151
|
Liu M, Li T, Zhang X, Yang Y, Zhou Z, Fu T. IMH-Net: a convolutional neural network for end-to-end EEG motor imagery classification. Comput Methods Biomech Biomed Engin 2024; 27:2175-2188. [PMID: 37936533 DOI: 10.1080/10255842.2023.2275244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
As the main component of Brain-computer interface (BCI) technology, the classification algorithm based on EEG has developed rapidly. The previous algorithms were often based on subject-dependent settings, resulting in BCI needing to be calibrated for new users. In this work, we propose IMH-Net, an end-to-end subject-independent model. The model first uses Inception blocks extracts the frequency domain features of the data, then further compresses the feature vectors to extract the spatial domain features, and finally learns the global information and classification through Multi-Head Attention mechanism. On the OpenBMI dataset, IMH-Net obtained 73.90 ± 13.10% accuracy and 73.09 ± 14.99% F1-score in subject-independent manner, which improved the accuracy by 1.96% compared with the comparison model. On the BCI competition IV dataset 2a, this model also achieved the highest accuracy and F1-score in subject-dependent manner. The IMH-Net model we proposed can improve the accuracy of subject-independent Motor Imagery (MI), and the robustness of the algorithm is high, which has strong practical value in the field of BCI.
Collapse
Affiliation(s)
- Menghao Liu
- Mechanical College, Shanghai Dianji University, Shanghai, China
| | - Tingting Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Zhang
- Mechanical College, Shanghai Dianji University, Shanghai, China
| | - Yang Yang
- Shanghai Lanhui Medical Technology Co., Ltd, Shanghai, China
| | - Zhiyong Zhou
- Mechanical College, Shanghai Dianji University, Shanghai, China
| | - Tianhao Fu
- Mechanical College, Shanghai Dianji University, Shanghai, China
| |
Collapse
|
152
|
Choi JW, Cui C, Wilkins K, Bronte-Stewart H. N2GNet tracks gait performance from subthalamic neural signals in Parkinson's disease. RESEARCH SQUARE 2024:rs.3.rs-5112726. [PMID: 39574884 PMCID: PMC11581115 DOI: 10.21203/rs.3.rs-5112726/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs). The LFP data were acquired when eighteen PWP performed stepping in place, and the ground reaction forces were measured to track their weight shifts representing gait performance. By exhibiting a stronger correlation with weight shifts compared to the higher-correlation beta power from the two leads and outperforming other evaluated model designs, N2GNet effectively leverages a comprehensive frequency band, not limited to the beta range, to track gait performance solely from STN LFPs.
Collapse
Affiliation(s)
| | - Chuyi Cui
- Stanford University School of Medicine
| | | | | |
Collapse
|
153
|
Chen X, Meng L, Xu Y, Wu D. Adversarial artifact detection in EEG-based brain-computer interfaces. J Neural Eng 2024; 21:056043. [PMID: 39433071 DOI: 10.1088/1741-2552/ad8964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Objective. machine learning has achieved significant success in electroencephalogram (EEG) based brain-computer interfaces (BCIs), with most existing research focusing on improving the decoding accuracy. However, recent studies have shown that EEG-based BCIs are vulnerable to adversarial attacks, where small perturbations added to the input can cause misclassification. Detecting adversarial examples is crucial for both understanding this phenomenon and developing effective defense strategies.Approach. this paper, for the first time, explores adversarial detection in EEG-based BCIs. We extend several popular adversarial detection approaches from computer vision to BCIs. Two new Mahalanobis distance based adversarial detection approaches, and three cosine distance based adversarial detection approaches, are also proposed, which showed promising performance in detecting three kinds of white-box attacks.Main results. we evaluated the performance of eight adversarial detection approaches on three EEG datasets, three neural networks, and four types of adversarial attacks. Our approach achieved an area under the curve score of up to 99.99% in detecting white-box attacks. Additionally, we assessed the transferability of different adversarial detectors to unknown attacks.Significance. through extensive experiments, we found that white-box attacks may be easily detected, and differences exist in the distributions of different types of adversarial examples. Our work should facilitate understanding the vulnerability of existing BCI models and developing more secure BCIs in the future.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lubin Meng
- Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yifan Xu
- Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dongrui Wu
- Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
154
|
Valle C, Mendez-Orellana C, Herff C, Rodriguez-Fernandez M. Identification of perceived sentences using deep neural networks in EEG. J Neural Eng 2024; 21:056044. [PMID: 39423829 DOI: 10.1088/1741-2552/ad88a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Objetive. Decoding speech from brain activity can enable communication for individuals with speech disorders. Deep neural networks (DNNs) have shown great potential for speech decoding applications. However, the limited availability of large datasets containing neural recordings from speech-impaired subjects poses a challenge. Leveraging data from healthy participants can mitigate this limitation and expedite the development of speech neuroprostheses while minimizing the need for patient-specific training data.Approach. In this study, we collected a substantial dataset consisting of recordings from 56 healthy participants using 64 EEG channels. Multiple neural networks were trained to classify perceived sentences in the Spanish language using subject-independent, mixed-subjects, and fine-tuning approaches. The dataset has been made publicly available to foster further research in this area.Main results. Our results demonstrate a remarkable level of accuracy in distinguishing sentence identity across 30 classes, showcasing the feasibility of training DNNs to decode sentence identity from perceived speech using EEG. Notably, the subject-independent approach rendered accuracy comparable to the mixed-subjects approach, although with higher variability among subjects. Additionally, our fine-tuning approach yielded even higher accuracy, indicating an improved capability to adapt to individual subject characteristics, which enhances performance. This suggests that DNNs have effectively learned to decode universal features of brain activity across individuals while also being adaptable to specific participant data. Furthermore, our analyses indicate that EEGNet and DeepConvNet exhibit comparable performance, outperforming ShallowConvNet for sentence identity decoding. Finally, our Grad-CAM visualization analysis identifies key areas influencing the network's predictions, offering valuable insights into the neural processes underlying language perception and comprehension.Significance. These findings advance our understanding of EEG-based speech perception decoding and hold promise for the development of speech neuroprostheses, particularly in scenarios where subjects cannot provide their own training data.
Collapse
Affiliation(s)
- Carlos Valle
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8970117, Chile
| | - Carolina Mendez-Orellana
- School of Speech and Language Pathology, Health Sciences Department, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8970117, Chile
| | - Christian Herff
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht 6211LK, The Netherlands
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8970117, Chile
- Millenium Institute for Intelligent Healthcare Engineering iHealth, Santiago, Chile
| |
Collapse
|
155
|
Kostoglou K, Muller-Putz GR. Motor-Related EEG Analysis Using a Pole Tracking Approach. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3837-3847. [PMID: 39423083 DOI: 10.1109/tnsre.2024.3483294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
This study introduces an alternative approach to electroencephalography (EEG) time-frequency analysis based on time-varying autoregressive (TV-AR) models in a cascade configuration to independently monitor key EEG spectral components. The method is evaluated for its neurophysiological interpretation and effectiveness in motor-related brain-computer interface (BCI) applications. Specifically, we assess the ability of the tracked EEG poles to discriminate between rest, movement execution (ME) and movement imagination (MI) in healthy subjects, as well as movement attempts (MA) in individuals with spinal cord injury (SCI). Our results show that pole tracking effectively captures broad changes in EEG dynamics, such as transitions between rest and movement-related states. It outperformed traditional EEG-based features, increasing detection accuracy for ME by an average of 4.1% (with individual improvements reaching as high as 15%) and MI by an average of 4.5% (up to 13.8%) compared to time-domain low-frequency EEG features. Similarly, compared to alpha/beta band power, the method improved ME detection by an average of 5.9% (up to 10.4%) and MI by an average of 4.3% (up to 10.2%), with results averaged across 15 healthy participants. In one participant with SCI, pole tracking improved MA detection by 12.9% over low-frequency EEG features and 4.8% over alpha/beta band power. However, its ability to distinguish finer movement details within specific movement types was limited. Additionally, the temporal evolution of the extracted pole tracking features revealed event-related desynchronization phenomena, typically observed during ME, MA and MI, as well as increases in frequency, which are of neurophysiological interest.
Collapse
|
156
|
Keutayeva A, Fakhrutdinov N, Abibullaev B. Compact convolutional transformer for subject-independent motor imagery EEG-based BCIs. Sci Rep 2024; 14:25775. [PMID: 39468119 PMCID: PMC11519587 DOI: 10.1038/s41598-024-73755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Motor imagery electroencephalography (EEG) analysis is crucial for the development of effective brain-computer interfaces (BCIs), yet it presents considerable challenges due to the complexity of the data and inter-subject variability. This paper introduces EEGCCT, an application of compact convolutional transformers designed specifically to improve the analysis of motor imagery tasks in EEG. Unlike traditional approaches, EEGCCT model significantly enhances generalization from limited data, effectively addressing a common limitation in EEG datasets. We validate and test our models using the open-source BCI Competition IV datasets 2a and 2b, employing a Leave-One-Subject-Out (LOSO) strategy to ensure subject-independent performance. Our findings demonstrate that EEGCCT not only outperforms conventional models like EEGNet in standard evaluations but also achieves better performance compared to other advanced models such as Conformer, Hybrid s-CViT, and Hybrid t-CViT, while utilizing fewer parameters and achieving an accuracy of 70.12%. Additionally, the paper presents a comprehensive ablation study that includes targeted data augmentation, hyperparameter optimization, and architectural improvements.
Collapse
Affiliation(s)
- Aigerim Keutayeva
- Institute of Smart Systems and Artificial Intelligence (ISSAI), Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Nail Fakhrutdinov
- Department of Computer Science, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Berdakh Abibullaev
- Department of Robotics Engineering, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
157
|
Lin H, Fang J, Zhang J, Zhang X, Piao W, Liu Y. Resting-State Electroencephalogram Depression Diagnosis Based on Traditional Machine Learning and Deep Learning: A Comparative Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6815. [PMID: 39517712 PMCID: PMC11548331 DOI: 10.3390/s24216815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The global prevalence of Major Depressive Disorder (MDD) is increasing at an alarming rate, underscoring the urgent need for timely and accurate diagnoses to facilitate effective interventions and treatments. Electroencephalography remains a widely used neuroimaging technique in psychiatry, due to its non-invasive nature and cost-effectiveness. With the rise of computational psychiatry, the integration of EEG with artificial intelligence has yielded remarkable results in diagnosing depression. This review offers a comparative analysis of two predominant methodologies in research: traditional machine learning and deep learning methods. Furthermore, this review addresses key challenges in current research and suggests potential solutions. These insights aim to enhance diagnostic accuracy for depression and also foster further development in the area of computational psychiatry.
