaffter
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
167
|
Zhang Q, Deng YX, Luo HX, Shi CY, Geise GM, Feringa BL, Tian H, Qu DH. Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions. J Am Chem Soc 2019; 141:12804-12814. [PMID: 31348651 PMCID: PMC6696886 DOI: 10.1021/jacs.9b05740] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Programming the hierarchical self-assembly
of small molecules has
been a fundamental topic of great significance in biological systems
and artificial supramolecular systems. Precise and highly programmed
self-assembly can produce supramolecular architectures with distinct
structural features. However, it still remains a challenge how to
precisely control the self-assembly pathway in a desirable way by
introducing abundant structural information into a limited molecular
backbone. Here we disclose a strategy that directs the hierarchical
self-assembly of sodium thioctate, a small molecule of biological
origin, into a highly ordered supramolecular layered network. By combining
the unique dynamic covalent ring-opening-polymerization of sodium
thioctate and an evaporation-induced interfacial confinement effect,
we precisely direct the dynamic supramolecular self-assembly of this
simple small molecule in a scheduled hierarchical pathway, resulting
in a layered structure with long-range order at both macroscopic and
molecular scales, which is revealed by small-angle and wide-angle
X-ray scattering technologies. The resulting supramolecular layers
are found to be able to bind water molecules as structural water,
which works as an interlayer lubricant to modulate the material properties,
such as mechanical performance, self-healing capability, and actuating
function. Analogous to many reversibly self-assembled biological systems,
the highly dynamic polymeric network can be degraded into monomers
and reformed by a water-mediated route, exhibiting full recyclability
in a facile, mild, and environmentally friendly way. This approach
for assembling commercial small molecules into structurally complex
materials paves the way for low-cost functional supramolecular materials
based on synthetically simple procedures.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yuan-Xin Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Hong-Xi Luo
- Department of Chemical Engineering , University of Virginia , 102 Engineers' Way , P.O. Box 400741, Charlottesville , Virginia 22904 , United States
| | - Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Geoffrey M Geise
- Department of Chemical Engineering , University of Virginia , 102 Engineers' Way , P.O. Box 400741, Charlottesville , Virginia 22904 , United States
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China.,Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
168
|
Holub J, Santoro A, Lehn JM. Electronic absorption and emission properties of bishydrazone [2 × 2] metallosupramolecular grid-type architectures. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
169
|
Osypenko A, Dhers S, Lehn JM. Pattern Generation and Information Transfer through a Liquid/Liquid Interface in 3D Constitutional Dynamic Networks of Imine Ligands in Response to Metal Cation Effectors. J Am Chem Soc 2019; 141:12724-12737. [DOI: 10.1021/jacs.9b05438] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Artem Osypenko
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Sébastien Dhers
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
170
|
Zeng L, Xiao Y, Jiang J, Fang H, Ke Z, Chen L, Zhang J. Hierarchical Gelation of a Pd12L24 Metal–Organic Cage Regulated by Cholesteryl Groups. Inorg Chem 2019; 58:10019-10027. [DOI: 10.1021/acs.inorgchem.9b01171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lihua Zeng
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Yali Xiao
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Jingxing Jiang
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Haobin Fang
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Zhuofeng Ke
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Liuping Chen
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Jianyong Zhang
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| |
Collapse
|
171
|
Alvariño C, Heinrich B, Donnio B, Deschenaux R, Therrien B. Supramolecular Arene-Ruthenium Metallacycle with Thermotropic Liquid-Crystalline Properties. Inorg Chem 2019; 58:9505-9512. [PMID: 31247839 DOI: 10.1021/acs.inorgchem.9b01532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of 1,4-di(4-pyridinyl)benzene with poly(arylester) dendrimers bearing cyanobiphenyl end-groups gives a bidentate dendromesogenic ligand (L) that exhibits thermotropic liquid-crystalline properties. Combination of the diruthenium complex [Ru2(p-cymene)2(donq)][DDS]2 (M) with L, by coordination-driven self-assembly, affords the discrete and well-defined metallacycle M2L2. Like L, this supramolecular dendritic system displays mesomorphic properties above 50 °C. Both compounds L and M2L2 show smectic phases, characterized by a multilayered organization of the multiple components.
