151
|
Zhou X, Wu M, Xie Y, Li GB, Li T, Xie R, Wang K, Zhang Y, Zou C, Wu W, Wang Q, Wang X, Zhang X, Li J, Li J, Wei YQ. Identification of Glycine Receptor α3 as a Colchicine-Binding Protein. Front Pharmacol 2018; 9:1238. [PMID: 30467477 PMCID: PMC6236057 DOI: 10.3389/fphar.2018.01238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Colchicine (Col) is considered a kind of highly effective alkaloid for preventing and treating acute gout attacks (flares). However, little is known about the underlying mechanism of Col in pain treatment. We have previously developed a customized virtual target identification method, termed IFPTarget, for small-molecule target identification. In this study, by using IFPTarget and ligand similarity ensemble approach (SEA), we show that the glycine receptor alpha 3 (GlyRα3), which play a key role in the processing of inflammatory pain, is a potential target of Col. Moreover, Col binds directly to the GlyRα3 as determined by the immunoprecipitation and bio-layer interferometry assays using the synthesized Col-biotin conjugate (linked Col and biotin with polyethylene glycol). These results suggest that GlyRα3 may mediate Col-induced suppression of inflammatory pain. However, whether GlyRα3 is the functional target of Col and serves as potential therapeutic target in gouty arthritis requires further investigations.
Collapse
Affiliation(s)
- Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingbo Wu
- School of Bioscience and Biotechnology, Chengdu Medical College, Chengdu, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Guo-Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tao Li
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rou Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kailun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiangwei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ximu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
152
|
Recent progress in synthesis and characterization of metal chalcone complexes and their potential as bioactive agents. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
153
|
Chen GQ, Xu Y, Shen SM, Zhang J. Phenotype and target-based chemical biology investigations in cancers. Natl Sci Rev 2018; 6:1111-1127. [PMID: 34691990 PMCID: PMC8291603 DOI: 10.1093/nsr/nwy124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
Chemical biology has been attracting a lot of attention because of the key roles of chemical methods and techniques in helping to decipher and manipulate biological systems. Although chemical biology encompasses a broad field, this review will focus on chemical biology aimed at using exogenous chemical probes to interrogate, modify and manipulate biological processes, at the cellular and organismal levels, in a highly controlled and dynamic manner. In this area, many advances have been achieved for cancer biology and therapeutics, from target identification and validation based on active anticancer compounds (forward approaches) to discoveries of anticancer molecules based on some important targets including protein-protein interaction (reverse approaches). Herein we attempt to summarize some recent progresses mainly from China through applying chemical biology approaches to explore molecular mechanisms of carcinogenesis. Additionally, we also outline several new strategies for chemistry to probe cellular activities such as proximity-dependent labeling methods for identifying protein-protein interactions, genetically encoded sensors, and light activating or repressing gene expression system.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ying Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shao-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
154
|
Yao H, Wei G, Liu Y, Yao H, Zhu Z, Ye W, Wu X, Xu J, Xu S. Synthesis, Biological Evaluation of Fluorescent 23-Hydroxybetulinic Acid Probes, and Their Cellular Localization Studies. ACS Med Chem Lett 2018; 9:1030-1034. [PMID: 30344912 DOI: 10.1021/acsmedchemlett.8b00321] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
23-Hydroxybetulinic acid (23-HBA) is a complex lupane triterpenoid, which has attracted increasing attention as an anticancer agent. However, its detailed mechanism of anticancer action remains elusive so far. To reveal its anticancer mode of action, a series of fluorescent 23-HBA derivatives conjugated with coumarin dyes were designed, synthesized, and evaluated for their antiproliferative activities. Subcellular localization and uptake profile studies of representative fluorescent 23-HBA probe 26c were performed in B16F10 cells, and the results suggested that probe 26c was rapidly taken up into B10F10 cells in a dose-dependent manner and mitochondrion was the main site of its accumulation. Further mode of action studies implied that the mitochondrial pathway was involved in 23-HBA-mediated apoptosis. Together, our results provided new clues for revealing the molecular mechanism of natural product 23-HBA for its further development into an antitumor agent.
Collapse
Affiliation(s)
- Hong Yao
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Guoxiang Wei
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yanpeng Liu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Hequan Yao
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoming Wu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
155
|
Huang Z, Zhou W, Li Y, Cao M, Wang T, Ma Y, Guo Q, Wang X, Zhang C, Zhang C, Shen W, Liu Y, Chen Y, Zheng J, Yang S, Fan Y, Xiang R. Novel hybrid molecule overcomes the limited response of solid tumours to HDAC inhibitors via suppressing JAK1-STAT3-BCL2 signalling. Theranostics 2018; 8:4995-5011. [PMID: 30429882 PMCID: PMC6217055 DOI: 10.7150/thno.26627] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/08/2018] [Indexed: 02/05/2023] Open
Abstract
Despite initial progress in preclinical models, most known histone deacetylase inhibitors (HDACis) used as a single agent have failed to show clinical benefits in nearly all types of solid tumours. Hence, the efficacy of HDACis in solid tumours remains uncertain. Herein, we developed a hybrid HDAC inhibitor that sensitized solid tumours to HDAC-targeted treatment. Methods: A hybrid molecule, Roxyl-zhc-84 was designed and synthesized with novel architecture. The pharmacokinetics and toxicity of Roxyl-zhc-84 were analysed. The antitumour effects of Roxyl-zhc-84 on solid tumours were investigated by assessing cell growth, apoptosis and cell cycle in vitro and in three in vivo mouse models and compared to those of corresponding control inhibitors alone or in combination. Gene set enrichment analysis was performed, and relevant JAK1-STAT3-BCL2 signalling was identified in vitro and in vivo in mechanistic studies. Results: Roxyl-zhc-84 showed excellent pharmacokinetics and low toxicity. The novel hybrid inhibitor Roxyl-zhc-84 induced cell apoptosis and G1-phase arrest in breast cancer and ovarian cancer cell lines. In three mouse models, oral administration of Roxyl-zhc-84 led to significant tumour regression without obvious toxicity. Moreover, Roxyl-zhc-84 dramatically improved the limited response of traditional HDAC inhibitors in solid tumours via overcoming JAK1-STAT3-BCL2-mediated drug resistance. Roxyl-zhc-84 treatment exhibited vastly superior efficacy than the combination of HDAC and JAK1 inhibitors both in vitro and in vivo. Conclusion: Concurrent inhibition of HDAC and CDK using Roxyl-zhc-84 with additional JAK1 targeting resolved the limited response of traditional HDAC inhibitors in solid tumours via overcoming JAK1-STAT3-BCL2-mediated drug resistance, providing a rational multi-target treatment to sensitize solid tumours to HDACi therapy.
