151
|
Abstract
Osteoarthritis (OA) results in the destruction and breakdown of articular cartilage matrix. Breakdown of the cartilage proteoglycan component results in the generation of constituent fragments that can be detected in the blood, synovial fluid or urine. Non-collagenous, non-proteoglycan components of cartilage can also be detected following their release as a result of turnover and disease. OA also alters the circulating profile of metabolites in the body. Metabolomic strategies have been used to distinguish populations with OA from normal populations by the creation of a metabolomic 'fingerprint' attributable to the disease. This paper is the second part of a two-part review and describes some of the techniques used to measure the concentrations of some of these 'non-collagenous' biomarkers, and how the application of these measurements assists the study of joint disease. Collagen-based biomarkers were discussed in part one.
Collapse
|
152
|
Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:105-15. [PMID: 19831641 DOI: 10.1089/ten.teb.2009.0452] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Articular cartilage injury and degeneration are leading causes of disability. Animal studies are critically important to developing effective treatments for cartilage injuries. This review focuses on the use of animal models for the study of the repair and regeneration of focal cartilage defects. Animals commonly used in cartilage repair studies include murine, lapine, canine, caprine, porcine, and equine models. There are advantages and disadvantages to each model. Small animal rodent and lapine models are cost effective, easy to house, and useful for pilot and proof-of-concept studies. The availability of transgenic and knockout mice provide opportunities for mechanistic in vivo study. Athymic mice and rats are additionally useful for evaluating the cartilage repair potential of human cells and tissues. Their small joint size, thin cartilage, and greater potential for intrinsic healing than humans, however, limit the translational value of small animal models. Large animal models with thicker articular cartilage permit study of both partial thickness and full thickness chondral repair, as well as osteochondral repair. Joint size and cartilage thickness for canine, caprine, and mini-pig models remain significantly smaller than that of humans. The repair and regeneration of chondral and osteochondral defects of size and volume comparable to that of clinically significant human lesions can be reliably studied primarily in equine models. While larger animals may more closely approximate the human clinical situation, they carry greater logistical, financial, and ethical considerations. A multifactorial analysis of each animal model should be carried out when planning in vivo studies. Ultimately, the scientific goals of the study will be critical in determining the appropriate animal model.
Collapse
Affiliation(s)
- Constance R Chu
- Cartilage Restoration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
153
|
Lin EA, Liu CJ. The role of ADAMTSs in arthritis. Protein Cell 2010; 1:33-47. [PMID: 21203996 DOI: 10.1007/s13238-010-0002-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/21/2009] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family consists of 19 proteases. These enzymes are known to play important roles in development, angiogenesis and coagulation; dysregulation and mutation of these enzymes have been implicated in many disease processes, such as inflammation, cancer, arthritis and atherosclerosis. This review briefly summarizes the structural organization and functional roles of ADAMTSs in normal and pathological conditions, focusing on members that are known to be involved in the degradation of extracellular matrix and loss of cartilage in arthritis, including the aggrecanases (ADAMTS-4 and ADAMTS-5), ADAMTS-7 and ADAMTS-12, the latter two are associated with cartilage oligomeric matrix protein (COMP), a component of the cartilage extracellular matrix (ECM). We will discuss the expression pattern and the regulation of these metalloproteinases at multiple levels, including their interaction with substrates, induction by pro-inflammatory cytokines, protein processing, inhibition (e.g., TIMP-3, alpha-2-macroglobulin, GEP), and activation (e.g., syndecan-4, PACE-4).
