151
|
Xu XH, Song W, Li JH, Huang ZQ, Liu YF, Bao Q, Shen ZW. Long Non-coding RNA EBLN3P Regulates UHMK1 Expression by Sponging miR-323a-3p and Promotes Colorectal Cancer Progression. Front Med (Lausanne) 2021; 8:651600. [PMID: 34109193 PMCID: PMC8180563 DOI: 10.3389/fmed.2021.651600] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Growing studies have demonstrated that long non-coding RNA (lncRNA) can act as crucial roles during the progression of various tumors, including colorectal carcinoma (CRC). We aimed to determine lncRNA endogenous bornavirus-like nucleoprotein (EBLN3P) expression in CRC and examine its influence on tumor behaviors of CRC cells. Materials and Methods: Quantitative real-time polymerase chain reaction was used to determine the expression levels of EBLN3P and miR-323a-3p in CRC tissues and cell lines. Cell viability, migration, invasion, and apoptosis were assessed by Cell Counting Kit 8, colony formation, Transwell assay, wound healing assays, and flow cytometry. Bioinformatics and dual-luciferase assays were used to investigate the interaction between EBLN3P and miR-323a-3p, as well as between miR-323a-3p and U2AF homology motif kinase 1 (UHMK1). Western blot was applied for detecting the expressions of the related proteins. Results: EBLN3P was highly expressed in CRC, and its high expression was distinctly associated with increased tumor size, histology/differentiation and advanced TNM stage, and poor clinical outcome of CRC patients. EBLN3P silencing significantly inhibited the proliferation and metastasis and induced the apoptosis of CRC cells. Mechanistically, overexpression of EBLN3P exhibited tumorigenic effects through downregulating the inhibitory effects of miR-323a-3p on UHMK1 expression. The correlation analysis confirmed the positive or negative association among EBLN3P, miR-323a-3p, and UHMK1. Conclusion: EBLN3P promoted the development of CRC via targeting miR-323a-3p/UHMK1, which provided a new idea for treating CRC.
Collapse
Affiliation(s)
- Xiang-Hao Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Song
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun-Hua Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Qi Huang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Fang Liu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Bao
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Wen Shen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
152
|
Wang M, Liu H, Wu W, Zhao J, Song G, Chen X, Wang R, Shao C, Li J, Wang H, Wang Q, Feng X. Identification of Differentially Expressed Plasma lncRNAs As Potential Biomarkers for Breast Cancer. Clin Breast Cancer 2021; 22:e135-e141. [PMID: 34119428 DOI: 10.1016/j.clbc.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women and is not easy to diagnose. Increasing evidence has underscored that long non-coding RNAs (lncRNAs) play important regulatory roles in the occurrence and progression of many cancers, including breast cancer. We aimed to identify lncRNAs in plasma as potential biomarkers for breast cancer. PATIENTS AND METHODS We analyzed the Gene Expression Omnibus (GEO) datasets GSE22820, GSE42568, and GSE65194 to identify the common differential genes between cancer tissues and adjacent tissues. Then 14 lncRNAs were identified among the common differential genes and validated by using real-time quantitative polymerase chain reaction in 92 patients with breast cancer and 100 healthy controls. Receiver operating characteristic (ROC) curves were constructed to evaluate their diagnostic value for breast cancer. RESULTS Integrated analysis of the GEO datasets identified three significantly upregulated and 11 downregulated lncRNAs in breast cancer tissues. Compared with healthy controls, MIAT was significantly upregulated in breast cancer patient plasma, and LINC00968 and LINC01140 were significantly downregulated. ROC curve analysis suggested that these three lncRNAs can discriminate breast cancer from healthy individual with high specificity and sensitivity. CONCLUSION This research identified three differentially expressed lncRNAs in breast cancer patient plasma. Our data suggest that these three lncRNAs can be used as potential diagnostic biomarkers of breast cancer.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huilin Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenyao Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jinxia Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Rong Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Changfeng Shao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaodong Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
153
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
154
|
Li Q, Li X, Yang X, Zhang B, Gu Y, Gu G, Xiong J, Li Y, Qian Z. Long Intergenic Nonprotein Coding RNA 173 Inhibits Tumor Growth and Promotes Apoptosis by Repressing Sphingosine Kinase 1 Protein Expression in Pancreatic Cancer. DNA Cell Biol 2021; 40:757-775. [PMID: 33978457 DOI: 10.1089/dna.2020.6103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a common malignant tumor worldwide. Extensive studies have been conducted on the functional role of long noncoding RNAs in pancreatic cancer. In this study, long intergenic nonprotein coding RNA 173 (LINC00173) was highly expressed in pancreatic cancer tissues. In vitro functional experiments showed that LINC00173 overexpression inhibited the proliferation and invasion of pancreatic cancer cells and promoted cell apoptosis in MIA PaCa-2 and PANC-1 cells. RNA sequencing analysis and Western blot assays demonstrated that LINC00173 reduced the expression of sphingosine kinase 1 (SPHK1) and then inhibited the protein expression of activated phospho-protein kinase B (AKT) and NF-κB. In vivo functional assays also revealed that LINC00173 inhibited the growth of pancreatic cancer xenografts, repressed cell proliferation, promoted cell apoptosis, and inhibited SPHK1 expression. The combined results of this study indicate that LINC00173 inhibits pancreatic cancer progression by repressing SPHK1 expression. Improving LINC00173 may represent a therapeutic strategy for pancreatic cancer in the future.
Collapse
Affiliation(s)
- Qian Li
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xingxing Li
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojun Yang
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqing Gu
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangliang Gu
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiageng Xiong
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Li
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuyin Qian
- Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
155
|
Li J, Du H, Chen W, Qiu M, He P, Ma Z. Identification of potential autophagy-associated lncRNA in prostate cancer. Aging (Albany NY) 2021; 13:13153-13165. [PMID: 33971627 PMCID: PMC8148478 DOI: 10.18632/aging.202997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Background: Long non-coding RNAs (lncRNAs) have been linked to autophagy. It is urgent to identify and assess the hub autophagy-associated lncRNA in prostate cancer. Methods: Differentially expressed lncRNAs associated with autophagy were identified in prostate cancer based on The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data. An autophagy-mediated competing endogenous RNA network was constructed to screen for autophagy-associated lncRNA, and the preselected lncRNAs were further validated using Gene Expression Omnibus (GEO) datasets. Furthermore, a prognostic lncRNA signature was established and assessed. Additionally, Gene Set Enrichment Analysis (GSEA) revealed the underlying molecular mechanisms. Results: Using a competing endogenous RNA network, 66 differentially expressed lncRNAs associated with autophagy were identified, and the differential expression of 7 lncRNAs were verified using the TCGA-PRAD, GSE21034, and GSE94767 datasets. Additionally, a lncRNA signature associated with autophagy, including MKNK1-AS1 and INE1, was identified as an independent indicator of survival with a C-index of 0.882. The GSEA analysis indicated that several autophagy-related signaling pathways were enriched in different risk groups. Conclusions: The lncRNAs associated with autophagy were identified, and a prediction model was developed that could be used as a prognostic predictor for prostate cancer, indicating the critical role of lncRNA in the regulation of prostate cancer autophagy regulation.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Du
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenqiang Chen
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxing Qiu
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng He
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiwei Ma
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
156
|
Long noncoding RNA LMO7DN inhibits cell proliferation by regulating the cell cycle in lung adenocarcinoma. Pathol Res Pract 2021; 223:153475. [PMID: 33991849 DOI: 10.1016/j.prp.2021.153475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022]
Abstract
In our previous study, we reported that the long noncoding RNA, LMO7 downstream neighbor (LMO7DN), has a strong prognostic value in lung adenocarcinoma (LUAD). In this study, we further investigated the role of LMO7DN in LUAD progression. LMO7DN was found to be expressed at low levels in LUAD tissues, and its high expression predicted good prognosis. Bioinformatics analysis indicated that LMO7DN was closely associated with the cell cycle. Furthermore, we found that cell proliferation was significantly enhanced following knockdown of LMO7DN, and the number of cells in the G2/M phase was markedly decreased, whereas there was no change in apoptosis. Thus, LMO7DN inhibits cell proliferation by affecting the cell cycle and is of significant prognostic value in LUAD.
