151
|
Malloy LE, Wen KK, Pierick AR, Wedemeyer EW, Bergeron SE, Vanderpool ND, McKane M, Rubenstein PA, Bartlett HL. Thoracic aortic aneurysm (TAAD)-causing mutation in actin affects formin regulation of polymerization. J Biol Chem 2012; 287:28398-408. [PMID: 22753406 PMCID: PMC3436569 DOI: 10.1074/jbc.m112.371914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/07/2012] [Indexed: 01/01/2023] Open
Abstract
More than 30 mutations in ACTA2, which encodes α-smooth muscle actin, have been identified to cause autosomal dominant thoracic aortic aneurysm and dissection. The mutation R256H is of particular interest because it also causes patent ductus arteriosus and moyamoya disease. R256H is one of the more prevalent mutations and, based on its molecular location near the strand-strand interface in the actin filament, may affect F-actin stability. To understand the molecular ramifications of the R256H mutation, we generated Saccharomyces cerevisiae yeast cells expressing only R256H yeast actin as a model system. These cells displayed abnormal cytoskeletal morphology and increased sensitivity to latrunculin A. After cable disassembly induced by transient exposure to latrunculin A, mutant cells were delayed in reestablishing the actin cytoskeleton. In vitro, mutant actin exhibited a higher than normal critical concentration and a delayed nucleation. Consequently, we investigated regulation of mutant actin by formin, a potent facilitator of nucleation and a protein needed for normal vascular smooth muscle cell development. Mutant actin polymerization was inhibited by the FH1-FH2 fragment of the yeast formin, Bni1. This fragment strongly capped the filament rather than facilitating polymerization. Interestingly, phalloidin or the presence of wild type actin reversed the strong capping behavior of Bni1. Together, the data suggest that the R256H actin mutation alters filament conformation resulting in filament instability and misregulation by formin. These biochemical effects may contribute to abnormal histology identified in diseased arterial samples from affected patients.
Collapse
Affiliation(s)
| | - Kuo-Kuang Wen
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | | | | | - Sarah E. Bergeron
- From the Departments of Pediatrics and
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Nicole D. Vanderpool
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Melissa McKane
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Peter A. Rubenstein
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Heather L. Bartlett
- From the Departments of Pediatrics and
- Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
152
|
Abstract
The field of mechanobiology has witnessed an explosive growth over the past several years as interest has greatly increased in understanding how mechanical forces are transduced by cells and how cells migrate, adhere and generate traction. Actin, a highly abundant and anomalously conserved protein, plays a large role in forming the dynamic cytoskeleton that is so essential for cell form, motility and mechanosensitivity. While the actin filament (F-actin) has been viewed as dynamic in terms of polymerization and depolymerization, new results suggest that F-actin itself may function as a highly dynamic tension sensor. This property may help explain the unusual conservation of actin's sequence, as well as shed further light on actin's essential role in structures from sarcomeres to stress fibers.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | | | | |
Collapse
|
153
|
Nance JR, Dowling JJ, Gibbs EM, Bönnemann CG. Congenital myopathies: an update. Curr Neurol Neurosci Rep 2012; 12:165-74. [PMID: 22392505 DOI: 10.1007/s11910-012-0255-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Congenital myopathy is a clinicopathological concept of characteristic histopathological findings on muscle biopsy in a patient with early-onset weakness. Three main categories are recognized within the classical congenital myopathies: nemaline myopathy, core myopathy, and centronuclear myopathy. Recent evidence of overlapping clinical and histological features between the classical forms and their different genetic entities suggests that there may be shared pathomechanisms between the congenital myopathies. Animal models, especially mouse and zebrafish, have been especially helpful in elucidating such pathomechanisms associated with the congenital myopathies and provide models in which future therapies can be investigated.