Collapse
Affiliation(s)
- Edward A Lin
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | | |
Collapse
|
154
|
Sun Y, Mauerhan DR, Honeycutt PR, Kneisl JS, Norton JH, Hanley EN, Gruber HE. Analysis of meniscal degeneration and meniscal gene expression. BMC Musculoskelet Disord 2010; 11:19. [PMID: 20109188 PMCID: PMC2828422 DOI: 10.1186/1471-2474-11-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/28/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Menisci play a vital role in load transmission, shock absorption and joint stability. There is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1) to determine the prevalence of meniscal degeneration in OA patients, and 2) to examine gene expression in OA meniscal cells compared to normal meniscal cells. METHODS Studies were approved by our human subjects Institutional Review Board. Menisci and articular cartilage were collected during joint replacement surgery for OA patients and lower limb amputation surgery for osteosarcoma patients (normal control specimens), and graded. Meniscal cells were prepared from these meniscal tissues and expanded in monolayer culture. Differential gene expression in OA meniscal cells and normal meniscal cells was examined using Affymetrix microarray and real time RT-PCR. RESULTS The grades of meniscal degeneration correlated with the grades of articular cartilage degeneration (r = 0.672; P < 0.0001). Many of the genes classified in the biological processes of immune response, inflammatory response, biomineral formation and cell proliferation, including major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1), integrin, beta 2 (ITGB2), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), ankylosis, progressive homolog (ANKH) and fibroblast growth factor 7 (FGF7), were expressed at significantly higher levels in OA meniscal cells compared to normal meniscal cells. Importantly, many of the genes that have been shown to be differentially expressed in other OA cell types/tissues, including ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5) and prostaglandin E synthase (PTGES), were found to be expressed at significantly higher levels in OA meniscal cells. This consistency suggests that many of the genes detected in our study are disease-specific. CONCLUSION Our findings suggest that OA is a whole joint disease. Meniscal cells may play an active role in the development of OA. Investigation of the gene expression profiles of OA meniscal cells may reveal new therapeutic targets for OA therapy and also may uncover novel disease markers for early diagnosis of OA.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - David R Mauerhan
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Patrick R Honeycutt
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Jeffrey S Kneisl
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - James H Norton
- Department of Biostatistics, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Edward N Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| |
Collapse
|
155
|
Paulissen G, Rocks N, Gueders MM, Crahay C, Quesada-Calvo F, Bekaert S, Hacha J, El Hour M, Foidart JM, Noel A, Cataldo DD. Role of ADAM and ADAMTS metalloproteinases in airway diseases. Respir Res 2009; 10:127. [PMID: 20034386 PMCID: PMC2805617 DOI: 10.1186/1465-9921-10-127] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/24/2009] [Indexed: 12/16/2022] Open
Abstract
Lungs are exposed to the outside environment and therefore to toxic and infectious agents or allergens. This may lead to permanent activation of innate immune response elements. A Disintegrin And Metalloproteinases (ADAMs) and ADAMs with Thrombospondin motifs (ADAMTS) are proteinases closely related to Matrix Metalloproteinases (MMPs). These multifaceted molecules bear metalloproteinase and disintegrin domains endowing them with features of both proteinases and adhesion molecules. Proteinases of the ADAM family are associated to various physiological and pathological processes and display a wide spectrum of biological effects encompassing cell fusion, cell adhesion, "shedding process", cleavage of various substrates from the extracellular matrix, growth factors or cytokines... This review will focus on the putative roles of ADAM/ADAMTS proteinases in airway diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Genevieve Paulissen
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée- GIGA, University of Liège and CHU of Liège, Sart-Tilman, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Seki S, Asanuma-Abe Y, Masuda K, Kawaguchi Y, Asanuma K, Muehleman C, Iwai A, Kimura T. Effect of small interference RNA (siRNA) for ADAMTS5 on intervertebral disc degeneration in the rabbit anular needle-puncture model. Arthritis Res Ther 2009; 11:R166. [PMID: 19889209 PMCID: PMC3003501 DOI: 10.1186/ar2851] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/10/2009] [Accepted: 11/04/2009] [Indexed: 01/08/2023] Open
Abstract