Collapse
|
157
|
Shi J, Yang C, An J, Hao D, Liu C, Liu J, Sun J, Jiang J. KLF5-induced BBOX1-AS1 contributes to cell malignant phenotypes in non-small cell lung cancer via sponging miR-27a-5p to up-regulate MELK and activate FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:148. [PMID: 33931086 PMCID: PMC8086369 DOI: 10.1186/s13046-021-01943-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is a major histological subtype of lung cancer with high mortality and morbidity. A substantial amount of evidence demonstrates long non-coding RNAs (lncRNA) as critical regulators in tumorigeneis and malignant progression of human cancers. The oncogenic role of BBOX1 anti-sense RNA 1 (BBOX1-AS1) has been reported in several tumors. As yet, the potential functions and mechanisms of BBOX1-AS1 in NSCLC are obscure. Methods The gene and protein expression was detected by qRT-PCR and western blot. Cell function was determined by CCK-8, colony forming, would healing and transwell assays. Bioinformatics tools, ChIP assays, dual luciferase reporters system and RNA pull-down experiments were used to examine the interaction between molecules. Subcutaneous tumor models in nude mice were established to investigate in vivo NSCLC cell behavior. Results BBOX1-AS1 was highly expressed in NSCLC tissues and cells. High BBOX1-AS1 expression was associated with worse clinical parameters and poor prognosis. BBOX1-AS1 up-regulation was induced by transcription factor KLF5. BBOX1-AS1 deficiency resulted in an inhibition of cell proliferation, migration, invasion and EMT in vitro. Also, knockdown of BBOX1-AS1 suppressed NSCLC xenograft tumor growth in mice in vivo. Mechanistically, BBOX1-AS1 acted act as a competetive “sponge” of miR-27a-5p to promote maternal embryonic leucine zipper kinase (MELK) expression and activate FAK signaling. miR-27a-5p was confirmed as a tumor suppressor in NSCLC. Moreover, BBOX1-AS1-induced increase of cell proliferation, migration, invasion and EMT was greatly reversed due to the overexpression of miR-27a-5p. In addition, the suppressive effect of NSCLC progression owing to BBOX1-AS1 depletion was abated by the up-regulation of MELK. Consistently, BBOX1-AS1-mediated carcinogenicity was attenuated in NSCLC after treatment with a specific MELK inhibitor OTSSP167. Conclusions KLF5-induced BBOX1-AS1 exerts tumor-promotive roles in NSCLC via sponging miR-27a-5p to activate MELK/FAK signaling, providing the possibility of employing BBOX1-AS1 as a therapeutic target for NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01943-5.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Yang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu An
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dexun Hao
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jumin Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Sun
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junguang Jiang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
158
|
Man S, Li X, Zhu W. miR-4417 targets lncRNA PSMG3-AS1 to suppress cell invasion and migration in cervical squamous cell carcinoma. Oncol Lett 2021; 22:502. [PMID: 33986863 PMCID: PMC8114464 DOI: 10.3892/ol.2021.12763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Although long non-coding RNA (lncRNA) PSMG3-AS1 has been reported to participate in cancer biology, its role in cervical squamous cell carcinoma (CSCC) is unknown. The present study aimed to investigate the role of the lncRNA PSMG3-AS1 in CSCC. The expression levels of PSMG3-AS1 in both CSCC and non-tumor tissues from 64 patients with CSCC were measured by reverse transcription-quantitative PCR. The potential interaction between miR-4417 and PSMG3-AS1 was predicted using IntaRNA 2.0. Overexpression of miR-4417 and PSMG3-AS1 were achieved in CSCC cells to further explore the potential interaction between them. The effects of overexpression of miR-4417 and PSMG3-AS1 on CSCC cell invasion and migration were assessed by Transwell assay. The results revealed that PSMG3-AS1 expression was upregulated in CSCC tissues, and its high expression levels predicted a poor survival in patients with CSCC. miR-4417 expression was downregulated in CSCC tissues and was inversely correlated with PSMG3-AS1 expression. Moreover, miR-4417 was predicted to interact with PSMG3-AS1. In CSCC cells, overexpression of miR-4417 decreased the expression levels of PSMG3-AS1, while overexpression of PSMG3-AS1 did not affect miR-4417 expression. Transwell assay demonstrated that overexpression of PSMG3-AS1 increased CSCC cell invasion and migration. However, overexpression of miR-4417 inhibited CSCC cell invasion and migration, and attenuated the effects of PSMG3-AS1 overexpression in CSCC cells. In conclusion, the present study indicated that miR-4417 may target PSMG3-AS1 to suppress cancer cell invasion and migration in CSCC.
Collapse
Affiliation(s)
- Shuhong Man
- Department of Gynaecology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Xiaohan Li
- School of Public Health, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Zhu
- Nursing Department, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
159
|
The Role of lncRNAs in the Pathobiology and Clinical Behavior of Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13081976. [PMID: 33923983 PMCID: PMC8074217 DOI: 10.3390/cancers13081976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Multiple myeloma (MM), the second most common hematological neoplasm, is still considered an incurable disease. Long non-coding RNAs (lncRNAs), genes that do not encode proteins, participate in numerous biological processes, but their deregulation, like that of coding genes, can contribute to carcinogenesis. Increasing evidence points to the relevant role of lncRNAs in the development of human tumors, such that they emerge as attractive biomarkers and therapeutic targets for cancer treatment, including MM. Here we review the oncogenic or tumor-suppressor functions of lncRNAs in MM and provide an overview of novel therapeutic approaches based on lncRNAs that will help to improve the management of these patients. Abstract MM is a hematological neoplasm that is still considered an incurable disease. Besides established genetic alterations, recent studies have shown that MM pathogenesis is also characterized by epigenetic aberrations, such as the gain of de novo active chromatin marks in promoter and enhancer regions and extensive DNA hypomethylation of intergenic regions, highlighting the relevance of these non-coding genomic regions. A recent study described how long non-coding RNAs (lncRNAs) correspond to 82% of the MM transcriptome and an increasing number of studies have demonstrated the importance of deregulation of lncRNAs in MM. In this review we focus on the deregulated lncRNAs in MM, including their biological or functional mechanisms, their role as biomarkers to improve the prognosis and monitoring of MM patients, and their participation in drug resistance. Furthermore, we also discuss the evidence supporting the role of lncRNAs as therapeutic targets through different novel RNA-based strategies.
Collapse
|
160
|
Expression level of long non-coding RNA colon adenocarcinoma hypermethylated serves as a novel prognostic biomarker in patients with thyroid carcinoma. Biosci Rep 2021; 41:228191. [PMID: 33792624 PMCID: PMC8056003 DOI: 10.1042/bsr20210284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The present study attempts to identify the prognostic value and potential mechanism of action of colorectal adenocarcinoma hypermethylated (CAHM) in thyroid carcinoma (THCA) by using the RNA sequencing (RNA-seq) dataset from The Cancer Genome Atlas (TCGA). The functional mechanism of CAHM was explored by using RNA-seq dataset and multiple functional enrichment analysis approaches. Connectivity map (CMap) online analysis tool was also used to predict CAHM targeted drugs. Survival analysis suggests that THCA patients with high CAHM expression have lower risk of death than the low CAHM expression (log-rank P=0.022, adjusted P=0.011, HR = 0.187, 95% confidence interval (CI) = 0.051–0.685). Functional enrichment of CAHM co-expression genes suggests that CAHM may play a role in the following biological processes: DNA repair, cell adhesion, DNA replication, vascular endothelial growth factor receptor, Erb-B2 receptor tyrosine kinase 2, ErbB and thyroid hormone signaling pathways. Functional enrichment of differentially expressed genes (DEGs) between low- and high-CAHM phenotype suggests that different CAHM expression levels may have the following differences in biological processes in THCA: cell adhesion, cell proliferation, extracellular signal-regulated kinase (ERK) 1 (ERK1) and ERK2 cascade, G-protein coupled receptor, chemokine and phosphatidylinositol-3-kinase-Akt signaling pathways. Connectivity map have identified five drugs (levobunolol, NU-1025, quipazine, anisomycin and sulfathiazole) for CAHM targeted therapy in THCA. Gene set enrichment analysis (GSEA) suggest that low CAHM phenotype were notably enriched in p53, nuclear factor κB, Janus kinase-signal transducer and activators of transcription, tumor necrosis factor, epidermal growth factor receptor and other signaling pathways. In the present study, we have identified that CAHM may serve as novel prognostic biomarkers for predicting overall survival (OS) in patients with THCA.
Collapse
|
161
|
Differentially Expressed Long Noncoding RNAs Involved in FUBP1 Promoting Hepatocellular Carcinoma Cells Proliferation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6664519. [PMID: 33954195 PMCID: PMC8063849 DOI: 10.1155/2021/6664519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022]
Abstract
Background Far upstream element-binding protein 1 (FUBP1) is reported to be involved in cancer development by regulating the transcription of c-myc gene through binding to far upstream element. Highly expressed FUBP1 was negatively correlated with survival rate of patients with hepatocellular carcinoma (HCC) and could promote the proliferation of HCC cells. However, the downstream mechanism of FUBP1 has not yet been clearly explained. This study is aimed at identifying the expression profiles of long noncoding RNA (lncRNA) in HCC cells in response to FUBP1 overexpression and at investigating the possible lncRNAs that participated in cell proliferation process regulated by FUBP1. Methods The overexpression of FUBP1 was mediated by lentiviral infection on 3 different types of HCC cell lines (MHCC97-H, MHCC97-L, and Huh-7). The expression of target genes was detected by quantitative reverse transcription-PCR (RT-PCR) and western blotting assays. Microarray and quantitative RT-PCR were applied to screen the differentially expressed lncRNAs in HCC cells after FUBP1 overexpression. The Cell Counting Kit-8 assay was used to confirm the growth vitality of HCC cells. Results The growth vitality of HCC cells was significantly increased after lentivirus infection. A total of 12 lncRNAs had the same expression trend in the 3 HCC cell lines in response to FUBP1 overexpression, including 3 upregulated lncRNAs and 9 downregulated lncRNAs. Coexpression analysis of dysregulated lncRNAs-mRNAs network showed that lnc-LYZ-2 was the lncRNA most relevant to FUBP1. Inhibition of lnc-LYZ-2 could significantly relieve the proproliferation effect of FUBP1 on HCC cells, suggesting that lnc-LYZ-2 was partially involved in proproliferation regulation of FUBP1. Conclusions Our results indicated that FUBP1 induced the abnormal expression of lncRNAs and the FUBP1-lncRNAs coexpression network in HCC cells, which could provide theoretical and experimental basis for FUBP1-lncRNAs network involved in HCC development.