Collapse
|
156
|
Michelet B, Carreyre H, Lecornué F, Mingot A, Thibaudeau S. Superelectrophilic activation in superacid HF/SbF5: Expanding molecular diversity in nitrogen-containing compounds series by fluorination. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
157
|
Tutone M, Virzì A, Almerico AM. Reverse screening on indicaxanthin from Opuntia ficus-indica as natural chemoactive and chemopreventive agent. J Theor Biol 2018; 455:147-160. [DOI: 10.1016/j.jtbi.2018.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022]
|
158
|
Van Vleet TR, Liguori MJ, Lynch JJ, Rao M, Warder S. Screening Strategies and Methods for Better Off-Target Liability Prediction and Identification of Small-Molecule Pharmaceuticals. SLAS DISCOVERY 2018; 24:1-24. [PMID: 30196745 DOI: 10.1177/2472555218799713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmaceutical discovery and development is a long and expensive process that, unfortunately, still results in a low success rate, with drug safety continuing to be a major impedance. Improved safety screening strategies and methods are needed to more effectively fill this critical gap. Recent advances in informatics are now making it possible to manage bigger data sets and integrate multiple sources of screening data in a manner that can potentially improve the selection of higher-quality drug candidates. Integrated screening paradigms have become the norm in Pharma, both in discovery screening and in the identification of off-target toxicity mechanisms during later-stage development. Furthermore, advances in computational methods are making in silico screens more relevant and suggest that they may represent a feasible option for augmenting the current screening paradigm. This paper outlines several fundamental methods of the current drug screening processes across Pharma and emerging techniques/technologies that promise to improve molecule selection. In addition, the authors discuss integrated screening strategies and provide examples of advanced screening paradigms.
Collapse
Affiliation(s)
- Terry R Van Vleet
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Michael J Liguori
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - James J Lynch
- 2 Department of Integrated Science and Technology, AbbVie, N Chicago, IL, USA
| | - Mohan Rao
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Scott Warder
- 3 Department of Target Enabling Science and Technology, AbbVie, N Chicago, IL, USA
| |
Collapse
|
159
|
Cheng X, Zhang G, Seupel R, Feineis D, Brünnert D, Chatterjee M, Schlosser A, Bringmann G. Epoxides related to dioncoquinone B: Synthesis, activity against multiple myeloma cells, and search for the target protein. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
160
|
Kitamura K, Itoh H, Sakurai K, Dan S, Inoue M. Target Identification of Yaku’amide B and Its Two Distinct Activities against Mitochondrial FoF1-ATP Synthase. J Am Chem Soc 2018; 140:12189-12199. [DOI: 10.1021/jacs.8b07339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kai Kitamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
161
|
Ghosh C, Gupta N, Mallick A, Santra MK, Basu S. Self-Assembled Glycosylated Chalcone–Boronic Acid Nanodrug Exhibits Anticancer Activity through Mitochondrial Impairment. ACS APPLIED BIO MATERIALS 2018; 1:347-355. [DOI: 10.1021/acsabm.8b00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India, 411008
| | - Neha Gupta
- Cancer and Epigenetic Lab, National Center for Cell Science (NCCS) Ganeshkhind, Pune, Maharashtra, India, 411007
| | - Abhik Mallick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India, 411008
| | - Manas Kumar Santra
- Cancer and Epigenetic Lab, National Center for Cell Science (NCCS) Ganeshkhind, Pune, Maharashtra, India, 411007
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India, 411008
- Current address: Discipline of Chemistry, Indian Institute of Technology (IIT)-Gandhinagar, Palaj, Gandhinagar, Gujarat, India, 382355
| |
Collapse
|
162
|
Cañeque T, Müller S, Rodriguez R. Visualizing biologically active small molecules in cells using click chemistry. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0030-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
163
|
Zheng B, Guo H, Ma N, Ni Y, Xu J, Li L, Hao P, Ding K, Li Z. Cell- and Tissue-Based Proteome Profiling and Bioimaging with Probes Derived from a Potent AXL Kinase Inhibitor. Chem Asian J 2018; 13:2601-2605. [PMID: 29939481 DOI: 10.1002/asia.201800605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/17/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Binbin Zheng
- School of Pharmacy, Jinan University; Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Haijun Guo
- School of Pharmacy, Jinan University; Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Nan Ma
- School of Pharmacy, Jinan University; Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yun Ni
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Jiaqian Xu
- School of Pharmacy, Jinan University; Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Lin Li
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Piliang Hao
- School of Life Science and Technology; ShanghaiTech University; China
| | - Ke Ding
- School of Pharmacy, Jinan University; Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University; Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
164
|
Yoo S, Nam H, Lee D. Phenotype-oriented network analysis for discovering pharmacological effects of natural compounds. Sci Rep 2018; 8:11667. [PMID: 30076354 PMCID: PMC6076245 DOI: 10.1038/s41598-018-30138-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Although natural compounds have provided a wealth of leads and clues in drug development, the process of identifying their pharmacological effects is still a challenging task. Over the last decade, many in vitro screening methods have been developed to identify the pharmacological effects of natural compounds, but they are still costly processes with low productivity. Therefore, in silico methods, primarily based on molecular information, have been proposed. However, large-scale analysis is rarely considered, since many natural compounds do not have molecular structure and target protein information. Empirical knowledge of medicinal plants can be used as a key resource to solve the problem, but this information is not fully exploited and is used only as a preliminary tool for selecting plants for specific diseases. Here, we introduce a novel method to identify pharmacological effects of natural compounds from herbal medicine based on phenotype-oriented network analysis. In this study, medicinal plants with similar efficacy were clustered by investigating hierarchical relationships between the known efficacy of plants and 5,021 phenotypes in the phenotypic network. We then discovered significantly enriched natural compounds in each plant cluster and mapped the averaged pharmacological effects of the plant cluster to the natural compounds. This approach allows us to predict unexpected effects of natural compounds that have not been found by molecular analysis. When applied to verified medicinal compounds, our method successfully identified their pharmacological effects with high specificity and sensitivity.
