151
|
Cheng X, Miao T, Ma Y, Zhang W. Chiral Expression and Morphology Control in Polymer Dispersion Systems. Chempluschem 2022; 87:e202100556. [DOI: 10.1002/cplu.202100556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaoxiao Cheng
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Tengfei Miao
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Yafei Ma
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Wei Zhang
- Soochow University Department of Polymer Science and Engineering No.199 Renai Road 215123 Suzhou CHINA
| |
Collapse
|
152
|
Wang H, Fliedel C, Manoury E, Poli R. Core-crosslinked micelles with a poly-anionic poly(styrene sulfonate)-based outer shell made by RAFT polymerization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
153
|
Liu Y, Sun Y, Zhang W. Synthesis of
Stimuli‐Responsive
Block Copolymers and Block Copolymer Nano‐assemblies. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuan Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Yu Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
154
|
Kozhunova EY, Plutalova AV, Chernikova EV. RAFT Copolymerization of Vinyl Acetate and Acrylic Acid in the Selective Solvent. Polymers (Basel) 2022; 14:555. [PMID: 35160544 PMCID: PMC8838437 DOI: 10.3390/polym14030555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Reversible addition-fragmentation chain transfer polymerization was successfully applied to the synthesis of the gradient copolymer of acrylic acid and vinyl acetate in the selective solvent. The gradient degree of the copolymer was varied by the monomer feed. The monomer conversion was found to affect the ability of the copolymer to self-assemble in aqueous solutions in narrowly dispersed micelles with an average hydrodynamic radius of about 250 nm. Furthermore, the synthesized copolymers also tended to self-assemble throughout copolymerization in the selective solvent.
Collapse
Affiliation(s)
- Elena Yu. Kozhunova
- Faculty of Physics, Lomonosov Moscow State University, Lenin Hills, 1, bld. 2, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, bld. 3, 119991 Moscow, Russia
| | - Anna V. Plutalova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, bld. 3, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, bld. 3, 119991 Moscow, Russia
| |
Collapse
|
155
|
Ning Y, Armes SP, Li D. Polymer-Inorganic Crystalline Nanocomposite Materials via Nanoparticle Occlusion. Macromol Rapid Commun 2022; 43:e2100793. [PMID: 35078274 DOI: 10.1002/marc.202100793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Indexed: 11/10/2022]
Abstract
Efficient occlusion of guest nanoparticles into host single crystals opens up a straightforward and versatile way to construct functional crystalline nanocomposites. This new technique has attracted increasing research interest because it enables the composition, structure and property of the resulting nanocomposites to be well-controlled. In this review article, we aim to provide a comprehensive summary of nanoparticle occlusion within inorganic crystals. First, we summarize recently-developed strategies for the occlusion of various colloidal particles (e.g., diblock copolymer nanoparticles, polymer-modified inorganic nanoparticles, oil droplets, etc.) within host crystals (e.g., CaCO3 , ZnO or ZIF-8). Second, new results pertaining to spatially-controlled occlusion and the physical mechanism of nanoparticle occlusion are briefly discussed. Finally, we highlight the physicochemical properties and potential applications of various functional nanocomposite crystals constructed via nanoparticle occlusion and we also offer our perspective on the likely future for this research topic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yin Ning
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China.,College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Dan Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China.,College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
156
|
Parkatzidis K, Truong NP, Rolland M, Lutz‐Bueno V, Pilkington EH, Mezzenga R, Anastasaki A. Transformer‐Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
| | - Manon Rolland
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Viviane Lutz‐Bueno
- Department of Health Sciences and Technology ETH Zurich Zurich 8092 Switzerland
| | - Emily H. Pilkington
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
| | - Raffaele Mezzenga
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
- Department of Health Sciences and Technology ETH Zurich Zurich 8092 Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| |
Collapse
|
157
|
Tkachenko V, Kunemann P, Malval JP, Petithory T, Pieuchot L, Vidal L, Chemtob A. Kinetically stable sub-50 nm fluorescent block copolymer nanoparticles via photomediated RAFT dispersion polymerization for cellular imaging. NANOSCALE 2022; 14:534-545. [PMID: 34935832 DOI: 10.1039/d1nr04934h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled block copolymer nanoparticles (NPs) have emerged as major potential nanoscale vehicles for fluorescence bioimaging. The preparation of NPs with high yields possessing high kinetic stability to prevent the leakage of fluorophore molecules is crucial to their practical implementation. Here, we report a photomediated RAFT polymerization-induced self-assembly (PISA) yielding uniform and nanosized poly((oligo(ethylene glycol) acrylate)-block-poly(benzyl acrylate) particles (POEGA-b-PBzA) with a concentration of 22 wt%, over 20 times more than with micellization and nanoprecipitation. The spherical diblock copolymer nanoparticles have an average size of 10-50 nm controllable through the degree of polymerization of the stabilizing POEGA block. Subsequent dialysis against water and swelling with Nile red solution led to highly stable fluorescent NPs able to withstand the changes in concentration, ionic strength, pH or temperature. A PBzA/water interfacial tension of 48.6 mN m-1 hinders the exchange between copolymer chains, resulting in the trapping of NPs in a "kinetically frozen" state responsible for high stability. A spectroscopic study combining fluorescence and UV-vis absorption agrees with a preferential distribution of fluorophores in the outer POEGEA shell despite its hydrophobic nature. Nile red-doped POEGA-b-PBzA micelles without initiator residues and unimers but with high structural stability turn out to be noncytotoxic, and can be used for the optical imaging of cells. Real-time confocal fluorescence microscopy shows a fast cellular uptake using C2C12 cell lines in minutes, and a preferential localization in the perinuclear region, in particular in the vesicles.