Collapse
Affiliation(s)
- Jessica R Nance
- Department of Neurology, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
154
|
Abstract
Neuromuscular disorders affect the peripheral nervous system and muscle. The principle effect of neuromuscular disorders is therefore on the ability to perform voluntary movements. Neuromuscular disorders cause significant incapacity, including, at the most extreme, almost complete paralysis. Neuromuscular diseases include some of the most devastating disorders that afflict mankind, for example motor neuron disease. Neuromuscular diseases have onset any time from in utero until old age. They are most often genetic. The last 25 years has been the golden age of genetics, with the disease genes responsible for many genetic neuromuscular disorders now identified. Neuromuscular disorders may be inherited as autosomal dominant, autosomal recessive, or X-linked traits. They may also result from mutations in mitochondrial DNA or from de novo mutations not present in the peripheral blood DNA of either parent. The high incidence of de novo mutation has been one of the surprises of the recent increase in information about the genetics of neuromuscular disorders. The disease burden imposed on families is enormous including decision making in relation to presymptomatic diagnosis for late onset neurodegenerative disorders and reproductive choices. Diagnostic molecular neurogenetics laboratories have been faced with an ever-increasing range of disease genes that could be tested for and usually a finite budget with which to perform the possible testing. Neurogenetics has moved from one known disease gene, the Duchenne muscular dystrophy gene in July 1987, to hundreds of disease genes in 2011. It can be anticipated that with the advent of next generation sequencing (NGS), most, if not all, causative genes will be identified in the next few years. Any type of mutation possible in human DNA has been shown to cause genetic neuromuscular disorders, including point mutations, small insertions and deletions, large deletions and duplications, repeat expansions or contraction and somatic mosaicism. The diagnostic laboratory therefore has to be capable of a large number of techniques in order to identify the different mutation types and requires highly skilled staff. Mutations causing neuromuscular disorders affect the largest human proteins for example titin and nebulin. Successful molecular diagnosis can make invasive and expensive diagnostic procedures such as muscle biopsy unnecessary. Molecular diagnosis is currently largely based on Sanger sequencing, which at most can sequence a small number of exons in one gene at a time. NGS techniques will facilitate molecular diagnostics, but not for all types of mutations. For example, NGS is not good at identifying repeat expansions or copy number variations. Currently, diagnostic molecular neurogenetics is focused on identifying the causative mutation(s) in a patient. In the future, the focus might move to prevention, by identifying carriers of recessive diseases before they have affected children. The pathobiology of many of the diseases remains obscure, as do factors affecting disease severity. The aim of this review is to describe molecular diagnosis of genetic neuromuscular disorders in the past, the present and speculate on the future.
Collapse
Affiliation(s)
- Nigel G Laing
- Centre for Medical Research, University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
155
|
Evaluation of the actin cytoskeleton state using an antibody-functionalized nanoneedle and an AFM. Biosens Bioelectron 2012; 40:3-9. [PMID: 22784496 DOI: 10.1016/j.bios.2012.06.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 01/24/2023]
Abstract
A cell diagnosis technique was developed, which uses an Atomic Force Microscope (AFM) and an ultra-thin AFM probe sharpened to a diameter of 200 nm (nanoneedle). Due to the high aspect ratio of the nanoneedle, it was successfully inserted into a living cell without affecting its viability. Furthermore, by functionalizing the nanoneedle with specific antibodies and measuring the unbinding forces ('fishing forces') during evacuation of the nanoneedle from the cell, it was possible to measure specific mechanical interactions between the antibody-functionalized nanoneedle and the intracellular contents of the cell. In this study, an anti-actin-antibody-functionalized nanoneedle was used to evaluate the actin cytoskeleton state in living cells. To examine the effect of cytoskeleton condition on the measured fishing forces, the cytoskeleton-disrupting drugs cytochalasin D (cytD) and Y-27632 were used, showing a marked decrease in the measured fishing forces following incubation with either of the drugs. Furthermore, the technique was used to measure the time course changes in a single cell during incubation with cytD, showing a gradual time-dependent decrease in fishing forces. Even minute doses of the drugs, the effects of which were hardly evident by optical and fluorescence methods, could be clearly detected by the measurement of nanoneedle-protein fishing forces, pointing to the high sensitivity of this detection method. This technique may prove beneficial for the evaluation of cytoskeleton conditions in health and disease, and for the selection of specific cells according to their intracellular protein contents, without the need for introduction of marker proteins into the cell.