Introduction The etiology of degenerative disc disease is unknown. Several investigators have reported the presence of proteolytic enzymes, such as the matrix metalloproteinase (MMP) and ADAMTS (a disintegrin and metalloprotease with thrombospondin-like repeats) families, in degenerated human discs. Glasson and colleagues recently reported that a significant reduction occurs in the severity of cartilage destruction in ADAMTS5 knockout mice compared with wild-type mice. The purpose of this study was to evaluate the suppressive effects of injections of ADAMTS5 small interference RNA (siRNA) oligonucleotide on intervertebral disc degeneration in the rabbit anular needle-puncture model. Methods Rabbit nucleus pulposus (NP) cells were transfected with siRNA oligonucleotides specific for ADAMTS5 or the control. The suppression of the ADAMTS5 gene by siRNA transfection was assessed by using real-time polymerase chain reaction (PCR), both in monolayer and alginate bead cultures with or without interleukin-1β (IL-1β) stimulation. The effect of siRNA was determined in vivo by using the rabbit anular needle-puncture model (control group: n = 8; ADAMTS5 group: n = 8). One week after the initial anular puncture, the animals received an injection of the control or anti-ADAMTS5 oligonucleotide (100 μg each at the L2/3 and L4/5 level; 16 discs/group). Disc height, magnetic resonance imaging (MRI) (Thompson classification and signal intensity), and safranin-O staining (histologic grade) were assessed. Results IL-1β treatment significantly increased the ADAMTS5 mRNA level in NP cells (P < 0.01). ADAMTS5 gene suppression was 70% compared with the control oligonucleotide in both monolayer and alginate bead culture with or without stimulation with IL-1β. The injection of anti-ADAMTS5 oligonucleotide in vivo resulted in improved MRI scores with increased signal intensity and improved histologic grade scores with statistical significance (P < 0.05). No significant change in disc height was observed. Conclusions A single injection of ADAMTS5 siRNA induced the suppression of degradation in NP tissues, as shown by significantly improved MRI and histologic grades. The mechanism of response to siRNA may be worthy of exploration for possible therapeutic purposes.
Collapse
Affiliation(s)
- Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Hellio Le Graverand-Gastineau MP. OA clinical trials: current targets and trials for OA. Choosing molecular targets: what have we learned and where we are headed? Osteoarthritis Cartilage 2009; 17:1393-401. [PMID: 19426849 DOI: 10.1016/j.joca.2009.04.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this article is to review the current status of drug development as it relates to both molecular targets and clinical trials for osteoarthritis (OA). METHODS A review of the literature in the context of currently what is known of the pathophysiology of OA and the learnings from past clinical trials is provided. Also discussed is the challenge of demonstrating efficacy and clinical benefit for pharmacologic interventions for OA in the context of current regulatory guidance documents for therapies for the treatment of OA. RESULTS There is a large unmet medical need for pharmacologic therapeutic interventions that modify the progression of OA and treat the symptoms associated with OA. The development of Disease Modifying OA Drugs (DMOADs) should take into account the current status of therapeutic interventions, as well as the various tissues that constitute the joint and contribute to joint mechanics, and the symptoms associated with structural changes. There is much to be learned about the pathophysiology of the joint that is currently poorly understood particularly as it relates to tissues other than hyaline articular cartilage. Improving our understanding that these tissues play in OA pathophysiology will likely yield treatment breakthroughs. Recently, tremendous progress has been made in the understanding of pain pathways with an emerging diversity of pain mechanisms and biology suggesting heterogeneity in pain etiology in OA. A multitude of new targets have been identified at the level of neuronal transduction/excitability, conduction, sensitization and transmission with multiple emerging compounds in development. CONCLUSIONS The development of symptom modifying OA drug is exploding with a plethora of pain pathways being pursued and multiple candidates in advanced stages of clinical development. Structure modification in OA remains complex with significant development challenges.
Collapse
|
158
|
Abstract
The a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) comprise a family of secreted zinc metalloproteinases with a precisely ordered modular organization. These enzymes play an important role in the turnover of extracellular matrix proteins in various tissues and their dysregulation has been implicated in disease-related processes such as arthritis, atherosclerosis, cancer, and inflammation. ADAMTS-7 and ADAMTS-12 share a similar domain organization to each other and form a subgroup within the ADAMTS family. Emerging evidence suggests that ADAMTS-7 and ADAMTS-12 may play an important role in the development and pathogenesis of various kinds of diseases. In this review, we summarize what is currently known about the roles of these two metalloproteinases, with a special focus on their involvement in chondrogenesis, endochondral ossification, and the pathogenesis of arthritis, atherosclerosis, and cancer. The future study of ADAMTS-7 and ADAMTS-12, as well as the molecules with which they interact, will help us to better understand a variety of human diseases from both a biological and therapeutic standpoint.