Collapse
Affiliation(s)
- Haijun Lin
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Jing Fang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Junpeng Zhang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Xuhui Zhang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Weiying Piao
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Yukun Liu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
158
|
Zhang Y. Path of career planning and employment strategy based on deep learning in the information age. PLoS One 2024; 19:e0308654. [PMID: 39405324 PMCID: PMC11478877 DOI: 10.1371/journal.pone.0308654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/27/2024] [Indexed: 10/19/2024] Open
Abstract
With the improvement of education level and the expansion of higher education, more students can have the opportunities to obtain better education, and the pressure of employment competition is also increasing. How to improve students' employment competitiveness, comprehensive quality and the ability to explore paths for career planning and employment strategies has become a common concern in today's society. Under the background of today's informatization, the paths of career planning and employment strategies are becoming more and more informatized. The support of Internet is essential for obtaining more employment information. As a representative product of the information age, deep learning provides people with a better path. This paper conducts an in-depth study of the career planning and employment strategy paths based on deep learning in the information age. Research has shown that in the current information age, deep learning through career planning and employment strategy paths can help students solve the main problems they face in career planning education and better meet the needs of today's society. Career awareness increased by 35% and self-improvement by 15%. This indicated that in the information age, career planning and employment strategies based on deep learning are a way to conform to the trend of the times, which can better help college students improve their understanding, promote employment, and promote self-development.This study combines quantitative and qualitative methods, collects data through questionnaires, and uses deep learning model for analysis. Control group and experimental group were set up to evaluate the effect of career planning education. Descriptive statistics and correlation analysis were used to ensure the accuracy and reliability of the results.
Collapse
Affiliation(s)
- Yichi Zhang
- Enrollment and Employment Division, Southwest Petroleum University, Chengdu, Sichuan, China
| |
Collapse
|
159
|
Fu B, Chu W, Gu C, Liu Y. Cross-Modal Guiding Neural Network for Multimodal Emotion Recognition From EEG and Eye Movement Signals. IEEE J Biomed Health Inform 2024; 28:5865-5876. [PMID: 38917288 DOI: 10.1109/jbhi.2024.3419043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Multimodal emotion recognition research is gaining attention because of the emerging trend of integrating information from different sensory modalities to improve performance. Electroencephalogram (EEG) signals are considered objective indicators of emotions and provide precise insights despite their complex data collection. In contrast, eye movement signals are more susceptible to environmental and individual differences but offer convenient data collection. Conventional emotion recognition methods typically use separate models for different modalities, potentially overlooking their inherent connections. This study introduces a cross-modal guiding neural network designed to fully leverage the strengths of both modalities. The network includes a dual-branch feature extraction module that simultaneously extracts features from EEG and eye movement signals. In addition, the network includes a feature guidance module that uses EEG features to direct eye movement feature extraction, reducing the impact of subjective factors. This study also introduces a feature reweighting module to explore emotion-related features within eye movement signals, thereby improving emotion classification accuracy. The empirical findings from both the SEED-IV dataset and our collected dataset substantiate the commendable performance of the model, thereby confirming its efficacy.
Collapse
|
160
|
Li D, Wang J, Xu J, Fang X, Ji Y. Cross-Channel Specific-Mutual Feature Transfer Learning for Motor Imagery EEG Signals Decoding. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:13472-13482. [PMID: 37220058 DOI: 10.1109/tnnls.2023.3269512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent years, with the rapid development of deep learning, various deep learning frameworks have been widely used in brain-computer interface (BCI) research for decoding motor imagery (MI) electroencephalogram (EEG) signals to understand brain activity accurately. The electrodes, however, record the mixed activities of neurons. If different features are directly embedded in the same feature space, the specific and mutual features of different neuron regions are not considered, which will reduce the expression ability of the feature itself. We propose a cross-channel specific-mutual feature transfer learning (CCSM-FT) network model to solve this problem. The multibranch network extracts the specific and mutual features of brain's multiregion signals. Effective training tricks are used to maximize the distinction between the two kinds of features. Suitable training tricks can also improve the effectiveness of the algorithm compared with novel models. Finally, we transfer two kinds of features to explore the potential of mutual and specific features to enhance the expressive power of the feature and use the auxiliary set to improve identification performance. The experimental results show that the network has a better classification effect in the BCI Competition IV-2a and the HGD datasets.
Collapse
|
161
|
Ma J, Yang B, Rong F, Gao S, Wang W. Motor imagery decoding using source optimized transfer learning based on multi-loss fusion CNN. Cogn Neurodyn 2024; 18:2521-2534. [PMID: 39555257 PMCID: PMC11564427 DOI: 10.1007/s11571-024-10100-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/24/2023] [Accepted: 03/05/2024] [Indexed: 11/19/2024] Open
Abstract
Transfer learning is increasingly used to decode multi-class motor imagery tasks. Previous transfer learning ignored the optimizability of the source model, weakened the adaptability to the target domain and limited the performance. This paper first proposes the multi-loss fusion convolutional neural network (MF-CNN) to make an optimizable source model. Then we propose a novel source optimized transfer learning (SOTL), which optimizes the source model to make it more in line with the target domain's features to improve the target model's performance. We transfer the model trained from 16 healthy subjects to 16 stroke patients. The average classification accuracy achieves 51.2 ± 0.17% in the four types of unilateral upper limb motor imagery tasks, which is significantly higher than the classification accuracy of deep learning (p < 0.001) and transfer learning (p < 0.05). In this paper, an MI model from the data of healthy subjects can be used for the classification of stroke patients and can demonstrate good classification results, which provides experiential support for the study of transfer learning and the modeling of stroke rehabilitation training.
Collapse
Affiliation(s)
- Jun Ma
- School of Mechatronic Engineering and Automation, School of Medicine, Research Center of Brain-Computer Engineering, Shanghai University, Shanghai, 200444 China
| | - Banghua Yang
- School of Mechatronic Engineering and Automation, School of Medicine, Research Center of Brain-Computer Engineering, Shanghai University, Shanghai, 200444 China
| | - Fenqi Rong
- School of Mechatronic Engineering and Automation, School of Medicine, Research Center of Brain-Computer Engineering, Shanghai University, Shanghai, 200444 China
| | - Shouwei Gao
- School of Mechatronic Engineering and Automation, School of Medicine, Research Center of Brain-Computer Engineering, Shanghai University, Shanghai, 200444 China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 Shaanxi China
| |
Collapse
|
162
|
Wang X, Yang W, Qi W, Wang Y, Ma X, Wang W. STaRNet: A spatio-temporal and Riemannian network for high-performance motor imagery decoding. Neural Netw 2024; 178:106471. [PMID: 38945115 DOI: 10.1016/j.neunet.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Brain-computer interfaces (BCIs), representing a transformative form of human-computer interaction, empower users to interact directly with external environments through brain signals. In response to the demands for high accuracy, robustness, and end-to-end capabilities within BCIs based on motor imagery (MI), this paper introduces STaRNet, a novel model that integrates multi-scale spatio-temporal convolutional neural networks (CNNs) with Riemannian geometry. Initially, STaRNet integrates a multi-scale spatio-temporal feature extraction module that captures both global and local features, facilitating the construction of Riemannian manifolds from these comprehensive spatio-temporal features. Subsequently, a matrix logarithm operation transforms the manifold-based features into the tangent space, followed by a dense layer for classification. Without preprocessing, STaRNet surpasses state-of-the-art (SOTA) models by achieving an average decoding accuracy of 83.29% and a kappa value of 0.777 on the BCI Competition IV 2a dataset, and 95.45% accuracy with a kappa value of 0.939 on the High Gamma Dataset. Additionally, a comparative analysis between STaRNet and several SOTA models, focusing on the most challenging subjects from both datasets, highlights exceptional robustness of STaRNet. Finally, the visualizations of learned frequency bands demonstrate that temporal convolutions have learned MI-related frequency bands, and the t-SNE analyses of features across multiple layers of STaRNet exhibit strong feature extraction capabilities. We believe that the accurate, robust, and end-to-end capabilities of the STaRNet will facilitate the advancement of BCIs.
Collapse
Affiliation(s)
- Xingfu Wang
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenjie Yang
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenxia Qi
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- National Engineering and Technology Research Center for ASIC Design, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Ma
- National Engineering and Technology Research Center for ASIC Design, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
163
|
Sun H, Ding Y, Bao J, Qin K, Tong C, Jin J, Guan C. Leveraging temporal dependency for cross-subject-MI BCIs by contrastive learning and self-attention. Neural Netw 2024; 178:106470. [PMID: 38943861 DOI: 10.1016/j.neunet.2024.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024]
Abstract
Brain-computer interfaces (BCIs) built based on motor imagery paradigm have found extensive utilization in motor rehabilitation and the control of assistive applications. However, traditional MI-BCI systems often exhibit suboptimal classification performance and require significant time for new users to collect subject-specific training data. This limitation diminishes the user-friendliness of BCIs and presents significant challenges in developing effective subject-independent models. In response to these challenges, we propose a novel subject-independent framework for learning temporal dependency for motor imagery BCIs by Contrastive Learning and Self-attention (CLS). In CLS model, we incorporate self-attention mechanism and supervised contrastive learning into a deep neural network to extract important information from electroencephalography (EEG) signals as features. We evaluate the CLS model using two large public datasets encompassing numerous subjects in a subject-independent experiment condition. The results demonstrate that CLS outperforms six baseline algorithms, achieving a mean classification accuracy improvement of 1.3 % and 4.71 % than the best algorithm on the Giga dataset and OpenBMI dataset, respectively. Our findings demonstrate that CLS can effectively learn invariant discriminative features from training data obtained from non-target subjects, thus showcasing its potential for building models for new users without the need for calibration.
Collapse
Affiliation(s)
- Hao Sun
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Ding
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jianzhu Bao
- School of Computer Science and Technology, Harbin Insitute of Technology, Shenzhen, China
| | - Ke Qin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Chengxuan Tong
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jing Jin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; Shenzhen Research Institute of East China University of Technology, Shen Zhen 518063, China.
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
164
|
O'Keeffe R, Shirazi SY, Vecchio AD, Ibaaez J, Mrachacz-Kersting N, Bighamian R, Rizzo JR, Farina D, Atashzar SF. Low-Frequency Motor Cortex EEG Predicts Four Rates of Force Development. IEEE TRANSACTIONS ON HAPTICS 2024; 17:900-912. [PMID: 39008387 DOI: 10.1109/toh.2024.3428308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The movement-related cortical potential (MRCP) is a low-frequency component of the electroencephalography (EEG) signal that originates from the motor cortex and surrounding cortical regions. As the MRCP reflects both the intention and execution of motor control, it has the potential to serve as a communication interface between patients and neurorehabilitation robots. In this study, we investigated the EEG signal recorded centered at the Cz electrode with the aim of decoding four rates of force development (RFD) during isometric contractions of the tibialis anterior muscle. The four levels of RFD were defined with respect to the maximum voluntary contraction (MVC) of the muscle as follows: Slow (20% MVC/s), Medium (30% MVC/s), Fast (60% MVC/s), and Ballistic (120% MVC/s). Three feature sets were assessed for describing the EEG traces in the classification process. These included: (i) MRCP Morphological Characteristics in the -band, such as timing and amplitude; (ii) MRCP Statistical Characteristics in the -band, such as standard deviation, mean, and kurtosis; and (iii) Wideband Time-frequency Features in the 0.1-90 Hz range. The four levels of RFD were accurately classified using a support vector machine. When utilizing the Wideband Time-frequency Features, the accuracy was 83% 9% (mean SD). Meanwhile, when using the MRCP Statistical Characteristics, the accuracy was 78% 12% (mean SD). The analysis of the MRCP waveform revealed that it contains highly informative data on the planning, execution, completion, and duration of the isometric dorsiflexion task. The temporal analysis emphasized the importance of the -band in translating to motor command, and this has promising implications for the field of neural engineering systems.
