151
|
Feng BJ, Tavtigian SV, Southey MC, Goldgar DE. Design considerations for massively parallel sequencing studies of complex human disease. PLoS One 2011; 6:e23221. [PMID: 21850262 PMCID: PMC3151293 DOI: 10.1371/journal.pone.0023221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/14/2011] [Indexed: 12/24/2022] Open
Abstract
Massively Parallel Sequencing (MPS) allows sequencing of entire exomes and genomes to now be done at reasonable cost, and its utility for identifying genes responsible for rare Mendelian disorders has been demonstrated. However, for a complex disease, study designs need to accommodate substantial degrees of locus, allelic, and phenotypic heterogeneity, as well as complex relationships between genotype and phenotype. Such considerations include careful selection of samples for sequencing and a well-developed strategy for identifying the few "true" disease susceptibility genes from among the many irrelevant genes that will be found to harbor rare variants. To examine these issues we have performed simulation-based analyses in order to compare several strategies for MPS sequencing in complex disease. Factors examined include genetic architecture, sample size, number and relationship of individuals selected for sequencing, and a variety of filters based on variant type, multiple observations of genes and concordance of genetic variants within pedigrees. A two-stage design was assumed where genes from the MPS analysis of high-risk families are evaluated in a secondary screening phase of a larger set of probands with more modest family histories. Designs were evaluated using a cost function that assumes the cost of sequencing the whole exome is 400 times that of sequencing a single candidate gene. Results indicate that while requiring variants to be identified in multiple pedigrees and/or in multiple individuals in the same pedigree are effective strategies for reducing false positives, there is a danger of over-filtering so that most true susceptibility genes are missed. In most cases, sequencing more than two individuals per pedigree results in reduced power without any benefit in terms of reduced overall cost. Further, our results suggest that although no single strategy is optimal, simulations can provide important guidelines for study design.
Collapse
Affiliation(s)
- Bing-Jian Feng
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sean V. Tavtigian
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Melissa C. Southey
- Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - David E. Goldgar
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
152
|
A non-synonymous mutation in the canine Pkd1 gene is associated with autosomal dominant polycystic kidney disease in Bull Terriers. PLoS One 2011; 6:e22455. [PMID: 21818326 PMCID: PMC3144903 DOI: 10.1371/journal.pone.0022455] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/28/2011] [Indexed: 01/03/2023] Open
Abstract
Polycystic Kidney Disease is an autosomal dominant disease common in some lines of Bull Terriers (BTPKD). The disease is linked to the canine orthologue of human PKD1 gene, Pkd1, located on CFA06, but no disease-associated mutation has been reported. This study sequenced genomic DNA from two Bull Terriers with BTPKD and two without the disease. A non-synonymous G>A transition mutation in exon 29 of Pkd1 was identified. A TaqMan® SNP Genotyping Assay was designed and demonstrated the heterozygous detection of the mutation in 47 Bull Terriers with BTPKD, but not in 102 Bull Terriers over one year of age and without BTPKD. This missense mutation replaces a glutamic acid residue with a lysine residue in the predicted protein, Polycystin 1. This region of Polycystin 1 is highly conserved between species, and is located in the first cytoplasmic loop of the predicted protein structure, close to the PLAT domain and the second transmembrane region. Thus, this change could alter Polycystin 1 binding or localization. Analytic programs PolyPhen 2, Align GVGD and SIFT predict this mutation to be pathogenic. Thus, BTPKD is associated with a missense mutation in Pkd1, and the application of this mutation specific assay could reduce disease transmission by allowing diagnosis of disease in young animals prior to breeding.
Collapse
|
153
|
Iversen ES, Couch FJ, Goldgar DE, Tavtigian SV, Monteiro ANA. A computational method to classify variants of uncertain significance using functional assay data with application to BRCA1. Cancer Epidemiol Biomarkers Prev 2011; 20:1078-88. [PMID: 21447777 PMCID: PMC3111818 DOI: 10.1158/1055-9965.epi-10-1214] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Besides revealing cancer predisposition variants or the absence of any changes, genetic testing for cancer predisposition genes can also identify variants of uncertain clinical significance (VUS). Classifying VUSs is a pressing problem, as ever more patients seek genetic testing for disease syndromes and receive noninformative results from those tests. In cases such as the breast and ovarian cancer syndrome in which prophylactic options can be severe and life changing, having information on the disease relevance of the VUS that a patient harbors can be critical. METHODS We describe a computational approach for inferring the disease relevance of VUSs in disease genes from data derived from an in vitro functional assay. It is based on a Bayesian hierarchical model that accounts for sources of experimental heterogeneity. RESULTS The functional data correlate well with the pathogenicity of BRCA1 BRCT VUSs, thus providing evidence regarding pathogenicity when family and genetic data are absent or uninformative. CONCLUSIONS We show the utility of the model by using it to classify 76 VUSs located in the BRCT region of BRCA1. The approach is both sensitive and specific when evaluated on variants previously classified using independent sources of data. Although the functional data are very informative, they will need to be combined with other forms of data to meet the more stringent requirements of clinical application. IMPACT Our work will lead to improved classification of VUSs and will aid in the clinical decision making of their carriers.
Collapse
Affiliation(s)
- Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | |
Collapse
|
154
|
Coquelle N, Green R, Glover JNM. Impact of BRCA1 BRCT domain missense substitutions on phosphopeptide recognition. Biochemistry 2011; 50:4579-89. [PMID: 21473589 PMCID: PMC3100782 DOI: 10.1021/bi2003795] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The BRCA1 BRCT domain binds pSer-x-x-Phe motifs in partner proteins to regulate the cellular response to DNA damage. Approximately 120 distinct missense variants have been identified in the BRCA1 BRCT through breast cancer screening, and several of these have been linked to an increased cancer risk. Here we probe the structures and peptide-binding activities of variants that affect the BRCA1 BRCT phosphopeptide-binding groove. The results obtained from the G1656D and T1700A variants illustrate the role of Ser1655 in pSer recognition. Mutations at Arg1699 (R1699W and R1699Q) significantly reduce peptide binding through loss of contacts to the main chain of the Phe(+3) residue and, in the case of R1699W, to a destabilization of the BRCT fold. The R1835P and E1836K variants do not dramatically reduce peptide binding, in spite of the fact that these mutations significantly alter the structure of the walls of the Phe(+3) pocket.