Collapse
|
156
|
Kruth KA, Rubenstein PA. Two deafness-causing (DFNA20/26) actin mutations affect Arp2/3-dependent actin regulation. J Biol Chem 2012; 287:27217-26. [PMID: 22718764 DOI: 10.1074/jbc.m112.377283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hearing requires proper function of the auditory hair cell, which is critically dependent upon its actin-based cytoskeletal structure. Currently, ten point mutations in nonmuscle γ-actin have been identified as causing progressive autosomal dominant nonsyndromic hearing loss (DFNA20/26), highlighting these ten residues as functionally important to actin structure and/or regulation. Two of the mutations, K118M and K118N, are located near the putative binding site for the ubiquitously expressed Arp2/3 complex. We therefore hypothesized that these mutations may affect Arp2/3-dependent regulation of the actin cytoskeleton. Using in vitro bulk polymerization assays, we show that the Lys-118 mutations notably reduce actin + Arp2/3 polymerization rates compared with WT. Further in vitro analysis of the K118M mutant using TIRF microscopy indicates the actual number of branches formed per filament is reduced compared with WT and, surprisingly, branch location is altered such that the majority of K118M branches form near the pointed end of the filament. These results highlight a previously unknown role for the Lys-118 residue in the actin-Arp2/3 interaction and also further suggest that Lys-118 may play a more significant role in intra- and intermonomer interactions than was initially hypothesized.
Collapse
Affiliation(s)
- Karina A Kruth
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
157
|
A myopathy-related actin mutation increases contractile function. Acta Neuropathol 2012; 123:739-46. [PMID: 22358459 DOI: 10.1007/s00401-012-0962-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 01/13/2023]
Abstract
Nemaline myopathy (NM) is the most common congenital myopathy and is caused by mutations in various genes including NEB (nebulin), TPM2 (beta-tropomyosin), TPM3 (gamma-tropomyosin), and ACTA1 (skeletal alpha-actin). 20-25% of NM cases carry ACTA1 defects and these particular mutations usually induce substitutions of single residues in the actin protein. Despite increasing clinical and scientific interest, the contractile consequences of these subtle amino acid substitutions remain obscure. To decipher them, in the present study, we originally recorded and analysed the mechanics as well as the X-ray diffraction patterns of human membrane-permeabilized single muscle fibres with a particular peptide substitution in actin, i.e. p.Phe352Ser. Results unravelled an unexpected cascade of molecular and cellular events. During contraction, p.Phe352Ser greatly enhances the strain of individual cross-bridges. Paradoxically, p.Phe352Ser also slightly lowers the number of cross-bridges by altering the rate of myosin head attachment to actin monomers. Overall, at the cell level, these divergent mechanisms conduct to an improved steady-state force production. Such results provide new surprising scientific insights and crucial information for future therapeutic strategies.
Collapse
|
158
|
|
159
|
Agrawal PB, Joshi M, Savic T, Chen Z, Beggs AH. Normal myofibrillar development followed by progressive sarcomeric disruption with actin accumulations in a mouse Cfl2 knockout demonstrates requirement of cofilin-2 for muscle maintenance. Hum Mol Genet 2012; 21:2341-56. [PMID: 22343409 DOI: 10.1093/hmg/dds053] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cofilin-2, a small actin-binding protein and member of the AC protein family that includes cofilin-1 and destrin, is predominantly expressed at sarcomeres in skeletal and cardiac muscles. The role of cofilin-2 in muscle development and function is unclear. In humans, recessive cofilin-2 mutations have been associated with nemaline myopathy with minicores. To investigate the functional role of cofilin-2 in vivo, we generated constitutive and muscle-specific cofilin-2-deficient mice using a cre-loxP strategy. Cofilin-2-deficient mice were similar to their wild-type (WT) littermates at birth, but died by day 8. They were significantly smaller, severely weak and had very little milk in their stomachs. The sarcomeric structure was intact at birth, but by Day 7, skeletal muscles showed severe sarcomeric disruptions starting at the Z-line, along with filamentous actin accumulations consistent with a lack of actin depolymerization activity. Cofilin-2-deficient muscles contained elevated numbers of slow fibers and exhibited upregulation of slow fiber-specific genes. Increased amounts of other sarcomeric proteins including α-actinin-2, α-sarcomeric actin and tropomyosin were also present. While destrin was not expressed in either WT or cofilin-2-deficient muscles, cofilin-1 was similarly expressed in developing myofibers of both genotypes. There was no evidence for compensatory changes in expression of either family member in cofilin-2-deficient tissues. The onset of pathology and weakness in cofilin-2-deficient muscles correlated with normal developmental loss of cofilin-1 expression within myofibers, suggesting that cofilin-1 serves as an early developmental sarcomeric isoform. Overall, cofilin-2, although not critical for muscle development, is essential for muscle maintenance.