Collapse
|
165
|
Yin Y, Kong W, Tang J, Li J, Babiloni F. PSPN: Pseudo-Siamese Pyramid Network for multimodal emotion analysis. Cogn Neurodyn 2024; 18:2883-2896. [PMID: 39555297 PMCID: PMC11564494 DOI: 10.1007/s11571-024-10123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 11/19/2024] Open
Abstract
Emotion recognition plays an important role in human life and healthcare. The EEG has been extensively researched as an objective indicator of intense emotions. However, current existing methods lack sufficient analysis of shallow and deep EEG features. In addition, human emotions are complex and variable, making it difficult to comprehensively represent emotions using a single-modal signal. As a signal associated with gaze tracking and eye movement detection, Eye-related signals provide various forms of supplementary information for multimodal emotion analysis. Therefore, we propose a Pseudo-Siamese Pyramid Network (PSPN) for multimodal emotion analysis. The PSPN model employs a Depthwise Separable Convolutional Pyramid (DSCP) to extract and integrate intrinsic emotional features at various levels and scales from EEG signals. Simultaneously, we utilize a fully connected subnetwork to extract the external emotional features from eye-related signals. Finally, we introduce a Pseudo-Siamese network that integrates a flexible cross-modal dual-branch subnetwork to collaboratively utilize EEG emotional features and eye-related behavioral features, achieving consistency and complementarity in multimodal emotion recognition. For evaluation, we conducted experiments on the DEAP and SEED-IV public datasets. The experimental results demonstrate that multimodal fusion significantly improves the accuracy of emotion recognition compared to single-modal approaches. Our PSPN model achieved the best accuracy of 96.02% and 96.45% on the valence and arousal dimensions of the DEAP dataset, and 77.81% on the SEED-IV dataset, respectively. Our code link is: https://github.com/Yinyanyan003/PSPN.git.
Collapse
Affiliation(s)
- Yanyan Yin
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018 China
- Key Laboratory of Brain Machine Collaborative Intelligenceof Zhejiang Province, Hangzhou, 310018 China
| | - Wanzeng Kong
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018 China
- Key Laboratory of Brain Machine Collaborative Intelligenceof Zhejiang Province, Hangzhou, 310018 China
| | - Jiajia Tang
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018 China
- Key Laboratory of Brain Machine Collaborative Intelligenceof Zhejiang Province, Hangzhou, 310018 China
| | - Jinghao Li
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018 China
- Key Laboratory of Brain Machine Collaborative Intelligenceof Zhejiang Province, Hangzhou, 310018 China
| | - Fabio Babiloni
- Department of Physiology and Pharmacology, University of Rome “Sapienza”, Rome, 00185 Rome, Italy
| |
Collapse
|
166
|
Yu H, Baek S, Lee J, Sohn I, Hwang B, Park C. Deep Neural Network-Based Empirical Mode Decomposition for Motor Imagery EEG Classification. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3647-3656. [PMID: 39037874 DOI: 10.1109/tnsre.2024.3432102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Motor imagery refers to the brain's response during the mental simulation of physical activities, which can be detected through electroencephalogram (EEG) signals. However, EEG signals exhibit a low signal-to-noise ratio (SNR) due to various artifacts originating from other physiological sources. To enhance the classification performance of motor imagery tasks by increasing the SNR of EEG signals, several signal decomposition approaches have been proposed. Empirical mode decomposition (EMD) has shown promising results in extracting EEG components associated with motor imagery tasks more effectively than traditional linear decomposition algorithms such as Fourier and wavelet methods. Nevertheless, the EMD-based algorithm suffers from a significant challenge known as mode mixing, where frequency components intertwine with the intrinsic mode functions obtained through EMD. This issue severely hampers the accuracy of motor imagery classification. Despite numerous algorithms proposed, mode mixing remains a persistent issue. In this paper, we propose the Deep-EMD algorithm, a deep neural network-based approach to mode mixing problem. We employ two datasets to compare the motor imagery classification and mode mixing improvement achieved by the conventional EMD algorithms. Our experimental results demonstrate that the Deep-EMD algorithm effectively mitigates the mode mixing problem in decomposed EEG components, leading to improved motor imagery classification performance.
Collapse
|
167
|
Si X, Huang D, Liang Z, Sun Y, Huang H, Liu Q, Yang Z, Ming D. Temporal aware Mixed Attention-based Convolution and Transformer Network for cross-subject EEG emotion recognition. Comput Biol Med 2024; 181:108973. [PMID: 39213709 DOI: 10.1016/j.compbiomed.2024.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Emotion recognition is crucial for human-computer interaction, and electroencephalography (EEG) stands out as a valuable tool for capturing and reflecting human emotions. In this study, we propose a hierarchical hybrid model called Mixed Attention-based Convolution and Transformer Network (MACTN). This model is designed to collectively capture both local and global temporal information and is inspired by insights from neuroscientific research on the temporal dynamics of emotions. First, we introduce depth-wise temporal convolution and separable convolution to extract local temporal features. Then, a self-attention-based transformer is used to integrate the sparse global emotional features. Besides, channel attention mechanism is designed to identify the most task-relevant channels, facilitating the capture of relationships between different channels and emotional states. Extensive experiments are conducted on three public datasets under both offline and online evaluation modes. In the multi-class cross-subject online evaluation using the THU-EP dataset, MACTN demonstrates an approximate 8% enhancement in 9-class emotion recognition accuracy in comparison to state-of-the-art methods. In the multi-class cross-subject offline evaluation using the DEAP and SEED datasets, a comparable performance is achieved solely based on the raw EEG signals, without the need for prior knowledge or transfer learning during the feature extraction and learning process. Furthermore, ablation studies have shown that integrating self-attention and channel-attention mechanisms improves classification performance. This method won the Emotional BCI Competition's final championship in the World Robot Contest. The source code is available at https://github.com/ThreePoundUniverse/MACTN.
Collapse
Affiliation(s)
- Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin Key Laboratory of Brain Science and Neural Engineering, Institute of Applied Psychology, Tianjin University, Tianjin 300072, China
| | - Dong Huang
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin Key Laboratory of Brain Science and Neural Engineering, Institute of Applied Psychology, Tianjin University, Tianjin 300072, China
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Yulin Sun
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin Key Laboratory of Brain Science and Neural Engineering, Institute of Applied Psychology, Tianjin University, Tianjin 300072, China
| | - He Huang
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin Key Laboratory of Brain Science and Neural Engineering, Institute of Applied Psychology, Tianjin University, Tianjin 300072, China
| | - Qile Liu
- School of Biomedical Engineering, Medical School, Shenzhen University, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Zhuobin Yang
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin Key Laboratory of Brain Science and Neural Engineering, Institute of Applied Psychology, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin Key Laboratory of Brain Science and Neural Engineering, Institute of Applied Psychology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
168
|
Chen D, Huang H, Guan Z, Pan J, Li Y. An Intersubject Brain-Computer Interface Based on Domain-Adversarial Training of Convolutional Neural Network. IEEE Trans Biomed Eng 2024; 71:2956-2967. [PMID: 38781054 DOI: 10.1109/tbme.2024.3404131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Attention decoding plays a vital role in daily life, where electroencephalography (EEG) has been widely involved. However, training a universally effective model for everyone is impractical due to substantial interindividual variability in EEG signals. To tackle the above challenge, we propose an end-to-end brain-computer interface (BCI) framework, including temporal and spatial one-dimensional (1D) convolutional neural network and domain-adversarial training strategy, namely DA-TSnet. METHOD Specifically, DA-TSnet extracts temporal and spatial features of EEG, while it is jointly supervised by task loss and domain loss. During training, DA-TSnet aims to maximize the domain loss while simultaneously minimizing the task loss. We conduct an offline analysis, simulate online experiments on a self-collected dataset of 85 subjects, and real online experiments on 22 subjects. MAIN RESULTS DA-TSnet achieves a leave-one-subject-out (LOSO) cross-validation (CV) classification accuracy of 89.40% ± 9.96%, outperforming several state-of-the-art attention EEG decoding methods. In simulated online experiments, DA-TSnet achieves an outstanding accuracy of 88.07% ± 11.22%. In real online experiments, it achieves an average accuracy surpassing 86%. SIGNIFICANCE An end-to-end network framework does not rely on elaborate preprocessing and feature extraction steps, which saves time and human workload. Moreover, our framework utilizes domain-adversarial training neural network (DANN) to tackle the challenge posed by the high interindividual variability in EEG signals, which has significant reference value for handling other EEG signal decoding issues. Last, the performance of the DA-TSnet framework in offline and online experiments underscores its potential to facilitate more reliable applications.
Collapse
|
169
|
Li Z, Tan X, Li X, Yin L. Multiclass motor imagery classification with Riemannian geometry and temporal-spectral selection. Med Biol Eng Comput 2024; 62:2961-2973. [PMID: 38724769 DOI: 10.1007/s11517-024-03103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/19/2024] [Indexed: 09/07/2024]
Abstract
Motor imagery (MI) based brain-computer interfaces (BCIs) decode the users' intentions from electroencephalography (EEG) to achieve information control and interaction between the brain and external devices. In this paper, firstly, we apply Riemannian geometry to the covariance matrix extracted by spatial filtering to obtain robust and distinct features. Then, a multiscale temporal-spectral segmentation scheme is developed to enrich the feature dimensionality. In order to determine the optimal feature configurations, we utilize a linear learning-based temporal window and spectral band (TWSB) selection method to evaluate the feature contributions, which efficiently reduces the redundant features and improves the decoding efficiency without excessive loss of accuracy. Finally, support vector machines are used to predict the classification labels based on the selected MI features. To evaluate the performance of our model, we test it on the publicly available BCI Competition IV dataset 2a and 2b. The results show that the method has an average accuracy of 79.1% and 83.1%, which outperforms other existing methods. Using TWSB feature selection instead of selecting all features improves the accuracy by up to about 6%. Moreover, the TWSB selection method can effectively reduce the computational burden. We believe that the framework reveals more interpretable feature information of motor imagery EEG signals, provides neural responses discriminative with high accuracy, and facilitates the performance of real-time MI-BCI.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Xiaohui Tan
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xinyu Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Liyong Yin
- Department of Neurology, The First Hospital of Qinhuangdao, No. 258 Wenhua Road, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China.
| |
Collapse
|
170
|
Li J, Shi W, Li Y. An effective classification approach for EEG-based motor imagery tasks combined with attention mechanisms. Cogn Neurodyn 2024; 18:2689-2707. [PMID: 39555298 PMCID: PMC11564468 DOI: 10.1007/s11571-024-10115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 11/19/2024] Open
Abstract
Currently, electroencephalogram (EEG)-based motor imagery (MI) signals have been received extensive attention, which can assist disabled subjects to control wheelchair, automatic driving and other activities. However, EEG signals are easily affected by some factors, such as muscle movements, wireless devices, power line, etc., resulting in the low signal-to-noise ratios and the worse recognition results on EEG decoding. Therefore, it is crucial to develop a stable model for decoding MI-EEG signals. To address this issue and further improve the decoding performance for MI tasks, a hybrid structure combining convolutional neural networks and bidirectional long short-term memory (BLSTM) model, namely CBLSTM, is developed in this study to handle the various EEG-based MI tasks. Besides, the attention mechanism (AM) model is further adopted to adaptively assign the weight of EEG vital features and enhance the expression which beneficial to classification for MI tasks. First of all, the spatial features and the time series features are extracted by CBLSTM from preprocessed MI-EEG data, respectively. Meanwhile, more effective features information can be mined by the AM model, and the softmax function is utilized to recognize intention categories. Ultimately, the numerical results illustrate that the model presented achieves an average accuracy of 98.40% on the public physioNet dataset and faster training process for decoding MI tasks, which is superior to some other advanced models. Ablation experiment performed also verifies the effectiveness and feasibility of the developed model. Moreover, the established network model provides a good basis for the application of brain-computer interface in rehabilitation medicine.