Collapse
|
162
|
Cheng J, Ma H, Yan M, Xing W. THAP9-AS1/miR-133b/SOX4 positive feedback loop facilitates the progression of esophageal squamous cell carcinoma. Cell Death Dis 2021; 12:401. [PMID: 33854048 PMCID: PMC8046801 DOI: 10.1038/s41419-021-03690-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in the digestive system with a high incidence and poor prognosis. Long non-coding RNAs (LncRNA) have been reported to be closely associated with the occurrence and development of various human cancers. Data from GSE89102 shows an increase of THAP9-AS1 expression in ESCC. However, its functions and mechanisms underlying ESCC progression remain to be investigated. In this study, we found that THAP9-AS1 was overexpressed in ESCC tissues and cells. High THAP9-AS1 expression was positively correlated with tumor size, TNM stage, lymph node metastasis, and worse prognosis. Functionally, depletion of THAP9-AS1 suppressed cell proliferation, migration, and invasion, while enhanced apoptosis in vitro. Consistently, knockdown of THAP9-AS1 inhibited xenograft tumor growth in vivo. Mechanistically, THAP9-AS1 could serve as a competing endogenous RNA (ceRNA) for miR-133b, resulting in the upregulation of SOX4. Reciprocally, SOX4 bound to the promoter region of THAP9-AS1 to activate its transcription. Moreover, the anti-tumor property induced by THAP9-AS1 knockdown was significantly impaired due to miR-133b downregulation or SOX4 overexpression. Taken together, our study reveals a positive feedback loop of THAP9-AS1/miR-133b/SOX4 to facilitate ESCC progression, providing a potential molecular target to fight against ESCC.
Collapse
Affiliation(s)
- Jiwei Cheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Ming Yan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 450008, Zhengzhou, China.
| |
Collapse
|
163
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
164
|
Wang H, Meng Q, Ma B. Characterization of the Prognostic m6A-Related lncRNA Signature in Gastric Cancer. Front Oncol 2021; 11:630260. [PMID: 33928026 PMCID: PMC8076577 DOI: 10.3389/fonc.2021.630260] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
N6-methyladenosine (m6A) is a common form of mRNA modification regulated by m6A RNA methylation regulators and play an important role in the progression of gastric cancer (GC). However, the prognostic role of m6A-related lncRNA in gastric cancer has not been fully explored. This study aims at exploring the biological function and prognostic roles of the m6A-related lncRNA signature in gastric cancer. A total of 800 m6A-related lncRNAs were identified through Pearson correlation analysis between m6A regulators and all lncRNAs. Eleven m6A-related lncRNA signatures were identified through a survival analysis and the Kaplan-Meier (KM) curve analysis results suggest that patients in the low-risk group have a better overall survival (OS) and disease-free survival (DFS) outcome than the high-risk group. Also, the lncRNA signature can serve as an independent prognostic factor for OS and DFS. The gene set enrichment analysis (GSEA) result suggests that patients in the high-risk group were mainly enriched in the ECM receptor interaction, focal adhesion, and cytokine-cytokine receptor interaction pathway, while the low-risk group was characterized by the base excision repair pathway. We further constructed an individualized prognostic prediction model via the nomogram based on the independent prognostic factor for the OS and DFS, respectively. In addition, some candidate drugs aimed at GC risk group differentiation were identified using the Connective Map (CMAP) database. Lastly, four subgroups (C1, C2, C3, and C4) were identified based on the m6A-related lncRNA expression, through a consensus clustering algorithm. Among them, C1 and C2 have a greater likelihood to respond to immune checkpoint inhibitor immunotherapy, suggesting that the C1 and C2 subgroup might benefit from immunotherapy. In conclusion, the m6A-related lncRNA signature can independently predict the OS and DFS of GC and may aid in development of personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Haixu Wang
- Postgraduate Training Base in General Hospital of The Northern Theater Command, China Medical University, Shenyang, China.,Department of Radiation Oncology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Qingkai Meng
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Bin Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
165
|
Falahati Z, Mohseni-Dargah M, Mirfakhraie R. Emerging Roles of Long Non-coding RNAs in Uterine Leiomyoma Pathogenesis: a Review. Reprod Sci 2021; 29:1086-1101. [PMID: 33844188 DOI: 10.1007/s43032-021-00571-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/01/2021] [Indexed: 01/19/2023]
Abstract
Uterine leiomyoma (UL), as the most prevalent type of women's health disorders, is a benign tumor that originates from the smooth muscle cell layer of the uterus. A great number of associated complications are observed including infertility, miscarriage, bleeding, pain, dysmenorrhea, menorrhagia, and dyspareunia. Although the etiology of UL is largely undefined, environmental and genetic factors are witnessed to engage in the UL development. As long non-coding RNAs (lncRNAs) are involved in various types of cellular functions, in recent years, a great deal of attention has been drawn to them and their possible roles in UL pathogenesis. Moreover, they have illustrated their potential to be promising candidates for UL treatment. In this review paper, firstly, an overview of UL pathogenesis is presented. Then, the regulation of lncRNAs in UL and their possible mechanisms in cancer development are reviewed. Eventually, therapeutic approaches targeting lncRNAs in various cancers and UL are explored.
Collapse
Affiliation(s)
- Zahra Falahati
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masoud Mohseni-Dargah
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Koodakyar St., Velenjak Ave, Chamran Highway, Tehran, Iran.
- Genomic Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
166
|
Chattopadhyay P, Srinivasa Vasudevan J, Pandey R. Noncoding RNAs: modulators and modulatable players during infection-induced stress response. Brief Funct Genomics 2021; 20:28-41. [PMID: 33491070 PMCID: PMC7929421 DOI: 10.1093/bfgp/elaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.
Collapse
Affiliation(s)
| | | | - Rajesh Pandey
- Corresponding author: Rajesh Pandey, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory. CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), North Campus, Near Jubilee Hall, Mall Road, Delhi-110007, India. Tel.: +91 9811029551; E-mail:
| |
Collapse
|
167
|
Abstract
In situ hybridization (ISH) and fluorescence in situ hybridization (FISH) techniques enable us to detect the expression of a specific RNA in fixed cells or tissue sections. Here, we describe in detail two procedures adjusted to reveal specifically lncRNAs in normal human keratinocytes and in skin tissue samples. Examples of the results obtained by the two different approaches are also shown.
Collapse
|
168
|
Sabbir Ahmed CM, Paul BC, Cui Y, Frie AL, Burr A, Kamath R, Chen JY, Nordgren TM, Bahreini R, Lin YH. Integrative Analysis of lncRNA-mRNA Coexpression in Human Lung Epithelial Cells Exposed to Dimethyl Selenide-Derived Secondary Organic Aerosols. Chem Res Toxicol 2021; 34:892-900. [PMID: 33656867 DOI: 10.1021/acs.chemrestox.0c00516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimethyl selenide (DMSe) is one of the major volatile organoselenium compounds released into the atmosphere through plant metabolism and microbial methylation. DMSe has been recently revealed as a precursor of secondary organic aerosol (SOA), and its resultant SOA possesses strong oxidizing capability toward thiol groups that can perturb several major biological pathways in human airway epithelial cells and is linked to genotoxicity, DNA damage, and p53-mediated stress responses. Mounting evidence has suggested that long noncoding RNAs (lncRNAs) are involved in stress responses to internal and environmental stimuli. However, the underlying molecular interactions remain to be elucidated. In this study, we performed integrative analyses of lncRNA-mRNA coexpression in the transformed human bronchial epithelial BEAS-2B cell line exposed to DMSe-derived SOA. We identified a total of 971 differentially expressed lncRNAs in BEAS-2B cells exposed to SOA derived from O3 and OH oxidation of DMSe. Gene ontology (GO) network analysis of cis-targeted genes showed significant enrichment of DNA damage, apoptosis, and p53-mediated stress response pathways. trans-Acting lncRNAs, including PINCR, PICART1, DLGAP1-AS2, and LINC01629, known to be associated with human carcinogenesis, also showed altered expression in cell treated with DMSe-SOA. Overall, this study highlights the regulatory role of lncRNAs in altered gene expression induced by DMSe-SOA exposure.
Collapse
Affiliation(s)
- C M Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Biplab Chandra Paul
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yumeng Cui
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Alexander L Frie
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Abigail Burr
- Division of Biomedical Sciences, University of California, Riverside, California 92521, United States
| | - Rohan Kamath
- Division of Biomedical Sciences, University of California, Riverside, California 92521, United States
| | - Jin Y Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Tara M Nordgren
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States.,Division of Biomedical Sciences, University of California, Riverside, California 92521, United States
| | - Roya Bahreini
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States.,Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States.,Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
169
|
FOXO3-induced lncRNA LOC554202 contributes to hepatocellular carcinoma progression via the miR-485-5p/BSG axis. Cancer Gene Ther 2021; 29:326-340. [PMID: 33654226 PMCID: PMC8940625 DOI: 10.1038/s41417-021-00312-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/30/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (LncRNAs) have played very important roles in the malignancy behaviors of hepatocellular carcinoma (HCC). LncRNA LOC554202 (LOC554202) was a newly identified tumor-related lncRNA. However, its expression and function in HCC remained unknown. In this study, we firstly reported that LOC554202 expression was distinctly upregulated in HCC specimens and cell lines. Clinical assays indicated that increased LOC554202 expression had a diagnostic value for HCC patients and was positively associated with advanced stages and poor clinical prognosis. Additionally, forkhead box O3(FOXO3) could bind directly to the LOC554202 promoter region and activate its transcription. Functionally, we observed that knockdown of LOC554202 suppressed the proliferation, migration, invasion, and epithelial–mesenchymal transition (EMT) progress of HCC cells, and promoted apoptosis. Mechanistically, LOC554202 competitively bound to miR-485-5p and prevented the suppressive effects of miR-485-5p on its target gene basigin (BSG), which finally led to HCC metastasis, EMT, and docetaxel chemoresistance. Our data demonstrated that FOXO3-induced LOC554202 contributed to HCC progression by upregulating BSG via competitively binding to miR-485-5p, which suggested that the regulation of the FOXO3/LOC554202/miR-485-5p/BSG axis may have beneficial effects in the treatment of HCC.