Collapse
Affiliation(s)
- Nicolas Coquelle
- Department of Biochemistry, School of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
155
|
Capanu M, Concannon P, Haile RW, Bernstein L, Malone KE, Lynch CF, Liang X, Teraoka SN, Diep AT, Thomas DC, Bernstein JL, Begg CB. Assessment of rare BRCA1 and BRCA2 variants of unknown significance using hierarchical modeling. Genet Epidemiol 2011; 35:389-97. [PMID: 21520273 DOI: 10.1002/gepi.20587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/11/2022]
Abstract
Current evidence suggests that the genetic risk of breast cancer may be caused primarily by rare variants. However, while classification of protein-truncating mutations as deleterious is relatively straightforward, distinguishing as deleterious or neutral the large number of rare missense variants is a difficult on-going task. In this article, we present one approach to this problem, hierarchical statistical modeling of data observed in a case-control study of contralateral breast cancer (CBC) in which all the participants were genotyped for variants in BRCA1 and BRCA2. Hierarchical modeling permits leverage of information from observed correlations of characteristics of groups of variants with case-control status to infer with greater precision the risks of individual rare variants. A total of 181 distinct rare missense variants were identified among the 705 cases with CBC and the 1,398 controls with unilateral breast cancer. The model identified three bioinformatic hierarchical covariates, align-GV, align-GD, and SIFT scores, each of which was modestly associated with risk. Collectively, the 11 variants that were classified as adverse on the basis of all the three bioinformatic predictors demonstrated a stronger risk signal. This group included five of six missense variants that were classified as deleterious at the outset by conventional criteria. The remaining six variants can be considered as plausibly deleterious, and deserving of further investigation (BRCA1 R866C; BRCA2 G1529R, D2665G, W2626C, E2663V, and R3052W). Hierarchical modeling is a strategy that has promise for interpreting the evidence from future association studies that involve sequencing of known or suspected cancer genes.
Collapse
Affiliation(s)
- Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Pan W, Shen X. Adaptive tests for association analysis of rare variants. Genet Epidemiol 2011; 35:381-8. [PMID: 21520272 DOI: 10.1002/gepi.20586] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/03/2011] [Accepted: 03/21/2011] [Indexed: 01/30/2023]
Abstract
In anticipation of the availability of next-generation sequencing data, there has been increasing interest in association analysis of rare variants (RVs). Owing to the extremely low frequency of a RV, single variant-based analysis and many existing tests developed for common variants may not be suitable. Hence, it is of interest to develop powerful statistical tests to assess association between complex traits and RVs with sequence data. Recently, a pooled association test based on variable thresholds (VT) was proposed and shown to be more powerful than some existing tests (Price et al. [2010] Am J Hum Genet 86:832-838). In this study, we generalize the VT test of Price et al. in several aspects. We propose a general class of adaptive tests that covers the VT test of Price et al. as a special case. In particular, we show that some of our proposed adaptive tests may substantially improve the power over the pooled association tests, including the VT test of Price et al., especially so in the presence of many neutral RVs and/or of causal RVs with opposite association directions, in which cases most of the existing pooled association tests suffer from significant loss of power. Our proposed tests are also general and flexible with the ability to incorporate weights on RVs and to adjust for covariates.
Collapse
Affiliation(s)
- Wei Pan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455–0392, USA.
| | | |
Collapse
|
157
|
Abstract
PURPOSE Lynch syndrome is a genetic disease that predisposes to colorectal tumors, caused by mutation in mismatch repair genes. The use of genetic tests to identify mutation carriers does not always give perfectly clear results, as happens when an unclassified variant is found. This study aimed to define the pathogenic role of 35 variants present in MSH2, MLH1, MSH6, and PMS2 genes identified in our 15-year case study. METHODS We collected clinical and molecular data of all carriers, and then we analyzed the variants pathogenic role with web tools and molecular analyses. Using a Bayesian approach, we derived a posterior probability of pathogenicity and classified each variant according to a standardized five-class system. RESULTS The MSH2 p.Pro349Arg, p.Met688Arg, the MLH1 p.Gly67Arg, p.Thr82Ala, p.Lys618Ala, the MSH6 p.Ala1236Pro, and the PMS2 p.Arg20Gln were classified as pathogenic, and the MSH2 p.Cys697Arg and the PMS2 p.Ser46Ile were classified as likely pathogenic. Seven variants were likely nonpathogenic, 3 were nonpathogenic, and 16 remained uncertain. CONCLUSION Quantitative assessment of several parameters and their integration in a multifactorial likelihood model is the method of choice for classifying the variants. As such classifications can be associated with surveillance and testing recommendations, the results and the method developed in our study can be useful for helping laboratory geneticists in evaluation of genetic tests and clinicians in the management of carriers.
Collapse
|
158
|
Qiu J, Hutter P, Rahner N, Patton S, Olschwang S. The educational role of external quality assessment in genetic testing: a 7-year experience of the European Molecular Genetics Quality Network (EMQN) in Lynch syndrome. Hum Mutat 2011; 32:696-7. [PMID: 21387467 DOI: 10.1002/humu.21493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/23/2011] [Indexed: 11/12/2022]
|
159
|
Radice P, De Summa S, Caleca L, Tommasi S. Unclassified variants in BRCA genes: guidelines for interpretation. Ann Oncol 2011; 22 Suppl 1:i18-23. [PMID: 21285146 DOI: 10.1093/annonc/mdq661] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the last few years, several studies have focused on the interpretation of unclassified variants (UVs) of BRCA1 and BRCA2 genes. Analysis of UVs through a unique approach is not sufficient to understand their role in the development of tumors. Thus, it is clear that assembling results from different sources (genetic and epidemiological data, histopathological features, and in vitro and in silico analyses) represents a powerful way to classify such variants. Building reliable integrated models for UV classification requires the joining of many working groups to collaborative consortia, allowing data exchange and improvements of methods. This will lead to improvement in the predictivity of gene testing in BRCA1 and BRCA2 and, consequently, to an increase in the number of families that can be correctly classified as linked or unlinked to these genes, allowing more accurate genetic counseling and clinical management.
Collapse
Affiliation(s)
- P Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| | | | | | | |
Collapse
|
160
|
Tavtigian SV, Hashibe M, Thomas A. Tests of association for rare variants: case control mutation screening. Nat Rev Genet 2011; 12:224. [PMID: 21283087 DOI: 10.1038/nrg2867-c1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
161
|
Contribution of large genomic BRCA1 alterations to early-onset breast cancer selected for family history and tumour morphology: a report from The Breast Cancer Family Registry. Breast Cancer Res 2011; 13:R14. [PMID: 21281505 PMCID: PMC3109582 DOI: 10.1186/bcr2822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/30/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Introduction Selecting women affected with breast cancer who are most likely to carry a germline mutation in BRCA1 and applying the most appropriate test methodology remains challenging for cancer genetics services. We sought to test the value of selecting women for BRCA1 mutation testing on the basis of family history and/or breast tumour morphology criteria as well as the value of testing for large genomic alterations in BRCA1. Methods We studied women participating in the Breast Cancer Family Registry (BCFR), recruited via population-based sampling, who had been diagnosed with breast cancer before the age of 40 years who had a strong family history of breast or ovarian cancer (n = 187) and/or a first primary breast tumour with morphological features consistent with carrying a BRCA1 germline mutation (n = 133; 37 met both criteria). An additional 184 women diagnosed before the age of 40 years who had a strong family history of breast or ovarian cancer and who were not known to carry a germline BRCA1 mutation were selected from among women who had been recruited into the BCFR from clinical genetics services. These 467 women had been screened for BRCA1 germline mutations, and we expanded this testing to include a screen for large genomic BRCA1 alterations using Multiplex Ligation-dependent Probe Amplification. Results Twelve large genomic BRCA1 alterations were identified, including 10 (4%) of the 283 women selected from among the population-based sample. In total, 18 (12%), 18 (19%) and 16 (43%) BRCA1 mutations were identified in the population-based groups selected on the basis of family history only (n = 150), the group selected on the basis of tumour morphology only (n = 96) and meeting both criteria (n = 37), respectively. Conclusions Large genomic alterations accounted for 19% of all BRCA1 mutations identified. This study emphasises the value of combining information about family history, age at diagnosis and tumour morphology when selecting women for germline BRCA1 mutation testing as well as including a screen for large genomic alterations.