Collapse
Affiliation(s)
- Jixiang Li
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou,, 350108 Fujian China
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350108 Fujian China
| | - Wuxiang Shi
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou,, 350108 Fujian China
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350108 Fujian China
| | - Yurong Li
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou,, 350108 Fujian China
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350108 Fujian China
| |
Collapse
|
171
|
Shi X, Li B, Wang W, Qin Y, Wang H, Wang X. EEG-VTTCNet: A loss joint training model based on the vision transformer and the temporal convolution network for EEG-based motor imagery classification. Neuroscience 2024; 556:42-51. [PMID: 39103043 DOI: 10.1016/j.neuroscience.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Brain-computer interface (BCI) is a technology that directly connects signals between the human brain and a computer or other external device. Motor imagery electroencephalographic (MI-EEG) signals are considered a promising paradigm for BCI systems, with a wide range of potential applications in medical rehabilitation, human-computer interaction, and virtual reality. Accurate decoding of MI-EEG signals poses a significant challenge due to issues related to the quality of the collected EEG data and subject variability. Therefore, developing an efficient MI-EEG decoding network is crucial and warrants research. This paper proposes a loss joint training model based on the vision transformer (VIT) and the temporal convolutional network (EEG-VTTCNet) to classify MI-EEG signals. To take advantage of multiple modules together, the EEG-VTTCNet adopts a shared convolution strategy and a dual-branching strategy. The dual-branching modules perform complementary learning and jointly train shared convolutional modules with better performance. We conducted experiments on the BCI Competition IV-2a and IV-2b datasets, and the proposed network outperformed the current state-of-the-art techniques with an accuracy of 84.58% and 90.94%, respectively, for the subject-dependent mode. In addition, we used t-SNE to visualize the features extracted by the proposed network, further demonstrating the effectiveness of the feature extraction framework. We also conducted extensive ablation and hyperparameter tuning experiments to construct a robust network architecture that can be well generalized.
Collapse
Affiliation(s)
- Xingbin Shi
- The School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai 201306, China
| | - Baojiang Li
- The School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai 201306, China.
| | - Wenlong Wang
- The School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai 201306, China
| | - Yuxin Qin
- The School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai 201306, China
| | - Haiyan Wang
- The School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai 201306, China
| | - Xichao Wang
- The School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai 201306, China
| |
Collapse
|
172
|
Zhao S, Cao Y, Yang W, Yu J, Xu C, Dai W, Li S, Pan G, Luo B. DOCTer: a novel EEG-based diagnosis framework for disorders of consciousness. J Neural Eng 2024; 21:056021. [PMID: 39255823 DOI: 10.1088/1741-2552/ad7904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Objective. Accurately diagnosing patients with disorders of consciousness (DOC) is challenging and prone to errors. Recent studies have demonstrated that EEG (electroencephalography), a non-invasive technique of recording the spontaneous electrical activity of brains, offers valuable insights for DOC diagnosis. However, some challenges remain: (1) the EEG signals have not been fully used; and (2) the data scale in most existing studies is limited. In this study, our goal is to differentiate between minimally conscious state (MCS) and unresponsive wakefulness syndrome (UWS) using resting-state EEG signals, by proposing a new deep learning framework.Approach. We propose DOCTer, an end-to-end framework for DOC diagnosis based on EEG. It extracts multiple pertinent features from the raw EEG signals, including time-frequency features and microstates. Meanwhile, it takes clinical characteristics of patients into account, and then combines all the features together for the diagnosis. To evaluate its effectiveness, we collect a large-scale dataset containing 409 resting-state EEG recordings from 128 UWS and 187 MCS cases.Main results. Evaluated on our dataset, DOCTer achieves the state-of-the-art performance, compared to other methods. The temporal/spectral features contributes the most to the diagnosis task. The cerebral integrity is important for detecting the consciousness level. Meanwhile, we investigate the influence of different EEG collection duration and number of channels, in order to help make the appropriate choices for clinics.Significance. The DOCTer framework significantly improves the accuracy of DOC diagnosis, helpful for developing appropriate treatment programs. Findings derived from the large-scale dataset provide valuable insights for clinics.
Collapse
Affiliation(s)
- Sha Zhao
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yue Cao
- School of Software Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Yang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Yu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Chuan Xu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Dai
- Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, United States of America
| | - Shijian Li
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Gang Pan
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, People's Republic of China
| | - Benyan Luo
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
173
|
Zhang R, Rong R, Xu Y, Wang H, Wang X. OxcarNet: sinc convolutional network with temporal and channel attention for prediction of oxcarbazepine monotherapy responses in patients with newly diagnosed epilepsy. J Neural Eng 2024; 21:056019. [PMID: 39250934 DOI: 10.1088/1741-2552/ad788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Objective.Monotherapy with antiepileptic drugs (AEDs) is the preferred strategy for the initial treatment of epilepsy. However, an inadequate response to the initially prescribed AED is a significant indicator of a poor long-term prognosis, emphasizing the importance of precise prediction of treatment outcomes with the initial AED regimen in patients with epilepsy.Approach. We introduce OxcarNet, an end-to-end neural network framework developed to predict treatment outcomes in patients undergoing oxcarbazepine monotherapy. The proposed predictive model adopts a Sinc Module in its initial layers for adaptive identification of discriminative frequency bands. The derived feature maps are then processed through a Spatial Module, which characterizes the scalp distribution patterns of the electroencephalography (EEG) signals. Subsequently, these features are fed into an attention-enhanced Temporal Module to capture temporal dynamics and discrepancies. A channel module with an attention mechanism is employed to reveal inter-channel dependencies within the output of the Temporal Module, ultimately achieving response prediction. OxcarNet was rigorously evaluated using a proprietary dataset of retrospectively collected EEG data from newly diagnosed epilepsy patients at Nanjing Drum Tower Hospital. This dataset included patients who underwent long-term EEG monitoring in a clinical inpatient setting.Main results.OxcarNet demonstrated exceptional accuracy in predicting treatment outcomes for patients undergoing Oxcarbazepine monotherapy. In the ten-fold cross-validation, the model achieved an accuracy of 97.27%, and in the validation involving unseen patient data, it maintained an accuracy of 89.17%, outperforming six conventional machine learning methods and three generic neural decoding networks. These findings underscore the model's effectiveness in accurately predicting the treatment responses in patients with newly diagnosed epilepsy. The analysis of features extracted by the Sinc filters revealed a predominant concentration of predictive frequencies in the high-frequency range of the gamma band.Significance. The findings of our study offer substantial support and new insights into tailoring early AED selection, enhancing the prediction accuracy for the responses of AEDs.
Collapse
Affiliation(s)
- Runkai Zhang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Rong Rong
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing 210008, Jiangsu, People's Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing 210008, Jiangsu, People's Republic of China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Xiaoyun Wang
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing 210008, Jiangsu, People's Republic of China
| |
Collapse
|
174
|
Lee MH, Shomanov A, Begim B, Kabidenova Z, Nyssanbay A, Yazici A, Lee SW. EAV: EEG-Audio-Video Dataset for Emotion Recognition in Conversational Contexts. Sci Data 2024; 11:1026. [PMID: 39300129 PMCID: PMC11413008 DOI: 10.1038/s41597-024-03838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Understanding emotional states is pivotal for the development of next-generation human-machine interfaces. Human behaviors in social interactions have resulted in psycho-physiological processes influenced by perceptual inputs. Therefore, efforts to comprehend brain functions and human behavior could potentially catalyze the development of AI models with human-like attributes. In this study, we introduce a multimodal emotion dataset comprising data from 30-channel electroencephalography (EEG), audio, and video recordings from 42 participants. Each participant engaged in a cue-based conversation scenario, eliciting five distinct emotions: neutral, anger, happiness, sadness, and calmness. Throughout the experiment, each participant contributed 200 interactions, which encompassed both listening and speaking. This resulted in a cumulative total of 8,400 interactions across all participants. We evaluated the baseline performance of emotion recognition for each modality using established deep neural network (DNN) methods. The Emotion in EEG-Audio-Visual (EAV) dataset represents the first public dataset to incorporate three primary modalities for emotion recognition within a conversational context. We anticipate that this dataset will make significant contributions to the modeling of the human emotional process, encompassing both fundamental neuroscience and machine learning viewpoints.
Collapse
Affiliation(s)
- Min-Ho Lee
- Nazarbayev University, Department of Computer Science, Astana, 010000, Republic of Kazakhstan
| | - Adai Shomanov
- Nazarbayev University, Department of Computer Science, Astana, 010000, Republic of Kazakhstan
| | - Balgyn Begim
- Nazarbayev University, Department of Computer Science, Astana, 010000, Republic of Kazakhstan
| | - Zhuldyz Kabidenova
- Nazarbayev University, Department of Computer Science, Astana, 010000, Republic of Kazakhstan
| | - Aruna Nyssanbay
- Nazarbayev University, Department of Computer Science, Astana, 010000, Republic of Kazakhstan
| | - Adnan Yazici
- Nazarbayev University, Department of Computer Science, Astana, 010000, Republic of Kazakhstan
| | - Seong-Whan Lee
- Korea University, Department of Artificial Intelligence, Seoul, 02841, Republic of Korea.
| |
Collapse
|
175
|
Zhou P, Deng H, Zeng J, Ran H, Yu C. Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network. Front Med (Lausanne) 2024; 11:1447951. [PMID: 39359920 PMCID: PMC11445052 DOI: 10.3389/fmed.2024.1447951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5-6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haixia Deng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haosong Ran
- College of Artificial Intelligent, Chongqing University of Technology, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
176
|
Jia T, Meng L, Li S, Liu J, Wu D. Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3442-3451. [PMID: 39255189 DOI: 10.1109/tnsre.2024.3457504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.