Collapse
Affiliation(s)
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery; Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
159
|
Aiken A, Khokha R. Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:121-32. [PMID: 19616584 DOI: 10.1016/j.bbamcr.2009.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 11/17/2022]
Abstract
The metalloproteinase family includes MMP, ADAM and ADAMTS proteases. Mice deficient in individual or pairs of metalloproteinases have been generated, and a number of these genetic models spontaneously develop skeletal abnormalities. Here we review metalloproteinase function in endochondral and intramembranous ossification, as well as in postnatal bone remodeling. We highlight how metalloproteinases enable interactions between distinct bone cell types and how this communication contributes to the skeletal phenotypes observed in knockout mice. In addition to the physiological actions of metalloproteinases in the skeletal system, the experimental manipulation of metalloproteinase-deficient mice has revealed substantial roles for these enzymes in osteoarthritis and rheumatoid arthritis. MMP, ADAM and ADAMTS proteases thus emerge as key players in the development and homeostasis of the skeletal system.
Collapse
Affiliation(s)
- Alison Aiken
- Ontario Cancer Institute/University Health Network, Department of Medical Biophysics, University of Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|
160
|
Zielinska B, Killian M, Kadmiel M, Nelsen M, Haut Donahue TL. Meniscal tissue explants response depends on level of dynamic compressive strain. Osteoarthritis Cartilage 2009; 17:754-60. [PMID: 19121588 DOI: 10.1016/j.joca.2008.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 11/28/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Following partial meniscectomy, the remaining meniscus is exposed to an altered loading environment. In vitro 20% dynamic compressive strains on meniscal tissue explants has been shown to lead to an increase in release of glycosaminoglycans from the tissue and increased expression of interleukin-1alpha (IL-1alpha). The goal of this study was to determine if compressive loading which induces endogenously expressed IL-1 results in downstream changes in gene expression of anabolic and catabolic molecules in meniscal tissue, such as MMP expression. METHOD Relative changes in gene expression of MMP-1, MMP-3, MMP-9, MMP-13, A Disintegrin and Metalloproteinase with ThromboSpondin 4 (ADAMTS4), ADAMTS5, TNFalpha, TGFbeta, COX-2, Type I collagen (COL-1) and aggrecan and subsequent changes in the concentration of prostaglandin E(2) released by meniscal tissue in response to varying levels of dynamic compression (0%, 10%, and 20%) were measured. Porcine meniscal explants were dynamically compressed for 2h at 1Hz. RESULTS 20% dynamic compressive strains upregulated MMP-1, MMP-3, MMP-13 and ADAMTS4 compared to no dynamic loading. Aggrecan, COX-2, and ADAMTS5 gene expression were upregulated under 10% strain compared to no dynamic loading while COL-1, TIMP-1, and TGFbeta gene expression were not dependent on the magnitude of loading. CONCLUSION This data suggests that changes in mechanical loading of the knee joint meniscus from 10% to 20% dynamic strain can increase the catabolic activity of the meniscus.