Collapse
Affiliation(s)
- Vitalii Tkachenko
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Philippe Kunemann
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Jean Pierre Malval
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Tatiana Petithory
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Laurent Pieuchot
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Loïc Vidal
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Abraham Chemtob
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| |
Collapse
|
158
|
Dhiraj HS, Ishizuka F, Elshaer A, Zetterlund PB, Aldabbagh F. RAFT dispersion polymerization induced self-assembly (PISA) of boronic acid-substituted acrylamides. Polym Chem 2022. [DOI: 10.1039/d2py00530a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
For the unprotected monomer, the boroxine core of nanoparticles allows transitions to higher order morphologies, while worms and vesicles are yielded directly from PISA of the pinacol ester-protected monomer.
Collapse
Affiliation(s)
- Harpal S. Dhiraj
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Amr Elshaer
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
159
|
Zhou P, Shi B, Liu Y, Li P, Wang G. Exploration of the modification-induced self-assembly (MISA) technique and the preparation of nano-objects with a functional poly(acrylic acid) core. Polym Chem 2022. [DOI: 10.1039/d2py00666a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hydrolysis-based post-polymerization modification method was introduced into the self-assembly process and a modification-induced self-assembly (MISA) technique was presented.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuang Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Penghan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
160
|
Oh XY, Sakar J, Cham N, Er GTK, Pan HM, Goto A. Self-catalyzed synthesis of a nano-capsule and its application as a heterogeneous RCMP catalyst and nano-reactor. Polym Chem 2022. [DOI: 10.1039/d2py01086k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A nano-capsule synthesized via self-catalyzed RCMP and its use as a heterogeneous catalyst and a nano-reactor of RCMP to generate a multi-elemental particle.
Collapse
Affiliation(s)
- Xin Yi Oh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Jit Sakar
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Ning Cham
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Gerald Tze Kwang Er
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Houwen Matthew Pan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Atsushi Goto
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
161
|
Deng F, Yang M, Zhang Y, Wu X, Ma R, Ma F, Shi L. One-pot synthesis of high-concentration mixed-shell polymeric micelles as nanochaperones for the renaturation of bulk proteins. Polym Chem 2022. [DOI: 10.1039/d1py01404h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot synthesis of high-concentration mixed-shell polymeric micelles and synthetic nanoparticles can be used to assist the refolding of bulk denatured proteins and stabilize native proteins for long-term storage.
Collapse
Affiliation(s)
- Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Menglin Yang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Yanli Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Materials Science and Engineering, Tiangong University, Tianjin, P.R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| |
Collapse
|
162
|
György C, Smith T, Growney DJ, Armes SP. Synthesis and derivatization of epoxy-functional sterically-stabilized diblock copolymer spheres in non-polar media: does the spatial location of the epoxy groups matter? Polym Chem 2022. [DOI: 10.1039/d2py00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epoxy-functional sterically-stabilized diblock copolymer nanoparticles are prepared via PISA in mineral oil and then derivatized using various reagents and reaction conditions.
Collapse
Affiliation(s)
- Csilla György
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Timothy Smith
- Lubrizol Ltd, Nether Lane, Hazelwood, Derbyshire, DE56 4AN, UK
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
163
|
Kim HJ, Ishizuka F, Kuchel RP, Chatani S, Niino H, Zetterlund PB. Synthesis of low glass transition temperature worms comprising a poly(styrene- stat-n-butyl acrylate) core segment via polymerization-induced self-assembly in RAFT aqueous emulsion polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01636a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synthesis of nanodimensional polymeric worms of low glass transition temperature using aqueous polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
164
|
Varlas S, Neal TJ, Armes SP. Polymerization-induced self-assembly and disassembly during the synthesis of thermoresponsive ABC triblock copolymer nano-objects in aqueous solution. Chem Sci 2022; 13:7295-7303. [PMID: 35799807 PMCID: PMC9214878 DOI: 10.1039/d2sc01611g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) has been widely utilized as a powerful methodology for the preparation of various self-assembled AB diblock copolymer nano-objects in aqueous media. Moreover, it is well-documented that chain extension of AB diblock copolymer vesicles using a range of hydrophobic monomers via seeded RAFT aqueous emulsion polymerization produces framboidal ABC triblock copolymer vesicles with adjustable surface roughness owing to microphase separation between the two enthalpically incompatible hydrophobic blocks located within their membranes. However, the utilization of hydrophilic monomers for the chain extension of linear diblock copolymer vesicles has yet to be thoroughly explored; this omission is addressed for aqueous PISA formulations in the present study. Herein poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (G-H) vesicles were used as seeds for the RAFT aqueous dispersion polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Interestingly, this led to polymerization-induced disassembly (PIDA), with the initial precursor vesicles being converted into lower-order worms or spheres depending on the target mean degree of polymerization (DP) for the corona-forming POEGMA block. Moreover, construction of a pseudo-phase diagram revealed an unexpected copolymer concentration dependence for this PIDA formulation. Previously, we reported that PHPMA-based diblock copolymer nano-objects only exhibit thermoresponsive behavior over a relatively narrow range of compositions and DPs (see Warren et al., Macromolecules, 2018, 51, 8357–8371). However, introduction of the POEGMA coronal block produced thermoresponsive ABC triblock nano-objects even when the precursor G-H diblock copolymer vesicles proved to be thermally unresponsive. Thus, this new approach is expected to enable the rational design of new nano-objects with tunable composition, copolymer architectures and stimulus-responsive behavior. Chain extension of linear AB diblock copolymer vesicles by seeded RAFT aqueous dispersion polymerization using a hydrophilic monomer C leads to polymerization-induced disassembly to form lower-order thermoresponsive ABC triblock copolymer nano-objects.![]()
Collapse
Affiliation(s)
- Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | - Thomas J. Neal
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|
165
|
Fan B, Wan J, Zhai J, Teo NKS, Huynh A, Thang SH. Photoluminescent polymer cubosomes prepared by RAFT-mediated polymerization-induced self-assembly. Polym Chem 2022. [DOI: 10.1039/d2py00701k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of photoluminescent polymer assemblies with a wide range of morphologies, including spongosomes and cubosomes, via an efficient RAFT-mediated polymerization-induced self-assembly (RAFT-PISA) process, was demonstrated.