Collapse
Affiliation(s)
- Cristina Alvariño
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Robert Deschenaux
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Bruno Therrien
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| |
Collapse
|
172
|
Jacquot de Rouville HP, Gourlaouen C, Heitz V. Self-complementary and narcissistic self-sorting of bis-acridinium tweezers. Dalton Trans 2019; 48:8725-8730. [PMID: 31134249 DOI: 10.1039/c9dt01465a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A molecular tweezer incorporating two acridinium moieties linked by a 1,3-dipyridylbenzene spacer was synthesized in three steps. The formation of its self-complementary dimer in water was demonstrated as a result of π-π stacking and hydrophobic interactions. Moreover, a 1 : 1 mixture of this bis-acridinium tweezer with one built on a 2,6-diphenylpyridyl spacer evidenced its narcissistic self-sorting behaviour in water.
Collapse
Affiliation(s)
- Henri-Pierre Jacquot de Rouville
- Institut de Chimie de Strasbourg, UMR 7177-CNRS, Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, 67008 Strasbourg, France.
| | - Christophe Gourlaouen
- Institut de Chimie de Strasbourg, UMR 7177-CNRS, Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, 67008 Strasbourg, France.
| | - Valérie Heitz
- Institut de Chimie de Strasbourg, UMR 7177-CNRS, Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, 67008 Strasbourg, France.
| |
Collapse
|
173
|
Mula S, Han T, Heiser T, Lévêque P, Leclerc N, Srivastava AP, Ruiz-Carretero A, Ulrich G. Hydrogen Bonding as a Supramolecular Tool for Robust OFET Devices. Chemistry 2019; 25:8304-8312. [PMID: 30964574 DOI: 10.1002/chem.201900689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/10/2022]
Abstract
In the present study, we demonstrated the effect of hydrogen bonding in the semiconducting behaviour of a small molecule used in organic field-effect transistors (OFETs). For this study, the highly soluble dumbbell-shaped molecule, Boc-TATDPP based on a Boc-protected thiophene-diketopyrrolopyrrole (DPP) and triazatruxene (TAT) moieties was used. The two Boc groups of the molecule were removed by annealing at 200 °C, which created a strong hydrogen-bonded network of NH-TATDPP supported by additional π-π stacking. These were characterised by thermogravimetric analysis (TGA), UV/Vis and IR spectroscopy, XRD and high-resolution (HR)-TEM measurements. FETs were fabricated with the semiconducting channel made of Boc-TATDPP and NH-TATDPP separately. It is worth mentioning that the Boc-TATDPP film can be cast from solution and then annealed to get the other systems with NH-TATDPP. More importantly, NH-TATDPP showed significantly higher hole mobilities compared to Boc-TATDPP. Interestingly, the high hole mobility in the case of NH-TATDPP was unaffected upon blending with [6,6]-phenyl-C71-butyric acid methyl ester (PC71 BM). Thus, this robust hydrogen-bonded supramolecular network is likely to be useful in designing efficient and stable organic optoelectronic devices.
Collapse
Affiliation(s)
- Soumyaditya Mula
- Institut de chimie et procédés pour l'énergie, l'environnement, et la santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, Strasbourg, 67087 Cedex 2, France.,Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Tianyan Han
- Le laboratoire des sciences de l'ingénieur, de l'informatique et de, l'imagerie (ICube), UMR7357, Université de Strasbourg-CNRS, 23 rue du Loess, 67037, Strasbourg, France
| | - Thomas Heiser
- Le laboratoire des sciences de l'ingénieur, de l'informatique et de, l'imagerie (ICube), UMR7357, Université de Strasbourg-CNRS, 23 rue du Loess, 67037, Strasbourg, France
| | - Patrick Lévêque
- Le laboratoire des sciences de l'ingénieur, de l'informatique et de, l'imagerie (ICube), UMR7357, Université de Strasbourg-CNRS, 23 rue du Loess, 67037, Strasbourg, France
| | - Nicolas Leclerc
- Institut de chimie et procédés pour l'énergie, l'environnement, et la santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, Strasbourg, 67087 Cedex 2, France
| | | | - Amparo Ruiz-Carretero
- Institut Charles Sadron CNRS-UPR 22, 23 rue du Loess, Strasbourg, 67034 Cedex 2, France
| | - Gilles Ulrich
- Institut de chimie et procédés pour l'énergie, l'environnement, et la santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, Strasbourg, 67087 Cedex 2, France
| |
Collapse
|
174
|
Liquid crystal and photo-induced properties of polymers carrying pyridylazobenzene groups and iodopentafluorobenzene rings self-assembled through halogen bond. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
175
|
Chang R, Zou Q, Xing R, Yan X. Peptide‐Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rui Chang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qianli Zou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
- Center for MesoscienceInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
176
|