Collapse
Affiliation(s)
- Sunyong Yoo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Bio-Synergy Research Center, Daejeon, 34141, Republic of Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Doheon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Bio-Synergy Research Center, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
165
|
Proschak E, Stark H, Merk D. Polypharmacology by Design: A Medicinal Chemist's Perspective on Multitargeting Compounds. J Med Chem 2018; 62:420-444. [PMID: 30035545 DOI: 10.1021/acs.jmedchem.8b00760] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multitargeting compounds comprising activity on more than a single biological target have gained remarkable relevance in drug discovery owing to the complexity of multifactorial diseases such as cancer, inflammation, or the metabolic syndrome. Polypharmacological drug profiles can produce additive or synergistic effects while reducing side effects and significantly contribute to the high therapeutic success of indispensable drugs such as aspirin. While their identification has long been the result of serendipity, medicinal chemistry now tends to design polypharmacology. Modern in vitro pharmacological methods and chemical probes allow a systematic search for rational target combinations and recent innovations in computational technologies, crystallography, or fragment-based design equip multitarget compound development with valuable tools. In this Perspective, we analyze the relevance of multiple ligands in drug discovery and the versatile toolbox to design polypharmacology. We conclude that despite some characteristic challenges remaining unresolved, designed polypharmacology holds enormous potential to secure future therapeutic innovation.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitaetsstrasse 1 , D-40225 , Duesseldorf , Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany.,Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Swiss Federal Institute of Technology (ETH) Zürich , Vladimir-Prelog-Weg 4 , CH-8093 Zürich , Switzerland
| |
Collapse
|
166
|
Halder V, Oeljeklaus J, Heilmann G, Krahn JH, Liu Y, Xiong Y, Schlicht M, Schillinger J, Kracher B, Ehrmann M, Kombrink E, Kaschani F, Kaiser M. Identification of the Natural Product Rotihibin A as a TOR Kinase Signaling Inhibitor by Unbiased Transcriptional Profiling. Chemistry 2018; 24:12500-12504. [DOI: 10.1002/chem.201802647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vivek Halder
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
- Chemical Biology Laboratory; Max-Planck-Institute for Plant Breeding Research; Carl-von-Linnè-Weg 10 50829 Köln Germany
| | - Julian Oeljeklaus
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Geronimo Heilmann
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Jan H. Krahn
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Yanlin Liu
- Basic Forestry and Proteomics Research Center; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University; Fujian Province 350002 P.R. China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Center; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University; Fujian Province 350002 P.R. China
| | - Markus Schlicht
- Chemical Biology Laboratory; Max-Planck-Institute for Plant Breeding Research; Carl-von-Linnè-Weg 10 50829 Köln Germany
| | - Jasmin Schillinger
- Microbiology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Barbara Kracher
- Bioinformatics, Department of Plant Microbe Interactions; Max-Planck-Institute for Plant Breeding Research; Carl-von-Linnè-Weg 10 50829 Köln Germany
| | - Michael Ehrmann
- Microbiology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Erich Kombrink
- Chemical Biology Laboratory; Max-Planck-Institute for Plant Breeding Research; Carl-von-Linnè-Weg 10 50829 Köln Germany
| | - Farnusch Kaschani
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| |
Collapse
|
167
|
Wase N, Black P, DiRusso C. Innovations in improving lipid production: Algal chemical genetics. Prog Lipid Res 2018; 71:101-123. [DOI: 10.1016/j.plipres.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
|
168
|
Wang J, Wu J, Li X, Liu H, Qin J, Bai Z, Chi B, Chen X. Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells. J Proteomics 2018; 182:1-11. [PMID: 29684682 DOI: 10.1016/j.jprot.2018.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
Identification of the specific protein target(s) of a drug is a critical step in unraveling its mechanisms of action (MOA) in many natural products. Curcumol, isolated from well known Chinese medicinal plant Curcuma zedoary, has been shown to possess multiple biological activities. It can inhibit nasopharyngeal carcinoma (NPC) proliferation and induce apoptosis, but its target protein(s) in NPC cells remains unclear. In this study, we employed a mass spectrometry-based chemical proteomics approach reveal the possible protein targets of curcumol in NPC cells. Cellular thermal shift assay (CETSA), molecular docking and cell-based assay was used to validate the binding interactions. Chemical proteomics capturing uncovered that NCL is a target of curcumol in NPC cells, Molecular docking showed that curcumol bound to NCL with an -7.8 kcal/mol binding free energy. Cell function analysis found that curcumol's treatment leads to a degradation of NCL in NPC cells, and it showed slight effects on NP69 cells. In conclusion, our results providing evidences that NCL is a target protein of curcumol. We revealed that the anti-cancer effects of curcumol in NPC cells are mediated, at least in part, by NCL inhibition. SIGNIFICANCE Many natural products showed high bioactivity, while their mechanisms of action (MOA) are very poor or completely missed. Understanding the MOA of natural drugs can thoroughly exploit their therapeutic potential and minimize their adverse side effects. Identification of the specific protein target(s) of a drug is a critical step in unraveling its MOA. Compound-centric chemical proteomics is a classic chemical proteomics approach which integrates chemical synthesis with cell biology and mass spectrometry (MS) to identify protein targets of natural products determine the drug mechanism of action, describe its toxicity, and figure out the possible cause of off-target. It is an affinity-based chemical proteomics method to identify small molecule-protein interactions through affinity chromatography approach coupled with mass spectrometry, has been conventionally used to identify target proteins and has yielded good results. Curcumol, has shown effective inhibition on Nasopharyngeal Carcinoma (NPC) Cells, interacted with NCL and then initiated the anti-tumor biological effect. This research demonstrated the effectiveness of chemical proteomics approaches in natural drugs molecular target identification, revealing and understanding of the novel mechanism of actions of curcumol is crucial for cancer prevention and treatment in nasopharynx cancer.
Collapse
Affiliation(s)
- Juan Wang
- Xiangya Hospital, Central South University, Changsha 410008, China; College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Jiacai Wu
- Research Center for Science, Guilin Medical University, Guilin 541004, China
| | - Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Haowei Liu
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Jianli Qin
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Zhun Bai
- Intensive Care Unit, The Affiliated Zhuzhou Hospital XiangYa Medical College CSU, Zhuzhou 412007, China
| | - Bixia Chi
- Department of Gastroenterology, The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
169
|
Brand S, Roy S, Schröder P, Rathmer B, Roos J, Kapoor S, Patil S, Pommerenke C, Maier T, Janning P, Eberth S, Steinhilber D, Schade D, Schneider G, Kumar K, Ziegler S, Waldmann H. Combined Proteomic and In Silico Target Identification Reveal a Role for 5-Lipoxygenase in Developmental Signaling Pathways. Cell Chem Biol 2018; 25:1095-1106.e23. [PMID: 30251630 DOI: 10.1016/j.chembiol.2018.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/26/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Identification and validation of the targets of bioactive small molecules identified in cell-based screening is challenging and often meets with failure, calling for the development of new methodology. We demonstrate that a combination of chemical proteomics with in silico target prediction employing the SPiDER method may provide efficient guidance for target candidate selection and prioritization for experimental in-depth evaluation. We identify 5-lipoxygenase (5-LO) as the target of the Wnt pathway inhibitor Lipoxygenin. Lipoxygenin is a non-redox 5-LO inhibitor, modulates the β-catenin-5-LO complex and induces reduction of both β-catenin and 5-LO levels in the nucleus. Lipoxygenin and the structurally unrelated 5-LO inhibitor CJ-13,610 promote cardiac differentiation of human induced pluripotent stem cells and inhibit Hedgehog, TGF-β, BMP, and Activin A signaling, suggesting an unexpected and yet unknown role of 5-LO in these developmental pathways.