Collapse
Affiliation(s)
- Bo Fan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Monash Node, VIC 3800, Australia
| | - Jing Wan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Andy Huynh
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - San H. Thang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Monash Node, VIC 3800, Australia
| |
Collapse
|
166
|
Beattie DL, Deane OJ, Mykhaylyk OO, Armes SP. RAFT aqueous dispersion polymerization of 4-hydroxybutyl acrylate: effect of end-group ionization on the formation and colloidal stability of sterically-stabilized diblock copolymer nanoparticles. Polym Chem 2022. [DOI: 10.1039/d1py01562a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(2-hydroxyethyl acrylate)-poly(4-hydroxybutyl acrylate) nano-objects are prepared by aqueous polymerization-induced self-assembly (PISA) using an ionic RAFT agent.
Collapse
Affiliation(s)
- Deborah L. Beattie
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Oliver J. Deane
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Oleksandr O. Mykhaylyk
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
167
|
Jia S, Zhang L, Chen Y, Tan J. Polymers with multiple functions: α,ω-macromolecular photoinitiators/chain transfer agents used in aqueous photoinitiated polymerization-induced self-assembly. Polym Chem 2022. [DOI: 10.1039/d2py00606e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of α,ω-functionalized polymers with a photoinitiator end group and a RAFT end group were synthesized and employed as macromolecular photoinitiators/chain transfer agents in aqueous photoinitiated polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
168
|
Kadirkhanov J, Zhong F, Zhang W, Hong C. Preparation of Multi-chambered Vesicles by Polymerization-induced Self-assembly and the Influence of Solvophilic Fragments in the Core-forming Blocks. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
169
|
Stouten J, Sijstermans N, Babilotte J, Pich A, Moroni L, Bernaerts KV. Micellar drug delivery vehicles formed from amphiphilic block copolymers bearing photo-cross-linkable cyclopentenone side groups. Polym Chem 2022. [DOI: 10.1039/d2py00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV core cross-linkable amphiphilic block copolymers containing cyclopentenone side groups on the hydrophobic backbone were synthesized and drug delivery experiments were done with the cancer therapeutic drug Doxorubicin.
Collapse
Affiliation(s)
- Jules Stouten
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Nick Sijstermans
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Zuyd University of Applied Science, Faculty of Beta Sciences and Technology, Nieuw Eyckholt 300, 6419 DJ, Heerlen, The Netherlands
| | - Joanna Babilotte
- Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Andrij Pich
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- DWI Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Lorenzo Moroni
- Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
170
|
Yang CL, Zhong F, Pan CY, Zhang WJ, Hong CY. Influence of Solvent on RAFT-mediated Polymerization of Benzyl Methacrylate (BzMA) and How to Overcome the Thermodynamic/Kinetic Limitation of Morphology Evolution during Polymerization-Induced Self-Assembly. Polym Chem 2022. [DOI: 10.1039/d2py00198e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymerization-induced self-assembly (PISA) has been demonstrated to be a powerful strategy to produce polymeric nano-objects of various morphologies. Dependent on the solubility of monomers, PISA is usually classified into two...
Collapse
|
171
|
Hairy nanoparticles by atom transfer radical polymerization in miniemulsion. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
172
|
L-menthol and thymol eutectic mixture as a bio-based solvent for the “one-pot” synthesis of well-defined amphiphilic block copolymers by ATRP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
173
|
Penfold NJW, Neal TJ, Plait C, Leigh AE, Chimonides G, Smallridge MJ, Armes SP. Reverse sequence polymerization-induced self-assembly in aqueous media: a counter-intuitive approach to sterically-stabilized diblock copolymer nano-objects. Polym Chem 2022. [DOI: 10.1039/d2py01064j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A 500 nm charge-stabilized latex is converted into 40 nm sterically-stabilized nanoparticles via reverse sequence polymerization-induced self-assembly (PISA).
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Thomas J. Neal
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Corentin Plait
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Andrew E. Leigh
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Gwen Chimonides
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
174
|
Niu B, Chen Y, Zhang L, Tan J. Organic–inorganic hybrid nanomaterials prepared via polymerization-induced self-assembly: recent developments and future opportunities. Polym Chem 2022. [DOI: 10.1039/d2py00180b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review highlights recent developments in the preparation of organic–inorganic hybrid nanomaterials via polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Bing Niu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
175
|
Czajka A, Byard SJ, Armes SP. Silica nanoparticle-loaded thermoresponsive block copolymer vesicles: a new post-polymerization encapsulation strategy and thermally triggered release. Chem Sci 2022; 13:9569-9579. [PMID: 36091885 PMCID: PMC9400661 DOI: 10.1039/d2sc02103j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
A thermoresponsive amphiphilic diblock copolymer that can form spheres, worms or vesicles in aqueous media at neutral pH by simply raising the dispersion temperature from 1 °C (spheres) to 25 °C (worms) to 50 °C (vesicles) is prepared via polymerization-induced self-assembly (PISA). Heating such an aqueous copolymer dispersion from 1 °C up to 50 °C in the presence of 19 nm glycerol-functionalized silica nanoparticles enables this remarkable ‘shape-shifting’ behavior to be exploited as a new post-polymerization encapsulation strategy. The silica-loaded vesicles formed at 50 °C are then crosslinked using a disulfide-based dihydrazide reagent. Such covalent stabilization enables the dispersion to be cooled to room temperature without loss of the vesicle morphology, thus aiding characterization and enabling the loading efficiency to be determined as a function of both copolymer and silica concentration. Small-angle X-ray scattering (SAXS) analysis indicated a mean vesicle membrane thickness of approximately 20 ± 2 nm for the linear vesicles and TEM studies confirmed encapsulation of the silica nanoparticles within these nano-objects. After removal of the non-encapsulated silica nanoparticles via multiple centrifugation–redispersion cycles, thermogravimetric analysis indicated that vesicle loading efficiencies of up to 86% can be achieved under optimized conditions. Thermally-triggered release of the silica nanoparticles is achieved by cleaving the disulfide bonds at 50 °C using tris(2-carboxyethyl)phosphine (TCEP), followed by cooling to 20 °C to induce vesicle dissociation. SAXS is also used to confirm the release of silica nanoparticles by monitoring the disappearance of the structure factor peak arising from silica–silica interactions. A loading efficiency of up to 86% is achieved for silica nanoparticles encapsulated within crosslinkable redox-sensitive thermoresponsive diblock copolymer vesicles in water at 50 °C; triggered release is also demonstrated for this system.![]()
Collapse
Affiliation(s)
- Adam Czajka
- Dainton Building, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Sarah J. Byard
- Dainton Building, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Steven P. Armes
- Dainton Building, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| |
Collapse
|
176
|
Chen C, Fei C, Xu C, Ma Y, Zhao C, Yang W. Preparation of core–shell nanoparticles via emulsion polymerization induced self-assembly using a maleamic acid-α-methyl styrene copolymer as a macro-initisurf. Polym Chem 2022. [DOI: 10.1039/d2py01042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An amphiphilic maleamic acid-α-methyl styrene copolymer (macro-initisurf) acting as a macroinitiator and emulsifier for the emulsion polymerization induced self-assembly of acrylate monomers to prepare core–shell nanoparticles.