Collapse
|
177
|
Rong F, Yang B, Guan C. Decoding Multi-Class Motor Imagery From Unilateral Limbs Using EEG Signals. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3399-3409. [PMID: 39236133 DOI: 10.1109/tnsre.2024.3454088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The EEG is a widely utilized neural signal source, particularly in motor imagery-based brain-computer interface (MI-BCI), offering distinct advantages in applications like stroke rehabilitation. Current research predominantly concentrates on the bilateral limbs paradigm and decoding, but the use scenarios for stroke rehabilitation are typically for unilateral upper limbs. There is a significant challenge to decoding unilateral MI of multitasks due to the overlapped spatial neural activities of the tasks. This study aims to formulate a novel MI-BCI experimental paradigm for unilateral limbs with multitasks. The paradigm encompasses four imagined movement directions: top-bottom, left-right, top right-bottom left, and top left-bottom right. Forty-six healthy subjects participated in this experiment. Commonly used machine learning techniques, such as FBCSP, EEGNet, deepConvNet, and FBCNet, were employed for evaluation. To improve decoding accuracy, we propose an MVCA method that introduces temporal convolution and attention mechanism to effectively capture temporal features from multiple perspectives. With the MVCA model, we have achieved 40.6% and 64.89% classification accuracies for the four-class and two-class scenarios (top right-bottom left and top left-bottom right), respectively. Conclusion: This is the first study demonstrating that motor imagery of multiple directions in unilateral limbs can be decoded. In particular, decoding two directions, right top to left bottom and left top to right bottom, provides the best accuracy, which sheds light on future studies. This study advances the development of the MI-BCI paradigm, offering preliminary evidence for the feasibility of decoding multiple directional information from EEG. This, in turn, enhances the dimensions of MI control commands.
Collapse
|
178
|
El Ouahidi Y, Gripon V, Pasdeloup B, Bouallegue G, Farrugia N, Lioi G. A Strong and Simple Deep Learning Baseline for BCI Motor Imagery Decoding. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3338-3347. [PMID: 39196743 DOI: 10.1109/tnsre.2024.3451010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
We propose EEG-SimpleConv, a straightforward 1D convolutional neural network for Motor Imagery decoding in BCI. Our main motivation is to propose a simple and performing baseline that achieves high classification accuracy, using only standard ingredients from the literature, to serve as a standard for comparison. The proposed architecture is composed of standard layers, including 1D convolutions, batch normalisations, ReLU activation functions and pooling functions. EEG-SimpleConv architecture is accompanied by a straightforward and tailored training routine, which is subjected to an extensive ablation study to quantify the influence of its components. We evaluate its performance on four EEG Motor Imagery datasets, including simulated online setups, and compare it to recent Deep Learning and Machine Learning approaches. EEG-SimpleConv is at least as good or far more efficient than other approaches, showing strong knowledge-transfer capabilities across subjects, at the cost of a low inference time. We believe that using standard components and ingredients can significantly help the adoption of Deep Learning approaches for BCI. We make the code of the models and the experiments accessible.
Collapse
|
179
|
Sung DJ, Kim KT, Jeong JH, Kim L, Lee SJ, Kim H, Kim SJ. Improving inter-session performance via relevant session-transfer for multi-session motor imagery classification. Heliyon 2024; 10:e37343. [PMID: 39296025 PMCID: PMC11409124 DOI: 10.1016/j.heliyon.2024.e37343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Motor imagery (MI)-based brain-computer interfaces (BCIs) using electroencephalography (EEG) have found practical applications in external device control. However, the non-stationary nature of EEG signals remains to obstruct BCI performance across multiple sessions, even for the same user. In this study, we aim to address the impact of non-stationarity, also known as inter-session variability, on multi-session MI classification performance by introducing a novel approach, the relevant session-transfer (RST) method. Leveraging the cosine similarity as a benchmark, the RST method transfers relevant EEG data from the previous session to the current one. The effectiveness of the proposed RST method was investigated through performance comparisons with the self-calibrating method, which uses only the data from the current session, and the whole-session transfer method, which utilizes data from all prior sessions. We validated the effectiveness of these methods using two datasets: a large MI public dataset (Shu Dataset) and our own dataset of gait-related MI, which includes both healthy participants and individuals with spinal cord injuries. Our experimental results revealed that the proposed RST method leads to a 2.29 % improvement (p < 0.001) in the Shu Dataset and up to a 6.37 % improvement in our dataset when compared to the self-calibrating method. Moreover, our method surpassed the performance of the recent highest-performing method that utilized the Shu Dataset, providing further support for the efficacy of the RST method in improving multi-session MI classification performance. Consequently, our findings confirm that the proposed RST method can improve classification performance across multiple sessions in practical MI-BCIs.
Collapse
Affiliation(s)
- Dong-Jin Sung
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Keun-Tae Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- College of Information Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji-Hyeok Jeong
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Laehyun Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Song Joo Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seung-Jong Kim
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| |
Collapse
|
180
|
Tan X, Wang D, Xu M, Chen J, Wu S. Efficient Multi-View Graph Convolutional Network with Self-Attention for Multi-Class Motor Imagery Decoding. Bioengineering (Basel) 2024; 11:926. [PMID: 39329668 PMCID: PMC11428916 DOI: 10.3390/bioengineering11090926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Research on electroencephalogram-based motor imagery (MI-EEG) can identify the limbs of subjects that generate motor imagination by decoding EEG signals, which is an important issue in the field of brain-computer interface (BCI). Existing deep-learning-based classification methods have not been able to entirely employ the topological information among brain regions, and thus, the classification performance needs further improving. In this paper, we propose a multi-view graph convolutional attention network (MGCANet) with residual learning structure for multi-class MI decoding. Specifically, we design a multi-view graph convolution spatial feature extraction method based on the topological relationship of brain regions to achieve more comprehensive information aggregation. During the modeling, we build an adaptive weight fusion (Awf) module to adaptively merge feature from different brain views to improve classification accuracy. In addition, the self-attention mechanism is introduced for feature selection to expand the receptive field of EEG signals to global dependence and enhance the expression of important features. The proposed model is experimentally evaluated on two public MI datasets and achieved a mean accuracy of 78.26% (BCIC IV 2a dataset) and 73.68% (OpenBMI dataset), which significantly outperforms representative comparative methods in classification accuracy. Comprehensive experiment results verify the effectiveness of our proposed method, which can provide novel perspectives for MI decoding.
Collapse
Affiliation(s)
| | - Dan Wang
- College of Computer Science, Beijing University of Technology, Beijing 100124, China; (X.T.)
| | | | | | | |
Collapse
|
181
|
Huang J, Chang Y, Li W, Tong J, Du S. A Spatio-Temporal Capsule Neural Network with Self-Correlation Routing for EEG Decoding of Semantic Concepts of Imagination and Perception Tasks. SENSORS (BASEL, SWITZERLAND) 2024; 24:5988. [PMID: 39338733 PMCID: PMC11436183 DOI: 10.3390/s24185988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Decoding semantic concepts for imagination and perception tasks (SCIP) is important for rehabilitation medicine as well as cognitive neuroscience. Electroencephalogram (EEG) is commonly used in the relevant fields, because it is a low-cost noninvasive technique with high temporal resolution. However, as EEG signals contain a high noise level resulting in a low signal-to-noise ratio, it makes decoding EEG-based semantic concepts for imagination and perception tasks (SCIP-EEG) challenging. Currently, neural network algorithms such as CNN, RNN, and LSTM have almost reached their limits in EEG signal decoding due to their own short-comings. The emergence of transformer methods has improved the classification performance of neural networks for EEG signals. However, the transformer model has a large parameter set and high complexity, which is not conducive to the application of BCI. EEG signals have high spatial correlation. The relationship between signals from different electrodes is more complex. Capsule neural networks can effectively model the spatial relationship between electrodes through vector representation and a dynamic routing mechanism. Therefore, it achieves more accurate feature extraction and classification. This paper proposes a spatio-temporal capsule network with a self-correlation routing mechaninsm for the classification of semantic conceptual EEG signals. By improving the feature extraction and routing mechanism, the model is able to more effectively capture the highly variable spatio-temporal features from EEG signals and establish connections between capsules, thereby enhancing classification accuracy and model efficiency. The performance of the proposed model was validated using the publicly accessible semantic concept dataset for imagined and perceived tasks from Bath University. Our model achieved average accuracies of 94.9%, 93.3%, and 78.4% in the three sensory modalities (pictorial, orthographic, and audio), respectively. The overall average accuracy across the three sensory modalities is 88.9%. Compared to existing advanced algorithms, the proposed model achieved state-of-the-art performance, significantly improving classification accuracy. Additionally, the proposed model is more stable and efficient, making it a better decoding solution for SCIP-EEG decoding.
Collapse
Affiliation(s)
- Jianxi Huang
- School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
| | - Yinghui Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wenyu Li
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China
| | - Jigang Tong
- School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
| | - Shengzhi Du
- Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
182
|
Pulferer HS, Kostoglou K, Müller-Putz GR. Improving non-invasive trajectory decoding via neural correlates of continuous erroneous feedback processing. J Neural Eng 2024; 21:056010. [PMID: 39231465 DOI: 10.1088/1741-2552/ad7762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Objective. Over the last decades, error-related potentials (ErrPs) have repeatedly proven especially useful as corrective mechanisms in invasive and non-invasive brain-computer interfaces (BCIs). However, research in this context exclusively investigated the distinction of discrete events intocorrectorerroneousto the present day. Due to this predominant formulation as a binary classification problem, classical ErrP-based BCIs fail to monitor tasks demanding quantitative information on error severity rather than mere qualitative decisions on error occurrence. As a result, fine-tuned and natural feedback control based on continuously perceived deviations from an intended target remains beyond the capabilities of previously used BCI setups.Approach.To address this issue for future BCI designs, we investigated the feasibility of regressing rather than classifying error-related activity non-invasively from the brain.Main results.Using pre-recorded data from ten able-bodied participants in three sessions each and a multi-output convolutional neural network, we demonstrated the above-chance regression of ongoing target-feedback discrepancies from brain signals in a pseudo-online fashion. In a second step, we used this inferred information about the target deviation to correct the initially displayed feedback accordingly, reporting significant improvements in correlations between corrected feedback and target trajectories across feedback conditions.Significance.Our results indicate that continuous information on target-feedback discrepancies can be successfully regressed from cortical activity, paving the way to increasingly naturalistic, fine-tuned correction mechanisms for future BCI applications.