Collapse
Affiliation(s)
- Pankaj B Agrawal
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
160
|
Ravenscroft G, Jackaman C, Sewry CA, McNamara E, Squire SE, Potter AC, Papadimitriou J, Griffiths LM, Bakker AJ, Davies KE, Laing NG, Nowak KJ. Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression. PLoS One 2011; 6:e28699. [PMID: 22174871 PMCID: PMC3235150 DOI: 10.1371/journal.pone.0028699] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 11/14/2011] [Indexed: 01/13/2023] Open
Abstract
Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Behavior, Animal
- Disease Models, Animal
- Gene Expression
- Green Fluorescent Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/ultrastructure
- Myopathies, Nemaline/pathology
- Myopathies, Nemaline/physiopathology
- Myosin Heavy Chains/metabolism
- Phenotype
- Recombinant Fusion Proteins/metabolism
- Transgenes/genetics
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
- Physiology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Perth, Australia
| | - Connie Jackaman
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
| | - Caroline A. Sewry
- Wolfson Centre for Inherited Neuromuscular Diseases, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom
| | - Elyshia McNamara
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
| | - Sarah E. Squire
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Allyson C. Potter
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Papadimitriou
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Lisa M. Griffiths
- Neuropathology, Royal Perth Hospital and PathWest Anatomical Pathology, Perth, Australia
| | - Anthony J. Bakker
- Physiology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Perth, Australia
| | - Kay E. Davies
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nigel G. Laing
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
| | - Kristen J. Nowak
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia
| |
Collapse
|
161
|
Abstract
Congenital fiber-type disproportion is a form of congenital myopathy that may be best viewed as a syndrome rather than as a formal diagnosis. The central histologic abnormality is that type 1 fibers are consistently smaller than type 2 fibers by at least 35%-40%. Care is needed in diagnosing patients, as this histologic abnormality can occur in other congenital myopathies and in other neuromuscular disorders. Many of the genetic causes have been identified. Careful surveillance of respiratory function is required in all patients until the specific genetic cause is known and advice can be individualized.
Collapse
Affiliation(s)
- Nigel F Clarke
- Institute of Neuroscience and Muscle Research, Children's Hospital at Westmead, Discipline of Paediatrics & Child Health, University of Sydney, Westmead, New South Wales, Australia.
| |
Collapse
|
162
|
Abstract
Nemaline myopathy constitutes a continuous spectrum of primary skeletal muscle disorders named after the Greek word for thread, nema. The diagnosis is based on muscle weakness, combined with visualization of nemaline bodies on muscle biopsy. The patients' muscle weakness is usually generalized, but there may be a selective pattern of more pronounced weakness, and, most importantly, respiratory muscles may be especially weak. Histologically, additional features may coexist with the nemaline bodies. There are 7 known causative genes. The function of the most recently identified gene is unknown, but the other 6 encoded proteins are associated with the muscle thin filament. The 2 most common causes of nemaline myopathy are recessive mutations in nebulin and de novo dominant mutations in skeletal muscle α-actin. At least 1 further gene remains to be identified. Patient care is based on managing the clinical symptoms. Animal models are helping to gain insight into pathogenesis, and a variety of therapeutic approaches are being investigated.