Collapse
|
170
|
Dai Y, Zhang Y, Hao M, Zhu R. LINC00665 functions as a competitive endogenous RNA to regulate AGTR1 expression by sponging miR‑34a‑5p in glioma. Oncol Rep 2021; 45:1202-1212. [PMID: 33650673 PMCID: PMC7859982 DOI: 10.3892/or.2021.7949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Glioma is the most aggressive tumor of the central nervous system. Long non‑coding RNAs (lncRNAs) may be involved in modulating tumor generation. The present study analyzed an lncRNA microarray of glioma and selected long intergenic non‑protein coding RNA 665 (LINC00665) as the research object. The mode of expression and biological function of LINC00665 in glioma were assessed using lncRNA microarray and RT‑qPCR analyses. Gain‑of‑function assays and/or loss‑of‑function assays were implemented to explore the role of LINC00665 in the progression of glioma. Dual‑luciferase reporter and RNA immunoprecipitation assays explored the downstream molecular mechanism of LINC00665. The function of the molecular pathway in progression of glioma was analyzed using rescue assays. High expression of LINC00665 was marked in glioma tissues and cells, which correlated with an unsatisfactory prognosis. Upregulation of LINC00665 significantly promoted the proliferation and invasion of glioma cells. LINC00665 acted as a competing endogenous RNA by sponging miR‑34a‑5p to upregulate angiotensin II receptor type 1 (AGTR1). LINC00665 promoted the progression of glioma by acting as a competitive endogenous RNA to competitively bind to miR‑34a‑5p and mediate AGTR1 expression.
Collapse
Affiliation(s)
- Yongyue Dai
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yucheng Zhang
- Department of General Surgery, Wenzhou Hospital Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Maolin Hao
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Renwu Zhu
- Department of General Surgery, Wenzhou Hospital Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
171
|
Sfragano PS, Pillozzi S, Palchetti I. Electrochemical and PEC platforms for miRNA and other epigenetic markers of cancer diseases: Recent updates. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106929] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
172
|
Balihodzic A, Barth DA, Prinz F, Pichler M. Involvement of Long Non-Coding RNAs in Glucose Metabolism in Cancer. Cancers (Basel) 2021; 13:977. [PMID: 33652661 PMCID: PMC7956509 DOI: 10.3390/cancers13050977] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The rapid and uncontrolled proliferation of cancer cells is supported by metabolic reprogramming. Altered glucose metabolism supports cancer growth and progression. Compared with normal cells, cancer cells show increased glucose uptake, aerobic glycolysis and lactate production. Byproducts of adjusted glucose metabolism provide additional benefits supporting hallmark capabilities of cancer cells. Long non-coding RNAs (lncRNAs) are a heterogeneous group of transcripts of more than 200 nucleotides in length. They regulate numerous cellular processes, primarily through physical interaction with other molecules. Dysregulated lncRNAs are involved in all hallmarks of cancer including metabolic alterations. They may upregulate metabolic enzymes, modulate the expression of oncogenic or tumor-suppressive genes and disturb metabolic signaling pathways favoring cancer progression. Thus, lncRNAs are not only potential clinical biomarkers for cancer diagnostics and prediction but also possible therapeutic targets. This review summarizes the lncRNAs involved in cancer glucose metabolism and highlights their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Amar Balihodzic
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
| | - Felix Prinz
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
- BioTechMed-Graz, 8010 Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
173
|
Novel insights for lncRNA MAGI2-AS3 in solid tumors. Biomed Pharmacother 2021; 137:111429. [PMID: 33761624 DOI: 10.1016/j.biopha.2021.111429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) refer to elements of genomic transcription with more than 200 nucleotides that are not translated into proteins, but have crucial roles in cancer progression. MAGI2-AS3, a novel lncRNA, has been reported to be aberrantly expressed in many solid tumors. Increasingly, studies have demonstrated that MAGI2-AS3 expression is significantly correlated with patient clinical characteristics, and that MAGI2-AS3 can regulate multiple biological processes through target-gene regulation. Furthermore, MAGI2-AS3 may serve as both a diagnostic biomarker and as a promising therapeutic target against solid tumors. In this review, we summarize the current knowledge regarding the biological functions and related molecular mechanisms of MAGI2-AS3 in solid-tumor progression. We conclude that understanding MAGI2-AS3 properties may provide new insights into the diagnoses and treatments of solid tumors.
Collapse
|
174
|
Zhong Y, He K, Shi L, Chen L, Zhou B, Ma R, Yu H, Zhang J, Shuai Y, Fei Y, Lu J. Down-regulation of estrogen-related receptor alpha (ERRα) inhibits gastric cancer cell migration and invasion in vitro and in vivo. Aging (Albany NY) 2021; 13:5845-5857. [PMID: 33591949 PMCID: PMC7950300 DOI: 10.18632/aging.202508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the correlation between estrogen-related receptor a (ERRα) expression level and gastric cancer (GC). METHODS We collected GC and adjacent normal tissues from 50 patients. The parameters of the patients were summarized, and correlation with the expression level of ERRα was calculated. Downregulated ERRα using lentivirus was designed and transfected to SGC-7901 and MGC-803 cells. Cell migration, invasion and wound assays were conducted to determine the correlation between ERRα and capacity for cell migration and invasion. The expression level of the genes involved in epithelial-mesenchymal transition, including E-cadherin, γ-catenin, N-cadherin and vimentin, was determined via real-time or quantitative polymerase chain reaction(qPCR) and Western blot analysis. RESULTS The expression of ERRα tends to be higher in GC tissues than in adjacent normal tissues. Analyses ofthe expression level of ERRα and patient parameters show that the ERRα level is significantly correlated with TNM staging and patient survival (P<0.05). The downregulation of ERRα can inhibit cell invasion and migration, which was proven by Transwell and cell wound assays. The levels of E-cadherin and γ-catenin increased by conducting qPCR and Western blot analysis. Meanwhile, the levels of N-cadherin and vimentin decreased when ERRα expression was reduced. CONCLUSION ERRα is highly expressed in GC tissues and can promote the migration and invasion of cancer cells. It can be a potential marker for GC diagnosis.
Collapse
Affiliation(s)
- Yuejiao Zhong
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Kang He
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Lin Shi
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
- Department of Oncology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu Province, China
| | - Lingxiang Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Bin Zhou
- Department of General Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Rong Ma
- Department of Central Lab, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Hui Yu
- Department of Invasive Technology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Jia Zhang
- Department of Imaging, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Yan Fei
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
- Department of Oncology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu Province, China
| |
Collapse
|
175
|
Tong F, Guo J, Miao Z, Li Z. LncRNA SNHG17 promotes the progression of oral squamous cell carcinoma by modulating miR-375/PAX6 axis. Cancer Biomark 2021; 30:1-12. [PMID: 32924983 DOI: 10.3233/cbm-191070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The prognosis of patients with recurrent and/or metastatic oral squamous cell carcinoma (OSCC) remains poor, and its incidence is especially high in developing countries. Multiple long non-coding RNAs (lncRNAs) are recently identified as crucial oncogenic factors or tumor suppressors. This study aimed to probe into the role of lncRNA small nucleolar RNA host gene 17 (SNHG17) on the progression of OSCC. METHODS The expression level of SNHG17 in OSCC samples was tested using quantitative real-time polymerase chain reaction (qRT-PCR). Human OSCC cell lines CAL-27 and Tca8113 were used in in vitro studies. Cell counting kit-8 (CCK-8) and BrdU assays were used to assess the effect of SNHG17 on OSCC cell proliferation. Flow cytometry was used to study the effect of SNHG17 on OSCC cell apoptosis. Transwell assay was conducted to detect the effect of SNHG17 on migration and invasion. Moreover, luciferase reporter assay was employed to confirm targeting relationship between miR-375 and SNHG17. Additionally, Western blot was used to observe the regulatory function of SNHG17 on PAX6. RESULTS SNHG17 expression in OSCC clinical samples was significantly increased and was correlated with unfavorable pathological indexes. Its overexpression remarkably accelerated proliferation and metastasis of OSCC cells, while reduced apoptosis. Accordingly, knockdown of SNHG17 suppressed the malignant phenotypes of OSCC cells. Overexpression of SNHG17 significantly reduced the expression of miR-375 by sponging it, but enhanced the expression of PAX6. CONCLUSION SNHG17 is a sponge of tumor suppressor miR-375 in OSCC, enhances the expression of PAX6 indirectly, and functions as an oncogenic lncRNA.
Collapse
Affiliation(s)
- Fei Tong
- Department of Orthodontics, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Zhanqi Miao
- Department of Orthodontics, Shenzhen Baoan Shajing People's Hospital, Guangzhou Medical University, Shenzhen, Guangdong, China
| | - Zhihua Li
- Department of Orthodontics, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| |
Collapse
|
176
|
Da CL, Liu K, Sun W. Significance of expression of lncRNA HOTAIR in serum of patients with esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:125-130. [DOI: 10.11569/wcjd.v29.i3.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Due to the lack of effective biomarkers for early diagnosis, detection of metastasis, recurrence, and prognosis of esophageal squamous cell carcinoma (ESCC), the survival rate of this malignancy is low. The long non-coding RNA (lncRNA) HOTAIR is highly expressed in cancer tissues and is related to tumor occurrence and development, however, it has been rarely studied in serum.
AIM To investigate the clinical significance of serum lncRNA HOTAIR in patients with ESCC.
METHODS Serum samples from 48 healthy volunteers and 48 patients with ESCC and cancer tissues from the patients were collected to detect the expression of HOTAIR by RT-qPCR. Differences in lncRNA HOTAIR expression levels in serum of both healthy volunteers and patients with ESCC were analyzed by the rank-sum test. Spearman correlation analysis was used to analyze the correlation between serum HOTAIR expression levels and clinicopathological factors in ESCC patients.