Collapse
Affiliation(s)
- Silke Brand
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Sayantani Roy
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Peter Schröder
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Bernd Rathmer
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Jessica Roos
- Goethe Universität, Institut für Pharmazeutische Chemie, Max-von-Laue-Strasse 9, Frankfurt am Main 60438, Germany
| | - Shobhna Kapoor
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sumersing Patil
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Claudia Pommerenke
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, Braunschweig 38124, Germany
| | - Thorsten Maier
- Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany; Aarhus University, Department of Biomedicine, Bartholins Allé 6, Aarhus C 8000, Denmark
| | - Petra Janning
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sonja Eberth
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, Braunschweig 38124, Germany
| | - Dieter Steinhilber
- Goethe Universität, Institut für Pharmazeutische Chemie, Max-von-Laue-Strasse 9, Frankfurt am Main 60438, Germany
| | - Dennis Schade
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Gisbert Schneider
- ETH Zürich, Institut für Pharmazeutische Wissenschaften, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
| | - Kamal Kumar
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Slava Ziegler
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Herbert Waldmann
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, Dortmund 44227, Germany.
| |
Collapse
|
170
|
Zhu D, Guo H, Chang Y, Ni Y, Li L, Zhang ZM, Hao P, Xu Y, Ding K, Li Z. Cell- and Tissue-Based Proteome Profiling and Dual Imaging of Apoptosis Markers with Probes Derived from Venetoclax and Idasanutlin. Angew Chem Int Ed Engl 2018; 57:9284-9289. [PMID: 29768700 DOI: 10.1002/anie.201802003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Dongsheng Zhu
- Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue, Science Park Guangzhou 510530 China
- University of Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 China
| | - Haijun Guo
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yu Chang
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yun Ni
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Lin Li
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Zhi-Min Zhang
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Piliang Hao
- School of Life Science and Technology; ShanghaiTech University; China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue, Science Park Guangzhou 510530 China
- University of Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 China
| | - Ke Ding
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhengqiu Li
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
171
|
Zhu D, Guo H, Chang Y, Ni Y, Li L, Zhang ZM, Hao P, Xu Y, Ding K, Li Z. Cell- and Tissue-Based Proteome Profiling and Dual Imaging of Apoptosis Markers with Probes Derived from Venetoclax and Idasanutlin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dongsheng Zhu
- Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue, Science Park Guangzhou 510530 China
- University of Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 China
| | - Haijun Guo
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yu Chang
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yun Ni
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Lin Li
- Institute of Advanced Materials (IAM); Nanjing Tech University; China
| | - Zhi-Min Zhang
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Piliang Hao
- School of Life Science and Technology; ShanghaiTech University; China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing; Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue, Science Park Guangzhou 510530 China
- University of Chinese Academy of Sciences; 19 Yuquan Road Beijing 100049 China
| | - Ke Ding
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhengqiu Li
- School of Pharmacy; Jinan University; Guangzhou City Key, Laboratory of Precision Chemical Drug Development; International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development; Ministry of Education (MOE) of People's Republic of China; 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
172
|
Gade NR, Iqbal J. Natural Product Inspired Topology Directed Synthesis of Hybrid Macrocyclic Compounds: A Simple Approach to Natural Product Analogues. ChemistrySelect 2018. [DOI: 10.1002/slct.201801117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Narendar Reddy Gade
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli; Hyderabad - 500046, Telangana India
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University, Biotech Eight; Richmond, VA 23219 USA
| | - Javed Iqbal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli; Hyderabad - 500046, Telangana India
- Cosmic Discoveries Private Ltd. MaRS Discovery District; 101 College Street Toronto M5G 0B7 Canada
| |
Collapse
|
173
|
Synthesis of an electronically-tuned minimally interfering alkynyl photo-affinity label to measure small molecule–protein interactions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
174
|
Campe R, Hollenbach E, Kämmerer L, Hendriks J, Höffken HW, Kraus H, Lerchl J, Mietzner T, Tresch S, Witschel M, Hutzler J. A new herbicidal site of action: Cinmethylin binds to acyl-ACP thioesterase and inhibits plant fatty acid biosynthesis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:116-125. [PMID: 29891362 DOI: 10.1016/j.pestbp.2018.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/16/2023]
Abstract
The prevalent occurrence of herbicide resistant weeds increases the necessity for new site of action herbicides for effective control as well as to relax selection pressure on the known sites of action. As a consequence, interest increased in the unexploited molecule cinmethylin as a new solution for the control of weedy grasses in cereals. Therefore, the mechanism of action of cinmethylin was reevaluated. We applied the chemoproteomic approach cellular Target Profiling™ from Evotec to identify the cinmethylin target in Lemna paucicostata protein extracts. We found three potential targets belonging to the same protein family of fatty acid thioesterases (FAT) to bind to cinmethylin with high affinity. Binding of cinmethylin to FAT proteins from Lemna and Arabidopsis was confirmed by fluorescence-based thermal shift assay. The plastid localized enzyme FAT plays a crucial role in plant lipid biosynthesis, by mediating the release of fatty acids (FA) from its acyl carrier protein (ACP) which is necessary for FA export to the endoplasmic reticulum. GC-MS analysis of free FA composition in Lemna extracts revealed strong reduction of unsaturated C18 as well as saturated C14, and C16 FAs upon treatment with cinmethylin, indicating that FA release for subsequent lipid biosynthesis is the primary target of cinmethylin. Lipid biosynthesis is a prominent target of different herbicide classes. To assess whether FAT inhibition constitutes a new mechanism of action within this complex pathway, we compared physiological effects of cinmethylin to different ACCase and VLCFA synthesis inhibitors and identified characteristic differences in plant symptomology and free FA composition upon treatment with the three herbicide classes. Also, principal component analysis of total metabolic profiling of treated Lemna plants showed strong differences in overall metabolic changes after cinmethylin, ACCase or VLCFA inhibitor treatments. Our results identified and confirmed FAT as the cinmethylin target and validate FAT inhibition as a new site of action different from other lipid biosynthesis inhibitor classes.
Collapse
Affiliation(s)
- Ruth Campe
- BASF SE, Speyerer Straße 2, D-67117 Limburgerhof, Germany.
| | - Eva Hollenbach
- BASF SE, Speyerer Straße 2, D-67117 Limburgerhof, Germany
| | - Lara Kämmerer
- BASF SE, Speyerer Straße 2, D-67117 Limburgerhof, Germany
| | | | | | - Helmut Kraus
- BASF Corporation, 26 Davis Drive, Research Triangle Park, 27709-3528 NC, United States
| | - Jens Lerchl
- BASF SE, Speyerer Straße 2, D-67117 Limburgerhof, Germany
| | - Thomas Mietzner
- BASF SE, Carl Bosch Straße 38, D-67056 Ludwigshafen, Germany
| | - Stefan Tresch
- BASF SE, Carl Bosch Straße 38, D-67056 Ludwigshafen, Germany
| | | | | |
Collapse
|
175
|
Enantiodifferential Approach for the Target Protein Detection of the Jasmonate Glucoside That Controls the Leaf Closure of Samanea saman. Methods Mol Biol 2018. [PMID: 29846926 DOI: 10.1007/978-1-4939-7874-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The synthetic photoaffinity probe designed to mimic bioactive molecules is one of the powerful tools for the identification of the target protein in living organisms. However, nonspecific interaction between the probe and nontargets would cause a misleading result in many cases of the photoaffinity labeling. In this chapter, we describe an enantiodifferential approach as a reliable method for the detection of the specific target protein of the bioactive natural product, jasmonate glucoside, a chemical factor that controls the nyctinastic leaf movement of the leguminous plants.