Collapse
|
162
|
Le Calvez-Kelm F, Lesueur F, Damiola F, Vallée M, Voegele C, Babikyan D, Durand G, Forey N, McKay-Chopin S, Robinot N, Nguyen-Dumont T, Thomas A, Byrnes GB, Hopper JL, Southey MC, Andrulis IL, John EM, Tavtigian SV. Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res 2011; 13:R6. [PMID: 21244692 PMCID: PMC3109572 DOI: 10.1186/bcr2810] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/24/2010] [Accepted: 01/18/2011] [Indexed: 12/04/2022] Open
Abstract
Introduction Both protein-truncating variants and some missense substitutions in CHEK2 confer increased risk of breast cancer. However, no large-scale study has used full open reading frame mutation screening to assess the contribution of rare missense substitutions in CHEK2 to breast cancer risk. This absence has been due in part to a lack of validated statistical methods for summarizing risk attributable to large numbers of individually rare missense substitutions. Methods Previously, we adapted an in silico assessment of missense substitutions used for analysis of unclassified missense substitutions in BRCA1 and BRCA2 to the problem of assessing candidate genes using rare missense substitution data observed in case-control mutation-screening studies. The method involves stratifying rare missense substitutions observed in cases and/or controls into a series of grades ordered a priori from least to most likely to be evolutionarily deleterious, followed by a logistic regression test for trends to compare the frequency distributions of the graded missense substitutions in cases versus controls. Here we used this approach to analyze CHEK2 mutation-screening data from a population-based series of 1,303 female breast cancer patients and 1,109 unaffected female controls. Results We found evidence of risk associated with rare, evolutionarily unlikely CHEK2 missense substitutions. Additional findings were that (1) the risk estimate for the most severe grade of CHEK2 missense substitutions (denoted C65) is approximately equivalent to that of CHEK2 protein-truncating variants; (2) the population attributable fraction and the familial relative risk explained by the pool of rare missense substitutions were similar to those explained by the pool of protein-truncating variants; and (3) post hoc power calculations implied that scaling up case-control mutation screening to examine entire biochemical pathways would require roughly 2,000 cases and controls to achieve acceptable statistical power. Conclusions This study shows that CHEK2 harbors many rare sequence variants that confer increased risk of breast cancer and that a substantial proportion of these are missense substitutions. The study validates our analytic approach to rare missense substitutions and provides a method to combine data from protein-truncating variants and rare missense substitutions into a one degree of freedom per gene test.
Collapse
Affiliation(s)
- Florence Le Calvez-Kelm
- International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon CEDEX 08, F-69372, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Yao K, Li J, Jin C, Wang W, Zhu Y, Shentu X, Wang Q. Characterization of a novel mutation in the CRYBB2 gene associated with autosomal dominant congenital posterior subcapsular cataract in a Chinese family. Mol Vis 2011; 17:144-52. [PMID: 21245961 PMCID: PMC3021577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 01/06/2011] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To identify the underlying genetic defect in four generations of a Chinese family affected with bilateral congenital posterior subcapsular cataracts. METHODS Clinical data from patients in the family were recorded by slit-lamp photography. Genomic DNA samples were extracted from peripheral blood of the pedigree members. Mutation screening was performed in the candidate gene by bidirectional sequencing of the amplified products. The mutation was verified by restriction fragment length polymorphism (RFLP) analysis. RESULTS The congenital cataract phenotype of the pedigree was identified as posterior subcapsular by slit-lamp photography. Sequencing of the candidate genes detected a heterozygous c.5C→T change in the coding region of the βB2-crystallin gene (CRYBB2), resulting in the substitution of a highly conserved alanine to valine (p. A2V). All nine family members affected with cataracts were positive for this change, but it was not observed in any of the unaffected members of the family. The transition resulted in the loss of a HaeIII restriction site in the affected members of the pedigree, which was present in the unaffected family members and in all of the 100 unrelated individuals tested. CONCLUSIONS This study has identified a novel CRYBB2 gene mutation, resulting in the amino substitution p. A2V in a Chinese family with posterior subcapsular congenital cataracts. This mutation is probably the causative lesion for the observed phenotype in this family.
Collapse
|
164
|
Corton M, Blanco MJ, Torres M, Sanchez-Salorio M, Carracedo A, Brion M. Identification of a novel mutation in the humanPDE6Agene in autosomal recessive retinitis pigmentosa: homology with thenmf28/nmf28mice model. Clin Genet 2010; 78:495-8. [DOI: 10.1111/j.1399-0004.2010.01487.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
165
|
McKenzie HA, Fung C, Becker TM, Irvine M, Mann GJ, Kefford RF, Rizos H. Predicting functional significance of cancer-associated p16(INK4a) mutations in CDKN2A. Hum Mutat 2010; 31:692-701. [PMID: 20340136 DOI: 10.1002/humu.21245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inherited mutations affecting the INK4a/ARF locus (CDKN2A) are associated with melanoma susceptibility in 40% of multiple case melanoma families. Over 60 different germline INK4a/ARF mutations have been detected in more than 190 families worldwide. The majority of these alterations are missense mutations affecting p16(INK4a), and only 25% of these have been functionally assessed. There is therefore a need for an accurate and rapid assay to determine the functional significance of p16(INK4a) mutations. We reviewed the performance of several in vivo functional assays that measure critical aspects of p16(INK4a) function, including subcellular location, CDK binding and cell cycle inhibition. In this report the function of 28 p16(INK4a) variants, many associated with melanoma susceptibility were compared. We show that assessment of CDK4 binding and subcellular localization can accurately and rapidly determine the functional significance of melanoma-associated p16(INK4a) mutations. p16(INK4a)-CDK6 binding affinity was unhelpful, as no disease-associated mutation showed reduced CDK6 affinity while maintaining the ability to bind CDK4. Likewise, in silico analyses did not contribute substantially, with only 12 of 25 melanoma-associated missense variants consistently predicted as deleterious. The ability to determine variant functional activity accurately would identify disease-associated mutations and facilitate effective genetic counselling of individuals at high risk of melanoma.