Collapse
Affiliation(s)
- B Zielinska
- Biotechnology Research Center, Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, United States
| | | | | | | | | |
Collapse
|
161
|
Malfait AM, Tortorella M, Thompson J, Hills R, Meyer DM, Jaffee BD, Chinn K, Ghoreishi-Haack N, Markosyan S, Arner EC. Intra-articular injection of tumor necrosis factor-alpha in the rat: an acute and reversible in vivo model of cartilage proteoglycan degradation. Osteoarthritis Cartilage 2009; 17:627-35. [PMID: 19026578 DOI: 10.1016/j.joca.2008.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/16/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop an in vivo model for rapid assessment of cartilage aggrecan degradation and its pharmacological modulation. DESIGN Tumor necrosis factor-alpha (TNFalpha) was injected intra-articularly (IA) in rat knees and aggrecan degradation was monitored at various times following challenge. Articular cartilage was assessed for aggrecan content by Safranin O staining and by immunohistochemistry for the NITEGE epitope. Synovial fluids (SFs) were analyzed for sulfated glycosaminoglycans (GAGs) using the dimethylmethylene blue dye assay and for aggrecan fragments generated by specific cleavage at aggrecanase-sensitive sites by Western blot analysis with neoepitope antibodies. Indomethacin, dexamethasone, and an aggrecanase inhibitor were evaluated for their ability to modulate TNFalpha-induced proteoglycan degradation in vivo. RESULTS (1) IA injection of TNFalpha in the knee joint of rats resulted in transient aggrecan degradation and release of aggrecanase-generated aggrecan fragments from the articular cartilage into the SF; (2) a correlation was observed between histologically assessed depletion of aggrecan from the articular cartilage and the appearance of specific neoepitopes in the SF; (3) aggrecan degradation was inhibited by an aggrecanase inhibitor as well as by dexamethasone, but not by the non-steroidal anti-inflammatory drug (NSAID), indomethacin. CONCLUSION TNFalpha injection in the knee joints of rats results in rapid transient cartilage proteoglycan degradation, mediated by cleavage at the aggrecanase sites. Biomarker read-out of specific neoepitopes in the SF enables the use of this mechanism-based model for rapid evaluation of aggrecanase-mediated aggrecan degradation in vivo.
Collapse
Affiliation(s)
- A M Malfait
- Pfizer Global Research and Development, St Louis Laboratories, St Louis, MO 63017, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Hopper DW, Vera MD, How D, Sabatini J, Xiang JS, Ipek M, Thomason J, Hu Y, Feyfant E, Wang Q, Georgiadis KE, Reifenberg E, Sheldon RT, Keohan CC, Majumdar MK, Morris EA, Skotnicki J, Sum PE. Synthesis and biological evaluation of ((4-keto)-phenoxy)methyl biphenyl-4-sulfonamides: A class of potent aggrecanase-1 inhibitors. Bioorg Med Chem Lett 2009; 19:2487-91. [DOI: 10.1016/j.bmcl.2009.03.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 11/17/2022]
|
163
|
Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, Buttle DJ, Freemont AJ, Hoyland JA. Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. ACTA ACUST UNITED AC 2009; 60:482-91. [PMID: 19180493 DOI: 10.1002/art.24291] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Intervertebral disc degeneration is linked to loss of extracellular matrix (ECM), particularly the early loss of aggrecan. A group of metalloproteinases called aggrecanases are important mediators of aggrecan turnover. The present study was undertaken to investigate the expression of the recognized aggrecanases and their inhibitor, tissue inhibitor of metalloproteinases 3 (TIMP-3), in human intervertebral disc tissue. METHODS Twenty-four nondegenerated and 30 degenerated disc samples were analyzed for absolute messenger RNA (mRNA) copy number of ADAMTS 1, 4, 5, 8, 9, and 15 and TIMP-3 by real-time reverse transcription-polymerase chain reaction. Thirty-six formalin-fixed embedded intervertebral disc samples of varying grades of degeneration were used for immunohistochemical analyses. In addition, samples from 8 subjects were analyzed for the presence of matrix metalloproteinase (MMP)- and aggrecanase-generated aggrecan products. RESULTS Messenger RNA for all the aggrecanases other than ADAMTS-8 was identified in intervertebral disc tissue, as was mRNA for TIMP-3. Levels of mRNA expression of ADAMTS 1, 4, 5, and 15 were significantly increased in degenerated tissue compared with nondegenerated tissue. All these aggrecanases and TIMP-3 were also detected immunohistochemically in disc tissue, and numbers of nucleus pulposus cells staining positive for ADAMTS 4, 5, 9, and 15 were significantly increased in degenerated tissue compared with nondegenerated tissue. Aggrecan breakdown products generated by MMP and aggrecanase activities were also detected in intervertebral disc tissue. CONCLUSION The aggrecanases ADAMTS 1, 4, 5, 9, and 15 may contribute to the changes occurring in the ECM during intervertebral disc degeneration. Targeting these enzymes may be a possible future therapeutic strategy for the prevention of intervertebral disc degeneration and its associated morbidity.