Collapse
Affiliation(s)
- Chuxuan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaozhi Fei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Can Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials and Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials and Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
177
|
Thompson SW, Guimarães TR, Zetterlund PB. Multiblock copolymer synthesis via aqueous RAFT polymerization-induced self-assembly (PISA). Polym Chem 2022. [DOI: 10.1039/d2py01005d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing RAFT PISA emulsion polymerization to synthesize high molecular weight hexablock multiblock copolymers.
Collapse
Affiliation(s)
- Steven W. Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- School of Chemistry and Physics, Queensland University of Technology (OUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
178
|
Hibino M, Tanaka K, Ouchi M, Terashima T. Amphiphilic Random-Block Copolymer Micelles in Water: Precise and Dynamic Self-Assembly Controlled by Random Copolymer Association. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masayuki Hibino
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
179
|
Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J Control Release 2021; 342:93-110. [PMID: 34973308 DOI: 10.1016/j.jconrel.2021.12.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
In the drug delivery field, there is beyond doubt that the shape of micro- and nanoparticles (M&NPs) critically affects their biological fate. Herein, following an introduction describing recent technological advances for designing nonspherical M&NPs, we highlight the role of particle shape in cell capture, subcellular distribution, intracellular drug delivery, and cytotoxicity. Then, we discuss theoretical approaches for understanding the effect of particle shape on internalization by the cell membrane. Subsequently, recent advances on shape-dependent behaviors of M&NPs in the systemic circulation are detailed. In particular, the interaction of M&NPs with blood proteins, biodistribution, and circulation under flow conditions are analyzed. Finally, the hurdles and future directions for developing nonspherical M&NPs are underscored.
Collapse
Affiliation(s)
- Hicheme Hadji
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France.
| |
Collapse
|
180
|
RAFT Emulsion Polymerization of Styrene Using a Poly(( N,N-dimethyl acrylamide)- co-( N-isopropyl acrylamide)) mCTA: Synthesis and Thermosensitivity. Polymers (Basel) 2021; 14:polym14010062. [PMID: 35012086 PMCID: PMC8747436 DOI: 10.3390/polym14010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 01/13/2023] Open
Abstract
Thermoresponsive poly((N,N-dimethyl acrylamide)-co-(N-isopropyl acrylamide)) (P(DMA-co-NIPAM)) copolymers were synthesized via reversible addition−fragmentation chain transfer (RAFT) polymerization. The monomer reactivity ratios were determined by the Kelen–Tüdős method to be rNIPAM = 0.83 and rDMA = 1.10. The thermoresponsive properties of these copo-lymers with varying molecular weights were characterized by visual turbidimetry and dynamic light scattering (DLS). The copolymers showed a lower critical solution temperature (LCST) in water with a dependence on the molar fraction of DMA in the copolymer. Chaotropic and kosmotropic salt anions of the Hofmeister series, known to affect the LCST of thermoresponsive polymers, were used as additives in the aqueous copolymer solutions and their influence on the LCST was demonstrated. Further on, in order to investigate the thermoresponsive behavior of P(DMA-co-NIPAM) in a confined state, P(DMA-co-NIPAM)-b-PS diblock copolymers were prepared via polymerization induced self-assembly (PISA) through surfactant-free RAFT mediated emulsion polymerization of styrene using P(DMA-co-NIPAM) as the macromolecular chain transfer agent (mCTA) of the polymerization. As confirmed by cryogenic transmission electron microscopy (cryoTEM), this approach yielded stabilized spherical micelles in aqueous dispersions where the PS block formed the hydrophobic core and the P(DMA-co-NIPAM) block formed the hydrophilic corona of the spherical micelle. The temperature-dependent behavior of the LCST-type diblock copolymers was further studied by examining the collapse of the P(DMA-co-NIPAM) minor block of the P(DMA-co-NIPAM)-b-PS diblock copolymers as a function of temperature in aqueous solution. The nanospheres were found to be thermosensitive by changing their hydrodynamic radii almost linearly as a function of temperature between 25 °C and 45 °C. The addition of kosmotropic salt anions, as a potentially useful tuning feature of micellar assemblies, was found to increase the hydrodynamic radius of the micelles and resulted in a faster collapse of the micelle corona upon heating.