Collapse
Affiliation(s)
- Heather A McKenzie
- Westmead Institute for Cancer Research and Melanoma Institute of Australia, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead NSW 2145, Australia
| | | | | | | | | | | | | |
Collapse
|
166
|
Walker LC, Whiley PJ, Couch FJ, Farrugia DJ, Healey S, Eccles DM, Lin F, Butler SA, Goff SA, Thompson BA, Lakhani SR, Da Silva LM, Tavtigian SV, Goldgar DE, Brown MA, Spurdle AB. Detection of splicing aberrations caused by BRCA1 and BRCA2 sequence variants encoding missense substitutions: implications for prediction of pathogenicity. Hum Mutat 2010; 31:E1484-505. [PMID: 20513136 DOI: 10.1002/humu.21267] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Missense substitutions in high-risk cancer susceptibility genes create clinical uncertainty in the genetic counseling process. Multifactorial likelihood classification approaches and in vitro assays are useful for the classification of exonic sequence variants in BRCA1 and BRCA2, but these currently rely on the assumption that changes in protein function are the major biological mechanism of pathogenicity. This study investigates the potentially pathogenic role of aberrant splicing for exonic variants predicted to encode missense substitutions using patient-derived RNA. No splicing aberrations were identified for BRCA1c.5054C>T and BRCA2c.7336A>G, c.8839G>A, and c.9154C>T. However, RT-PCR analysis identified a major splicing aberration for BRCA1c.4868C>G(p.Ala1623Gly), a variant encoding a missense substitution considered likely to be neutral. Splicing aberrations were also observed for BRCA2c.7988A>T(p.Glu2663Val) and c.8168A>G(p.Asp2723Gly), but both variant and wildtype alleles were shown to be present in full-length mRNA transcripts, suggesting that variant protein may be translated. BRCA2 protein function assays indicated that BRCA2p.Glu2663Val, p.Asp2723Gly and p.Arg3052Trp missense proteins have abrogated function consistent with pathogenicity. Multifactorial likelihood analysis provided evidence for pathogenicity for BRCA1 c.5054C>T(p.Thr1685Ile) and BRCA2c.7988A>T(p.Glu2663Val), c.8168A>G(p.Asp2723Gly) and c.9154C>T(p.Arg3052Trp), supporting experimentally derived evidence. These findings highlight the need for improved bioinformatic prediction of splicing aberrations and to refine multifactorial likelihood models used to assess clinical significance.
Collapse
Affiliation(s)
- Logan C Walker
- Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Calò V, Bruno L, Paglia LL, Perez M, Margarese N, Gaudio FD, Russo A. The Clinical Significance of Unknown Sequence Variants in BRCA Genes. Cancers (Basel) 2010; 2:1644-60. [PMID: 24281179 PMCID: PMC3837329 DOI: 10.3390/cancers2031644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/08/2010] [Accepted: 08/31/2010] [Indexed: 01/12/2023] Open
Abstract
Germline mutations in BRCA1/2 genes are responsible for a large proportion of hereditary breast and/or ovarian cancers. Many highly penetrant predisposition alleles have been identified and include frameshift or nonsense mutations that lead to the translation of a truncated protein. Other alleles contain missense mutations, which result in amino acid substitution and intronic variants with splicing effect. The discovery of variants of uncertain/unclassified significance (VUS) is a result that can complicate rather than improve the risk assessment process. VUSs are mainly missense mutations, but also include a number of intronic variants and in-frame deletions and insertions. Over 2,000 unique BRCA1 and BRCA2 missense variants have been identified, located throughout the whole gene (Breast Cancer Information Core Database (BIC database)). Up to 10-20% of the BRCA tests report the identification of a variant of uncertain significance. There are many methods to discriminate deleterious/high-risk from neutral/low-risk unclassified variants (i.e., analysis of the cosegregation in families of the VUS, measure of the influence of the VUSs on the wild-type protein activity, comparison of sequence conservation across multiple species), but only an integrated analysis of these methods can contribute to a real interpretation of the functional and clinical role of the discussed variants. The aim of our manuscript is to review the studies on BRCA VUS in order to clarify their clinical relevance.
Collapse
Affiliation(s)
- Valentina Calò
- Department of Surgery and Oncology, Regional Reference Center for the Biomolecular Characterization and Genetic Screening of Hereditary Tumors, University of Palermo, Via del Vespro 127, 90127 Palermo, Italy; E-Mails: (V.C.); (L.B.); (L.L.P.); (M.P.); (N.M.)
| | - Loredana Bruno
- Department of Surgery and Oncology, Regional Reference Center for the Biomolecular Characterization and Genetic Screening of Hereditary Tumors, University of Palermo, Via del Vespro 127, 90127 Palermo, Italy; E-Mails: (V.C.); (L.B.); (L.L.P.); (M.P.); (N.M.)
| | - Laura La Paglia
- Department of Surgery and Oncology, Regional Reference Center for the Biomolecular Characterization and Genetic Screening of Hereditary Tumors, University of Palermo, Via del Vespro 127, 90127 Palermo, Italy; E-Mails: (V.C.); (L.B.); (L.L.P.); (M.P.); (N.M.)
| | - Marco Perez
- Department of Surgery and Oncology, Regional Reference Center for the Biomolecular Characterization and Genetic Screening of Hereditary Tumors, University of Palermo, Via del Vespro 127, 90127 Palermo, Italy; E-Mails: (V.C.); (L.B.); (L.L.P.); (M.P.); (N.M.)
| | - Naomi Margarese
- Department of Surgery and Oncology, Regional Reference Center for the Biomolecular Characterization and Genetic Screening of Hereditary Tumors, University of Palermo, Via del Vespro 127, 90127 Palermo, Italy; E-Mails: (V.C.); (L.B.); (L.L.P.); (M.P.); (N.M.)
| | - Francesca Di Gaudio
- Department of Medical Biotechnologies and Legal Medicine, University of Palermo, Palermo, Italy; E-Mail: (F.D.G.)
| | - Antonio Russo
- Department of Surgery and Oncology, Regional Reference Center for the Biomolecular Characterization and Genetic Screening of Hereditary Tumors, University of Palermo, Via del Vespro 127, 90127 Palermo, Italy; E-Mails: (V.C.); (L.B.); (L.L.P.); (M.P.); (N.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +39-091-6552500; Fax: +39-091-6554529
| |
Collapse
|
168
|
Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am J Hum Genet 2010; 87:40-51. [PMID: 20598275 DOI: 10.1016/j.ajhg.2010.06.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/27/2010] [Accepted: 06/04/2010] [Indexed: 12/31/2022] Open
Abstract
Primary microcephaly is a rare condition in which brain size is substantially diminished without other syndromic abnormalities. Seven autosomal loci have been genetically mapped, and the underlying causal genes have been identified for MCPH1, MCPH3, MCPH5, MCPH6, and MCPH7 but not for MCPH2 or MCPH4. The known genes play roles in mitosis and cell division. We ascertained three families from an Eastern Canadian subpopulation, each with one microcephalic child. Homozygosity analysis in two families using genome-wide dense SNP genotyping supported linkage to the published MCPH4 locus on chromosome 15q21.1. Sequencing of coding exons of candidate genes in the interval identified a nonconservative amino acid change in a highly conserved residue of the centrosomal protein CEP152. The affected children in these two families were both homozygous for this missense variant. The third affected child was compound heterozygous for the missense mutation plus a second, premature-termination mutation truncating a third of the protein and preventing its localization to centrosomes in transfected cells. CEP152 is the putative mammalian ortholog of Drosphila asterless, mutations in which affect mitosis in the fly. Published data from zebrafish are also consistent with a role of CEP152 in centrosome function. By RT-PCR, CEP152 is expressed in the embryonic mouse brain, similar to other MCPH genes. Like some other MCPH genes, CEP152 shows signatures of positive selection in the human lineage. CEP152 is a strong candidate for the causal gene underlying MCPH4 and may be an important gene in the evolution of human brain size.