Zhan YY, Kojima T, Ishii K, Takahashi S, Haketa Y, Maeda H, Uchiyama S, Hiraoka S. Temperature-controlled repeatable scrambling and induced-sorting of building blocks between cubic assemblies. Nat Commun 2019; 10:1440. [PMID: 30926927 PMCID: PMC6441092 DOI: 10.1038/s41467-019-09495-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Separation of a homogeneous mixture of different components to reach an ordered out-of-equilibrium state in solution has attracted continuous attention. While this can be achieved using external chemical fuels or photo energy, an alternative energy source is heat. Here we realize a temperature-controlled cycle of transitions between ordered and disordered states based on a mixture of two kinds of building blocks that self-assemble into cubic structures (nanocubes). An almost statistical mixture of nanocubes (disordered state) is thermodynamically most stable at lower temperature (25 °C), while homoleptic assemblies composed of single components are preferentially produced at higher temperature (100 °C) followed by rapid cooling. The scrambling of the building blocks between the nanocubes takes place through the exchange of free building blocks dissociated from the nanocubes. Based on this mechanism, it is possible to accelerate, retard, and perfectly block the scrambling by the guest molecules encapsulated in the nanocubes. In this paper, the authors study the temperature-controlled dynamic behavior of a system of nanocubes self-assembled from two different building blocks. Non-intuitively, the disordered, equilibrium state (a mixture of heteroleptic cubes) and the ordered, out-of-equilibrium state (a mixture of homoleptic cubes) are cycled by heating and subsequent rapid cooling.
Collapse
Affiliation(s)
- Yi-Yang Zhan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tatsuo Kojima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kentaro Ishii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Susumu Uchiyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
177
|
Affiliation(s)
- Ghislaine Vantomme
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Netherlands.
| |
Collapse
|
178
|
Abstract
Self-assembling dendrimers have facilitated the discovery of periodic and quasiperiodic arrays of supramolecular architectures and the diverse functions derived from them. Examples are liquid quasicrystals and their approximants plus helical columns and spheres, including some that disregard chirality. The same periodic and quasiperiodic arrays were subsequently found in block copolymers, surfactants, lipids, glycolipids, and other complex molecules. Here we report the discovery of lamellar and hexagonal periodic arrays on the surface of vesicles generated from sequence-defined bicomponent monodisperse oligomers containing lipid and glycolipid mimics. These vesicles, known as glycodendrimersomes, act as cell-membrane mimics with hierarchical morphologies resembling bicomponent rafts. These nanosegregated morphologies diminish sugar-sugar interactions enabling stronger binding to sugar-binding proteins than densely packed arrangements of sugars. Importantly, this provides a mechanism to encode the reactivity of sugars via their interaction with sugar-binding proteins. The observed sugar phase-separated hierarchical arrays with lamellar and hexagonal morphologies that encode biological recognition are among the most complex architectures yet discovered in soft matter. The enhanced reactivity of the sugar displays likely has applications in material science and nanomedicine, with potential to evolve into related technologies.
Collapse
|
179
|
Ayme JF, Beves JE, Campbell CJ, Leigh DA. Probing the Dynamics of the Imine-Based Pentafoil Knot and Pentameric Circular Helicate Assembly. J Am Chem Soc 2019; 141:3605-3612. [PMID: 30707020 PMCID: PMC6429429 DOI: 10.1021/jacs.8b12800] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We investigate the self-assembly
dynamics of an imine-based pentafoil
knot and related pentameric circular helicates, each derived from
a common bis(formylpyridine)bipyridyl building block, iron(II) chloride,
and either monoamines or a diamine. The mixing of circular helicates
derived from different amines led to the complete exchange of the N-alkyl residues on the periphery of the metallo-supramolecular
scaffolds over 4 days in DMSO at 60 °C. Under similar conditions,
deuterium-labeled and nonlabeled building blocks showed full dialdehyde
building block exchange over 13 days for open circular helicates but
was much slower for the analogous closed-loop pentafoil knot (>60
days). Although both knots and open circular helicates self-assemble
under thermodynamic control given sufficiently long reaction times,
this is significantly longer than the time taken to afford the maximum
product yield (2 days). Highly effective error correction occurs during
the synthesis of imine-based pentafoil molecular knots and pentameric
circular helicates despite, in practice, the systems not operating
under full thermodynamic control.