Collapse
Affiliation(s)
- Hannah S Pulferer
- Institute of Neural Engineering, TU Graz, Stremayrgasse 16/4, Graz, 8010 Styria, Austria
| | - Kyriaki Kostoglou
- Institute of Neural Engineering, TU Graz, Stremayrgasse 16/4, Graz, 8010 Styria, Austria
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, TU Graz, Stremayrgasse 16/4, Graz, 8010 Styria, Austria
- BioTechMed-Graz, Graz, Styria, Austria
| |
Collapse
|
183
|
Tang Z, Cui Z, Wang H, Liu P, Xu X, Yang K. A 4-DOF Exosuit Using a Hybrid EEG-Based Control Approach for Upper-Limb Rehabilitation. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:622-634. [PMID: 39464623 PMCID: PMC11505961 DOI: 10.1109/jtehm.2024.3454077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Rehabilitation devices, such as traditional rigid exoskeletons or exosuits, have been widely used to rehabilitate upper limb function post-stroke. In this paper, we have developed an exosuit with four degrees of freedom to enable users to involve more joints in the rehabilitation process. Additionally, a hybrid electroencephalogram-based (EEG-based) control approach has been developed to promote active user engagement and provide more control commands.The hybrid EEG-based control approach includes steady-state visual evoked potential (SSVEP) paradigm and motor imagery (MI) paradigm. Firstly, the rehabilitation movement was selected by SSVEP paradigm, and the multivariate variational mode decomposition (MVMD) and canonical correlation analysis (CCA) method was used for SSVEP EEG recognition; then, the motion intention was obtained by MI paradigm, and the convolutional neural network (CNN) and long short-term memory network (LSTM) were used to build a CNN-LSTM model for MI EEG recognition; finally, the recognition results were translated into control commands of Bowden cables to achieve multi-degree-of-freedom rehabilitation.Experimental results show that the average classification accuracy of the CNN-LSTM model reaches to 90.07% ± 2.23%, and the overall accuracy of the hybrid EEG-based control approach reaches to 85.26% ± 1.95%. The twelve subjects involved in the usability assessment demonstrated an average system usability scale (SUS) score of 81.25 ± 5.82. Additionally, four participants who underwent a 35-day rehabilitation training demonstrated an average 10.33% increase in range of motion (ROM) across 4 joints, along with a 11.35% increase in the average electromyography (EMG) amplitude of the primary muscle involved.The exosuit demonstrates good accuracy in control, exhibits favorable usability, and shows certain efficacy in multi-joint rehabilitation. Our study has taken into account the neuroplastic principles, aiming to achieve active user engagement while introducing additional degrees of freedom, offering novel ideas and methods for potential brain-computer interface (BCI)-based rehabilitation strategies and hardware development.Clinical impact: Our study presents an exosuit with four degrees of freedom for stroke rehabilitation, enabling multi-joint movement and improved motor recovery. The hybrid EEG-based control approach enhances active user engagement, offering a promising strategy for more effective and user-driven rehabilitation, potentially improving clinical outcomes.Clinical and Translational Impact Statement: By developing an exosuit and a hybrid EEG-based control approach, this study enhances stroke rehabilitation through better user engagement and multi-joint capabilities. These innovations consider neuroplasticity principles, integrating rehabilitation theory with rehabilitation device.
Collapse
Affiliation(s)
- Zhichuan Tang
- Industrial Design Institute, Zhejiang University of Technology Hangzhou 310023 China
- Faculty of Science and TechnologyBournemouth University BH12 5BB Poole U.K
| | - Zhixuan Cui
- Industrial Design Institute, Zhejiang University of Technology Hangzhou 310023 China
| | - Hang Wang
- Industrial Design Institute, Zhejiang University of Technology Hangzhou 310023 China
| | - Pengcheng Liu
- Department of Computer ScienceUniversity of York YO10 5DD York U.K
| | - Xuan Xu
- Industrial Design Institute, Zhejiang University of Technology Hangzhou 310023 China
| | - Keshuai Yang
- Industrial Design Institute, Zhejiang University of Technology Hangzhou 310023 China
| |
Collapse
|
184
|
Kumari A, Edla DR, Reddy RR, Jannu S, Vidyarthi A, Alkhayyat A, de Marin MSG. EEG-based motor imagery channel selection and classification using hybrid optimization and two-tier deep learning. J Neurosci Methods 2024; 409:110215. [PMID: 38968976 DOI: 10.1016/j.jneumeth.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Brain-computer interface (BCI) technology holds promise for individuals with profound motor impairments, offering the potential for communication and control. Motor imagery (MI)-based BCI systems are particularly relevant in this context. Despite their potential, achieving accurate and robust classification of MI tasks using electroencephalography (EEG) data remains a significant challenge. In this paper, we employed the Minimum Redundancy Maximum Relevance (MRMR) algorithm to optimize channel selection. Furthermore, we introduced a hybrid optimization approach that combines the War Strategy Optimization (WSO) and Chimp Optimization Algorithm (ChOA). This hybridization significantly enhances the classification model's overall performance and adaptability. A two-tier deep learning architecture is proposed for classification, consisting of a Convolutional Neural Network (CNN) and a modified Deep Neural Network (M-DNN). The CNN focuses on capturing temporal correlations within EEG data, while the M-DNN is designed to extract high-level spatial characteristics from selected EEG channels. Integrating optimal channel selection, hybrid optimization, and the two-tier deep learning methodology in our BCI framework presents an enhanced approach for precise and effective BCI control. Our model got 95.06% accuracy with high precision. This advancement has the potential to significantly impact neurorehabilitation and assistive technology applications, facilitating improved communication and control for individuals with motor impairments.
Collapse
Affiliation(s)
- Annu Kumari
- Department of Computer Science and Engineering, National Institute of Technology Goa, Cuncolim, South Goa, 403 703, Goa, India.
| | - Damodar Reddy Edla
- Department of Computer Science and Engineering, National Institute of Technology Goa, Cuncolim, South Goa, 403 703, Goa, India.
| | - R Ravinder Reddy
- Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad, 500 075, India.
| | - Srikanth Jannu
- Department of Computer Science and Engineering, Vaagdevi Engineering College, Warangal, Telangana, 506 005, India.
| | - Ankit Vidyarthi
- Department of CSE&IT, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | | | - Mirtha Silvana Garat de Marin
- Engineering Research & Innovation Group, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain; Department of Project Management, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA; Department of Project Management, Universidade Internacional do Cuanza, Estrada Nacional 250, Bairro Kaluapanda, Cuito-Bié, Angola.
| |
Collapse
|
185
|
Leng J, Li H, Shi W, Gao L, Lv C, Wang C, Xu F, Zhang Y, Jung TP. Time-Frequency-Space EEG Decoding Model Based on Dense Graph Convolutional Network for Stroke. IEEE J Biomed Health Inform 2024; 28:5214-5226. [PMID: 38857138 DOI: 10.1109/jbhi.2024.3411646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Stroke, a sudden cerebrovascular ailment resulting from brain tissue damage, has prompted the use of motor imagery (MI)-based Brain-Computer Interface (BCI) systems in stroke rehabilitation. However, analyzing EEG signals from stroke patients is challenging because of their low signal-to-noise ratio and high variability. Therefore, we propose a novel approach that combines the modified S-transform (MST) and a dense graph convolutional network (DenseGCN) algorithm to enhance the MI-BCI performance across time, frequency, and space domains. MST is a time-frequency analysis method that efficiently concentrates energy in EEG signals, while DenseGCN is a deep learning model that uses EEG feature maps from each layer as inputs for subsequent layers, facilitating feature reuse and hyper-parameters optimization. Our approach outperforms conventional networks, achieving a peak classification accuracy of 90.22% and an average information transfer rate (ITR) of 68.52 bits per minute. Moreover, we conduct an in-depth analysis of the event-related desynchronization/event-related synchronization (ERD/ERS) phenomenon in the deep-level EEG features of stroke patients. Our experimental results confirm the feasibility and efficacy of the proposed approach for MI-BCI rehabilitation systems.
Collapse
|
186
|
Tang H, Xie S, Xie X, Cui Y, Li B, Zheng D, Hao Y, Wang X, Jiang Y, Tian Z. Multi-Domain Based Dynamic Graph Representation Learning for EEG Emotion Recognition. IEEE J Biomed Health Inform 2024; 28:5227-5238. [PMID: 38885103 DOI: 10.1109/jbhi.2024.3415163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graph neural networks (GNNs) have demonstrated efficient processing of graph-structured data, making them a promising method for electroencephalogram (EEG) emotion recognition. However, due to dynamic functional connectivity and nonlinear relationships between brain regions, representing EEG as graph data remains a great challenge. To solve this problem, we proposed a multi-domain based graph representation learning (MD 2GRL) framework to model EEG signals as graph data. Specifically, MD 2GRL leverages gated recurrent units (GRU) and power spectral density (PSD) to construct node features of two subgraphs. Subsequently, the self-attention mechanism is adopted to learn the similarity matrix between nodes and fuse it with the intrinsic spatial matrix of EEG to compute the corresponding adjacency matrix. In addition, we introduced a learnable soft thresholding operator to sparsify the adjacency matrix to reduce noise in the graph structure. In the downstream task, we designed a dual-branch GNN and incorporated spatial asymmetry for graph coarsening. We conducted experiments using the publicly available datasets SEED and DEAP, separately for subject-dependent and subject-independent, to evaluate the performance of our model in emotion classification. Experimental results demonstrated that our method achieved state-of-the-art (SOTA) classification performance in both subject-dependent and subject-independent experiments. Furthermore, the visualization analysis of the learned graph structure reveals EEG channel connections that are significantly related to emotion and suppress irrelevant noise. These findings are consistent with established neuroscience research and demonstrate the potential of our approach in comprehending the neural underpinnings of emotion.
Collapse
|
187
|
Chen C, Song Y, Chen D, Zhu J, Ning H, Xiao R. Design and application of pneumatic rehabilitation glove system based on brain-computer interface. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:095108. [PMID: 39248624 DOI: 10.1063/5.0225972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Stroke has been the second leading cause of death and disability worldwide. With the innovation of therapeutic schedules, its death rate has decreased significantly but still guides chronic movement disorders. Due to the lack of independent activities and minimum exercise standards, the traditional rehabilitation means of occupational therapy and constraint-induced movement therapy pose challenges in stroke patients with severe impairments. Therefore, specific and effective rehabilitation methods seek innovation. To address the overlooked limitation, we design a pneumatic rehabilitation glove system. Specially, we developed a pneumatic glove, which utilizes ElectroEncephaloGram (EEG) acquisition to gain the EEG signals. A proposed EEGTran model is inserted into the system to distinguish the specific motor imagination behavior, thus, the glove can perform specific activities according to the patient's imagination, facilitating the patients with severe movement disorders and promoting the rehabilitation technology. The experimental results show that the proposed EEGTrans reached an accuracy of 87.3% and outperformed that of competitors. It demonstrates that our pneumatic rehabilitation glove system contributes to the rehabilitation training of stroke patients.
Collapse
Affiliation(s)
- Cheng Chen
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yize Song
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Duoyou Chen
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiahua Zhu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huansheng Ning
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruoxiu Xiao
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan 100024, China
| |
Collapse
|
188
|
Carrara I, Papadopoulo T. Classification of BCI-EEG Based on the Augmented Covariance Matrix. IEEE Trans Biomed Eng 2024; 71:2651-2662. [PMID: 38587944 DOI: 10.1109/tbme.2024.3386219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
OBJECTIVE Electroencephalography signals are recorded as multidimensional datasets. We propose a new framework based on the augmented covariance that stems from an autoregressive model to improve motor imagery classification. METHODS From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to apply this Riemannian Geometry based approach to these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. RESULTS The augmented covariance matrix performed ACMs better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. CONCLUSION The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information. As such, it contains information on the nonlinear components of the signal through the embedding procedure, which allows the leveraging of dynamical systems algorithms. SIGNIFICANCE These results extend the concepts and the results of the Riemannian distance based classification algorithm.