Collapse
|
176
|
Wales SM, Merisor EG, Adcock HV, Pearce CA, Strutt IR, Lewis W, Hamza D, Moody CJ. Diastereoselective Synthesis of Highly Substituted, Amino- and Pyrrolidino-Tetrahydrofurans as Lead-Like Molecular Scaffolds. Chemistry 2018; 24:8233-8239. [DOI: 10.1002/chem.201801046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Steven M. Wales
- School of Chemistry; University Park; University of Nottingham; Nottingham NG7 2RD United Kingdom
| | - Elena G. Merisor
- Sygnature Discovery Ltd, Biocity; Pennyfoot Street Nottingham NG1 1GF United Kingdom
| | - Holly V. Adcock
- Sygnature Discovery Ltd, Biocity; Pennyfoot Street Nottingham NG1 1GF United Kingdom
| | - Christopher A. Pearce
- Sygnature Discovery Ltd, Biocity; Pennyfoot Street Nottingham NG1 1GF United Kingdom
| | - Ian R. Strutt
- Sygnature Discovery Ltd, Biocity; Pennyfoot Street Nottingham NG1 1GF United Kingdom
| | - William Lewis
- School of Chemistry; University Park; University of Nottingham; Nottingham NG7 2RD United Kingdom
| | - Daniel Hamza
- Sygnature Discovery Ltd, Biocity; Pennyfoot Street Nottingham NG1 1GF United Kingdom
| | - Christopher J. Moody
- School of Chemistry; University Park; University of Nottingham; Nottingham NG7 2RD United Kingdom
| |
Collapse
|
177
|
Abstract
The field of Traditional Chinese Medicine (TCM) represents a vast and largely untapped resource for modern medicine. Exemplified by the success of the antimalarial artemisinin, the recent years have seen a rapid increase in the understanding and application of TCM-derived herbs and formulations for evidence-based therapy. In this review, we summarise and discuss the developmental history, clinical background and molecular basis of an action for several representative TCM-derived medicines, including artemisinin, arsenic trioxide, berberine and Salvia miltiorrhiza or Danshen. Through this, we highlight important examples of how TCM-derived medicines have already contributed to modern medicine, and discuss potential avenues for further research.
Collapse
|
178
|
Huang H, Zhang G, Zhou Y, Lin C, Chen S, Lin Y, Mai S, Huang Z. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds. Front Chem 2018; 6:138. [PMID: 29868550 PMCID: PMC5954125 DOI: 10.3389/fchem.2018.00138] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Collapse
Affiliation(s)
- Hongbin Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Guigui Zhang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Yuquan Zhou
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Chenru Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Suling Chen
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Yutong Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Shangkang Mai
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| |
Collapse
|
179
|
Villadsen NL, Hansen BK, Svenningsen EB, Jørgensen KH, Tørring T, Poulsen TB. Stendomycin and Pantomycin Are Identical Natural Products: Preparation of a Functionalized Bioactive Analogue. J Org Chem 2018; 83:7303-7308. [DOI: 10.1021/acs.joc.8b00553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Bente K. Hansen
- Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | | | | | - Thomas Tørring
- Department of Engineering, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
180
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
181
|
Xie Y, Cheng L, Gao Y, Cai X, Yang X, Yi L, Xi Z. Tetrafluorination of Aromatic Azide Yields a Highly Efficient Staudinger Reaction: Kinetics and Biolabeling. Chem Asian J 2018; 13:1791-1796. [PMID: 29714052 DOI: 10.1002/asia.201800503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/30/2018] [Indexed: 02/28/2024]
Abstract
The development of highly efficient bioorthogonal reactions is of paramount importance for the research fields of biomaterials and chemical biology. We found that the o,o'-difluorinated aromatic azide was able to react with triphenylphosphine to produce water-stable phosphanimine. To further improve the efficiency of this kind of nonhydrolysis Staudinger reaction, a tetrafluorinated aromatic azide was employed to develop a faster nonhydrolysis Staudinger reaction with a rate of up to 51 m-1 s-1 , as revealed by high-performance liquid chromatography (HPLC) analysis and fluorescence kinetics. As a proof-of-concept study, the highly efficient Staudinger reaction was successfully used for chemoselective fluorescence labeling of proteins and nucleic acids (DNA and RNA) as well as for protein polyethyleneglycol (PEG)ylation. We believe that this bioorthogonal reaction can provide a broadly useful tool for various bioconjugations.
Collapse
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, China
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, China
| | - Yasi Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (BUCT), Beijing, 100029, China
| | - Xuekang Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (BUCT), Beijing, 100029, China
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (BUCT), Beijing, 100029, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, China
| |
Collapse
|
182
|
Ota E, Usui K, Oonuma K, Koshino H, Nishiyama S, Hirai G, Sodeoka M. Thienyl-Substituted α-Ketoamide: A Less Hydrophobic Reactive Group for Photo-Affinity Labeling. ACS Chem Biol 2018; 13:876-880. [PMID: 29457885 DOI: 10.1021/acschembio.7b00988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoaffinity labeling (PAL) is an important tool in chemical biology research, but application of α-ketoamides for PAL has been hampered by their photoinstability. Here, we show that 2-thienyl-substituted α-ketoamide is a superior photoreactive group for PAL. Studies with a series of synthetic mannose-conjugated α-ketoamides revealed that 2-thienyl substitution of α-ketoamide decreased the electrophilicity of the keto group and reduced the rate of photodegradation. Mannose-conjugated thienyl α-ketoamide showed greater concanavalin A labeling efficiency than other alkyl or phenyl-substituted α-ketoamides. In comparison with representative conventional photoreactive groups, 2-thienyl ketoamide showed reduced labeling of nontarget proteins, probably owing to its lower hydrophobicity.