Collapse
Affiliation(s)
- Jean-François Ayme
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom.,School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| | - Jonathon E Beves
- School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| | - Christopher J Campbell
- School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| | - David A Leigh
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom.,School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| |
Collapse
|
180
|
Blanco-Gómez A, Fernández-Blanco Á, Blanco V, Rodríguez J, Peinador C, García MD. Thinking Outside the “Blue Box”: Induced Fit within a Unique Self-Assembled Polycationic Cyclophane. J Am Chem Soc 2019; 141:3959-3964. [DOI: 10.1021/jacs.8b12599] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Arturo Blanco-Gómez
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Ángel Fernández-Blanco
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Víctor Blanco
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Jaime Rodríguez
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Marcos D. García
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| |
Collapse
|
181
|
Kuang X, Chen S, Meng L, Chen J, Wu X, Zhang G, Zhong G, Hu T, Li Y, Lu CZ. Supramolecular aggregation of a redox-active copper-naphthalenediimide network with intrinsic electron conduction. Chem Commun (Camb) 2019; 55:1643-1646. [PMID: 30657485 DOI: 10.1039/c8cc10269d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A sextuple ordered interpenetrated copper-naphthalenediimide network has been constructed by combining the features of porous metal-organic frameworks and π-conjugated supramolecular aggregation. The material exhibits intrinsic semiconductive features with narrow bandgap energy (1.2 eV) and outstanding electron transport. Theoretical calculations combined with experiments indicate that the high electron conduction may originate from π-d coupling and J-aggregation.
Collapse
Affiliation(s)
- Xiaofei Kuang
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Rimola A, Sodupe M, Ugliengo P. Role of Mineral Surfaces in Prebiotic Chemical Evolution. In Silico Quantum Mechanical Studies. Life (Basel) 2019; 9:E10. [PMID: 30658501 PMCID: PMC6463156 DOI: 10.3390/life9010010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 01/07/2023] Open
Abstract
There is a consensus that the interaction of organic molecules with the surfaces of naturally-occurring minerals might have played a crucial role in chemical evolution and complexification in a prebiotic era. The hurdle of an overly diluted primordial soup occurring in the free ocean may have been overcome by the adsorption and concentration of relevant molecules on the surface of abundant minerals at the sea shore. Specific organic⁻mineral interactions could, at the same time, organize adsorbed molecules in well-defined orientations and activate them toward chemical reactions, bringing to an increase in chemical complexity. As experimental approaches cannot easily provide details at atomic resolution, the role of in silico computer simulations may fill that gap by providing structures and reactive energy profiles at the organic⁻mineral interface regions. Accordingly, numerous computational studies devoted to prebiotic chemical evolution induced by organic⁻mineral interactions have been proposed. The present article aims at reviewing recent in silico works, mainly focusing on prebiotic processes occurring on the mineral surfaces of clays, iron sulfides, titanium dioxide, and silica and silicates simulated through quantum mechanical methods based on the density functional theory (DFT). The DFT is the most accurate way in which chemists may address the behavior of the molecular world through large models mimicking chemical complexity. A perspective on possible future scenarios of research using in silico techniques is finally proposed.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS), Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
183
|
Men G, Lehn JM. Multiple adaptation of constitutional dynamic networks and information storage in constitutional distributions of acylhydrazones. Chem Sci 2019; 10:90-98. [PMID: 30713621 PMCID: PMC6333171 DOI: 10.1039/c8sc03858a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
We report a study of the behavior of four dynamic covalent libraries (DCLs) based on acylhydrazones aAbB and of the corresponding square constitutional dynamic networks (CDNs) NA-ND under the effect of three agents, namely, metal cations, base + metal cations and light irradiation; in particular, the successful switching of the CDN NB between two orthogonal distributions results, respectively, from metallo-selection and photo-selection. The four DCLs undergo triple adaptation when subjected to the three agents with the generation of specific CDN distributions characteristic of each of the four DCLs. The ternary outputs displayed by the DCLs present three states (-1, 0 and 1) related to three different constitutional distributions expressed in response to the triple inputs applied. This latter process amounts to the storage of molecular information in dynamic distributions rather than in selective interactions between complementary entities undergoing molecular recognition.
Collapse
Affiliation(s)
- Guangwen Men
- Laboratoire de Chimie Supramoléculaire , Institut de Science et d'Ingénierie Supramoléculaires , Université de Strasbourg , 8 allée Gaspard Monge , 67000 Strasbourg , France . ; ; Tel: +33 3 68 85 51 44
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , 2699 Qianjin Avenue , Changchun , 130012 , P. R. China
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire , Institut de Science et d'Ingénierie Supramoléculaires , Université de Strasbourg , 8 allée Gaspard Monge , 67000 Strasbourg , France . ; ; Tel: +33 3 68 85 51 44
| |
Collapse
|
184
|
Abstract
Linear polymers with carboxylate pendant groups participate in ligand-exchange reactions with (diacetoxyiodo)benzene to afford dynamic and self-healing networks, which become set when exposed to UV light or heat due to irreversible radical coupling.