Collapse
|
181
|
Luo X, Zhang K, Zeng R, Chen Y, Zhang L, Tan J. Segmented Copolymers Synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization Using an Asymmetric Difunctional RAFT Agent and the Utilization in RAFT-Mediated Dispersion Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xinyi Luo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Kunlun Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Zeng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
182
|
Liu X, Moradi M, Bus T, Debije MG, Bon SAF, Heuts JPA, Schenning APHJ. Flower‐Like Colloidal Particles through Precipitation Polymerization of Redox‐Responsive Liquid Crystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaohong Liu
- Stimuli-Responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Mohammad‐Amin Moradi
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Laboratory of Physical Chemistry Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Tom Bus
- Stimuli-Responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Michael G. Debije
- Stimuli-Responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Stefan A. F. Bon
- Department of Chemistry The University of Warwick Coventry CV4 7AL UK
| | - Johan P. A. Heuts
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Supramolecular Polymer Chemistry group Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Albert P. H. J. Schenning
- Stimuli-Responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| |
Collapse
|
183
|
Duro-Castano A, Rodríguez-Arco L, Ruiz-Pérez L, De Pace C, Marchello G, Noble-Jesus C, Battaglia G. One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles. Biomacromolecules 2021; 22:5052-5064. [PMID: 34762395 PMCID: PMC8672347 DOI: 10.1021/acs.biomac.1c01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/17/2021] [Indexed: 12/21/2022]
Abstract
Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
- Institute
for the Physics of Living Systems, University
College London, London WC1E 6BT, U.K.
| | - Laura Rodríguez-Arco
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
- Institute
for the Physics of Living Systems, University
College London, London WC1E 6BT, U.K.
- Department
of Applied Physics, University of Granada, 18071 Granada, Spain
| | - Lorena Ruiz-Pérez
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
- Institute
for the Physics of Living Systems, University
College London, London WC1E 6BT, U.K.
- The
EPSRC/Jeol Centre for Liquid Phase Electron Microscopy, University College London, London WC1H 0AJ, U.K.
| | - Cesare De Pace
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
- Institute
for the Physics of Living Systems, University
College London, London WC1E 6BT, U.K.
- The
EPSRC/Jeol Centre for Liquid Phase Electron Microscopy, University College London, London WC1H 0AJ, U.K.
| | - Gabriele Marchello
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
- Institute
for the Physics of Living Systems, University
College London, London WC1E 6BT, U.K.
- The
EPSRC/Jeol Centre for Liquid Phase Electron Microscopy, University College London, London WC1H 0AJ, U.K.
- Institute
for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Carlos Noble-Jesus
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
- Institute
for the Physics of Living Systems, University
College London, London WC1E 6BT, U.K.
| | - Giuseppe Battaglia
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
- Institute
for the Physics of Living Systems, University
College London, London WC1E 6BT, U.K.
- The
EPSRC/Jeol Centre for Liquid Phase Electron Microscopy, University College London, London WC1H 0AJ, U.K.
- Institute
for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
184
|
Brotherton EE, Smallridge MJ, Armes SP. Aldehyde-Functional Diblock Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization. Biomacromolecules 2021; 22:5382-5389. [PMID: 34814688 DOI: 10.1021/acs.biomac.1c01327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the rational design of aldehyde-functional sterically stabilized diblock copolymer nano-objects in aqueous solution via polymerization-induced self-assembly. More specifically, reversible addition-fragmentation chain transfer aqueous dispersion polymerization of 2-hydroxypropyl methacrylate is conducted using a water-soluble precursor block in which every methacrylic repeat unit contains a pendent oligo(ethylene glycol) side chain capped with a cis-diol unit. Systematic variation of the reaction conditions enables the construction of a pseudo-phase diagram, which ensures the reproducible targeting of pure spheres, worms, or vesicles. Selective oxidation of the pendent cis-diol groups using aqueous sodium periodate under mild conditions introduces geminal diols (i.e., the hydrated form of an aldehyde obtained in the presence of water) into the steric stabilizer chains without loss of colloidal stability. In the case of diblock copolymer vesicles, such derivatization leads to the formation of a worm population, indicating partial loss of the original morphology. However, this problem can be circumvented by cross-linking the membrane-forming block prior to periodate oxidation. Moreover, such covalently stabilized aldehyde-functionalized vesicles can be subsequently reacted with either glycine or histidine in aqueous solution, followed by reductive amination to prevent hydrolysis of the labile imine bond. ζ potential measurements confirm that this derivatization significantly affects the electrophoretic behavior of these vesicles. Similarly, the membrane-crosslinked aldehyde-functionalized vesicles can be reacted with a model globular protein, bovine serum albumin, to produce "stealthy" protein-decorated vesicles.
Collapse
Affiliation(s)
- Emma E Brotherton
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Mark J Smallridge
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
185
|
Romero Castro VL, Nomeir B, Arteni AA, Ouldali M, Six JL, Ferji K. Dextran-Coated Latex Nanoparticles via Photo-RAFT Mediated Polymerization Induced Self-Assembly. Polymers (Basel) 2021; 13:4064. [PMID: 34883567 PMCID: PMC8658814 DOI: 10.3390/polym13234064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Polysaccharide coated nanoparticles represent a promising class of environmentally friendly latex to replace those stabilized by small toxic molecular surfactants. We report here an in situ formulation of free-surfactant core/shell nanoparticles latex consisting of dextran-based diblock amphiphilic copolymers. The synthesis of copolymers and the immediate latex formulation were performed directly in water using a photo-initiated reversible addition fragmentation chain transfer-mediated polymerization induced self-assembly strategy. A hydrophilic macromolecular chain transfer-bearing photosensitive thiocarbonylthio group (eDexCTA) was first prepared by a modification of the reducing chain end of dextran in two steps: (i) reductive amination by ethylenediamine in the presence of sodium cyanoborohydride, (ii) then introduction of CTA by amidation reaction. Latex nanoparticles were then formulated in situ by chain-extending eDexCTA using 2-hydroxypropyl methacrylate (HPMA) under 365 nm irradiation, leading to amphiphilic dextran-b-poly(2-hydroxypropyl methacrylate) diblock copolymers (DHX). Solid concentration (SC) and the average degree of polymerization - Xn-- of PHPMA block (X) were varied to investigate their impact on the size and the morphology of latex nanoparticles termed here SCDHX. Light scattering and transmission electron microscopy analysis revealed that SCDHX form exclusively spherical nano-objects. However, the size of nano-objects, ranging from 20 nm to 240 nm, increases according to PHPMA block length.