RESULTS The expression level of lncRNA HOTAIR in the serum of patients with ESCC was significantly higher than that of healthy volunteers (P = 0.0099). Using a cutoff value of 14.4670, the sensitivity and specificity of serum HOTAIR for diagnosis of ESCC were 0.7612 and 0.9091, respectively; the area under the ROC curve was 0.8618. Serum levels of HOTAIR in patients with ESCC were positively correlated with its expression levels in matched carcinoma tissues (rS = 0.3920, P = 0.0124). Serum lncRNA HOTAIR expression level was significantly higher in patients with distant metastasis than in those without (P = 0.003). With the increase in TNM stage, the expression level of HOTAIR increased gradually, showing a hierarchical correlation (P = 0.011).
CONCLUSION The serum lncRNA HOTAIR and its dynamic changes are expected to be used for early diagnosis, severity rassessment, and therapeutic effect and prognosis prediction in patients with ESCC.
Collapse
Affiliation(s)
- Chun-Li Da
- Intensive Care Unit, Affiliated Tumor Hospital of Xinjiang Medical University, Urumchi 830000, Xinjiang Uygur Autonomous Region, China
| | - Kai Liu
- Intensive Care Unit, Affiliated Tumor Hospital of Xinjiang Medical University, Urumchi 830000, Xinjiang Uygur Autonomous Region, China
| | - Wei Sun
- Radiotherapy Department, Affiliated Tumor Hospital of Xinjiang Medical University, Urumchi 830000, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
177
|
Ashrafizadeh M, Shahinozzaman M, Orouei S, Zarrin V, Hushmandi K, Hashemi F, Kumar A, Samarghandian S, Najafi M, Zarrabi A. Crosstalk of long non-coding RNAs and EMT: Searching the missing pieces of an incomplete puzzle for lung cancer therapy. Curr Cancer Drug Targets 2021; 21:640-665. [PMID: 33535952 DOI: 10.2174/1568009621666210203110305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is considered to be the first place among the cancer-related deaths worldwide and demands novel strategies in the treatment of this life-threatening disorder. The aim of this review is to explore regulation of epithelial-to-mesenchymal transition (EMT) by long non-coding RNAs (lncRNAs) in lung cancer. INTRODUCTION LncRNAs can be considered as potential factors for targeting in cancer therapy, since they regulate a bunch of biological processes, e.g. cell proliferation, differentiation and apoptosis. The abnormal expression of lncRNAs occurs in different cancer cells. On the other hand, epithelial-to-mesenchymal transition (EMT) is a critical mechanism participating in migration and metastasis of cancer cells. METHOD Different databases including Googlescholar, Pubmed and Sciencedirect were used for collecting articles using keywords such as "LncRNA", "EMT", and "Lung cancer". RESULT There are tumor-suppressing lncRNAs that can suppress EMT and metastasis of lung cancer cells. Expression of such lncRNAs undergoes down-regulation in lung cancer progression and restoring their expression is of importance in suppressing lung cancer migration. There are tumor-promoting lncRNAs triggering EMT in lung cancer and enhancing their migration. CONCLUSION LncRNAs are potential regulators of EMT in lung cancer, and targeting them, both pharmacologically and genetically, can be of importance in controlling migration of lung cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742. United States
| | - Sima Orouei
- Department of Genetics Science, Tehran Medical Sciences Branch, Islamic Azad University, Tehran. Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541. Korea
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141. Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| |
Collapse
|
178
|
Li G, Deng L, Huang N, Sun F. The Biological Roles of lncRNAs and Future Prospects in Clinical Application. Diseases 2021; 9:diseases9010008. [PMID: 33450825 PMCID: PMC7838801 DOI: 10.3390/diseases9010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Chemo and radiation therapies are the most commonly used therapies for cancer, but they can induce DNA damage, resulting in the apoptosis of host cells. DNA double-stranded breaks (DSBs) are the most lethal form of DNA damage in cells, which are constantly caused by a wide variety of genotoxic agents, both environmentally and endogenously. To maintain genomic integrity, eukaryotic organisms have developed a complex mechanism for the repair of DNA damage. Researches reported that many cellular long noncoding RNAs (lncRNAs) were involved in the response of DNA damage. The roles of lncRNAs in DNA damage response can be regulated by the dynamic modification of N6-adenosine methylation (m6A). The cellular accumulation of DNA damage can result in various diseases, including cancers. Additionally, lncRNAs also play roles in controlling the gene expression and regulation of autophagy, which are indirectly involved with individual development. The dysregulation of these functions can facilitate human tumorigenesis. In this review, we summarized the origin and overview function of lncRNAs and highlighted the roles of lncRNAs involved in the repair of DNA damage.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
| | - Liang Deng
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
- Correspondence: ; Tel.: +86-021-6630-6909
| |
Collapse
|
179
|
Lu L, Li S, Zhang Y, Luo Z, Chen Y, Ma J, Chen P, Wang W, Pu J, Wang J. GFI1-Mediated Upregulation of LINC00675 as a ceRNA Restrains Hepatocellular Carcinoma Metastasis by Sponging miR-942-5p. Front Oncol 2021; 10:607593. [PMID: 33489916 PMCID: PMC7820889 DOI: 10.3389/fonc.2020.607593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant liver tumor worldwide. Tumor recurrence and metastasis contribute to the bad clinical outcome of HCC patients. Substantial studies have displayed lncRNAs modulate various tumorigenic processes of many cancers. Our current work was aimed to investigate the function of LINC00675 in HCC and to recognize the potential interactions between lncRNAs and microRNAs. GFI1 can exhibit a significant role in the progression of human malignant tumors. Firstly, GFI1 was identified using real-time PCR in HCC tissues and cells. In this work, we indicated GFI1 was remarkably reduced in HCC tissues and cells. Meanwhile, GFI1 specifically interacted with the promoter of LINC00675. Up-regulation of LINC00675 obviously repressed the migration and invasion capacity of SMCC-7721 and QGY-7703 cells in vitro. Moreover, decrease of LINC00675 competitively bound to miR-942-5p that contributed to the miRNA-mediated degradation of GFI1, thus facilitated HCC metastasis. The ceRNA function of LINC00675 in HCC cells was assessed and confirmed using RNA immunoprecipitation assay and RNA pull-down assays in our work. Additionally, we proved overexpression of miR-942-5p promoted HCC progression, which was reversed by the up-regulation of GFI1. In summary, LINC00675 might act as a prognostic marker for HCC, which can inhibit HCC development via regulating miR-942-5p and GFI1.
Collapse
Affiliation(s)
- Libai Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shubo Li
- Department of Biochemistry and Molecular Biology, Youjiang Medical University for Nationalities, Baise, China
| | - Ying Zhang
- Library of Youjiang Medical University for Nationalities, Baise, China
| | - Zongjiang Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yichen Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiasheng Ma
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Pengyu Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
180
|
Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188502. [PMID: 33428963 DOI: 10.1016/j.bbcan.2021.188502] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022]
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is a widely studied lncRNA in cancer. Although dispensable for normal physiology, MALAT1 is important for cancer-related pathways regulation. It is localized in the nuclear speckles periphery along with centrally located pre-RNA splicing factors. MALAT1 associated cancer signaling pathways include MAPK/ERK, PI3K/AKT, β-catenin/Wnt, Hippo, VEGF, YAP, etc. Molecular tools such as immunoprecipitation, RNA pull-down, reporter assay, Northern blotting, microarray, and q-RT-PCR has been used to elucidate MALAT1's function in cancer pathogenesis. MALAT1 can regulate multiple steps in the development of tumours. The diagnostic and prognostic significance of MALAT1 has been demonstrated in cancers of the breast, cervix, colorectum, gallbladder, lung, ovary, pancreas, prostate, glioma, hepatocellular carcinoma, and multiple myeloma. MALAT1 has also emerged as a novel therapeutic target for solid as well as hematological malignancies. In experimental models, siRNA and antisense oligonucleotide (ASO) based strategy has been used for targeting MALAT1. The lncRNA has also been targeted for the chemosensitization and radiosensitization of cancer cells. However, most studies have been performed in preclinical models. How the cross-talk of MALAT1 with other signaling pathways affect cancer pathogenesis is the focus of this article. The diagnostic, prognostic, and therapeutic significance of MALAT1 in multiple cancer types are discussed.
Collapse
Affiliation(s)
- Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Shashi Ranjan Mani Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sweety Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
181
|
Jia H, Wang X, Sun Z. Screening and validation of plasma long non-coding RNAs as biomarkers for the early diagnosis and staging of oral squamous cell carcinoma. Oncol Lett 2021; 21:172. [PMID: 33552289 PMCID: PMC7798048 DOI: 10.3892/ol.2021.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), characterized by a high recurrence rate, a poor prognosis and high morbidity, is the most prevalent malignancy of the oral cavity. The aberrant expression of long non-coding RNAs (lncRNAs) may lead to the development of various diseases, including cancer. Delayed diagnosis is the main reason for the poor prognosis. Therefore, the present study aimed to investigate the differential expression profiles of plasma lncRNAs in OSCC in order to screen target lncRNAs as biomarkers for the early diagnosis and staging of OSCC. The expression profiles of lncRNAs and mRNAs in OSCC were analyzed by microarray analysis. A total of 14 candidate lncRNAs were selected and analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the array homologous samples. Subsequently, 4 target lncRNAs were measured by RT-qPCR in a large cohort, including 28 cases with TNM I/II [early-stage squamous cell carcinoma (ESCC) group], 36 cases with TNM III/IV [advanced-stage squamous cell carcinoma (ASCC) group], 16 cases with dysplasia [oral premalignant lesion (OPL) group] and 16 healthy controls (H group). Receiver operating characteristic (ROC) curves and logistic regression analysis were used to evaluate the diagnostic effects of the combined lncRNAs. In total, 6,606 differentially expressed lncRNAs and 4,196 mRNAs were identified in OSCC. The expression trend of the 14 candidate lncRNAs was consistent with the microarray data. The expression level of ENST00000412740, NR_131012, ENST00000588803 and NR_038323 exhibited significant differences in the H, OPL, ESCC and ASCC groups (P<0.05). ROC curve and logistic regression analyses revealed that the diagnostic efficacy of the combined lncRNAs was more prominent than that of a single lncRNA, particularly in the ESCC and ASCC groups. In conclusion, the present study identified the differential expression profiles of plasma lncRNAs in OSCC and demonstrated that ENST00000412740, NR_131012, ENST00000588803 and NR_038323 may be promising biomarkers for the early diagnosis and staging of OSCC. These findings may provide novel targets for the early diagnosis and staging of OSCC, which may provide an objective basis for clinical decision-making.