Collapse
Affiliation(s)
- Avichal Vaish
- Department of Chemistry
- Southern Methodist University
- Dallas
- USA
| | | |
Collapse
|
185
|
Chen L, Cai Y, Feng W, Yuan L. Pillararenes as macrocyclic hosts: a rising star in metal ion separation. Chem Commun (Camb) 2019; 55:7883-7898. [PMID: 31236553 DOI: 10.1039/c9cc03292d] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pillararenes are macrocyclic oligomers of alkoxybenzene akin to calixarenes but tethered at the 2,5-positions via methylene bridges. Benefiting from their unique pillar-shaped architecture favorable for diverse functionalization and versatile host-guest properties, pillararenes decorated with chelating groups worked excellently as supporting platforms to construct extractants or adsorbents for metal ion separation. This feature article provides a detailed summary of pillararenes in Ln/An separation by liquid-liquid extraction and heavy metal separation by solid-liquid extraction. The preorganization effect of the rigid pillararene framework has a profound impact on the extraction of metal ions, and a unique extraction mechanism is observed when employing ionic liquids as solvents. The rich host-guest chemistry of pillararenes enables construction of a wide variety of supramolecular materials as metal ion adsorbents. We also discuss the differences between pillararenes and several well-known macrocycles, with a focus on the metal-ligand coordination and its influencing factors. We hope this review will provide useful information and unleash new opportunities in this field.
Collapse
Affiliation(s)
- Lixi Chen
- Institute of Nuclear Science and Technology, Key Laboratory for Radiation Physics and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | | | | | | |
Collapse
|
186
|
Youkharibache P. Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity. Methods Mol Biol 2019; 1958:187-219. [PMID: 30945220 PMCID: PMC8323591 DOI: 10.1007/978-1-4939-9161-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We will consider in this chapter supersecondary structures (SSS) as a set of secondary structure elements (SSEs) found in protein domains. Some SSS arrangements/topologies have been consistently observed within known tertiary structural domains. We use them in the context of repeating supersecondary structures that self-assemble in a symmetric arrangement to form a domain. We call them protodomains (or protofolds). Protodomains are some of the most interesting and insightful SSSs. Within a given 3D protein domain/fold, recognizing such sets may give insights into a possible evolutionary process of duplication, fusion, and coevolution of these protodomains, pointing to possible original protogenes. On protein folding itself, pseudosymmetric domains may point to a "directed" assembly of pseudosymmetric protodomains, directed by the only fact that they are tethered together in a protein chain. On function, tertiary functional sites often occur at protodomain interfaces, as they often occur at domain-domain interfaces in quaternary arrangements.First, we will briefly review some lessons learned from a previously published census of pseudosymmetry in protein domains (Myers-Turnbull, D. et al., J Mol Biol. 426:2255-2268, 2014) to introduce protodomains/protofolds. We will observe that the most abundant and diversified folds, or superfolds, in the currently known protein structure universe are indeed pseudosymmetric. Then, we will learn by example and select a few domain representatives of important pseudosymmetric folds and chief among them the immunoglobulin (Ig) fold and go over a pseudosymmetry supersecondary structure (protodomain) analysis in tertiary and quaternary structures. We will point to currently available software tools to help in identifying pseudosymmetry, delineating protodomains, and see how the study of pseudosymmetry and the underlying supersecondary structures can enrich a structural analysis. This should potentially help in protein engineering, especially in the development of biologics and immunoengineering.