Collapse
|
189
|
Shen J, Li K, Liang H, Zhao Z, Ma Y, Wu J, Zhang J, Zhang Y, Hu B. HEMAsNet: A Hemisphere Asymmetry Network Inspired by the Brain for Depression Recognition From Electroencephalogram Signals. IEEE J Biomed Health Inform 2024; 28:5247-5259. [PMID: 38781058 DOI: 10.1109/jbhi.2024.3404664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Depression is a prevalent mental disorder that affects a significant portion of the global population. Despite recent advancements in EEG-based depression recognition models rooted in machine learning and deep learning approaches, many lack comprehensive consideration of depression's pathogenesis, leading to limited neuroscientific interpretability. To address these issues, we propose a hemisphere asymmetry network (HEMAsNet) inspired by the brain for depression recognition from EEG signals. HEMAsNet employs a combination of multi-scale Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) blocks to extract temporal features from both hemispheres of the brain. Moreover, the model introduces a unique 'Callosum-like' block, inspired by the corpus callosum's pivotal role in facilitating inter-hemispheric information transfer within the brain. This block enhances information exchange between hemispheres, potentially improving depression recognition accuracy. To validate the performance of HEMAsNet, we first confirmed the asymmetric features of frontal lobe EEG in the MODMA dataset. Subsequently, our method achieved a depression recognition accuracy of 0.8067, indicating its effectiveness in increasing classification performance. Furthermore, we conducted a comprehensive investigation from spatial and frequency perspectives, demonstrating HEMAsNet's innovation in explaining model decisions. The advantages of HEMAsNet lie in its ability to achieve more accurate and interpretable recognition of depression through the simulation of physiological processes, integration of spatial information, and incorporation of the Callosum-like block.
Collapse
|
190
|
Zhao W, Jiang X, Zhang B, Xiao S, Weng S. CTNet: a convolutional transformer network for EEG-based motor imagery classification. Sci Rep 2024; 14:20237. [PMID: 39215126 PMCID: PMC11364810 DOI: 10.1038/s41598-024-71118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Brain-computer interface (BCI) technology bridges the direct communication between the brain and machines, unlocking new possibilities for human interaction and rehabilitation. EEG-based motor imagery (MI) plays a pivotal role in BCI, enabling the translation of thought into actionable commands for interactive and assistive technologies. However, the constrained decoding performance of brain signals poses a limitation to the broader application and development of BCI systems. In this study, we introduce a convolutional Transformer network (CTNet) designed for EEG-based MI classification. Firstly, CTNet employs a convolutional module analogous to EEGNet, dedicated to extracting local and spatial features from EEG time series. Subsequently, it incorporates a Transformer encoder module, leveraging a multi-head attention mechanism to discern the global dependencies of EEG's high-level features. Finally, a straightforward classifier module comprising fully connected layers is followed to categorize EEG signals. In subject-specific evaluations, CTNet achieved remarkable decoding accuracies of 82.52% and 88.49% on the BCI IV-2a and IV-2b datasets, respectively. Furthermore, in the challenging cross-subject assessments, CTNet achieved recognition accuracies of 58.64% on the BCI IV-2a dataset and 76.27% on the BCI IV-2b dataset. In both subject-specific and cross-subject evaluations, CTNet holds a leading position when compared to some of the state-of-the-art methods. This underscores the exceptional efficacy of our approach and its potential to set a new benchmark in EEG decoding.
Collapse
Affiliation(s)
- Wei Zhao
- Chengyi College, Jimei University, Xiamen, 361021, China.
| | - Xiaolu Jiang
- Chengyi College, Jimei University, Xiamen, 361021, China
| | - Baocan Zhang
- Chengyi College, Jimei University, Xiamen, 361021, China
| | - Shixiao Xiao
- Chengyi College, Jimei University, Xiamen, 361021, China
| | - Sujun Weng
- Chengyi College, Jimei University, Xiamen, 361021, China
| |
Collapse
|
191
|
Delgado-Munoz J, Matsunaka R, Hiraki K. Classification of Known and Unknown Study Items in a Memory Task Using Single-Trial Event-Related Potentials and Convolutional Neural Networks. Brain Sci 2024; 14:860. [PMID: 39335356 PMCID: PMC11430714 DOI: 10.3390/brainsci14090860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
This study examines the feasibility of using event-related potentials (ERPs) obtained from electroencephalographic (EEG) recordings as biomarkers for long-term memory item classification. Previous studies have identified old/new effects in memory paradigms associated with explicit long-term memory and familiarity. Recent advancements in convolutional neural networks (CNNs) have enabled the classification of ERP trials under different conditions and the identification of features related to neural processes at the single-trial level. We employed this approach to compare three CNN models with distinct architectures using experimental data. Participants (N = 25) performed an association memory task while recording ERPs that were used for training and validation of the CNN models. The EEGNET-based model achieved the most reliable performance in terms of precision, recall, and specificity compared with the shallow and deep convolutional approaches. The classification accuracy of this model reached 62% for known items and 66% for unknown items. Good overall accuracy requires a trade-off between recall and specificity and depends on the architecture of the model and the dataset size. These results suggest the possibility of integrating ERP and CNN into online learning tools and identifying the underlying processes related to long-term memorization.
Collapse
Affiliation(s)
- Jorge Delgado-Munoz
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-Ku, Tokyo 153-8902, Japan; (R.M.); (K.H.)
| | | | | |
Collapse
|
192
|
Alsuradi H, Shen J, Park W, Eid M. Evaluation of perceived urgency from single-trial EEG data elicited by upper-body vibration feedback using deep learning. Sci Rep 2024; 14:19604. [PMID: 39179642 PMCID: PMC11344029 DOI: 10.1038/s41598-024-70508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Notification systems that convey urgency without adding cognitive burden are crucial in human-computer interaction. Haptic feedback systems, particularly those utilizing vibration feedback, have emerged as a compelling solution, capable of providing desirable levels of urgency depending on the application. High-risk applications require an evaluation of the urgency level elicited during critical notifications. Traditional evaluations of perceived urgency rely on subjective self-reporting and performance metrics, which, while useful, are not real-time and can be distracting from the task at hand. In contrast, EEG technology offers a direct, non-intrusive method of assessing the user's cognitive state. Leveraging deep learning, this study introduces a novel approach to evaluate perceived urgency from single-trial EEG data, induced by vibration stimuli on the upper body, utilizing our newly collected urgency-via-vibration dataset. The proposed model combines a 2D convolutional neural network with a temporal convolutional network to capture spatial and temporal EEG features, outperforming several established EEG models. The proposed model achieves an average classification accuracy of 83% through leave-one-subject-out cross-validation across three urgency classes (not urgent, urgent, and very urgent) from a single trial of EEG data. Furthermore, explainability analysis showed that the prefrontal brain region, followed by the central brain region, are the most influential in predicting the urgency level. A follow-up neural statistical analysis revealed an increase in event-related synchronization (ERS) in the theta frequency band (4-7 Hz) with the increased level of urgency, which is associated with high arousal and attention in the neuroscience literature. A limitation of this study is that the proposed model's performance was tested only the urgency-via-vibration dataset, which may affect the generalizability of the findings.
Collapse
Affiliation(s)
- Haneen Alsuradi
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Jiacheng Shen
- Computer Science Department, New York University Shanghai, Shanghai, China
| | - Wanjoo Park
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mohamad Eid
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, UAE.
- Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
193
|
Moraes CPA, Dos Santos LH, Fantinato DG, Neves A, Adali T. Independent Vector Analysis for Feature Extraction in Motor Imagery Classification. SENSORS (BASEL, SWITZERLAND) 2024; 24:5428. [PMID: 39205122 PMCID: PMC11359939 DOI: 10.3390/s24165428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain-computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%.
Collapse
Affiliation(s)
- Caroline Pires Alavez Moraes
- Center for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André 09280-560, SP, Brazil
| | - Lucas Heck Dos Santos
- Center for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André 09280-560, SP, Brazil
| | - Denis Gustavo Fantinato
- Department of Computer Engineering and Automation (DCA), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-852, SP, Brazil
| | - Aline Neves
- Center for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André 09280-560, SP, Brazil
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD 21250, USA
| |
Collapse
|
194
|
Eder M, Xu J, Grosse-Wentrup M. Benchmarking brain-computer interface algorithms: Riemannian approaches vs convolutional neural networks. J Neural Eng 2024; 21:044002. [PMID: 39053485 DOI: 10.1088/1741-2552/ad6793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Objective.To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms.Approach.We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings.Main results.We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses.Significance.The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences.
Collapse
Affiliation(s)
- Manuel Eder
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Jiachen Xu
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Data Science Network @ Uni Vienna, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| |
Collapse
|
195
|
Mattei E, Lozzi D, Di Matteo A, Cipriani A, Manes C, Placidi G. MOVING: A Multi-Modal Dataset of EEG Signals and Virtual Glove Hand Tracking. SENSORS (BASEL, SWITZERLAND) 2024; 24:5207. [PMID: 39204903 PMCID: PMC11359383 DOI: 10.3390/s24165207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Brain-computer interfaces (BCIs) are pivotal in translating neural activities into control commands for external assistive devices. Non-invasive techniques like electroencephalography (EEG) offer a balance of sensitivity and spatial-temporal resolution for capturing brain signals associated with motor activities. This work introduces MOVING, a Multi-Modal dataset of EEG signals and Virtual Glove Hand Tracking. This dataset comprises neural EEG signals and kinematic data associated with three hand movements-open/close, finger tapping, and wrist rotation-along with a rest period. The dataset, obtained from 11 subjects using a 32-channel dry wireless EEG system, also includes synchronized kinematic data captured by a Virtual Glove (VG) system equipped with two orthogonal Leap Motion Controllers. The use of these two devices allows for fast assembly (∼1 min), although introducing more noise than the gold standard devices for data acquisition. The study investigates which frequency bands in EEG signals are the most informative for motor task classification and the impact of baseline reduction on gesture recognition. Deep learning techniques, particularly EEGnetV4, are applied to analyze and classify movements based on the EEG data. This dataset aims to facilitate advances in BCI research and in the development of assistive devices for people with impaired hand mobility. This study contributes to the repository of EEG datasets, which is continuously increasing with data from other subjects, which is hoped to serve as benchmarks for new BCI approaches and applications.