Collapse
Affiliation(s)
- Hongcheng Jia
- Department of Stomatology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Xuan Wang
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zheng Sun
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
182
|
Han W, Niu L, Wang L, Liu J, Li H. Downregulation of long non-coding RNA B-Raf proto-oncogene-activated non-coding RNA reverses cisplatin resistance in laryngeal squamous cell carcinoma. Arch Med Sci 2021; 17:1164-1174. [PMID: 34522245 PMCID: PMC8425235 DOI: 10.5114/aoms.2019.91352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/14/2018] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION This study was performed to explore the function of B-Raf proto-oncogene-activated non-coding RNA (BANCR) in laryngeal squamous cell carcinoma (LSCC) and cisplatin resistance. MATERIAL AND METHODS The relative expression level of long non-coding RNA (lncRNA) BANCR was examined by qRT-PCR in tumor tissues and adjacent tissues, normal laryngeal cells (Het-1A) and laryngeal squamous carcinoma cells (TU686, TU177). Cisplatin-resistant laryngeal squamous carcinoma cell lines (TU686-DDP-R, TU177-DDP-R) were established. Next, we inhibited BANCR expression by transfecting siRNA-BANCR and enhanced BANCR expression by transfecting pcDNA3.1-BANCR into TU686, TU177, TU686-DDP-R and TU177-DDP-R cells. The CCK-8 assay and clone formation assay were performed to detect colony proliferation ability and formation ability of cells. Further, to investigate through which BANCR cell viability/formation is regulated, we detected the expression of MRP1, Bcl-2, p-PKB, and Bax by western blot. RESULTS BANCR was highly expressed in laryngeal squamous carcinoma tissues and cells. Chemoresistance was generated in TU686-DDP-R and TU177-DDP-R compared with TU686 and TU177 cells after cisplatin treatment. In addition, upregulated lncRNA BANCR reduced or postponed cell sensitivity to cisplatin by enhancing cell proliferation in TU686 and TU177 cells. Meanwhile, the expression of MRP1, Bcl-2, and p-PKB was increased, while Bax was reduced. After cisplatin treatment, down-regulation of BANCR could consequently attenuate TU686-DDP-R and TU177-DDP-R cell proliferation, and the expression of MRP1, Bcl-2, and p-PKB was decreased and Bax was increased. CONCLUSIONS Down-regulation of BANCR reverses cisplatin resistance of cisplatin-resistant LSCC cell lines.
Collapse
Affiliation(s)
- Weiwei Han
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Lin Niu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Lin Wang
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Jixiang Liu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| | - Huanying Li
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medicine Centre, Tianjin, China
| |
Collapse
|
183
|
You J, Li J, Ke C, Xiao Y, Lu C, Huang F, Mi Y, Xia R, Li Q. Oncogenic long intervening noncoding RNA Linc00284 promotes c-Met expression by sponging miR-27a in colorectal cancer. Oncogene 2021; 40:4151-4166. [PMID: 34050266 PMCID: PMC8211564 DOI: 10.1038/s41388-021-01839-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidences suggest that long noncoding RNA (lncRNA) plays a vital role in tumorigenesis and cancer progression. Here, the aim of this study is to investigate the biological function of long intervening noncoding RNA Linc00284 in colorectal cancer (CRC). The expression levels of Linc00284, miR-27a and c-Met were evaluated by qPCR and/or Western blotting. Immunohistochemistry was used to detect the expression of Ki67 and Phh3 in tumor tissues. The interaction between Linc00284, miR-27a and c-Met was validated by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Cell function experiments, including CCK-8, wound-healing and transwell invasion assays, were conducted. The in vivo studies were performed with the subcutaneous tumor xenograft mouse models. Our findings reveal that Linc00284 is upregulated in CRC tissues and colorectal cancer cell lines HCT116 and SW480 in comparison with corresponding para-carcinoma tissues and human fetal colonic mucosa cells FHC. High expression of Linc00284 in tumor tissues is associated with tumor metastasis and predicts a poor clinical outcome in CRC patients. Serum Linc00284 is increased, while miR-27a is decreased in CRC patients compared to healthy controls. ROC curve analysis indicates that serum Linc00284 and miR-27a produce the area under the curve (AUC) value of at 0.8151 and 0.7316 in patients with colorectal cancer compared to healthy individuals, respectively. Additionally, results in vitro and in vivo experiments suggest that Linc00284 silencing significantly suppresses CRC cell proliferation and/or invasion. Mechanistically, Linc00284 promotes c-Met expression by acting as miR-27a sponge, leading to the activation of downstream signaling pathways, thereby causing malignant phenotypes of CRC cells. Taken together, Linc00284 exhibits oncogenic function and the disturbance of Linc00284/miR-27a/c-Met regulatory axis contributes to CRC progression, providing new insight into the pathogenesis of colorectal cancer. Importantly, the expression levels of serum Linc00284 and miR-27a may serve as clinical biomarkers for CRC diagnosis.
Collapse
Affiliation(s)
- Jun You
- grid.412625.6Department of Gastrointestinal Oncology Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian PR China ,grid.256112.30000 0004 1797 9307The School of Clinical Medical, Fujian Medical University, Fuzhou, Fujian PR China
| | - Jiayi Li
- grid.256112.30000 0004 1797 9307Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen, Fujian PR China
| | - Chunlin Ke
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian PR China
| | - Yanru Xiao
- grid.412625.6Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian PR China
| | - Chuanhui Lu
- grid.256112.30000 0004 1797 9307Department of Colorectal Cancer Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian PR China
| | - Fakun Huang
- grid.412683.a0000 0004 1758 0400Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian PR China
| | - Yanjun Mi
- grid.256112.30000 0004 1797 9307Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen, Fujian PR China
| | - Rongmu Xia
- grid.12955.3a0000 0001 2264 7233School of Medicine, Xiamen University, Xiamen, Fujian PR China
| | - Qiyuan Li
- grid.12955.3a0000 0001 2264 7233National Institute of Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian PR China
| |
Collapse
|
184
|
Characterization of complete lncRNAs transcriptome reveals the functional and clinical impact of lncRNAs in multiple myeloma. Leukemia 2021; 35:1438-1450. [PMID: 33597729 PMCID: PMC8102198 DOI: 10.1038/s41375-021-01147-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is an incurable disease, whose clinical heterogeneity makes its management challenging, highlighting the need for biological features to guide improved therapies. Deregulation of specific long non-coding RNAs (lncRNAs) has been shown in MM, nevertheless, the complete lncRNA transcriptome has not yet been elucidated. In this work, we identified 40,511 novel lncRNAs in MM samples. lncRNAs accounted for 82% of the MM transcriptome and were more heterogeneously expressed than coding genes. A total of 10,351 overexpressed and 9,535 downregulated lncRNAs were identified in MM patients when compared with normal bone-marrow plasma cells. Transcriptional dynamics study of lncRNAs in the context of normal B-cell maturation revealed 989 lncRNAs with exclusive expression in MM, among which 89 showed de novo epigenomic activation. Knockdown studies on one of these lncRNAs, SMILO (specific myeloma intergenic long non-coding RNA), resulted in reduced proliferation and induction of apoptosis of MM cells, and activation of the interferon pathway. We also showed that the expression of lncRNAs, together with clinical and genetic risk alterations, stratified MM patients into several progression-free survival and overall survival groups. In summary, our global analysis of the lncRNAs transcriptome reveals the presence of specific lncRNAs associated with the biological and clinical behavior of the disease.