Collapse
Affiliation(s)
- Eisuke Ota
- Synthetic Organic Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kana Oonuma
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Shigeru Nishiyama
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, Fukuoka 812-8582, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- AMED-CREST, Wako, Saitama 351-0198, Japan
| |
Collapse
|
183
|
Clatworthy AE, Romano KP, Hung DT. Whole-organism phenotypic screening for anti-infectives promoting host health. Nat Chem Biol 2018; 14:331-341. [PMID: 29556098 PMCID: PMC9843822 DOI: 10.1038/s41589-018-0018-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/20/2017] [Indexed: 01/19/2023]
Abstract
To date, antibiotics have been identified on the basis of their ability to kill bacteria or inhibit their growth rather than directly for their capacity to improve clinical outcomes of infected patients. Although historically successful, this approach has led to the development of an antibiotic armamentarium that suffers from a number of shortcomings, including the inevitable emergence of resistance and, in certain infections, suboptimal efficacy leading to long treatment durations, infection recurrence, or high mortality and morbidity rates despite apparent bacterial sterilization. Conventional antibiotics fail to address the complexities of in vivo bacterial physiology and virulence, as well as the role of the host underlying the complex, dynamic interactions that cause disease. New interventions are needed, aimed at host outcome rather than microbiological cure. Here we review the role of screening models for cellular and whole-organism infection, including worms, flies, zebrafish, and mice, to identify novel therapeutic strategies and discuss their future implications.
Collapse
Affiliation(s)
- Anne E. Clatworthy
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Keith P. Romano
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA,Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA,Department of Genetics, Harvard Medical School, Boston, MA, USA,Correspondence and requests for materials should be addressed to D.T.H.
| |
Collapse
|
184
|
|
185
|
Mapping in vivo target interaction profiles of covalent inhibitors using chemical proteomics with label-free quantification. Nat Protoc 2018; 13:752-767. [DOI: 10.1038/nprot.2017.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
186
|
Luo L, Gao Y, Yang C, Shao Z, Wu X, Li S, Xiong L, Chen C. Halofuginone attenuates intervertebral discs degeneration by suppressing collagen I production and inactivating TGFβ and NF-кB pathway. Biomed Pharmacother 2018. [PMID: 29524883 DOI: 10.1016/j.biopha.2018.01.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Most low back pain is caused by intervertebral discs (IVD) degeneration, a disease that prevalence is increasing with age. Halofuginone, an analog of ferbrifugine isolated from plant Dichroa febrifuga, has drawn much attention in recent years for the wide range of bioactivities in malaria, cancer, fibrotic and autoimmune diseases. In this study, we evaluated the benefit effects of halofuginone in IVD degeneration treatment in a validated rabbit puncture model. Halofuginone treatment could attenuate disc degeneration by suppressing the decrease of discs height and nucleus pulposus signal strength. Besides, halofuginone treatment could suppress mRNA and protein expression of collagen I in nucleus pulposus. This might possibly due to the inactivation of transform growth factor-β (TGFβ) signal pathway by down-regulating p-Samd3 and up-regulating inhibitory Smad7. Then, we evaluated the effects of halofuginone treatment on nuclear factor of kappa B (NF-κB) signal pathway and its downstream pro-inflammatory cytokines. The level of p-p65 and p-IκBα was down-regulated in halofuginone treated group, indicating the inactivation of NF-κB signal pathway. The mRNA expression of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and interleukin 8 (IL-8) was decreased in nucleus pulposus too, indicating the down-regulation of pro-inflammatory cytokines. In conclusion, halofuginone treatment could attenuate IVD degeneration and this was possibly due to suppressing of collagen I production and inactivation of TGFβ and NF-κB signal pathway in nucleus pulposus of degenerated discs. These results suggest that halofuginone has the potential for IVD degeneration treatment, but more research is needed to validate this.
Collapse
Affiliation(s)
- Linghui Luo
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
187
|
Patil S, Kuman MM, Palvai S, Sengupta P, Basu S. Impairing Powerhouse in Colon Cancer Cells by Hydrazide-Hydrazone-Based Small Molecule. ACS OMEGA 2018; 3:1470-1481. [PMID: 30023806 PMCID: PMC6044916 DOI: 10.1021/acsomega.7b01512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/10/2018] [Indexed: 05/31/2023]
Abstract
Mitochondrion has emerged as one of the unconventional targets in next-generation cancer therapy. Hence, small molecules targeting mitochondria in cancer cells have immense potential in the next-generation anticancer therapeutics. In this report, we have synthesized a library of hydrazide-hydrazone-based small molecules and identified a novel compound that induces mitochondrial outer membrane permeabilization by inhibiting antiapoptotic B-cell CLL/lymphoma 2 (Bcl-2) family proteins followed by sequestration of proapoptotic cytochrome c. The new small molecule triggered programmed cell death (early and late apoptosis) through cell cycle arrest in the G2/M phase and caspase-9/3 cleavage in HCT-116 colon cancer cells, confirmed by an array of fluorescence confocal microscopy, cell sorting, and immunoblotting analysis. Furthermore, cell viability studies have verified that the small molecule rendered toxicity to a panel of colon cancer cells (HCT-116, DLD-1, and SW-620), keeping healthy L929 fibroblast cells unharmed. The novel small molecule has the potential to form a new understudied class of mitochondria targeting anticancer agent.
Collapse
Affiliation(s)
- Sohan Patil
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Meenu Mahesh Kuman
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sandeep Palvai
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Poulomi Sengupta
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sudipta Basu
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
188
|
Dellafiora L, Dall'Asta C, Galaverna G. Toxicodynamics of Mycotoxins in the Framework of Food Risk Assessment-An In Silico Perspective. Toxins (Basel) 2018; 10:E52. [PMID: 29360783 PMCID: PMC5848153 DOI: 10.3390/toxins10020052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins severely threaten the health of humans and animals. For this reason, many countries have enforced regulations and recommendations to reduce the dietary exposure. However, even though regulatory actions must be based on solid scientific knowledge, many aspects of their toxicological activity are still poorly understood. In particular, deepening knowledge on the primal molecular events triggering the toxic stimulus may be relevant to better understand the mechanisms of action of mycotoxins. The present work presents the use of in silico approaches in studying the mycotoxins toxicodynamics, and discusses how they may contribute in widening the background of knowledge. A particular emphasis has been posed on the methods accounting the molecular initiating events of toxic action. In more details, the key concepts and challenges of mycotoxins toxicology have been introduced. Then, topical case studies have been presented and some possible practical implementations of studying mycotoxins toxicodynamics have been discussed.
Collapse
Affiliation(s)
- Luca Dellafiora
- Department of Food and Drug, University of Parma, 43124 Parma, Italy.
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, 43124 Parma, Italy.