Collapse
Affiliation(s)
- Enrico Mattei
- A2VI-Lab, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniele Lozzi
- A2VI-Lab, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100 L'Aquila, Italy
| | - Alessandro Di Matteo
- A2VI-Lab, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100 L'Aquila, Italy
| | - Alessia Cipriani
- A2VI-Lab, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Costanzo Manes
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppe Placidi
- A2VI-Lab, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
196
|
Lee BH, Cho JH, Kwon BH, Lee M, Lee SW. Iteratively Calibratable Network for Reliable EEG-Based Robotic Arm Control. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2793-2804. [PMID: 39074028 DOI: 10.1109/tnsre.2024.3434983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Robotic arms are increasingly being utilized in shared workspaces, which necessitates the accurate interpretation of human intentions for both efficiency and safety. Electroencephalogram (EEG) signals, commonly employed to measure brain activity, offer a direct communication channel between humans and robotic arms. However, the ambiguous and unstable characteristics of EEG signals, coupled with their widespread distribution, make it challenging to collect sufficient data and hinder the calibration performance for new signals, thereby reducing the reliability of EEG-based applications. To address these issues, this study proposes an iteratively calibratable network aimed at enhancing the reliability and efficiency of EEG-based robotic arm control systems. The proposed method integrates feature inputs with network expansion techniques. This integration allows a network trained on an extensive initial dataset to adapt effectively to new users during calibration. Additionally, our approach combines motor imagery and speech imagery datasets to increase not only its intuitiveness but also the number of command classes. The evaluation is conducted in a pseudo-online manner, with a robotic arm operating in real-time to collect data, which is then analyzed offline. The evaluation results demonstrated that the proposed method outperformed the comparison group in 10 sessions and demonstrated competitive results when the two paradigms were combined. Therefore, it was confirmed that the network can be calibrated and personalized using only the new data from new users.
Collapse
|
197
|
Dillen A, Omidi M, Díaz MA, Ghaffari F, Roelands B, Vanderborght B, Romain O, De Pauw K. Evaluating the real-world usability of BCI control systems with augmented reality: a user study protocol. Front Hum Neurosci 2024; 18:1448584. [PMID: 39161850 PMCID: PMC11330773 DOI: 10.3389/fnhum.2024.1448584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Brain-computer interfaces (BCI) enable users to control devices through their brain activity. Motor imagery (MI), the neural activity resulting from an individual imagining performing a movement, is a common control paradigm. This study introduces a user-centric evaluation protocol for assessing the performance and user experience of an MI-based BCI control system utilizing augmented reality. Augmented reality is employed to enhance user interaction by displaying environment-aware actions, and guiding users on the necessary imagined movements for specific device commands. One of the major gaps in existing research is the lack of comprehensive evaluation methodologies, particularly in real-world conditions. To address this gap, our protocol combines quantitative and qualitative assessments across three phases. In the initial phase, the BCI prototype's technical robustness is validated. Subsequently, the second phase involves a performance assessment of the control system. The third phase introduces a comparative analysis between the prototype and an alternative approach, incorporating detailed user experience evaluations through questionnaires and comparisons with non-BCI control methods. Participants engage in various tasks, such as object sorting, picking and placing, and playing a board game using the BCI control system. The evaluation procedure is designed for versatility, intending applicability beyond the specific use case presented. Its adaptability enables easy customization to meet the specific user requirements of the investigated BCI control application. This user-centric evaluation protocol offers a comprehensive framework for iterative improvements to the BCI prototype, ensuring technical validation, performance assessment, and user experience evaluation in a systematic and user-focused manner.
Collapse
Affiliation(s)
- Arnau Dillen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Équipes Traitement de l'Information et Systèmes, UMR 8051, CY Cergy Paris Université, École Nationale Supérieure de l'Électronique et de ses Applications (ENSEA), Centre national de la recherche scientifique (CNRS), Cergy, France
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mohsen Omidi
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Brussels, Belgium
- imec, Brussels, Belgium
| | - María Alejandra Díaz
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Brussels, Belgium
| | - Fakhreddine Ghaffari
- Équipes Traitement de l'Information et Systèmes, UMR 8051, CY Cergy Paris Université, École Nationale Supérieure de l'Électronique et de ses Applications (ENSEA), Centre national de la recherche scientifique (CNRS), Cergy, France
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Brussels, Belgium
| | - Bram Vanderborght
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Brussels, Belgium
- imec, Brussels, Belgium
| | - Olivier Romain
- Équipes Traitement de l'Information et Systèmes, UMR 8051, CY Cergy Paris Université, École Nationale Supérieure de l'Électronique et de ses Applications (ENSEA), Centre national de la recherche scientifique (CNRS), Cergy, France
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
198
|
Kiessner AK, Schirrmeister RT, Boedecker J, Ball T. Reaching the ceiling? Empirical scaling behaviour for deep EEG pathology classification. Comput Biol Med 2024; 178:108681. [PMID: 38878396 DOI: 10.1016/j.compbiomed.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/24/2024]
Abstract
Machine learning techniques, particularly deep convolutional neural networks (ConvNets), are increasingly being used to automate clinical EEG analysis, with the potential to reduce the clinical burden and improve patient care. However, further research is required before they can be used in clinical settings, particularly regarding the impact of the number of training samples and model parameters on their testing error. To address this, we present a comprehensive study of the empirical scaling behaviour of ConvNets for EEG pathology classification. We analysed the testing error with increasing the training samples and model size for four different ConvNet architectures. The focus of our experiments is width scaling, and we have increased the number of parameters to up to 1.8 million. Our evaluation was based on two publicly available datasets: the Temple University Hospital (TUH) Abnormal EEG Corpus and the TUH Abnormal Expansion Balanced EEG Corpus, which together contain 10,707 training samples. The results show that the testing error follows a saturating power-law with both model and dataset size. This pattern is consistent across different datasets and ConvNet architectures. Furthermore, empirically observed accuracies saturate at 85%-87%, which may be due to an imperfect inter-rater agreement on the clinical labels. The empirical scaling behaviour of the test performance with dataset and model size has significant implications for deep EEG pathology classification research and practice. Our findings highlight the potential of deep ConvNets for high-performance EEG pathology classification, and the identified scaling relationships provide valuable recommendations for the advancement of automated EEG diagnostics.
Collapse
Affiliation(s)
- Ann-Kathrin Kiessner
- Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Engelbergerstr. 21, 79106, Freiburg, Germany; Neurorobotics Lab, Computer Science Department - University of Freiburg, Faculty of Engineering, University of Freiburg, Georges-Koehler-Allee 80, 79110, Freiburg, Germany; BrainLinks-BrainTools, Institute for Machine-Brain Interfacing Technology, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany.
| | - Robin T Schirrmeister
- Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Engelbergerstr. 21, 79106, Freiburg, Germany; BrainLinks-BrainTools, Institute for Machine-Brain Interfacing Technology, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany; Machine Learning Lab, Computer Science Department - University of Freiburg, Faculty of Engineering, University of Freiburg, Georges-Koehler-Allee 74, 79110, Freiburg, Germany
| | - Joschka Boedecker
- Neurorobotics Lab, Computer Science Department - University of Freiburg, Faculty of Engineering, University of Freiburg, Georges-Koehler-Allee 80, 79110, Freiburg, Germany; BrainLinks-BrainTools, Institute for Machine-Brain Interfacing Technology, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany; Collaborative Research Institute Intelligent Oncology (CRIION), Freiburger Innovationszentrum (FRIZ) Building, Georges-Koehler-Allee 302, 79110, Freiburg, Germany
| | - Tonio Ball
- Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Engelbergerstr. 21, 79106, Freiburg, Germany; BrainLinks-BrainTools, Institute for Machine-Brain Interfacing Technology, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany; Freiburg Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| |
Collapse
|
199
|
Pfeffer MA, Ling SSH, Wong JKW. Exploring the frontier: Transformer-based models in EEG signal analysis for brain-computer interfaces. Comput Biol Med 2024; 178:108705. [PMID: 38865781 DOI: 10.1016/j.compbiomed.2024.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/01/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
This review systematically explores the application of transformer-based models in EEG signal processing and brain-computer interface (BCI) development, with a distinct focus on ensuring methodological rigour and adhering to empirical validations within the existing literature. By examining various transformer architectures, such as the Temporal Spatial Transformer Network (TSTN) and EEG Conformer, this review delineates their capabilities in mitigating challenges intrinsic to EEG data, such as noise and artifacts, and their subsequent implications on decoding and classification accuracies across disparate mental tasks. The analytical scope extends to a meticulous examination of attention mechanisms within transformer models, delineating their role in illuminating critical temporal and spatial EEG features and facilitating interpretability in model decision-making processes. The discourse additionally encapsulates emerging works that substantiate the efficacy of transformer models in noise reduction of EEG signals and diversifying applications beyond the conventional motor imagery paradigm. Furthermore, this review elucidates evident gaps and propounds exploratory avenues in the applications of pre-trained transformers in EEG analysis and the potential expansion into real-time and multi-task BCI applications. Collectively, this review distils extant knowledge, navigates through the empirical findings, and puts forward a structured synthesis, thereby serving as a conduit for informed future research endeavours in transformer-enhanced, EEG-based BCI systems.
Collapse
Affiliation(s)
- Maximilian Achim Pfeffer
- Faculty of Engineering and Information Technology, University of Technology Sydney, CB11 81-113, Broadway, Ultimo, 2007, New South Wales, Australia.
| | - Steve Sai Ho Ling
- Faculty of Engineering and Information Technology, University of Technology Sydney, CB11 81-113, Broadway, Ultimo, 2007, New South Wales, Australia.
| | - Johnny Kwok Wai Wong
- Faculty of Design, Architecture and Building, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia.
| |
Collapse
|
200
|
Bomatter P, Paillard J, Garces P, Hipp J, Engemann DA. Machine learning of brain-specific biomarkers from EEG. EBioMedicine 2024; 106:105259. [PMID: 39106531 DOI: 10.1016/j.ebiom.2024.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Electroencephalography (EEG) has a long history as a clinical tool to study brain function, and its potential to derive biomarkers for various applications is far from exhausted. Machine learning (ML) can guide future innovation by harnessing the wealth of complex EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore physiological artefacts, which may cause problems for deriving biomarkers specific to the central nervous system (CNS). METHODS We present a framework for conceptualising machine learning from CNS versus peripheral signals measured with EEG. A signal representation based on Morlet wavelets allowed us to define traditional brain activity features (e.g. log power) and alternative inputs used by state-of-the-art ML approaches based on covariance matrices. Using more than 2600 EEG recordings from large public databases (TUAB, TDBRAIN), we studied the impact of peripheral signals and artefact removal techniques on ML models in age and sex prediction analyses. FINDINGS Across benchmarks, basic artefact rejection improved model performance, whereas further removal of peripheral signals using ICA decreased performance. Our analyses revealed that peripheral signals enable age and sex prediction. However, they explained only a fraction of the performance provided by brain signals. INTERPRETATION We show that brain signals and body signals, both present in the EEG, allow for prediction of personal characteristics. While these results may depend on specific applications, our work suggests that great care is needed to separate these signals when the goal is to develop CNS-specific biomarkers using ML. FUNDING All authors have been working for F. Hoffmann-La Roche Ltd.
Collapse
Affiliation(s)
- Philipp Bomatter
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joseph Paillard
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Denis-Alexander Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|