Collapse
|
169
|
Lee MS, Green R, Marsillac SM, Coquelle N, Williams RS, Yeung T, Foo D, Hau DD, Hui B, Monteiro ANA, Glover JNM. Comprehensive analysis of missense variations in the BRCT domain of BRCA1 by structural and functional assays. Cancer Res 2010; 70:4880-90. [PMID: 20516115 DOI: 10.1158/0008-5472.can-09-4563] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic screening of the breast and ovarian cancer susceptibility gene BRCA1 has uncovered a large number of variants of uncertain clinical significance. Here, we use biochemical and cell-based transcriptional assays to assess the structural and functional defects associated with a large set of 117 distinct BRCA1 missense variants within the essential BRCT domain of the BRCA1 protein that have been documented in individuals with a family history of breast or ovarian cancer. In the first method, we used limited proteolysis to assess the protein folding stability of each of the mutants compared with the wild-type. In the second method, we used a phosphopeptide pull-down assay to assess the ability of each of the variants to specifically interact with a peptide containing a pSer-X-X-Phe motif, a known functional target of the BRCA1 BRCT domain. Finally, we used transcriptional assays to assess the ability of each BRCT variant to act as a transcriptional activation domain in human cells. Through a correlation of the assay results with available family history and clinical data, we define limits to predict the disease risk associated with each variant. Forty-two of the variants show little effect on function and are likely to represent variants with little or no clinical significance; 50 display a clear functional effect and are likely to represent pathogenic variants; and the remaining 25 variants display intermediate activities. The excellent agreement between the structure/function effects of these mutations and available clinical data supports the notion that functional and structure information can be useful in the development of models to assess cancer risk.
Collapse
Affiliation(s)
- Megan S Lee
- Department of Biochemistry, School of Systems Molecular Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Clinical relevance of rare germline sequence variants in cancer genes: evolution and application of classification models. Curr Opin Genet Dev 2010; 20:315-23. [PMID: 20456937 DOI: 10.1016/j.gde.2010.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 12/11/2022]
Abstract
Multifactorial models developed for BRCA1/2 variant classification have proved very useful for delineating BRCA1/2 variants associated with very high risk of cancer, or with little clinical significance. Recent linkage of this quantitative assessment of risk to clinical management guidelines has provided a basis to standardize variant reporting, variant classification and management of families with such variants, and can theoretically be applied to any disease gene. As proof of principle, the multifactorial approach already shows great promise for application to the evaluation of mismatch repair gene variants identified in families with suspected Lynch syndrome. However there is need to be cautious of the noted limitations and caveats of the current model, some of which may be exacerbated by differences in ascertainment and biological pathways to disease for different cancer syndromes.
Collapse
|
171
|
Spurdle AB, Lakhani SR, Da Silva LM, Balleine RL, Goldgar DE. Bayes analysis provides evidence of pathogenicity for the BRCA1 c.135-1G>T (IVS3-1) and BRCA2 c.7977-1G>C (IVS17-1) variants displaying in vitro splicing results of equivocal clinical significance. Hum Mutat 2010; 31:E1141-5. [PMID: 20020529 DOI: 10.1002/humu.21181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although in vitro splicing assays can provide useful information about the clinical interpretation of sequence variants in high-risk cancer genes such as BRCA1 and BRCA2, results can sometimes be difficult to interpret. The BRCA1 c.135-1G>T (IVS3-1G>T) variant has been shown to give rise to an in-frame deletion of exon 5 (BRCA1 c.135_212del) that is predicted to encode 26 amino acids. BRCA2 c.7977-1G>C (IVS17-1G>C) was shown to increase the expression of two naturally occurring transcripts that contain frameshifts (BRCA2, c.7977_8311del (exon 18 deletion); BRCA2, c.7806_8331del (exon 17&18 deletion)). In this study we conducted multifactorial likelihood analysis to evaluate the clinical significance of these two variants, including assessing variant segregation in families by Bayes analysis, and breast tumor pathology features suggestive of positive mutation status. Multifactorial analysis provided strong evidence for causality for both of these variants. The Bayes scores from a single family with BRCA1 c.135-1G>T was 9528:1, and incorporation of pathology features gave an overall likelihood of causality of 28108:1. The Bayes scores from five informative families with BRCA2 c.7977-1G>C was 47401:1, and the combined Bayes-pathology odds of causality was 29389:1. Multifactorial likelihood analysis indicates that the BRCA1 c.135-1G>T and BRCA2 c.7977-1G>C variants are disease-associated mutations which should be managed clinically in the same fashion as classical truncating mutations.
Collapse
|
172
|
Hijikata A, Raju R, Keerthikumar S, Ramabadran S, Balakrishnan L, Ramadoss SK, Pandey A, Mohan S, Ohara O. Mutation@A Glance: an integrative web application for analysing mutations from human genetic diseases. DNA Res 2010; 17:197-208. [PMID: 20360267 PMCID: PMC2885273 DOI: 10.1093/dnares/dsq010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although mutation analysis serves as a key part in making a definitive diagnosis about a genetic disease, it still remains a time-consuming step to interpret their biological implications through integration of various lines of archived information about genes in question. To expedite this evaluation step of disease-causing genetic variations, here we developed Mutation@A Glance (http://rapid.rcai.riken.jp/mutation/), a highly integrated web-based analysis tool for analysing human disease mutations; it implements a user-friendly graphical interface to visualize about 40 000 known disease-associated mutations and genetic polymorphisms from more than 2600 protein-coding human disease-causing genes. Mutation@A Glance locates already known genetic variation data individually on the nucleotide and the amino acid sequences and makes it possible to cross-reference them with tertiary and/or quaternary protein structures and various functional features associated with specific amino acid residues in the proteins. We showed that the disease-associated missense mutations had a stronger tendency to reside in positions relevant to the structure/function of proteins than neutral genetic variations. From a practical viewpoint, Mutation@A Glance could certainly function as a ‘one-stop’ analysis platform for newly determined DNA sequences, which enables us to readily identify and evaluate new genetic variations by integrating multiple lines of information about the disease-causing candidate genes.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
RNA splicing meets genetic testing: detection and interpretation of splicing defects in genetic diseases. Eur J Hum Genet 2010; 18:737-8. [PMID: 20179747 DOI: 10.1038/ejhg.2010.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
174
|
Out AA, van Minderhout IJHM, Goeman JJ, Ariyurek Y, Ossowski S, Schneeberger K, Weigel D, van Galen M, Taschner PEM, Tops CMJ, Breuning MH, van Ommen GJB, den Dunnen JT, Devilee P, Hes FJ. Deep sequencing to reveal new variants in pooled DNA samples. Hum Mutat 2010; 30:1703-12. [PMID: 19842214 DOI: 10.1002/humu.21122] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We evaluated massive parallel sequencing and long-range PCR (LRP) for rare variant detection and allele frequency estimation in pooled DNA samples. Exons 2 to 16 of the MUTYH gene were analyzed in breast cancer patients with Illumina's (Solexa) technology. From a pool of 287 genomic DNA samples we generated a single LRP product, while the same LRP was performed on 88 individual samples and the resulting products then pooled. Concentrations of constituent samples were measured with fluorimetry for genomic DNA and high-resolution melting curve analysis (HR-MCA) for LRP products. Illumina sequencing results were compared to Sanger sequencing data of individual samples. Correlation between allele frequencies detected by both methods was poor in the first pool, presumably because the genomic samples amplified unequally in the LRP, due to DNA quality variability. In contrast, allele frequencies correlated well in the second pool, in which all expected alleles at a frequency of 1% and higher were reliably detected, plus the majority of singletons (0.6% allele frequency). We describe custom bioinformatics and statistics to optimize detection of rare variants and to estimate required sequencing depth. Our results provide directions for designing high-throughput analyses of candidate genes.