Collapse
Affiliation(s)
- Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
163
|
Hung RJ, Pak CW, Terman JR. Direct redox regulation of F-actin assembly and disassembly by Mical. Science 2011; 334:1710-3. [PMID: 22116028 DOI: 10.1126/science.1211956] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Different types of cell behavior, including growth, motility, and navigation, require actin proteins to assemble into filaments. Here, we describe a biochemical process that was able to disassemble actin filaments and limit their reassembly. Actin was a specific substrate of the multidomain oxidation-reduction enzyme, Mical, a poorly understood actin disassembly factor that directly responds to Semaphorin/Plexin extracellular repulsive cues. Actin filament subunits were directly modified by Mical on their conserved pointed-end, which is critical for filament assembly. Mical posttranslationally oxidized the methionine 44 residue within the D-loop of actin, simultaneously severing filaments and decreasing polymerization. This mechanism underlying actin cytoskeletal collapse may have broad physiological and pathological ramifications.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
164
|
Saito Y, Komaki H, Hattori A, Takeuchi F, Sasaki M, Kawabata K, Mitsuhashi S, Tominaga K, Hayashi YK, Nowak KJ, Laing NG, Nonaka I, Nishino I. Extramuscular manifestations in children with severe congenital myopathy due to ACTA1 gene mutations. Neuromuscul Disord 2011; 21:489-93. [DOI: 10.1016/j.nmd.2011.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/04/2011] [Accepted: 03/18/2011] [Indexed: 11/25/2022]
|
165
|
Stern-Straeter J, Bonaterra GA, Kassner SS, Zügel S, Hörmann K, Kinscherf R, Goessler UR. Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis. J Tissue Eng Regen Med 2011; 5:e197-206. [PMID: 21370490 DOI: 10.1002/term.417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 01/28/2011] [Indexed: 11/08/2022]
Abstract
Tissue engineering of skeletal muscle is an encouraging possibility for the treatment of muscle loss through the creation of functional muscle tissue in vitro from human stem cells. Currently, the preferred stem cells are primary, non-immunogenic satellite cells ( = myoblasts). The objective of this study was to determine the expression patterns of myogenic markers within the human satellite cell population during their differentiation into multinucleated myotubes for an accurate characterization of stem cell behaviour. Satellite cells were incubated (for 1, 4, 8, 12 or 16 days) with a culture medium containing either a low [ = differentiation medium (DM)] or high [ = growth medium (GM)] concentration of growth factors. Furthermore, we performed a quantitative gene expression analysis of well-defined differentiation makers: myogenic factor 5 (MYF5), myogenin (MYOG), skeletal muscle αactin1 (ACTA1), embryonic (MYH3), perinatal (MYH8) and adult skeletal muscle myosin heavy chain (MYH1). Additionally, the fusion indices of forming myotubes of MYH1, MYH8 and ACTA1 were calculated. We show that satellite cells incubated with DM expressed multiple characteriztic features of mature skeletal muscles, verified by time-dependent upregulation of MYOG, MYH1, MYH3, MYH8 and ACTA1. However, satellite cells incubated with GM did not reveal all morphological aspects of muscle differentiation. Immunocytochemical investigations with antibodies directed against the differentiation markers showed correlations between the gene expression and differentiation. Our data provide information about time-dependent gene expression of differentiation markers in human satellite cells, which can be used for maturation analyses in skeletal muscle tissue-engineering applications.
Collapse
|
166
|
Ravenscroft G, Jackaman C, Bringans S, Papadimitriou JM, Griffiths LM, McNamara E, Bakker AJ, Davies KE, Laing NG, Nowak KJ. Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. ACTA ACUST UNITED AC 2011; 134:1101-15. [PMID: 21303860 DOI: 10.1093/brain/awr004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of pathologically defined congenital myopathies. Most patients have dominant mutations and experience severe skeletal muscle weakness, dying within one year of birth. To determine mutant ACTA1 pathobiology, transgenic mice expressing ACTA1(D286G) were created. These Tg(ACTA1)(D286G) mice were less active than wild-type individuals. Their skeletal muscles were significantly weaker by in vitro analyses and showed various pathological lesions reminiscent of human patients, however they had a normal lifespan. Mass spectrometry revealed skeletal muscles from Tg(ACTA1)(D286G) mice contained ∼25% ACTA1(D286G) protein. Tg(ACTA1)(D286G) mice were crossed with hemizygous Acta1(+/-) knock-out mice to generate Tg(ACTA1)(D286G)(+/+).Acta1(+/-) offspring that were homozygous for the transgene and hemizygous for the endogenous skeletal muscle α-actin gene. Akin to most human patients, skeletal muscles from these offspring contained approximately equal proportions of ACTA1(D286G) and wild-type actin. Strikingly, the majority of these mice presented with severe immobility between postnatal Days 8 and 17, requiring euthanasia. Their skeletal muscles contained extensive structural abnormalities as identified in severely affected human patients, including nemaline bodies, actin accumulations and widespread sarcomeric disarray. Therefore we have created valuable mouse models, one of mild dominant ACTA1 disease [Tg(ACTA1)(D286G)], and the other of severe disease, with a dramatically shortened lifespan [Tg(ACTA1)(D286G)(+/+).Acta1(+/-)]. The correlation between mutant ACTA1 protein load and disease severity parallels effects in ACTA1 families and suggests altering this ratio in patient muscle may be a therapy for patients with dominant ACTA1 disease. Furthermore, ringbinden fibres were observed in these mouse models. The presence of such features suggests that perhaps patients with ringbinden of unknown genetic origin should be considered for ACTA1 mutation screening. This is the first experimental, as opposed to observational, evidence that mutant protein load determines the severity of ACTA1 disease.