Collapse
Affiliation(s)
| | - Brahim Nomeir
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Malika Ouldali
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| |
Collapse
|
186
|
Zhong F, Pan CY. Dispersion Polymerization versus Emulsifier-Free Emulsion Polymerization for Nano-Object Fabrication: A Comprehensive Comparison. Macromol Rapid Commun 2021; 43:e2100566. [PMID: 34813132 DOI: 10.1002/marc.202100566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/01/2021] [Indexed: 01/05/2023]
Abstract
Although the preparation of nano-objects by emulsifier-free controlled/living radical emulsion polymerization has drawn much attention, the morphologies of these formed objects are difficult to predict and to reproduce because of the much more complex nucleation mechanisms of emulsion polymerization compared to only one self-assembling nucleation mechanism of controlled radical dispersion polymerization. The present study compares dispersion polymerization with emulsifier-free emulsion polymerization in terms of nucleation mechanism, polymerization kinetics, and disappearance behavior of the macrochain transfer agent, gel permeation chromatograms curves of the obtained block copolymer as well as the structural and morphological differences between the produced nano-objects on the basis of published data. Moreover, the effects of the inherently heterogeneous nature of emulsion polymerization on the mechanism of reversible addition-fragmentation transfer polymerization and the nano-object morphology are examined, and efficient agitation and adequate solubility of the core-forming monomer in water are identified as the most crucial factors for the fabrication of nonspherical nano-objects.
Collapse
Affiliation(s)
- Feng Zhong
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
187
|
Sarkar J, Lim YF, Goto A. Synthesis of Biologically Decomposable Terpolymer Nanocapsules and Higher‐Order Nanoassemblies Using RCMP‐PISA. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jit Sarkar
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| | - Ying Faye Lim
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| |
Collapse
|
188
|
Shi Q, Chen Y, Yang J, Yang J. Ring-opening polymerization-induced self-assembly (ROPISA) of salicylic acid o-carboxyanhydride. Chem Commun (Camb) 2021; 57:11390-11393. [PMID: 34647932 DOI: 10.1039/d1cc04630f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here is the first report on polyester-based nanocarriers fabricated via the ring-opening polymerization-induced self-assembly (ROPISA) of salicylic acid o-carboxyanhydride (SAOCA). This ROPISA process affords well-defined diblock copolymers that interestingly form an original cylindrical morphology.
Collapse
Affiliation(s)
- Qianqian Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yibing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Junjiao Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
189
|
Deane OJ, Jennings J, Armes SP. Shape-shifting thermoreversible diblock copolymer nano-objects via RAFT aqueous dispersion polymerization of 4-hydroxybutyl acrylate. Chem Sci 2021; 12:13719-13729. [PMID: 34760156 PMCID: PMC8549797 DOI: 10.1039/d1sc05022b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
2-Hydroxypropyl methacrylate (HPMA) is a useful model monomer for understanding aqueous dispersion polymerization. 4-Hydroxybutyl acrylate (HBA) is an isomer of HPMA: it has appreciably higher aqueous solubility so its homopolymer is more weakly hydrophobic. Moreover, PHBA possesses a significantly lower glass transition temperature than PHPMA, which ensures greater chain mobility. The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of HBA using a poly(ethylene glycol) (PEG113) precursor at 30 °C produces PEG113-PHBA200-700 diblock copolymer nano-objects. Using glutaraldehyde to crosslink the PHBA chains allows TEM studies, which reveal the formation of spheres, worms or vesicles under appropriate conditions. Interestingly, the partially hydrated highly mobile PHBA block enabled linear PEG113-PHBA x spheres, worms or vesicles to be reconstituted from freeze-dried powders on addition of water at 20 °C. Moreover, variable temperature 1H NMR studies indicated that the apparent degree of hydration of the PHBA block increases from 5% to 80% on heating from 0 °C to 60 °C indicating uniform plasticization. In contrast, the PHPMA x chains within PEG113-PHPMA x nano-objects become dehydrated on raising the temperature: this qualitative difference is highly counter-intuitive given that PHBA and PHPMA are isomers. The greater (partial) hydration of the PHBA block at higher temperature drives the morphological evolution of PEG113-PHBA260 spheres to form worms or vesicles, as judged by oscillatory rheology, dynamic light scattering, small-angle X-ray scattering and TEM studies. Finally, a variable temperature phase diagram is constructed for 15% w/w aqueous dispersions of eight PEG113-PHBA200-700 diblock copolymers. Notably, PEG113-PHBA350 can switch reversibly from spheres to worms to vesicles to lamellae during a thermal cycle.
Collapse
Affiliation(s)
- Oliver J Deane
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - James Jennings
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| |
Collapse
|
190
|
Liu X, Moradi MA, Bus T, Debije MG, Bon SAF, Heuts JPA, Schenning APHJ. Flower-Like Colloidal Particles through Precipitation Polymerization of Redox-Responsive Liquid Crystals. Angew Chem Int Ed Engl 2021; 60:27026-27030. [PMID: 34672077 PMCID: PMC9298913 DOI: 10.1002/anie.202111521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/12/2022]
Abstract
We report on the synthesis of monodisperse, flower‐like, liquid crystalline (LC) polymer particles by precipitation polymerization of a LC mixture consisting of benzoic acid‐functionalized acrylates and disulfide‐functionalized diacrylates. Introduction of a minor amount of redox‐responsive disulfide‐functionalized diacrylates (≤10 wt %) induced the formation of flower‐like shapes. The shape of the particles can be tuned from flower‐ to disk‐like to spherical by elevating the polymerization temperature. The solvent environment also has a pronounced effect on the particle size. Time‐resolved TEM reveals that the final particle morphology was formed in the early stages of the polymerization and that subsequent polymerization resulted in continued particle growth without affecting the morphology. Finally, the degradation of the particles under reducing conditions was much faster for flower‐like particles than for spherical particles, likely a result of their higher surface‐to‐volume ratio.