Collapse
Affiliation(s)
- Astrid A Out
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Scaini MC, Rossi E, de Siqueira Torres PLA, Zullato D, Callegaro M, Casella C, Quaggio M, Agata S, Malacrida S, Chiarion-Sileni V, Vecchiato A, Alaibac M, Montagna M, Mann GJ, Menin C, D'Andrea E. Functional impairment of p16(INK4A) due to CDKN2A p.Gly23Asp missense mutation. Mutat Res 2009; 671:26-32. [PMID: 19712690 DOI: 10.1016/j.mrfmmm.2009.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 05/28/2023]
Abstract
The CDKN2A locus encodes for two distinct tumor suppressor proteins, p16(INK4A) and p14(ARF), involved in cell cycle regulation. CDKN2A germline mutations have been associated with familial predisposition to melanoma and other tumor types. Besides bona-fide pathogenic mutations, many sequence variants have been identified, but their effect is not well known. We detected the p.Gly23Asp missense mutation in one of the two tested melanoma patients of a family with three melanoma cases. Even though the mutated amino acid is located in a conserved domain that specifically binds to and blocks the function of CDK4/6, its lack of segregation with disease suggested a series of functional assays to discriminate between a pathogenic variant and a neutral polymorphism. The effect of this mutation has been investigated exploiting four p16(INK4A) properties: its ability (i) to bind CDK4, (ii) to inhibit pRb phosphorylation, (iii) to evenly localize in the cell, and (iv) to cause cell cycle arrest. The mutant protein properties were evaluated transfecting three different cell lines (U2-OS and NM-39, both p16-null, and SaOS 2, p53 and pRb-null) with plasmids expressing either p16(wt), p16(23Asp), or the p16(32Pro) pathogenic variant. We found that p16(23Asp) was less efficient than p16(wt) in CDK4 binding, in inhibiting pRb phosphorylation, in inducing G1 cell cycle arrest; moreover, its pattern of distribution throughout the cell was suggestive of protein aggregation, thus assessing a pathogenic role for p16(23Asp) in familial melanoma.
Collapse
Affiliation(s)
- Maria Chiara Scaini
- Section of Oncology, Department of Oncology and Surgical Sciences, University of Padova, via Gattamelata, 64, I-35128 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Li L, Biswas K, Habib LA, Kuznetsov SG, Hamel N, Kirchhoff T, Wong N, Armel S, Chong G, Narod SA, Claes K, Offit K, Robson ME, Stauffer S, Sharan SK, Foulkes WD. Functional redundancy of exon 12 of BRCA2 revealed by a comprehensive analysis of the c.6853A>G (p.I2285V) variant. Hum Mutat 2009; 30:1543-50. [PMID: 19795481 PMCID: PMC3501199 DOI: 10.1002/humu.21101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Variants of unknown significance (VUS) in BRCA1 and BRCA2 are common, and present significant challenges for genetic counseling. We observed that BRCA2: c.6853A>G (p.I2285V) (Breast Cancer Information Core [BIC] name: 7081A>G; http://research.nhgri.nih.gov/bic/) co-occurs in trans with the founder mutation c.5946delT (p.S1982RfsX22) (BIC name: 6174delT), supporting the published classification of p.I2285V as a neutral variant. However, we also noted that when compared with wild-type BRCA2, p.I2285V resulted in increased exclusion of exon 12. Functional assay using allelic complementation in Brca2-null mouse embryonic stem cells revealed that p.I2285V, an allele with exon 12 deleted and wild-type BRCA2 were all phenotypically indistinguishable, as measured by sensitivity to DNA-damaging agents, effect on irradiation-induced Rad51 foci formation, homologous recombination, and overall genomic integrity. An allele frequency study showed the p.I2285V variant was identified in 15 out of 722 (2.1%) Ashkenazi Jewish cases and 10 out of 475 (2.1%) ethnically-matched controls (odds ratio, 0.99; 95% confidence interval: 0.44-2.21; P=0.97). Thus the p.I2285V variant is not associated with an increased risk for breast cancer. Taken together, our clinical and functional studies strongly suggest that exon 12 is functionally redundant and therefore missense variants in this exon are likely to be neutral. Such comprehensive functional studies will be important adjuncts to genetic studies of variants.
Collapse
Affiliation(s)
- Lili Li
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Tavtigian SV, Oefner PJ, Babikyan D, Hartmann A, Healey S, Le Calvez-Kelm F, Lesueur F, Byrnes GB, Chuang SC, Forey N, Feuchtinger C, Gioia L, Hall J, Hashibe M, Herte B, McKay-Chopin S, Thomas A, Vallée MP, Voegele C, Webb PM, Whiteman DC, Sangrajrang S, Hopper JL, Southey MC, Andrulis IL, John EM, Chenevix-Trench G. Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet 2009; 85:427-46. [PMID: 19781682 DOI: 10.1016/j.ajhg.2009.08.018] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/02/2009] [Accepted: 08/28/2009] [Indexed: 01/22/2023] Open
Abstract
The susceptibility gene for ataxia telangiectasia, ATM, is also an intermediate-risk breast-cancer-susceptibility gene. However, the spectrum and frequency distribution of ATM mutations that confer increased risk of breast cancer have been controversial. To assess the contribution of rare variants in this gene to risk of breast cancer, we pooled data from seven published ATM case-control mutation-screening studies, including a total of 1544 breast cancer cases and 1224 controls, with data from our own mutation screening of an additional 987 breast cancer cases and 1021 controls. Using an in silico missense-substitution analysis that provides a ranking of missense substitutions from evolutionarily most likely to least likely, we carried out analyses of protein-truncating variants, splice-junction variants, and rare missense variants. We found marginal evidence that the combination of ATM protein-truncating and splice-junction variants contribute to breast cancer risk. There was stronger evidence that a subset of rare, evolutionarily unlikely missense substitutions confer increased risk. On the basis of subset analyses, we hypothesize that rare missense substitutions falling in and around the FAT, kinase, and FATC domains of the protein may be disproportionately responsible for that risk and that a subset of these may confer higher risk than do protein-truncating variants. We conclude that a comparison between the graded distributions of missense substitutions in cases versus controls can complement analyses of truncating variants and help identify susceptibility genes and that this approach will aid interpretation of the data emerging from new sequencing technologies.
Collapse
|
178
|
Thusberg J, Vihinen M. Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat 2009; 30:703-14. [PMID: 19267389 DOI: 10.1002/humu.20938] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many gene defects are relatively easy to identify experimentally, but obtaining information about the effects of sequence variations and elucidation of the detailed molecular mechanisms of genetic diseases will be among the next major efforts in mutation research. Amino acid substitutions may have diverse effects on protein structure and function; thus, a detailed analysis of the mutations is essential. Experimental study of the molecular effects of mutations is laborious, whereas useful and reliable information about the effects of amino acid substitutions can readily be obtained by theoretical methods. Experimentally defined structures and molecular modeling can be used as a basis for interpretation of the mutations. The effects of missense mutations can be analyzed even when the 3D structure of the protein has not been determined, although structure-based analyses are more reliable. Structural analyses include studies of the contacts between residues, their implication for the stability of the protein, and the effects of the introduced residues. Investigations of steric and stereochemical consequences of substitutions provide insights on the molecular fit of the introduced residue. Mutations that change the electrostatic surface potential of a protein have wide-ranging effects. Analyses of the effects of mutations on interactions with ligands and partners have been performed for elucidation of functional mutations. We have employed numerous methods for predicting the effects of amino acid substitutions. We discuss the applicability of these methods in the analysis of genes, proteins, and diseases to reveal protein structure-function relationships, which is essential to gain insights into disease genotype-phenotype correlations.