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Bergeron SE, Wedemeyer EW, Lee R, Wen KK, McKane M, Pierick AR, Berger AP, Rubenstein PA, Bartlett HL. Allele-specific effects of thoracic aortic aneurysm and dissection alpha-smooth muscle actin mutations on actin function. J Biol Chem 2011; 286:11356-69. [PMID: 21288906 DOI: 10.1074/jbc.m110.203174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Twenty-two missense mutations in ACTA2, which encodes α-smooth muscle actin, have been identified to cause thoracic aortic aneurysm and dissection. Limited access to diseased tissue, the presence of multiple unresolvable actin isoforms in the cell, and lack of an animal model have prevented analysis of the biochemical mechanisms underlying this pathology. We have utilized actin from the yeast Saccharomyces cerevisiae, 86% identical to human α-smooth muscle actin, as a model. Two of the known human mutations, N115T and R116Q, were engineered into yeast actin, and their effect on actin function in vivo and in vitro was investigated. Both mutants exhibited reduced ability to grow under a variety of stress conditions, which hampered N115T cells more than R116Q cells. Both strains exhibited abnormal mitochondrial morphology indicative of a faulty actin cytoskeleton. In vitro, the mutant actins exhibited altered thermostability and nucleotide exchange rates, indicating effects of the mutations on monomer conformation, with R116Q the most severely affected. N115T demonstrated a biphasic elongation phase during polymerization, whereas R116Q demonstrated a markedly extended nucleation phase. Allele-specific effects were also seen on critical concentration, rate of depolymerization, and filament treadmilling. R116Q filaments were hypersensitive to severing by the actin-binding protein cofilin. In contrast, N115T filaments were hyposensitive to cofilin despite nearly normal binding affinities of actin for cofilin. The mutant-specific effects on actin behavior suggest that individual mechanisms may contribute to thoracic aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Sarah E Bergeron
- Department of Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Carnell MJ, Insall RH. Actin on disease--studying the pathobiology of cell motility using Dictyostelium discoideum. Semin Cell Dev Biol 2011; 22:82-8. [PMID: 21145982 DOI: 10.1016/j.semcdb.2010.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 11/29/2022]
Abstract
The actin cytoskeleton in eukaryotic cells provides cell structure and organisation, and allows cells to generate forces against membranes. As such it is a central component of a variety of cellular structures involved in cell motility, cytokinesis and vesicle trafficking. In multicellular organisms these processes contribute towards embryonic development and effective functioning of cells of all types, most obviously rapidly moving cells like lymphocytes. Actin also defines and maintains the architecture of complex structures such as neuronal synapses and stereocillia, and is required for basic housekeeping tasks within the cell. It is therefore not surprising that misregulation of the actin cytoskeleton can cause a variety of disease pathologies, including compromised immunity, neurodegeneration, and cancer spread. Dictyostelium discoideum has long been used as a tool for dissecting the mechanisms by which eukaryotic cells migrate and chemotax, and recently it has gained precedence as a model organism for studying the roles of conserved pathways in disease processes. Dictyostelium's unusual lifestyle, positioned between unicellular and multicellular organisms, combined with ease of handling and strong conservation of actin regulatory machinery with higher animals, make it ideally suited for studying actin-related diseases. Here we address how research in Dictyostelium has contributed to our understanding of immune deficiencies and neurological defects in humans, and briefly discuss its future prospects for furthering our understanding of neurodegenerative disorders.
Collapse
|
169
|
Three novel mutations in the ACTA2 gene in German patients with thoracic aortic aneurysms and dissections. Eur J Hum Genet 2011; 19:520-4. [PMID: 21248741 DOI: 10.1038/ejhg.2010.239] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mutations in the gene encoding smooth muscle cell alpha actin (ACTA2) have recently been shown to cause familial thoracic aortic aneurysms leading to type A dissections (TAAD) and predispose to premature stroke and coronary artery disease. In order to further explore the role of ACTA2 variations in the pathogenesis of TAAD, we sequenced the coding regions of this gene in 40 unrelated German patients with TAAD (with (n=21) or without (n=19) clinical features suggestive of Marfan syndrome). All patients had previously tested negative for mutations in the FBN1 and TGFBR2 genes. We identified three novel ACTA2 mutations and mapped them on a three-dimensional model of actin. Two mutations affect residues within (M49V) or adjacent to (R39C), the DNAse-I-binding loop within subdomain 2 of alpha actin. They were observed in families with recurrent aortic aneurysm (R39C) or aortic dissection (M49V). The third mutation causes an exchange in the vicinity of the ATP-binding site (G304R) in a patient thought to have isolated TAAD. None of the affected individuals had clinical features typical for Marfan syndrome, and no case of premature stroke or coronary artery disease was reported from the affected families. In conclusion, we underscore the role of ACTA2 mutations in nonsyndromic TAAD and suggest that ACTA2 should be included in the genes routinely investigated for syndromic and nonsyndromic TAAD. Detailed clinical investigations of additional families are warranted to further explore the full range of phenotypic signs associated with the three novel mutations described here.