Collapse
Affiliation(s)
- Xiaohong Liu
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Mohammad-Amin Moradi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Tom Bus
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Michael G Debije
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Stefan A F Bon
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK
| | - Johan P A Heuts
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Supramolecular Polymer Chemistry group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| | - Albert P H J Schenning
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands
| |
Collapse
|
191
|
Derry MJ, Mykhaylyk OO, Armes SP. Shear-induced alignment of block copolymer worms in mineral oil. SOFT MATTER 2021; 17:8867-8876. [PMID: 34542137 DOI: 10.1039/d1sm01011e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poly(stearyl methacrylate)-poly(benzyl methacrylate) [PSMA-PBzMA] diblock copolymer worms were synthesized directly in mineral oil via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization at 90 °C. Free-standing gels were obtained from this polymerization-induced self-assembly (PISA) formulation when targeting PSMA13-PBzMA65 dispersions at 5% w/w to 20% w/w copolymer concentration. Gel permeation chromatography (GPC) studies indicated that almost identical copolymer chains were obtained in all cases, while transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies confirmed that highly anisotropic worms were formed with mean cross-sectional diameters of 11.9-13.1 nm. These worms undergo a thermoreversible worm-to-sphere transition on heating up to 150 °C. Rheological studies were conducted to characterize the shear rate- and concentration-dependent behaviour caused by this change in copolymer morphology, where the initial shear-thinning worm gels form spheres (i.e. a Newtonian fluid) on heating up to 150 °C. Complementary shear-induced polarized light imaging (SIPLI) experiments confirmed the formation of aligned linear worms under applied shear between 80 °C and 110 °C, with high-viscosity dispersions of branched worms being obtained at 20-60 °C and low-viscosity spheres being produced at 150 °C. This study informs the use of such block copolymer worms as rheology modifiers for non-polar oils, which is of potential interest for the automotive industry.
Collapse
Affiliation(s)
- Matthew J Derry
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| | - Oleksandr O Mykhaylyk
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| |
Collapse
|
192
|
Gao Y, Xiang Z, Zhao X, Wang G, Qi C. Pickering Emulsions Stabilized by Diblock Copolymer Worms Prepared via Reversible Addition-Fragmentation Chain Transfer Aqueous Dispersion Polymerization: How Does the Stimulus Sensitivity Affect the Rate of Demulsification? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11695-11706. [PMID: 34579524 DOI: 10.1021/acs.langmuir.1c01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Responsive Pickering emulsions exhibit promising application in industry owing to the integration of the high storage stability with on-demand demulsification. In this study, stimuli-responsive Pickering emulsions stabilized by poly[oligo(ethylene glycol) methyl ether methacrylate]15-b-poly(diacetone acrylamide)120 (E15D120) worms were indicated, in which E15D120 worms were prepared via reversible addition-fragmentation chain transfer-based aqueous dispersion polymerization using thermo-sensitive POEGMA15 as both the stabilizer block and macro-chain transfer agent. The factors influencing the morphologies of copolymers during polymerization-induced self assembly have been investigated. A series of different morphological polymer nanoparticles including spheres, worms, and vesicles could be produced through rational synthesis. E15D120 worms demonstrated excellent emulsifying performances and could be used as emulsifiers to form n-dodecane-in-water Pickering emulsions at a low content. The formed n-dodecane-in-water Pickering emulsions revealed a slow demulsification at pH 10 or 70 °C or pH 10/70 °C combinations, and several hours were needed for the demulsification of Pickering emulsions. However, n-dodecane-in-water Pickering emulsions displayed a rapid demulsification (∼10 min) at an elevated temperature, such as 90 °C. The different demulsification rates were attributed to different sensitivities of E15D120 worms to external stimuli. Pickering emulsions integrating a rapid responsive demulsification with a slow one would be well satisfactory on different occasions.
Collapse
Affiliation(s)
- Yong Gao
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Zhe Xiang
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xi Zhao
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province 414006, China
| | - Guoxiang Wang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province 414006, China
| | - Chenze Qi
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
193
|
György C, Verity C, Neal TJ, Rymaruk MJ, Cornel EJ, Smith T, Growney DJ, Armes SP. RAFT Dispersion Polymerization of Methyl Methacrylate in Mineral Oil: High Glass Transition Temperature of the Core-Forming Block Constrains the Evolution of Copolymer Morphology. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Csilla György
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Chloe Verity
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Thomas J. Neal
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Matthew J. Rymaruk
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Erik J. Cornel
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Timothy Smith
- Lubrizol Ltd., Nether Lane, Hazelwood, Derbyshire DE56 4AN, U.K
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
194
|
Pearce S, Perez-Mercader J. Chemoadaptive Polymeric Assemblies by Integrated Chemical Feedback in Self-Assembled Synthetic Protocells. ACS CENTRAL SCIENCE 2021; 7:1543-1550. [PMID: 34584956 PMCID: PMC8461774 DOI: 10.1021/acscentsci.1c00681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/26/2023]
Abstract
The design and chemical synthesis of artificial material objects which can mimic the functions of living cells is an important ongoing scientific endeavor. A key challenge necessary for fulfilling the criteria for a system to be living currently regards evolution, which is derived from adaptivity. Integrated chemical loops capable of feedback control are required to achieve chemical systems which exhibit adaptivity. To explore this, we present an integrated, two-component orthogonal chemical process involving reversible addition-fragmentation chain transfer (RAFT) based polymerization-induced self-assembly (PISA) and a copper-catalyzed azide-alkyne click (CuAAC) coupling reaction. The chemical processes are linked through electron transfer from the activated chain-transfer agent (CTA) to the dormant Cu(II) precatalyst. We show that combining these complementary chemistries in a single reaction pot resulted in two primary outcomes: (i) simplification of the PISA process to synthesize the macro-CTA in situ from available nonamphiphilic components and (ii) routes to complexity and adaptation involving population dynamics, morphologies, and dissipative phenomena observed during in situ microscopy analysis.