Collapse
Affiliation(s)
- Janita Thusberg
- Institute of Medical Technology, FI-33014 University of Tampere, Finland
| | | |
Collapse
|
179
|
Haffty BG, Choi DH, Goyal S, Silber A, Ranieri K, Matloff E, Lee MH, Nissenblatt M, Toppmeyer D, Moran MS. Breast cancer in young women (YBC): prevalence of BRCA1/2 mutations and risk of secondary malignancies across diverse racial groups. Ann Oncol 2009; 20:1653-9. [PMID: 19491284 DOI: 10.1093/annonc/mdp051] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite significant differences in age of onset and incidence of breast cancer between Caucasian (CA), African-American (AA) and Korean (KO) women, little is known about differences in BRCA1/2 mutations in these populations. The purpose of this study is to evaluate the prevalence of BRCA1/2 mutations and the association between BRCA1/2 mutation status and secondary malignancies among young women with breast cancer in these three racially diverse groups. METHODS Patients presenting to our breast cancer follow-up clinics selected solely on having a known breast cancer diagnosis at a young age (YBC defined as age <45 years at diagnosis) were invited to participate in this study. A total of 333 eligible women, 166 CA, 66 AA and 101 KO underwent complete sequencing of BRCA1/2 genes. Family history (FH) was classified as negative, moderate or strong. BRCA1/2 status was classified as wild type (WT), variant of uncertain significance (VUS) or deleterious (DEL). RESULTS DEL across these three racially diverse populations of YBC were nearly identical: CA 17%, AA 14% and KO 14%. The type of DEL differed with AA having more frequent mutations in BRCA2, compared with CA and KO. VUS were predominantly in BRCA2 and AA had markedly higher frequency of VUS (38%) compared with CA (10%) and KO (12%). At 10-year follow-up from the time of initial diagnosis of breast cancer, the risk of secondary malignancies was similar among WT (14%) and VUS (16%), but markedly higher among DEL (39%). CONCLUSIONS In these YBC, the frequency of DEL in BRCA1/2 is remarkably similar among the racially diverse groups at 14%-17%. VUS is more common in AA, but aligns closely with WT in risk of second cancers, age of onset and FH.
Collapse
Affiliation(s)
- B G Haffty
- Department of Radiation Oncology, UMDNJ-RWJMS and Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Arnold S, Buchanan DD, Barker M, Jaskowski L, Walsh MD, Birney G, Woods MO, Hopper JL, Jenkins MA, Brown MA, Tavtigian SV, Goldgar DE, Young JP, Spurdle AB. Classifying MLH1 and MSH2 variants using bioinformatic prediction, splicing assays, segregation, and tumor characteristics. Hum Mutat 2009; 30:757-70. [PMID: 19267393 PMCID: PMC2707453 DOI: 10.1002/humu.20936] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reliable methods for predicting functional consequences of variants in disease genes would be beneficial in the clinical setting. This study was undertaken to predict, and confirm in vitro, splicing aberrations associated with mismatch repair (MMR) variants identified in familial colon cancer patients. Six programs were used to predict the effect of 13 MLH1 and 6 MSH2 gene variants on pre-mRNA splicing. mRNA from cycloheximide-treated lymphoblastoid cell lines of variant carriers was screened for splicing aberrations. Tumors of variant carriers were tested for microsatellite instability and MMR protein expression. Variant segregation in families was assessed using Bayes factor causality analysis. Amino acid alterations were examined for evolutionary conservation and physicochemical properties. Splicing aberrations were detected for 10 variants, including a frameshift as a minor cDNA product, and altered ratio of known alternate splice products. Loss of splice sites was well predicted by splice-site prediction programs SpliceSiteFinder (90%) and NNSPLICE (90%), but consequence of splice site loss was less accurately predicted. No aberrations correlated with ESE predictions for the nine exonic variants studied. Seven of eight missense variants had normal splicing (88%), but only one was a substitution considered neutral from evolutionary/physicochemical analysis. Combined with information from tumor and segregation analysis, and literature review, 16 of 19 variants were considered clinically relevant. Bioinformatic tools for prediction of splicing aberrations need improvement before use without supporting studies to assess variant pathogenicity. Classification of mismatch repair gene variants is assisted by a comprehensive approach that includes in vitro, tumor pathology, clinical, and evolutionary conservation data.
Collapse
Affiliation(s)
- Sven Arnold
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - Daniel D. Buchanan
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Melissa Barker
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - Lesley Jaskowski
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - Michael D. Walsh
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Genevieve Birney
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - Michael O. Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - John L. Hopper
- Centre for Genetic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Mark A. Jenkins
- Centre for Genetic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Melissa A. Brown
- School of Medicine, and School of Molecular and Microbial Sciences, University of Queensland, Brisbane
| | | | - David E. Goldgar
- Department of Dermatology, University of Utah, Salt Lake City, Utah, USA
| | - Joanne P. Young
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Amanda B. Spurdle
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
181
|
Tavtigian SV, Greenblatt MS, Goldgar DE, Boffetta P. Assessing pathogenicity: overview of results from the IARC Unclassified Genetic Variants Working Group. Hum Mutat 2008; 29:1261-4. [PMID: 18951436 DOI: 10.1002/humu.20903] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sean V Tavtigian
- International Agency for Research on Cancer (IARC), Lyon, France.
| | | | | | | | | |
Collapse
|
182
|
Hofstra RMW, Spurdle AB, Eccles D, Foulkes WD, de Wind N, Hoogerbrugge N, Hogervorst FBL. Tumor characteristics as an analytic tool for classifying genetic variants of uncertain clinical significance. Hum Mutat 2008; 29:1292-303. [PMID: 18951447 DOI: 10.1002/humu.20894] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is important to identify a germline mutation in a patient with an inherited cancer syndrome to allow mutation carriers to be included in cancer surveillance programs, which have been proven to save lives. Many of the mutations identified result in premature termination of translation, and thus in loss-of-function of the encoded mutated protein. However, the significance of a large proportion of the sequence changes reported is unknown. Some of these variants will be associated with a high risk of cancer and have direct clinical consequence. Many criteria can be used to classify variants with unknown significance; most criteria are based on the characteristics of the amino acid change, on segregation data and appearance of the variant, on the presence of the variant in controls, or on functional assays. In inherited cancers, tumor characteristics can also be used to classify variants. It is worthwhile to examine the clinical, morphological and molecular features of a patient, and his or her family, when assessing whether the role of a variant is likely to be neutral or pathogenic. Here we describe the advantages and disadvantages of using the tumor characteristics of patients carrying germline variants of uncertain significance (VUS) in BRCA1, BRCA2, or in one of the mismatch repair (MMR) genes, MLH1, MSH2, or MSH6, to infer pathogenicity.