Collapse
|
170
|
Ravenscroft G, Wilmshurst JM, Pillay K, Sivadorai P, Wallefeld W, Nowak KJ, Laing NG. A novel ACTA1 mutation resulting in a severe congenital myopathy with nemaline bodies, intranuclear rods and type I fibre predominance. Neuromuscul Disord 2011; 21:31-6. [DOI: 10.1016/j.nmd.2010.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/30/2010] [Accepted: 08/23/2010] [Indexed: 01/27/2023]
|
171
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:568-80. [PMID: 21030841 DOI: 10.1097/med.0b013e328341311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
172
|
Stenzel W, Prokop S, Kress W, Huppmann S, Loui A, Sarioglu NME, Laing NG, Sparrow JC, Heppner FL, Goebel HH. Fetal akinesia caused by a novel actin filament aggregate myopathy skeletal muscle actin gene (ACTA1) mutation. Neuromuscul Disord 2010; 20:531-3. [PMID: 20621480 DOI: 10.1016/j.nmd.2010.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/27/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
We report a female newborn, diagnosed with fetal akinesia in utero, who died one hour after birth. Post-mortem muscle biopsy demonstrated actin-filament myopathy based on immunolabelling for sarcomeric actin, and large areas of filaments, without rod formation, ultrastructurally. Analysis of DNA extracted from the muscle disclosed a novel de novo heterozygous c.44G>A, GGC>GAC, 'p.Gly15Asp' mutation in the ACTA1 gene. Analysis of the location of the mutated amino-acid in the actin molecule suggests the mutation most likely causes abnormal nucleotide binding, and consequent pathological actin polymerization. This case emphasizes the association of fetal akinesia with actin-filament myopathy.
Collapse
Affiliation(s)
- Werner Stenzel
- Institute of Neuropathology, Charité University Medicine, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
174
|
Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul Disord 2010; 20:796-800. [PMID: 20951040 DOI: 10.1016/j.nmd.2010.07.274] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022]
Abstract
Congenital myopathy with fibre type disproportion (CFTD) has been associated with mutations in ACTA1, SEPN1, RYR1 and TPM3 genes. We report the clinico-pathological and electrophysiological features of 2 unrelated cases with heterozygous TPM3 mutation. Case 1 is a 19-year-old lady who presented with motor delay in infancy, respiratory failure in early teens requiring non-invasive ventilation despite being ambulant, ptosis, axial more than proximal weakness and scoliosis. Case 2 is a 7-year-old boy with hypotonia, feeding difficulties, motor delay and scoliosis, also requiring non-invasive ventilation while ambulant. Muscle biopsies in both cases showed fibre type disproportion. Muscle MRI (Case 1) showed mild uniformly increased interstitial tissue in and around the muscles. Sequencing of TPM3 in case 1 revealed a previously described heterozygous c.503G > A(pArg168His) missense variant in exon 5 and a novel heterozygous missense mutation c.521A > C(pGlu174Ala), also in exon 5, in case 2. A mild abnormality in the single fibre EMG was documented on electrophysiology in both cases. These cases highlight the neuromuscular transmission defect in CFTD secondary to TPM3 mutations.
Collapse
|
175
|
Abstract
Actin has maintained an exquisite degree of sequence conservation over large evolutionary distances for reasons that are not understood. The desire to explain phenomena from muscle contraction to cytokinesis in mechanistic detail has driven the generation of an atomic model of the actin filament (F-actin). Here we use electron cryomicroscopy to show that frozen-hydrated actin filaments contain a multiplicity of different structural states. We show (at ∼10 Å resolution) that subdomain 2 can be disordered and can make multiple contacts with the C terminus of a subunit above it. We link a number of disease-causing mutations in the human ACTA1 gene to the most structurally dynamic elements of actin. Because F-actin is structurally polymorphic, it cannot be described using only one atomic model and must be understood as an ensemble of different states.
