Turo MJ, Macdonald JE. Crystal-bound vs surface-bound thiols on nanocrystals.
ACS NANO 2014;
8:10205-13. [PMID:
25219599 DOI:
10.1021/nn5032164]
[Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The use of thiol ligands as a sulfur source for nanocrystal synthesis has recently come en vogue, as the products are often high quality. A comparative study was performed of dodecanethiol-capped Cu2S prepared with elemental sulfur and thiol sulfur reagents. XPS and TGA-MS provide evidence for differing binding modes of the capping thiols. Under conditions where the thiol acts only as a ligand, the capping thiols are "surface-bound" and bond to surface cations in low coordination number sites. In contrast, when thiols are used as a sulfur source, "crystal-bound" thiols result that sit in high coordination sites and are the terminal S layer of the crystal. A (1)H NMR study shows suppressed surface reactivity and ligand exchange with crystal-bound thiols, which could limit further application of the particles. To address the challenge and opportunity of nonlabile ligands, dodecyl-3-mercaptopropanoate, a molecule possessing both a thiol and an ester, was used as the sulfur source for the synthesis of Cu2S and CuInS2. A postsynthetic base hydrolysis cleaves the ester, leaving a carboxylate corona around the nanocrystals and rendering the particles water-soluble.
Collapse