Collapse
|
164
|
Suppression of aggrecanase: a novel protective mechanism of dehydroepiandrosterone in osteoarthritis? Mol Biol Rep 2009; 37:1241-5. [DOI: 10.1007/s11033-009-9495-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
|
165
|
Abstract
Aggrecanase-mediated aggrecan degradation is a significant event in early-stage osteoarthritis (OA). Aggrecanases belonging to the 'A Disintegrin And Metalloproteinase with ThromboSpondin motifs' (ADAMTS) family of proteinases play a significant role in aggrecan depletion in osteoarthritic cartilage. There has been considerable interest in the possible role of these aggrecanases, especially ADAMTS-4 and ADAMTS-5, as therapeutic targets in OA. This article discusses recent data regarding ADAMTS-4 and ADAMTS-5 in OA, with emphasis on the relationship between aggrecanase and aggrecan degradation as well as the role of aggrecanase in OA.
Collapse
Affiliation(s)
- K Huang
- Department of Orthopaedics, Second Hospital of the Medical College, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
166
|
Huh JE, Baek YH, Ryu SR, Lee JD, Choi DY, Park DS. Efficacy and mechanism of action of KHBJ-9B, a new herbal medicine, and its major compound triterpenoids in human cartilage culture and in a rabbit model of collagenase-induced osteoarthritis. Int Immunopharmacol 2009; 9:230-40. [DOI: 10.1016/j.intimp.2008.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 11/04/2008] [Accepted: 11/20/2008] [Indexed: 11/17/2022]
|
167
|
Welch ID, Cowan MF, Beier F, Underhill TM. The retinoic acid binding protein CRABP2 is increased in murine models of degenerative joint disease. Arthritis Res Ther 2009; 11:R14. [PMID: 19173746 PMCID: PMC2688246 DOI: 10.1186/ar2604] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/04/2008] [Accepted: 01/28/2009] [Indexed: 11/10/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a debilitating disease with poorly defined aetiology. Multiple signals are involved in directing the formation of cartilage during development and the vitamin A derivatives, the retinoids, figure prominently in embryonic cartilage formation. In the present study, we examined the expression of a retinoid-regulated gene in murine models of OA. Methods Mild and moderate forms of an OA-like degenerative disease were created in the mouse stifle joint by meniscotibial transection (MTX) and partial meniscectomy (PMX), respectively. Joint histopathology was scored using an Osteoarthritis Research Society International (OARSI) system and gene expression (Col1a1, Col10a1, Sox9 and Crabp2) in individual joints was determined using TaqMan quantitative PCR on RNA from microdissected articular knee cartilage. Results For MTX, there was a significant increase in the joint score at 10 weeks (n = 4, p < 0.001) in comparison to sham surgeries. PMX surgery was slightly more severe and produced significant changes in joint score at six (n = 4, p < 0.01), eight (n = 4, p < 0.001) and 10 (n = 4, p < 0.001) weeks. The expression of Col1a1 was increased in both surgical models at two, four and six weeks post-surgery. In contrast, Col10a1 and Sox9 for the most part showed no significant difference in expression from two to six weeks post-surgery. Crabp2 expression is induced upon activation of the retinoid signalling pathway. At two weeks after surgery in the MTX and PMX animals, Crabp2 expression was increased about 18-fold and about 10-fold over the sham control, respectively. By 10 weeks, Crabp2 expression was increased about three-fold (n = 7, not significant) in the MTX animals and about five-fold (n = 7, p < 0.05) in the PMX animals in comparison to the contralateral control joint. Conclusions Together, these findings suggest that the retinoid signalling pathway is activated early in the osteoarthritic process and is sustained during the course of the disease.