Collapse
|
176
|
Haigh SE, Salvi SS, Sevdali M, Stark M, Goulding D, Clayton JD, Bullard B, Sparrow JC, Nongthomba U. Drosophila indirect flight muscle specific Act88F actin mutants as a model system for studying congenital myopathies of the human ACTA1 skeletal muscle actin gene. Neuromuscul Disord 2010; 20:363-74. [DOI: 10.1016/j.nmd.2010.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/01/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
|
177
|
Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D, Vajsar J. Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1. Neuromuscul Disord 2010; 20:238-40. [PMID: 20303757 DOI: 10.1016/j.nmd.2010.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/04/2010] [Accepted: 01/18/2010] [Indexed: 11/25/2022]
Abstract
Cap myopathy is a congenital myopathy with cap-like structures under the sarcolemma. Mutations in TPM2 and TPM3 genes have been reported in cap myopathy so far. We report a newborn boy with persistent profound weakness who required gastro-jejunal tube feeding, tracheostomy and life-long ventilation until he died at 5 years of age. Muscle biopsy at 5 weeks of age was uninformative. Repeat biopsy at 4.5 years revealed subsarcolemmally located caps that were immunopositive for alpha-actinin, actin and to some extent, desmin. EM confirmed loosely arranged thin filaments and paucity of thick filaments. Molecular analysis of ACTA1 gene identified a novel de novo Met49Val [corrected] mutation. In addition to a new ACTA1 gene mutation, our case emphasizes the genetic heterogeneity of cap myopathy and its association with ACTA1 gene as well as the importance of repeat muscle biopsy in patients with undiagnosed muscle weakness.
Collapse
Affiliation(s)
- Ryan M Hung
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
178
|
Myopathy-causing actin mutations promote defects in serum-response factor signalling. Biochem J 2010; 427:41-8. [PMID: 20088824 DOI: 10.1042/bj20091641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the gene encoding skeletal muscle alpha-actin (ACTA1) account for approx. 20% of patients with the muscular disorder nemaline myopathy. Nemaline myopathy is a muscular wasting disease similar to muscular dystrophy, but distinguished by deposits of actin and actin-associated proteins near the z-line of the sarcomere. Approx. one-third of the over 140 myopathy actin mutations have been characterized either biochemically or in cultured cells to determine their effects on the actin cytoskeleton. However, the actin defects causing myopathy are likely to be heterogeneous, with only a few common trends observed among the actin mutants, such as reduced polymerization capacity or an inability to fold properly. Notably, the transcriptional programme regulated by serum-response factor, which is instrumental in muscle development and maintenance, is directly controlled by the balance of actin assembly and disassembly in cells. In the present study, we explored the impact of myopathy mutations in actin on the control of the transcriptional response by serum-response factor and found that the majority of mutants examined have altered serum-response factor signalling. We propose that altered serum-response factor signalling could be a major factor in actin-based nemaline myopathy, and that this area could be exploited to develop therapies for sufferers.
Collapse
|
179
|
Kiphuth IC, Krause S, Huttner HB, Dekomien G, Struffert T, Schröder R. Autosomal dominant nemaline myopathy caused by a novel alpha-tropomyosin 3 mutation. J Neurol 2009; 257:658-60. [PMID: 20012312 DOI: 10.1007/s00415-009-5413-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/11/2009] [Accepted: 11/20/2009] [Indexed: 11/25/2022]
Abstract
Nemaline myopathy (NM) is a genetically and clinically heterogenous muscle disorder, which is myopathologically characterized by nemaline bodies. Mutations in six genes have been reported to cause NM: Nebulin (NEB Pelin 1999), alpha-skeletal muscle actin (ACTA1 Nowak 1999), alpha-slow tropomyosin (TPM3 Laing 1995), beta-tropomyosin (TPM2 Donner 2002), slow troponin T (TNNT1 Johnston 2000) and cofilin 2 (CFL2 Agrawal 2007). The majority of cases are due to mutation in NEB and ACTA1. We report on the clinical, myopathological and muscle MRI findings in a German family with autosomal dominant NM due to a novel pathogenic TPM3 mutation (p.Ala156Thr).
Collapse
|