Collapse
Affiliation(s)
- Samuel Pearce
- Department
of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juan Perez-Mercader
- Department
of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, Massachusetts 02138, United States
- Santa
Fe Institute, Santa Fe, New Mexico 87501, United States
| |
Collapse
|
195
|
Xu XH, Jiang ZQ, Xu L, Zhou L, Liu N, Wu ZQ. Precise Synthesis of π-Conjugated Block Copolymers and Polymerization-Induced Chiral Self-Assembly toward Helical Nanofibers with Circularly Polarized Luminescence. ACS APPLIED BIO MATERIALS 2021; 4:7213-7221. [PMID: 35006953 DOI: 10.1021/acsabm.1c00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Precise synthesis and efficient self-assembly of semiconducting polymers are of great interest. Herein, we report the controlled synthesis of π-conjugated poly(phenyl isocyanide)-b-poly(phenyleneethylene) (PPI-b-PPE) copolymers via chain extension of ethynyl 4-iodobenzene initiated by Pd(II)-terminated helical poly(phenyl isocyanide) (PPI). The in-situ-generated block copolymers self-assembled into various supramolecular architectures depending on the PPE length. The helical PPI segment induced the block copolymers with an appropriate PPE length self-assemble into helical nanofibers with a controlled size and defined helicity. Interestingly, the chiral assemblies of the block copolymers exhibit intense optical activity and emit clear circularly polarized luminescence.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zhi-Qiang Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
196
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol Rapid Commun 2021; 42:e2100498. [PMID: 34418199 DOI: 10.1002/marc.202100498] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
197
|
Zhang T, Zhan C, Huang X, Huang Y, Zong L, Hong L, Ngai T. Adaptive Morphology of Surface‐Segregated Micelles Synthesized from Polymerization‐Induced Self‐Assembly Co‐Mediated by a Binary Mixture of Macro‐RAFT Agents. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tongtong Zhang
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Chengdong Zhan
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Xiangyue Huang
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Yinghui Huang
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Lina Zong
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - To Ngai
- Department of Chemistry The Chinese University of Hong Kong Shatin N.T. Hong Kong
| |
Collapse
|
198
|
Varlas S, Maitland GL, Derry MJ. Protein-, (Poly)peptide-, and Amino Acid-Based Nanostructures Prepared via Polymerization-Induced Self-Assembly. Polymers (Basel) 2021; 13:2603. [PMID: 34451144 PMCID: PMC8402019 DOI: 10.3390/polym13162603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Proteins and peptides, built from precisely defined amino acid sequences, are an important class of biomolecules that play a vital role in most biological functions. Preparation of nanostructures through functionalization of natural, hydrophilic proteins/peptides with synthetic polymers or upon self-assembly of all-synthetic amphiphilic copolypept(o)ides and amino acid-containing polymers enables access to novel protein-mimicking biomaterials with superior physicochemical properties and immense biorelevant scope. In recent years, polymerization-induced self-assembly (PISA) has been established as an efficient and versatile alternative method to existing self-assembly procedures for the reproducible development of block copolymer nano-objects in situ at high concentrations and, thus, provides an ideal platform for engineering protein-inspired nanomaterials. In this review article, the different strategies employed for direct construction of protein-, (poly)peptide-, and amino acid-based nanostructures via PISA are described with particular focus on the characteristics of the developed block copolymer assemblies, as well as their utilization in various pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Spyridon Varlas
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Georgia L Maitland
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| | - Matthew J Derry
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
199
|
Masuko K, Kumano C, Sugawara R, Nakabayashi K, Mori H. Polymerization‐induced self‐assembly of amino‐acid‐based nano‐objects by reversible addition–fragmentation chain‐transfer dispersion polymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kazunori Masuko
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| | - Chiharu Kumano
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| | - Ryo Sugawara
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| | | | - Hideharu Mori
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| |
Collapse
|
200
|
Desnos G, Rubio A, Gomri C, Gravelle M, Ladmiral V, Semsarilar M. Semi-Fluorinated Di and Triblock Copolymer Nano-Objects Prepared via RAFT Alcoholic Dispersion Polymerization (PISA). Polymers (Basel) 2021; 13:2502. [PMID: 34372106 PMCID: PMC8347566 DOI: 10.3390/polym13152502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
A set of well-defined amphiphilic, semi-fluorinated di and triblock copolymers were synthesized via polymerization-induced self-assembly (PISA) under alcoholic dispersion polymerization conditions. This study investigates the influence of the length, nature and position of the solvophobic semi-fluorinated block. A poly(N,N-dimethylaminoethyl methacrylate) was used as the stabilizing block to prepare the di and tri block copolymer nano-objects via reversible addition-fragmentation chain transfer (RAFT) controlled dispersion polymerization at 70 °C in ethanol. Benzylmethacrylate (BzMA) and semi-fluorinated methacrylates and acrylates with 7 (heptafluorobutyl methacrylate (HFBMA)), 13 (heneicosafluorododecyl methacrylate (HCFDDMA)) and 21 (tridecafluorooctyl acrylate (TDFOA)) fluorine atoms were used as monomers for the core-forming blocks. The RAFT polymerization of these semi-fluorinated monomers was monitored by SEC and 1H NMR. The evolution of the self-assembled morphologies was investigated by transmission electron microscopy (TEM). The results demonstrate that the order of the blocks and the number of fluorine atoms influence the microphase segregation of the core-forming blocks and the final morphology of the nano-objects.
Collapse
Affiliation(s)
- Gregoire Desnos
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France; (G.D.); (A.R.); (C.G.); (M.G.)
| | - Adrien Rubio
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France; (G.D.); (A.R.); (C.G.); (M.G.)
| | - Chaimaa Gomri
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France; (G.D.); (A.R.); (C.G.); (M.G.)
| | - Mathias Gravelle
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France; (G.D.); (A.R.); (C.G.); (M.G.)
| | | | - Mona Semsarilar
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France; (G.D.); (A.R.); (C.G.); (M.G.)
| |
Collapse
|