Collapse
Affiliation(s)
- Ian D Welch
- Department of Animal Care and Veterinary Services, University of Western Ontario, London, Ontario N6A5C1, Canada.
| | | | | | | |
Collapse
|
168
|
Attur M, Al-Mussawir HE, Patel J, Kitay A, Dave M, Palmer G, Pillinger MH, Abramson SB. Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. THE JOURNAL OF IMMUNOLOGY 2008; 181:5082-8. [PMID: 18802112 DOI: 10.4049/jimmunol.181.7.5082] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Elevated levels of PGE(2) have been reported in synovial fluid and cartilage from patients with osteoarthritis (OA). However, the functions of PGE(2) in cartilage metabolism have not previously been studied in detail. To do so, we cultured cartilage explants, obtained from patients undergoing knee replacement surgery for advanced OA, with PGE(2) (0.1-10 muM). PGE(2) inhibited proteoglycan synthesis in a dose-dependent manner (maximum 25% inhibition (p < 0.01)). PGE(2) also induced collagen degradation, in a manner inhibitable by the matrix metalloproteinase (MMP) inhibitor ilomastat. PGE(2) inhibited spontaneous MMP-1, but augmented MMP-13 secretion by OA cartilage explant cultures. PCR analysis of OA chondrocytes treated with PGE(2) with or without IL-1 revealed that IL-1-induced MMP-13 expression was augmented by PGE(2) and significantly inhibited by the cycolooygenase 2 selective inhibitor celecoxib. Conversely, MMP-1 expression was inhibited by PGE(2), while celecoxib enhanced both spontaneous and IL-1-induced expression. IL-1 induction of aggrecanase 5 (ADAMTS-5), but not ADAMTS-4, was also enhanced by PGE(2) (10 muM) and reversed by celecoxib (2 muM). Quantitative PCR screening of nondiseased and end-stage human knee OA articular cartilage specimens revealed that the PGE(2) receptor EP4 was up-regulated in OA cartilage. Moreover, blocking the EP4 receptor (EP4 antagonist, AH23848) mimicked celecoxib by inhibiting MMP-13, ADAMST-5 expression, and proteoglycan degradation. These results suggest that PGE(2) inhibits proteoglycan synthesis and stimulates matrix degradation in OA chondrocytes via the EP4 receptor. Targeting EP4, rather than cyclooxygenase 2, could represent a future strategy for OA disease modification.
Collapse
Affiliation(s)
- Mukundan Attur
- Division of Rheumatology, New York University School of Medicine and New York University Hospital for Joint Diseases, New York, NY 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Prolonged upright posture induces degenerative changes in intervertebral discs in rat lumbar spine. Spine (Phila Pa 1976) 2008; 33:2052-8. [PMID: 18758360 DOI: 10.1097/brs.0b013e318183f949] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Both forelimbs of rats were amputated, and these rats were kept in the custom-made cages that kept the rats in prolonged upright posture. Pathologic changes were observed in the lumbar spine at different time points after the surgery. OBJECTIVE To investigate the effect of upright posture on intervertebral discs of rat lumbar spine. SUMMARY OF BACKGROUND DATA Previous studies have shown that increased axial forces on the spine can decrease the height of the intervertebral disc, but there are no data to indicate whether or not long-term and repeated assumption of the upright posture could result in degenerative changes. METHODS The forelimbs of 30 rats were amputated when they were 1-month old. These rats were kept in the custom-made cages and were forced to stand upright on their hind-limbs and tails to obtain water and food. Normal rats of the same ages kept in regular cages were used as control. The rats were killed at 5, 7, and 9 months after the surgery, and the intervertebral discs samples of lumbar spine were harvested for histologic and immunohistochemical studies. Total RNA isolated from these samples was used for real-time PCR of type II collagen (Col2alpha1), type X collagen (Col10alpha1), matrix metalloproteinase-13 (MMP-13), aggrecan, and disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5). RESULTS.: Histologic analysis showed degenerative changes of the intervertebral discs after surgery such as disordered collagen structure of endplate cartilage, fragmentation of annulus fibrosus, and decreased height of disc. Immunostaining revealed decreased protein level of type II collagen and increased protein expression of type X collagen. Real-time PCR showed upregulated expression of MMP 13, ADAMTS-5, and Col10alpha1 mRNA and downregulated mRNA expression of Col2alpha1 and aggrecan. CONCLUSION Long-term and repeated assumption of the upright stance accelerates disc degeneration in rats.