Collapse
|
187
|
Zhang HN, Lu Y, Gao WX, Lin YJ, Jin GX. Selective Encapsulation and Separation of Dihalobenzene Isomers with Discrete Heterometallic Macrocages. Chemistry 2018; 24:18913-18921. [DOI: 10.1002/chem.201805383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Ye Lu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Wen-Xi Gao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; Shanghai 200032 P.R. China
| |
Collapse
|
188
|
Goskulwad SP, Kobaisi MA, La DD, Bhosale RS, Ratanlal M, Bhosale SV, Bhosale SV. Supramolecular Chiral Helical Ribbons of Tetraphenylethylene-Appended Naphthalenediimide Controlled by Solvent and Induced by l
- and d
-Alanine Spacers. Chem Asian J 2018; 13:3947-3953. [DOI: 10.1002/asia.201801421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/01/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Santosh P. Goskulwad
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad- 201002 India
| | - Mohammad Al Kobaisi
- School of Science; Faculty of Science, Engineering and Technology; Swinburne University of Technology; Hawthorn Australia
| | - Duong Duc La
- Institute of Chemistry and Materials, Hoang Sam; Hanoi Vietnam
| | - Rajesh S. Bhosale
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Present Address: Department of Chemistry; Indrashil University, Kadi; Mehsana 382740 India
| | - Malavath Ratanlal
- Organic Synthesis and Process Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad- 201002 India
| | | |
Collapse
|
189
|
Bartolec B, Altay M, Otto S. Template-promoted self-replication in dynamic combinatorial libraries made from a simple building block. Chem Commun (Camb) 2018; 54:13096-13098. [PMID: 30395138 DOI: 10.1039/c8cc06253f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report dynamic combinatorial libraries made from a simple building block that is on the verge of enabling self-assembly driven self-replication. Adding a template provides a sufficient additional push yielding self-replication. Self-assembly and self-replication can emerge with building blocks that are considerably smaller than those reported thus far.
Collapse
Affiliation(s)
- B Bartolec
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | |
Collapse
|
190
|
Astumian RD. Trajectory and Cycle-Based Thermodynamics and Kinetics of Molecular Machines: The Importance of Microscopic Reversibility. Acc Chem Res 2018; 51:2653-2661. [PMID: 30346731 DOI: 10.1021/acs.accounts.8b00253] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A molecular machine is a nanoscale device that provides a mechanism for coupling energy from two (or more) processes that in the absence of the machine would be independent of one another. Examples include walking of a protein in one direction along a polymeric track (process 1, driving "force" X1 = - F⃗· l⃗) and hydrolyzing ATP (process 2, driving "force" X2 = ΔμATP); or synthesis of ATP (process 1, X1 = -ΔμATP) and transport of protons from the periplasm to the cytoplasm across a membrane (process 2, X2 = ΔμH+); or rotation of a flagellum (process 1, X1 = -torque) and transport of protons across a membrane (process 2, X2 = ΔμH+). In some ways, the function of a molecular machine is similar to that of a macroscopic machine such as a car that couples combustion of gasoline to translational motion. However, the low Reynolds number regime in which molecular machines operate is very different from that relevant for macroscopic machines. Inertia is negligible in comparison to viscous drag, and omnipresent thermal noise causes the machine to undergo continual transition among many states even at thermodynamic equilibrium. Cyclic trajectories among the states of the machine that result in a change in the environment can be broken into two classes: those in which process 1 in either the forward or backward direction ([Formula: see text]) occurs and which thereby exchange work [Formula: see text] with the environment; and those in which process 2 in either the forward or backward direction ([Formula: see text]) occurs and which thereby exchange work [Formula: see text] with the evironment. These two types of trajectories, [Formula: see text] and [Formula: see text], overlap, i.e., there are some trajectories in which both process 1 and process 2 occur, and for which the work exchanged is [Formula: see text]. The four subclasses of overlap trajectories [(+1,+2), (+1,-2), (-1,+2), (-1,-2)] are the coupled processes. The net probabilities for process 1 and process 2 are designated π+2 - π-2 and π+1 - π-1, respectively. The probabilities [Formula: see text] for any single trajectory [Formula: see text] and [Formula: see text] for its microscopic reverse [Formula: see text] are related by microscopic reversibility (MR), [Formula: see text], an equality that holds arbitrarily far from thermodynamic equilibrium, i.e., irrespective of the magnitudes of X1 and X2, and where [Formula: see text]. Using this formalism, we arrive at a remarkably simple and general expression for the rates of the processes, [Formula: see text], i = 1, 2, where the angle brackets indicate an average over the ensemble of all microscopic reverse trajectories. Stochastic description of coupling is doubtless less familiar than typical mechanical depictions of chemical coupling in terms of ATP induced violent kicks, judo throws, force generation and power-strokes. While the mechanical description of molecular machines is comforting in its familiarity, conclusions based on such a phenomenological perspective are often wrong. Specifically, a "power-stroke" model (i.e., a model based on energy driven "promotion" of a molecular machine to a high energy state followed by directional relaxation to a lower energy state) that has been the focus of mechanistic discussions of biomolecular machines for over a half century is, for catalysis driven molecular machines, incorrect. Instead, the key principle by which catalysis driven motors work is kinetic gating by a mechanism known as an information ratchet. Amazingly, this same principle is that by which catalytic molecular systems undergo adaptation to new steady states while facilitating an exergonic chemical reaction.