Collapse
|
185
|
Wang X, Yang S, Lv X, Wang L, Li C. Overexpression of LncRNA SNHG1 Were Suitable for Oncolytic Adenoviruse H101 Therapy in Oral Squamous-Cell Carcinoma. Onco Targets Ther 2020; 13:13033-13039. [PMID: 33376352 PMCID: PMC7762447 DOI: 10.2147/ott.s285536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Background As the most prevalent type of head and neck cancer, oral squamous-cell carcinoma (OSCC) accounts for nearly 90% of all oral cancer cases. Despite great progress having been made in the diagnosis and treatment of OSCC recently, the survival rate of OSCC patients has not risen remarkably. Chemotherapy is commonly used for OSCC treatment; however, the emergence of chemoresistance limits its long-term curative effect. Therefore, identifying effective biomarkers and molecular mechanisms is essential to the development of therapeutic strategies for OSCC. Methods qRT-PCR assays were performed to detect SNHG1 expression in OSCC tissue and cells, and CCK8 assays and animal experiments used to examine cell proliferation. In addition, CCK8 assays were used to detect IC50 values of cisplatin, 5Fu, Dox, and oncolytic adenovirus H101. Results We found that SNHG1 was overexpressed in OSCC tissue and cells and was associated with OSCC progression. In addition, knockdown of SNHG1 suppressed cell proliferation in vitro and in vivo. Importantly, we found that oncolytic adenovirus H101 showed better antitumor effects in OSCC with high SNHG1 expression, and chemotherapy showed worse anti-tumor effects in OSCC with high SNHG1 expression. Conclusion SNHG1 can act as a diagnostic biomarker for OSCC, and may be a biomarker for treatment options.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plastic Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang, People's Republic of China
| | - Song Yang
- Department of Plastic Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang, People's Republic of China
| | - Xuechao Lv
- Department of Pediatric Dentistry, School of Stomatology, Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Lina Wang
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, People's Republic of China
| | - Chunmei Li
- Department of Outpatient Stomatology, Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang, People's Republic of China
| |
Collapse
|
186
|
Wang B, Zhang Y. An immune-relevant signature of nine genes as a prognostic biomarker in patients with gastric carcinoma. Open Med (Wars) 2020; 15:850-859. [PMID: 33336043 PMCID: PMC7718618 DOI: 10.1515/med-2020-0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background As one of the most common malignant tumors worldwide, the morbidity and mortality of gastric carcinoma (GC) are gradually increasing. The aim of this study was to construct a signature according to immune-relevant genes to predict the survival outcome of GC patients using The Cancer Genome Altas (TCGA). Methods Univariate Cox regression analysis was used to assess the relationship between immune-relevant genes regarding the prognosis of patients with GC. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to select prognostic immune-relevant genes and to establish the signature for the prognostic evaluation of patients with GC. Multivariate Cox regression analysis and Kaplan–Meier survival analysis were used to assess the independent prognostic ability of the immune-relevant gene signature. Results A total of 113 prognostic immune-relevant genes were identified using univariate Cox proportional hazards regression analysis. A signature of nine immune-relevant genes was constructed using the LASSO Cox regression. The GC samples were assigned to two groups (low- and high risk) according to the optimal cutoff value of the signature score. Compared with the patients in the high-risk group, patients in the low-risk group had a significantly better prognosis in the TCGA and GSE84437 cohorts (log-rank test P < 0.001). Multivariate Cox regression analysis demonstrated that the signature of nine immune-relevant genes might serve as an independent predictor of GC. Conclusions Our results showed that the signature of nine immune-relevant genes may potentially serve as a prognostic prediction for patients with GC, which may contribute to the decision-making of personalized treatment for the patients.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Yang Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| |
Collapse
|
187
|
Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, Liu H, Fan T. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front Oncol 2020; 10:598817. [PMID: 33392092 PMCID: PMC7775490 DOI: 10.3389/fonc.2020.598817] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The development and application of whole genome sequencing technology has greatly broadened our horizons on the capabilities of long non-coding RNAs (lncRNAs). LncRNAs are more than 200 nucleotides in length and lack protein-coding potential. Increasing evidence indicates that lncRNAs exert an irreplaceable role in tumor initiation, progression, as well as metastasis, and are novel molecular biomarkers for diagnosis and prognosis of cancer patients. Furthermore, lncRNAs and the pathways they influence might represent promising therapeutic targets for a number of tumors. Here, we discuss the recent advances in understanding of the specific regulatory mechanisms of lncRNAs. We focused on the signal, decoy, guide, and scaffold functions of lncRNAs at the epigenetic, transcription, and post-transcription levels in cancer cells. Additionally, we summarize the research strategies used to investigate the roles of lncRNAs in tumors, including lncRNAs screening, lncRNAs characteristic analyses, functional studies, and molecular mechanisms of lncRNAs. This review will provide a short but comprehensive description of the lncRNA functions in tumor development and progression, thus accelerating the clinical implementation of lncRNAs as tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Na Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yueheng Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhengfan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
- Translational Medicine Research Center, People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
- Faculty of Medicine, St George and Sutherland Clinical School, St George Hospital, The University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Hongtao Liu
- Laboratory for Cell Biology, College of Life Sciences of Zhengzhou University, Zhengzhou, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
188
|
Association of Long Non-Coding RNA Polymorphisms with Gastric Cancer and Atrophic Gastritis. Genes (Basel) 2020; 11:genes11121505. [PMID: 33333725 PMCID: PMC7765138 DOI: 10.3390/genes11121505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNA) play an important role in the carcinogenesis of various tumours, including gastric cancer. This study aimed to assess the associations of lncRNA ANRIL, H19, MALAT1, MEG3, HOTAIR single-nucleotide polymorphisms (SNPs) with gastric cancer and atrophic gastritis. SNPs were analyzed in 613 gastric cancer patients, 118 patients with atrophic gastritis and 476 controls from three tertiary centers in Germany, Lithuania and Latvia. Genomic DNA was extracted from peripheral blood leukocytes. SNPs were genotyped by the real-time polymerase chain reaction. Results showed that carriers of MALAT1 rs3200401 CT genotype had the significantly higher odds of atrophic gastritis than those with CC genotype (OR-1.81; 95% CI 1.17–2.80, p = 0.0066). Higher odds of AG were found in a recessive model (CC vs. TT + CT) for ANRIL rs1333045 (OR-1.88; 95% CI 1.19–2.95, p = 0.0066). Carriers of ANRIL (rs17694493) GG genotype had higher odds of gastric cancer (OR-4.93; 95% CI 1.28–19.00) and atrophic gastritis (OR-5.11; 95% CI 1.10–23.80) compared with the CC genotype, and carriers of HOTAIR rs17840857 TG genotype had higher odds of atrophic gastritis (OR-1.61 95% CI 1.04–2.50) compared with the TT genotype; however, the ORs did not reach the adjusted significance threshold (p < 0.007). In summary, our data provide novel evidence for a possible link between lncRNA SNPs and premalignant condition of gastric cancer, suggesting the involvement of lncRNAs in gastric cancer development.
Collapse
|
189
|
Zhou T, Wu L, Ma N, Tang F, Yu Z, Jiang Z, Li Y, Zong Z, Hu K. SOX9-activated FARSA-AS1 predetermines cell growth, stemness, and metastasis in colorectal cancer through upregulating FARSA and SOX9. Cell Death Dis 2020; 11:1071. [PMID: 33318478 PMCID: PMC7736271 DOI: 10.1038/s41419-020-03273-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
SRY-box transcription factors (SOXs) are effective inducers for the formation of stem-like phenotypes. As a member of SOX family, SOX9 (SRY-box transcription factor 9) has been reported to be highly expressed and exert oncogenic functions in multiple human cancers. In this study, we hypothesized that SOX9 could regulate the function of cancer stem/initiating cells (CSCs) to further facilitate the progression of colorectal cancer (CRC). Then, stable transfection of shRNAs was used to silence indicated genes. Loss-of-function experiments were conducted to demonstrate the in vitro function of CRC cells. In vivo study was conducted to determine the changes in tumorigenesis and metastasis in vivo. Bioinformatics analyses and mechanistic experiments were employed to explore the downstream molecules. Presently, GEPIA data indicated that SOX9 was upregulated in 275 COAD (colon adenocarcinoma) samples relative to 349 normal tissues. Besides, we also proved the upregulation of SOX9 in CRC cell lines (HCT15, SW480, SW1116, and HT-29) compared to normal NCM-460 cells. Silencing of SOX9 suppressed cell growth, stemness, migration, and invasion. Mechanistically, SOX9 activated the transcription of lncRNA phenylalanyl-tRNA synthetase subunit alpha antisense RNA 1 (FARSA-AS1), while FARSA-AS1 elevated SOX9 in turn by absorbing miR-18b-5p and augmented FARSA via sequestering miR-28-5p. Furthermore, loss of FARSA-AS1 hindered malignant phenotypes in vitro and blocked tumor growth and metastasis in vivo. Notably, we testified that FARSA-AS1 aggravated the malignancy in CRC by enhancing SOX9 and FARSA. Our study unveiled a mechanism of SOX9-FARSA-AS1-SOX9/FARSA loop in CRC, which provides some clews of promising targets for CRC.
Collapse
Affiliation(s)
- Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Lili Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Key Laboratory of Liver Disease Research, 510630, Guangzhou, Guangdong, China
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Fuxin Tang
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Zhuomin Yu
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Zhipeng Jiang
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Yingru Li
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, 510655, Guangzhou, Guangdong, China
| | - Zhen Zong
- Department of Gastroenterological Surgery, The Second Affiliated Hospital of Nanchang University, No.1 Mingde Road, 330006, Nanchang, Jiangxi, China.
| | - Kunpeng Hu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.2693 Kaichuang Road, Huangpu, 510000, Guangzhou, Guangdong, China.