Collapse
Affiliation(s)
- Robert M W Hofstra
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Tavtigian SV, Greenblatt MS, Lesueur F, Byrnes GB. In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 2008; 29:1327-36. [PMID: 18951440 DOI: 10.1002/humu.20892] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetic testing for mutations in high-risk cancer susceptibility genes often reveals missense substitutions that are not easily classified as pathogenic or neutral. Among the methods that can help in their classification are computational analyses. Predictions of pathogenic vs. neutral, or the probability that a variant is pathogenic, can be made based on: 1) inferences from evolutionary conservation using protein multiple sequence alignments (PMSAs) of the gene of interest for almost any missense sequence variant; and 2) for many variants, structural features of wild-type and variant proteins. These in silico methods have improved considerably in recent years. In this work, we review and/or make suggestions with respect to: 1) the rationale for using in silico methods to help predict the consequences of missense variants; 2) important aspects of creating PMSAs that are informative for classification; 3) specific features of algorithms that have been used for classification of clinically-observed variants; 4) validation studies demonstrating that computational analyses can have predictive values (PVs) of approximately 75 to 95%; 5) current limitations of data sets and algorithms that need to be addressed to improve the computational classifiers; and 6) how in silico algorithms can be a part of the "integrated analysis" of multiple lines of evidence to help classify variants. We conclude that carefully validated computational algorithms, in the context of other evidence, can be an important tool for classification of missense variants.
Collapse
Affiliation(s)
- Sean V Tavtigian
- International Agency for Research on Cancer (IARC), Lyon, France.
| | | | | | | | | |
Collapse
|
184
|
Spurdle AB, Couch FJ, Hogervorst FBL, Radice P, Sinilnikova OM. Prediction and assessment of splicing alterations: implications for clinical testing. Hum Mutat 2008; 29:1304-13. [PMID: 18951448 PMCID: PMC2832470 DOI: 10.1002/humu.20901] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sequence variants that may result in splicing alterations are a particular class of inherited variants for which consequences can be more readily assessed, using a combination of bioinformatic prediction methods and in vitro assays. There is also a general agreement that a variant would invariably be considered pathogenic on the basis of convincing evidence that it results in transcript(s) carrying a premature stop codon or an in-frame deletion disrupting known functional domain(s). This commentary discusses current practices used to assess the clinical significance of this class of variants, provides suggestions to improve assessment, and highlights the issues involved in routine assessment of potential splicing aberrations. We conclude that classification of sequence variants that may alter splicing is greatly enhanced by supporting in vitro analysis. Additional studies that assess large numbers of variants for induction of splicing aberrations and exon skipping are needed to define the contribution of splicing/exon skipping to cancer and disease. These studies will also provide the impetus for development of algorithms that better predict splicing patterns. To facilitate variant classification and development of more specific bioinformatic tools, we call for the deposition of all laboratory data from splicing analyses into national and international databases.
Collapse
Affiliation(s)
- Amanda B Spurdle
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
185
|
Couch FJ, Rasmussen LJ, Hofstra R, Monteiro ANA, Greenblatt MS, de Wind N. Assessment of functional effects of unclassified genetic variants. Hum Mutat 2008; 29:1314-26. [PMID: 18951449 PMCID: PMC2771414 DOI: 10.1002/humu.20899] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been extensively characterized at the functional level, few assays based on functional properties of the encoded proteins have been established for the purpose of predicting the contribution of rare inherited variants to disease. Much of the difficulty in establishing predictive functional assays stems from the technical complexity of the assays. However, perhaps the most challenging aspect of functional assay development for clinical testing purposes is the absolute requirement for validation of the sensitivity and specificity of the assays and the determination of positive predictive values (PPVs) and negative predictive values (NPVs) of the assays relative to a "gold standard" measure of disease predisposition. In this commentary, we provide examples of some of the functional assays under development for several cancer predisposition genes (BRCA1, BRCA2, CDKN2A, and mismatch repair [MMR] genes MLH1, MSH2, MSH6, and PMS2) and present a detailed review of the issues associated with functional assay development. We conclude that validation is paramount for all assays that will be used for clinical interpretation of inherited variants of any gene, but note that in certain circumstances information derived from incompletely validated assays may be valuable for classification of variants for clinical purposes when used to supplement data derived from other sources.
Collapse
Affiliation(s)
- Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
186
|
Goldgar DE, Easton DF, Byrnes GB, Spurdle AB, Iversen ES, Greenblatt MS. Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Hum Mutat 2008; 29:1265-72. [PMID: 18951437 PMCID: PMC2936773 DOI: 10.1002/humu.20897] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic testing often results in the finding of a variant whose clinical significance is unknown. A number of different approaches have been employed in the attempt to classify such variants. For some variants, case-control, segregation, family history, or other statistical studies can provide strong evidence of direct association with cancer risk. For most variants, other evidence is available that relates to properties of the protein or gene sequence. In this work we propose a Bayesian method for assessing the likelihood that a variant is pathogenic. We discuss the assessment of prior probability, and how to combine the various sources of data into a statistically valid integrated assessment with a posterior probability of pathogenicity. In particular, we propose the use of a two-component mixture model to integrate these various sources of data and to estimate the parameters related to sensitivity and specificity of specific kinds of evidence. Further, we discuss some of the issues involved in this process and the assumptions that underpin many of the methods used in the evaluation process.
Collapse
Affiliation(s)
- David E Goldgar
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah 84132-2409, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Spearman AD, Sweet K, Zhou XP, McLennan J, Couch FJ, Toland AE. Clinically applicable models to characterize BRCA1 and BRCA2 variants of uncertain significance. J Clin Oncol 2008; 26:5393-400. [PMID: 18824701 DOI: 10.1200/jco.2008.17.8228] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Twenty percent of individuals with a strong family and/or personal history of breast and ovarian cancer carry a deleterious mutation in BRCA1 or BRCA2. Identification of mutations in these genes is extremely beneficial for patients pursuing risk reduction strategies. Approximately 7% of individuals who have genetic testing of BRCA1 and BRCA2 carry a variant of uncertain significance (VUS), making clinical management less certain. The majority of identified VUS occur only in one to two individuals; these variants are not able to be classified using current classification models with segregation analysis components. METHODS To develop a clinically applicable method that can predict the pathogenicity of VUS that does not require familial information or segregation analysis, we identified characteristics of breast or ovarian tumors that distinguished sporadic tumors from tumors with BRCA1 or BRCA2 mutations. Study participants included individuals with known deleterious mutations in BRCA1 or BRCA2 and individuals with classified or unclassified BRCA variants. RESULTS We applied the models to 57 tumors with 43 different deleterious BRCA mutations and 57 tumors with 54 unique classified and unclassified BRCA variants. Of the 33 previously unclassified VUS studied, we found evidence of neutrality for 21. CONCLUSION Our models showed 98% sensitivity and 76% specificity for predicting classified DNA changes. We classified 64% of unknown variants as neutral. Classification of VUS as neutral will have immediate benefit for those individuals and their family members. These models are adaptable for the clinic and will be useful for individuals with limited available family history.
Collapse
Affiliation(s)
- Andrew D Spearman
- Department of Biology and Pathology, Division of Human Cancer Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|