Collapse
Affiliation(s)
- R. Dean Astumian
- Department of Physics, University of Maine, Orono, Maine 04469, United States
| |
Collapse
|
191
|
Wang C, Mavila S, Worrell BT, Xi W, Goldman TM, Bowman CN. Productive Exchange of Thiols and Thioesters to Form Dynamic Polythioester-Based Polymers. ACS Macro Lett 2018; 7:1312-1316. [PMID: 35651253 DOI: 10.1021/acsmacrolett.8b00611] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymers that possess dynamic covalent bonds activated at ambient conditions are ideal platforms for smart, responsive materials. Herein, a class of dynamic covalent polymerizations is developed based on the thiol-thioester exchange, that is, transthioesterification, reaction. Shifts in the equilibrium extent of the exchange reactions are deliberately utilized to drive the formation of oligomers and polymers. In particular, a series of AB and A2-B2 monomers, including amino acid derivatives, were polymerized rapidly by catalytic amounts of mild bases in various organic solvents under ambient conditions. Thioester backbone oligopeptides, including cysteine and glycine, were obtained with an average repeating unit of four and a PDI of 1.8. Further, structurally dynamic hydrogels were obtained by such reactions between four-armed poly(ethylene glycol)-10000 based monomers in neutral water. These hydrogels showed dynamic, frequency-dependent flow behavior between sol and gel states.
Collapse
Affiliation(s)
- Chen Wang
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| | - Brady T. Worrell
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| | - Weixian Xi
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| | - Trevor M. Goldman
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| |
Collapse
|
192
|
Cheng F, Wu XJ, Hu Z, Lu X, Ding Z, Shao Y, Xu H, Ji W, Wu J, Loh KP. Two-dimensional tessellation by molecular tiles constructed from halogen-halogen and halogen-metal networks. Nat Commun 2018; 9:4871. [PMID: 30451862 PMCID: PMC6242836 DOI: 10.1038/s41467-018-07323-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022] Open
Abstract
Molecular tessellations are often discovered serendipitously, and the mechanisms by which specific molecules can be tiled seamlessly to form periodic tessellation remain unclear. Fabrication of molecular tessellation with higher symmetry compared with traditional Bravais lattices promises potential applications as photonic crystals. Here, we demonstrate that highly complex tessellation can be constructed on Au(111) from a single molecular building block, hexakis(4-iodophenyl)benzene (HPBI). HPBI gives rise to two self-assembly phases on Au(111) that possess the same geometric symmetry but different packing densities, on account of the presence of halogen-bonded and halogen–metal coordinated networks. Sub-domains of these phases with self-similarity serve as tiles in the periodic tessellations to express polygons consisting of parallelograms and two types of triangles. Our work highlights the important principle of constructing multiple phases with self-similarity from a single building block, which may constitute a new route to construct complex tessellations. Molecular tessellations of complex tilings are difficult to design and construct. Here, the authors show that molecular tessellations can be formed from a single building block that gives rise to two distinct supramolecular phases, whose self-similar subdomains serve as tiles in the periodic tessellations.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Zhixin Hu
- Center for Joint Quantum Studies and Department of Physics, Institute of Science, Tianjin University, 300350, Tianjin, China
| | - Xuefeng Lu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zijing Ding
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| | - Yan Shao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190, Beijing, China
| | - Hai Xu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.,Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, 100872, Beijing, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore. .,Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore.