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
189
|
Liu N, Tu J, Dong G, Wang Y, Sheng C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J Med Chem 2018; 61:5484-5511. [DOI: 10.1021/acs.jmedchem.7b01413] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
190
|
Ding P, Yan X, Liu Z, Du J, Du Y, Lu Y, Wu D, Xu Y, Zhou H, Gu Q, Xu J. PTS: a pharmaceutical target seeker. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:4781737. [PMID: 31725865 PMCID: PMC5750839 DOI: 10.1093/database/bax095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/04/2017] [Accepted: 11/27/2017] [Indexed: 12/02/2022]
Abstract
Identifying protein targets for a bioactive compound is critical in drug discovery. Molecular similarity is a main approach to fish drug targets, and is based upon an axiom that similar compounds may have the same targets. The molecular structural similarity of a compound and the ligand of a known target can be gauged in topological (2D), steric (3D) or static (pharmacophoric) metric. The topologic metric is fast, but unable to represent steric and static profile of a bioactive compound. Steric and static metrics reflect the shape properties of a compound if its structure were experimentally obtained, and could be unreliable if they were based upon the putative conformation data. In this paper, we report a pharmaceutical target seeker (PTS), which searches protein targets for a bioactive compound based upon the static and steric shape comparison by comparing a compound structure against the experimental ligand structure. Especially, the crystal structures of active compounds were taken into similarity calculation and the predicted targets can be filtered according to multi activity thresholds. PTS has a pharmaceutical target database that contains approximately 250 000 ligands annotated with about 2300 protein targets. A visualization tool is provided for a user to examine the result. Database URL: http://www.rcdd.org.cn/PTS
Collapse
Affiliation(s)
- Peng Ding
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhihong Liu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiewen Du
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunfei Du
- National Supercomputer Center in Guangzhou, Sun Yat-Sen University, Guangzhou 510006, China and
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, Sun Yat-Sen University, Guangzhou 510006, China and
| | - Di Wu
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuehua Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
191
|
Lee K, Lee M, Kim D. Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server. BMC Bioinformatics 2017; 18:567. [PMID: 29297315 PMCID: PMC5751401 DOI: 10.1186/s12859-017-1960-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The identification of target molecules is important for understanding the mechanism of “target deconvolution” in phenotypic screening and “polypharmacology” of drugs. Because conventional methods of identifying targets require time and cost, in-silico target identification has been considered an alternative solution. One of the well-known in-silico methods of identifying targets involves structure activity relationships (SARs). SARs have advantages such as low computational cost and high feasibility; however, the data dependency in the SAR approach causes imbalance of active data and ambiguity of inactive data throughout targets. Results We developed a ligand-based virtual screening model comprising 1121 target SAR models built using a random forest algorithm. The performance of each target model was tested by employing the ROC curve and the mean score using an internal five-fold cross validation. Moreover, recall rates for top-k targets were calculated to assess the performance of target ranking. A benchmark model using an optimized sampling method and parameters was examined via external validation set. The result shows recall rates of 67.6% and 73.9% for top-11 (1% of the total targets) and top-33, respectively. We provide a website for users to search the top-k targets for query ligands available publicly at http://rfqsar.kaist.ac.kr. Conclusions The target models that we built can be used for both predicting the activity of ligands toward each target and ranking candidate targets for a query ligand using a unified scoring scheme. The scores are additionally fitted to the probability so that users can estimate how likely a ligand–target interaction is active. The user interface of our web site is user friendly and intuitive, offering useful information and cross references. Electronic supplementary material The online version of this article (10.1186/s12859-017-1960-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyoungyeul Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minho Lee
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
192
|
Lee JH, Hou X, Kummari E, Borazjani A, Edelmann MJ, Ross MK. Endocannabinoid hydrolases in avian HD11 macrophages identified by chemoproteomics: inactivation by small-molecule inhibitors and pathogen-induced downregulation of their activity. Mol Cell Biochem 2017; 444:125-141. [DOI: 10.1007/s11010-017-3237-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
|
193
|
Fujita H, Inoue Y, Kuwahara M. Selective incorporation of foreign functionality into fibrin gels through a chemically modified DNA aptamer. Bioorg Med Chem Lett 2017; 28:35-39. [PMID: 29162456 DOI: 10.1016/j.bmcl.2017.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023]
Abstract
We found for the first time that a thrombin-binding DNA aptamer (TBA) is selectively entrapped in fibrin gels during the gel growth reaction catalyzed by thrombin. Furthermore, using this phenomenon, we successfully demonstrated multiple incorporation of amphiphilic aliphatic groups into fibrin gels via chemically modified TBA.
Collapse
Affiliation(s)
- Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yusuke Inoue
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
194
|
Affiliation(s)
- Hope A. Flaxman
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
195
|
Hellinger R, Thell K, Vasileva M, Muhammad T, Gunasekera S, Kümmel D, Göransson U, Becker CW, Gruber CW. Chemical Proteomics for Target Discovery of Head-to-Tail Cyclized Mini-Proteins. Front Chem 2017; 5:73. [PMID: 29075625 PMCID: PMC5641551 DOI: 10.3389/fchem.2017.00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomally synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study, a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target for the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible functional modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kathrin Thell
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mina Vasileva
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Taj Muhammad
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sunithi Gunasekera
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Daniel Kümmel
- School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Christian W Becker
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
196
|
Kremer L, Schultz-Fademrecht C, Baumann M, Habenberger P, Choidas A, Klebl B, Kordes S, Schöler HR, Sterneckert J, Ziegler S, Schneider G, Waldmann H. Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lea Kremer
- Abteilung für Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Germany
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Germany
| | | | - Matthias Baumann
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Axel Choidas
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Bert Klebl
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Susanne Kordes
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
- Abteilung Zell- und Entwicklungsbiologie; Max-Planck-Institut für Molekulare Biomedizin; Röntgenstraße 20 48149 Münster Germany
| | - Hans R. Schöler
- Abteilung Zell- und Entwicklungsbiologie; Max-Planck-Institut für Molekulare Biomedizin; Röntgenstraße 20 48149 Münster Germany
| | - Jared Sterneckert
- Abteilung Zell- und Entwicklungsbiologie; Max-Planck-Institut für Molekulare Biomedizin; Röntgenstraße 20 48149 Münster Germany
- DFG-Center for Regenerative Therapies; Cluster of Excellence; Technische Universität Dresden; Fetscherstr. 105 01307 Dresden Germany
| | - Slava Ziegler
- Abteilung für Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Gisbert Schneider
- Institut für Pharmazeutische Wissenschaften; Departement Chemie und Angewandte Biowissenschaften; ETH Zürich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Herbert Waldmann
- Abteilung für Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Germany
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
197
|
Kremer L, Schultz-Fademrecht C, Baumann M, Habenberger P, Choidas A, Klebl B, Kordes S, Schöler HR, Sterneckert J, Ziegler S, Schneider G, Waldmann H. Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction. Angew Chem Int Ed Engl 2017; 56:13021-13025. [PMID: 28833911 DOI: 10.1002/anie.201707394] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 01/20/2023]
Abstract
Cell-based assays enable monitoring of small-molecule bioactivity in a target-agnostic manner and help uncover new biological mechanisms. Subsequent identification and validation of the small-molecule targets, typically employing proteomics techniques, is very challenging and limited, in particular if the targets are membrane proteins. Herein, we demonstrate that the combination of cell-based bioactive-compound discovery with cheminformatic target prediction may provide an efficient approach to accelerate the process and render target identification and validation more efficient. Using a cell-based assay, we identified the pyrazolo-imidazole smoothib as a new inhibitor of hedgehog (Hh) signaling and an antagonist of the protein smoothened (SMO) with a novel chemotype. Smoothib targets the heptahelical bundle of SMO, prevents its ciliary localization, reduces the expression of Hh target genes, and suppresses the growth of Ptch+/- medulloblastoma cells.