Collapse
|
170
|
Rogerson FM, Stanton H, East CJ, Golub SB, Tutolo L, Farmer PJ, Fosang AJ. Evidence of a novel aggrecan-degrading activity in cartilage: Studies of mice deficient in both ADAMTS-4 and ADAMTS-5. ACTA ACUST UNITED AC 2008; 58:1664-73. [PMID: 18512787 DOI: 10.1002/art.23458] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To characterize aggrecan catabolism and the overall phenotype in mice deficient in both ADAMTS-4 and ADAMTS-5 (TS-4/TS-5 Delta-cat) activity. METHODS Femoral head cartilage from the joints of TS-4/TS-5 Delta-cat mice and wild-type mice were cultured in vitro, and aggrecan catabolism was stimulated with either interleukin-1alpha (IL-1alpha) or retinoic acid. Total aggrecan release was measured, and aggrecanase activity was examined by Western blotting using neoepitope antibodies for detecting cleavage at EGE 373-374 ALG, SELE 1279-1280 GRG, FREEE 1467-1468 GLG, and AQE 1572-1573 AGEG. Aggrecan catabolism in vivo was examined by Western blotting of cartilage that had been extracted immediately ex vivo. RESULTS TS-4/TS-5 Delta-cat mice were viable, fertile, and phenotypically normal. TS-4/TS-5 Delta-cat cartilage explants did not release aggrecan in response to IL-1alpha, and there was no detectable increase in aggrecanase neoepitopes. TS-4/TS-5 Delta-cat cartilage explants released aggrecan in response to retinoic acid. There was no retinoic acid-stimulated cleavage at either EGE 373-374 ALG or AQE 1572-1573 AGEG. There was a low level of cleavage at SELE 1279-1280 GRG and major cleavage at FREEE 1467-1468 GLG. Ex vivo, cleavage at FREEE 1467-1468 GLG was substantially reduced, but still present, in TS-4/TS-5 Delta-cat mouse cartilage compared with wild-type mouse cartilage. CONCLUSION An aggrecanase other than ADAMTS-4 and ADAMTS-5 is expressed in mouse cartilage and is up-regulated by retinoic acid but not IL-1alpha. The novel aggrecanase appears to have different substrate specificity from either ADAMTS-4 or ADAMTS-5, cleaving E-G bonds but not E-A bonds. Neither ADAMTS-4 nor ADAMTS-5 is required for normal skeletal development or aggrecan turnover in cartilage.
Collapse
Affiliation(s)
- Fraser M Rogerson
- University of Melbourne Department of Paediatrics, and Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
171
|
Drug Insight: aggrecanases as therapeutic targets for osteoarthritis. ACTA ACUST UNITED AC 2008; 4:420-7. [DOI: 10.1038/ncprheum0841] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 05/12/2008] [Indexed: 11/09/2022]
|
172
|
|
173
|
Huh JE, Baek YH, Lee JD, Choi DY, Park DS. Therapeutic Effect of Siegesbeckia pubescens on Cartilage Protection in a Rabbit Collagenase-Induced Model of Osteoarthritis. J Pharmacol Sci 2008; 107:317-28. [DOI: 10.1254/jphs.08010fp] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
174
|
Mosyak L, Georgiadis K, Shane T, Svenson K, Hebert T, McDonagh T, Mackie S, Olland S, Lin L, Zhong X, Kriz R, Reifenberg EL, Collins-Racie LA, Corcoran C, Freeman B, Zollner R, Marvell T, Vera M, Sum PE, Lavallie ER, Stahl M, Somers W. Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5. Protein Sci 2007; 17:16-21. [PMID: 18042673 DOI: 10.1110/ps.073287008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aggrecanases are now believed to be the principal proteinases responsible for aggrecan degradation in osteoarthritis. Given their potential as a drug target, we solved crystal structures of the two most active human aggrecanase isoforms, ADAMTS4 and ADAMTS5, each in complex with bound inhibitor and one wherein the enzyme is in apo form. These structures show that the unliganded and inhibitor-bound enzymes exhibit two essentially different catalytic-site configurations: an autoinhibited, nonbinding, closed form and an open, binding form. On this basis, we propose that mature aggrecanases exist as an ensemble of at least two isomers, only one of which is proteolytically active.
Collapse
Affiliation(s)
- Lidia Mosyak
- Department of Chemical and Screening Sciences, Wyeth Research, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|