| |
Collapse
|
193
|
Pazos E, Novo P, Peinador C, Kaifer AE, García MD. Cucurbit[8]uril (CB[8])‐Based Supramolecular Switches. Angew Chem Int Ed Engl 2018; 58:403-416. [DOI: 10.1002/anie.201806575] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Elena Pazos
- Departamento de Química Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña 15071, A Coruña Spain
| | - Paula Novo
- Departamento de Química Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña 15071, A Coruña Spain
| | - Carlos Peinador
- Departamento de Química Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña 15071, A Coruña Spain
| | - Angel E. Kaifer
- Department of Chemistry University of Miami Coral Gables FL 33124 USA
| | - Marcos D. García
- Departamento de Química Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña 15071, A Coruña Spain
| |
Collapse
|
194
|
Pazos E, Novo P, Peinador C, Kaifer AE, García MD. Supramolekulare Schalter auf der Basis von Cucurbit[8]uril (CB[8]). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806575] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elena Pazos
- Departamento de Química Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña 15071, A Coruña Spanien
| | - Paula Novo
- Departamento de Química Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña 15071, A Coruña Spanien
| | - Carlos Peinador
- Departamento de Química Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña 15071, A Coruña Spanien
| | - Angel E. Kaifer
- Department of Chemistry University of Miami Coral Gables FL 33124 USA
| | - Marcos D. García
- Departamento de Química Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña 15071, A Coruña Spanien
| |
Collapse
|
195
|
Dynamic Functional Molecular Systems: From Supramolecular Structures to Multi‐Component Machinery and to Molecular Cybernetics. Isr J Chem 2018. [DOI: 10.1002/ijch.201800124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
196
|
Vesicle formation by cholesterol based hydrazone tethered amphiphiles: Stimuli responsive dissipation of self-assembly. J Colloid Interface Sci 2018; 530:67-77. [DOI: 10.1016/j.jcis.2018.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
|
197
|
Moran MJ, Magrini M, Walba DM, Aprahamian I. Driving a Liquid Crystal Phase Transition Using a Photochromic Hydrazone. J Am Chem Soc 2018; 140:13623-13627. [DOI: 10.1021/jacs.8b09622] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mark J. Moran
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Mitchell Magrini
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David M. Walba
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
198
|
Grancha T, Ferrando-Soria J, Proserpio DM, Armentano D, Pardo E. Toward Engineering Chiral Rodlike Metal–Organic Frameworks with Rare Topologies. Inorg Chem 2018; 57:12869-12875. [DOI: 10.1021/acs.inorgchem.8b02082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thais Grancha
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| | - Jesús Ferrando-Soria
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| | - Davide M. Proserpio
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19 - 20133 Milano, Italy
- Samara Center for Theoretical Material Science (SCTMS), Samara State Technical University, Samara 443100, Russia
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende 87036, Cosenza, Italy
| | - Emilio Pardo
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| |
Collapse
|
199
|
|
200
|
Lu Y, Zhang HN, Jin GX. Molecular Borromean Rings Based on Half-Sandwich Organometallic Rectangles. Acc Chem Res 2018; 51:2148-2158. [PMID: 29987929 DOI: 10.1021/acs.accounts.8b00220] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the last two decades, interlocked molecular species have received considerable attention, not only because of their intriguing structures and topological importance, but also because of their potential applications as smart materials, nanoscale devices, and molecular machines. Through judicious choice of metal centers and their adjoining ligands, a range of interesting interlocked structures have been realized by coordination-driven self-assembly. In addition, researchers have extensively developed synthetic methodologies for the construction of organized self-assemblies. One fascinating and challenging synthetic target in this field is the family of molecular Borromean rings, which consist of three chemically independent rings that are locked in such a way that no two of the three rings are linked with each other. Toward this goal, we have developed a template-free self-assembly method for synthesizing molecular Borromean rings by rationally designing metal-containing precursors and organic ligands. In this Account, we present our recent work, focusing on interlocked structures comprising half-sandwich iridium- and rhodium-based organometallic assemblies obtained by rational design. We first describe a series of template-free self-assembled organometallic molecular Borromean rings, which we constructed from preorganized binuclear half-sandwich molecular clips and suitable pyridyl ligands. These molecular Borromean rings can be sorted into four types according to their different bridging ligands, including those based on metallaligands, dihalogenated ligands, naphthazarin and π-acceptor ligands. By single-crystal X-ray crystallographic analysis, NMR experiment, and DFT calculation, we discuss their driving forces and the inter-ring interactions. Furthermore, we took advantage of the dissimilarity in their interactions to realize selective, reversible conversions between molecular Borromean rings and monomeric rectangles by the use of suitable solvents or guest molecules. Subsequently, a stepwise chemoseparation method based on molecular Borromean rings was established, with the molecular Borromean rings used in the separation being recoverable and recyclable. Due to their structural complexity and difficult synthesis, useful guidelines or rules to help design complicated interlocked molecules are highly desirable. We also highlight our efforts to develop empirical guidelines to uncover the relationship between the aspect ratio of metallarectangles and the formation or stability of molecular Borromean rings. An empirical formula has further been established to show the approximate ratio of lengths of the short arm and the long arm in molecular Borromean rings based on π-π (or p-π) stacking. We then demonstrate how to use these guidelines to design new molecular Borromean rings and further lead to other interlocked structures, for example, [2]- and [3]catenane structures. Taken together, our results may lead to a promising future for the design of fascinating and useful interlocked structures by coordination-driven self-assembly.
Collapse
Affiliation(s)
- Ye Lu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| |
Collapse
|