Collapse
Affiliation(s)
- Lea Kremer
- Abteilung für Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | | | - Matthias Baumann
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Susanne Kordes
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,Abteilung Zell- und Entwicklungsbiologie, Max-Planck-Institut für Molekulare Biomedizin, Röntgenstraße 20, 48149, Münster, Germany
| | - Hans R Schöler
- Abteilung Zell- und Entwicklungsbiologie, Max-Planck-Institut für Molekulare Biomedizin, Röntgenstraße 20, 48149, Münster, Germany
| | - Jared Sterneckert
- Abteilung Zell- und Entwicklungsbiologie, Max-Planck-Institut für Molekulare Biomedizin, Röntgenstraße 20, 48149, Münster, Germany.,DFG-Center for Regenerative Therapies, Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Slava Ziegler
- Abteilung für Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Gisbert Schneider
- Institut für Pharmazeutische Wissenschaften, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Herbert Waldmann
- Abteilung für Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
198
|
Tentu S, Nandarapu K, Muthuraj P, Venkitasamy K, Venkatraman G, Rayala SK. DHQZ-17, a potent inhibitor of the transcription factor HNF4A, suppresses tumorigenicity of head and neck squamous cell carcinoma in vivo. J Cell Physiol 2017; 233:2613-2628. [PMID: 28782802 DOI: 10.1002/jcp.26139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/03/2017] [Indexed: 11/07/2022]
Abstract
A series of 2, 3-dihydroquinazolinone derivatives were synthesized, characterized and their anticancer activity was determined. Among the compounds synthesized and screened, one compound (17) showed potent anticancer activity against human head and neck squamous cell carcinoma cell line, SCC131 and was non-toxic to normal cells. The compound inhibited the growth of SCC131 cells, with an IC50 of 1.75 μM, triggered apoptotic mode of cell death and caused tumor regression of SCC131 tumor xenografts in athymic mice. To decipher the target for the lead compound, a high throughput qPCR array was performed. Results showed that the compound 17, inhibited the expression of a vital transcription factor HNF4A, involved in regulation of metabolic pathways. Thus, the present work has identified a lead compound 17, with potent anticancer activity, minimal normal cell toxicity and a plausible target and hence definitely holds future prospects as an anticancer agent.
Collapse
Affiliation(s)
- Shilpa Tentu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, India
| | - Kumarswamyreddy Nandarapu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, India
| | - Prakash Muthuraj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, India
| | - Kesavan Venkitasamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, India
| | - Ganesh Venkatraman
- Department of Human Genetics, College of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai, India
| | - Suresh K Rayala
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, India
| |
Collapse
|
199
|
Zhai K, Zheng J, Tang Y, Li F, Lv Y, Zhang Y, Gao Z, Qi J, Yu B, Kou J. The saponin D39 blocks dissociation of non-muscular myosin heavy chain IIA from TNF receptor 2, suppressing tissue factor expression and venous thrombosis. Br J Pharmacol 2017; 174:2818-2831. [PMID: 28547925 PMCID: PMC5554322 DOI: 10.1111/bph.13885] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-muscular myosin heavy chain IIA (NMMHC IIA) plays a key role in tissue factor expression and venous thrombosis. Natural products might inhibit thrombosis through effects on NMMHC IIA. Here, we have shown that a natural saponin, D39, from Liriope muscari exerted anti-thrombotic activity in vivo, by targeting NMMHC IIA. EXPERIMENTAL APPROACH Expression and activity of tissue factor in endothelial cells were analysed in vitro by Western blot and simplified chromogenic assays. Interactions between D39 and NMMHC IIA were assessed by serial affinity chromatography and molecular docking analysis. D39-dependent interactions between NMMHC IIA and TNF receptor 2 (TNFR2) were measured by immunofluorescence, co-immunoprecipitation and proximity ligation assays. Anti-thrombotic activity of D39 in vivo was evaluated with a model of inferior vena cava ligation injury in mice. KEY RESULTS D39 inhibited tissue factor expression and procoagulant activities in HUVECs and decreased thrombus weight in inferior vena cava-ligated mice dose-dependently. Serial affinity chromatography and molecular docking analysis suggested that D39 bound to NMMHC IIA. In HEK293T cells, D39 inhibited tissue factor expression evoked by NMMHC IIA overexpression. This effect was blocked by NMMHC IIA knockdown in HUVECs. D39 inhibited dissociation of NMMHC IIA from TNFR2, which subsequently modulated the Akt/GSK3β-NF-κB signalling pathways. CONCLUSIONS AND IMPLICATIONS D39 inhibited tissue factor expression and thrombus formation by modulating the Akt/GSK3β and NF-κB signalling pathways through NMMHC IIA. We identified a new natural product that targeted NMMHC IIA, as a potential treatment for thrombotic disorders and other vasculopathies.
Collapse
Affiliation(s)
- Ke‐feng Zhai
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
- Institute of Pharmaceutical Biotechnology, School of Biological and Food EngineeringSuzhou UniversitySuzhouChina
| | - Jin‐rong Zheng
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - You‐mei Tang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Fang Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Yan‐ni Lv
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Yuan‐yuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Zhen Gao
- Department of Medicine‐Ather&LipoBaylor Colledge of MedicineHoustonTXUSA
| | - Jin Qi
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Bo‐yang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Jun‐ping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
200
|
Pan S, Jang SY, Wang D, Liew SS, Li Z, Lee JS, Yao SQ. A Suite of “Minimalist” Photo-Crosslinkers for Live-Cell Imaging and Chemical Proteomics: Case Study with BRD4 Inhibitors. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sijun Pan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Se-Young Jang
- Molecular Recognition Research Center; Bio-Med Program of KIST-School UST; Korea Institute of Science & Technology; Hwarangno 14-gil 5, Seongbuk-gu Seoul 136-791 Korea
| | - Danyang Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Si Si Liew
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Zhengqiu Li
- College of Pharmacy; Jinan University; Guangzhou 510632 China
| | - Jun-Seok Lee
- Molecular Recognition Research Center; Bio-Med Program of KIST-School UST; Korea Institute of Science & Technology; Hwarangno 14-gil 5, Seongbuk-gu Seoul 136-791 Korea
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|