| |
Collapse
|
190
|
Zhao W, Wang J, Luo Q, Peng W, Li B, Wang L, Zhang C, Duan C. Identification of LINC02310 as an enhancer in lung adenocarcinoma and investigation of its regulatory network via comprehensive analyses. BMC Med Genomics 2020; 13:185. [PMID: 33308216 PMCID: PMC7731780 DOI: 10.1186/s12920-020-00834-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LADC) is a major subtype of non-small cell lung cancer and has one of the highest mortality rates. An increasing number of long non-coding RNAs (LncRNAs) were reported to be associated with the occurrence and progression of LADC. Thus, it is necessary and reasonable to find new prognostic biomarkers for LADC among LncRNAs. METHODS Differential expression analysis, survival analysis, PCR experiments and clinical feature analysis were performed to screen out the LncRNA which was significantly related to LADC. Its role in LADC was verified by CCK-8 assay and colony. Furthermore, competing endogenous RNA (ceRNA) regulatory network construction, enrichment analysis and protein-protein interaction (PPI) network construction were performed to investigate the downstream regulatory network of the selected LncRNA. RESULTS A total of 2431 differentially expressed LncRNAs (DELncRNAs) and 2227 differentially expressed mRNAs (DEmRNAs) were from The Cancer Genome Atlas database. Survival analysis results indicated that lnc-YARS2-5, lnc-NPR3-2 and LINC02310 were significantly related to overall survival. Their overexpression indicated poor prognostic. PCR experiments and clinical feature analysis suggested that LINC02310 was significantly correlated with TNM-stage and T-stage. CCK-8 assay and colony formation assay demonstrated that LINC02310 acted as an enhancer in LADC. In addition, 3 targeted miRNAs of LINC02310 and 414 downstream DEmRNAs were predicted. The downstream DEmRNAs were then enriched in 405 Gene Ontology terms and 11 Kyoto Encyclopedia of Genes and Genomes pathways, which revealed their potential functions and mechanisms. The PPI network showed the interactions among the downstream DEmRNAs. CONCLUSIONS This study verified LINC02310 as an enhancer in LADC and performed comprehensive analyses on its downstream regulatory network, which might benefit LADC prognoses and therapies.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qingxi Luo
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Peng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lei Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
191
|
Cao Q, Yang W, Ji X, Wang W. Long Non-coding RNA ST8SIA6-AS1 Promotes Lung Adenocarcinoma Progression Through Sponging miR-125a-3p. Front Genet 2020; 11:597795. [PMID: 33363573 PMCID: PMC7753099 DOI: 10.3389/fgene.2020.597795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that long non-coding RNA (lncRNA) plays a critical role in human disease progression. Recently, a novel lncRNA ST8SIA6-AS1 was shown as an important driver in various cancer types. Nevertheless, its contribution to lung adenocarcinoma (LUAD) remains undocumented. Herein, we found that ST8SIA6-AS1 was frequently overexpressed in LUAD cell lines, tissues, and plasma. Depletion of ST8SIA6-AS1 significantly inhibited LUAD cell proliferation and invasion in vitro and tumor growth in vivo. In term of mechanism, ST8SIA6-AS1 was transcriptionally repressed by tumor suppressor p53, and ST8SIA6-AS1 was mainly located in the cytoplasm and could abundantly sponge miR-125a-3p to increase nicotinamide N-methyltransferase (NNMT) expression, thereby facilitating LUAD malignant progression. Clinically, high ST8SIA6-AS1 was positively correlated with larger tumor size, lymph node metastasis, and later TNM stage. Moreover, ST8SIA6-AS1 was identified as an excellent indicator for MM diagnosis and prognosis. Collectively, our data demonstrate that ST8SIA6-AS1 is a carcinogenic lncRNA in LUAD, and targeting the axis of ST8SIA6-AS1/miR-125a-3p/NNMT may be a promising treatment for LUAD patients.
Collapse
Affiliation(s)
- Qifeng Cao
- Department of Respiratory Medicine, Taizhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenling, China
| | - Weiqin Yang
- Department of Gastroenterology, Taizhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenling, China
| | - Xili Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
| | - Wei Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
192
|
Guo Q, Guo Q, Xiao Y, Li C, Huang Y, Luo X. Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA. Bone 2020; 141:115617. [PMID: 32853852 DOI: 10.1016/j.bone.2020.115617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Bone mesenchymal stem cells (BMSCs) are progenitor cells isolated from bone marrow, which keep potential to differentiate into several kinds of cells including osteoblasts and adipocytes. A dynamic mutual regulation exists between osteogenesis and adipogenesis processes. Long non-coding RNA (lncRNA) performs diverse functions in biological activities including regulation of BMSCs commitment. Evidence has shown that lncRNA regulates key signaling pathways including TGFβ/BMP, Wnt and Notch pathways, and several transcription factors in BMSCs differention. Dysregulation of lncRNA in BMSCs leads to disruption of osteo-adipogenesis difffrentiation and results in impairment of bone homeostasis. In this review, we focus on the role of lncRNA in several critical signaling pathways that involved in regulation of osteo-adipogenesis of BMSC and prospects the potential clinical application of lncRNA.
Collapse
Affiliation(s)
- Qiaoyue Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China.
| |
Collapse
|
193
|
Qian Y, Shi L, Luo Z. Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front Med (Lausanne) 2020; 7:612393. [PMID: 33330574 PMCID: PMC7734181 DOI: 10.3389/fmed.2020.612393] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are major components of cellular transcripts that are arising as important players in various biological pathways. They have received extensive attention in recent years, regarded to be involved in both developmental processes and various diseases. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis and therapy. Studies have shown that lncRNAs with high specificity and accuracy have the potential to become biomarkers in cancers. LncRNAs can be noninvasively extracted from body fluids, tissues and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Currently, the most well-recognized lncRNA is PCA3, which has been approved for use in the diagnosis of prostate cancer. Moreover, the underlying mechanisms of lncRNAs were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. In this review, we presented a compilation of recent publications, clinical trials and patents, addressing the potential of lncRNAs that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
- Yuchen Qian
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
194
|
Liu YT, Liu GQ, Huang JM. FAM225A promotes sorafenib resistance in hepatocarcinoma cells through modulating miR-130a-5p-CCNG1 interaction network. Biosci Rep 2020; 40:BSR20202054. [PMID: 33245102 PMCID: PMC7744609 DOI: 10.1042/bsr20202054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy resistance is still a key hurdle in current hepatocellular carcinoma (HCC) treatment. Therefore, clarifying the molecular mechanisms contributing to this acquired resistance is urgent for the effective treatment of liver cancer. In this research, we observed that lncRNA FAM225A expression is dramatically upregulated not only in hepatocellular carcinoma tissues and cell lines but also in sorafenib-resistant HepG2/SOR cells. Moreover, FAM225A knockdown significantly weakened HepG2/SOR cells resistance to sorafenib treatment by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Similar results were obtained from the tumor xenograft model in mice. Further mechanistic researches revealed that the direct interaction between FAM225A and miR-130a-5p, while miR-130a-5p negatively modulated CCNG1 expression by targeting 3'UTR of CCNG1. MiR-130a-5p inhibition or CCNG1 overexpression could partially offset FAM225A knockdown-induced increased viability of HepG2/SOR cells in response to sorafenib challenge. Collectively, our findings provide evidence that FAM225A/miR-130a-5p/CCNG1 interaction network regulates the resistance of HCC cells to sorafenib treatment and could supply a possible strategy for restoring sorafenib sensitivity in HCC therapy.
Collapse
Affiliation(s)
- Yan-Tong Liu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| | - Guo-Qing Liu
- Department of Surgical Oncology, Qinghai Provincial People’s Hospital, Xining, Qinghai, 810006, China
| | - Jing-Min Huang
- Department of Surgical Oncology, Qinghai Provincial People’s Hospital, Xining, Qinghai, 810006, China
| |
Collapse
|
195
|
Zou Y, Chen B. Long non-coding RNA HCP5 in cancer. Clin Chim Acta 2020; 512:33-39. [PMID: 33245911 DOI: 10.1016/j.cca.2020.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Cancer remains a major threat to human health worldwide. Long non-coding RNA (lncRNA) comprises a group of single-stranded RNA with lengths longer than 200 bp. LncRNAs are aberrantly expressed and play a variety of roles involving multiple cellular processes in cancer. Histocompatibility leukocyte antigen complex P5 (HCP5), initially reported in 1993, is an important lncRNA located between the MICA and MICB genes in MHC I region. HCP5 is involved many autoimmune diseases as well as malignancies. Abnormal HCP5 expression occurs in many types of cancer and its dysregulation appears closely associated with tumor progression. HCP5 is also involved in anti-tumor drug resistance as well. As such, HCP5 represents a promising biomarker and therapeutic target in cancer. In this review, we summarize recent researches and provide an overview of the role and mechanism of HCP5 in human cancer.
Collapse
Affiliation(s)
- Yuanzhang Zou
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
196
|
Wang X, Wu Z, Qin W, Sun T, Lu S, Li Y, Wang Y, Hu X, Xu D, Wu Y, Chen Q, Yao W, Liu M, Wei M, Wu H. Long non-coding RNA ZFAS1 promotes colorectal cancer tumorigenesis and development through DDX21-POLR1B regulatory axis. Aging (Albany NY) 2020; 12:22656-22687. [PMID: 33202381 PMCID: PMC7746388 DOI: 10.18632/aging.103875] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence supports long non-coding RNA-ZFAS1 as master protein regulators involved in a variety of human cancers. However, the molecular mechanism is not fully understood in colorectal cancer (CRC) and remains to be elucidated. Here, we uncovered a previously unreported mechanism linking RNA helicase DDX21 regulated by lncRNA ZFAS1 in control of POLR1B expression in CRC initiation and progression. Specifically, ZFAS1 exerted its oncogenic functions and was significantly up-regulated accompanied by elevated DDX21, POLR1B expression in CRC cells and tissues, which further closely associated with poor clinical outcomes. Notably, ZFAS1 knockdown dramatically suppressed CRC cell proliferation, invasion, migration, and increased cell apoptosis, which were contrary to the effect caused by ZFAS1 up-regulation. We further revealed that the inhibitory effect caused by ZFAS1 knockdown could be reversed by DDX21 overexpression in vitro and in vivo. Mechanistically, our research found that ZFAS1 could directly recruit DDX21 protein by harboring the specific motif (AAGA or CAGA). Finally, POLR1B was identified as the downstream target of DDX21 regulated by ZFAS1, which was also up-regulated in CRC cells and tissues and closely related to poor prognosis. The unrecognized ZFAS1/DDX21/POLR1B signaling regulation axis may provide new biomarkers and targets for CRC treatment and prognostic evaluation.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Zhikun Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Yalun Li
- Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang 110001, P. R. China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Department of Medical Oncology, Liaoning Cancer Hospital and Institute, Shenyang 110042, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Dongping Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Yutong Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| |
Collapse
|
197
|
LncRNA SPINT1-AS1 promotes breast cancer proliferation and metastasis by sponging let-7 a/b/i-5p. Pathol Res Pract 2020; 217:153268. [PMID: 33246290 DOI: 10.1016/j.prp.2020.153268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND A growing number of studies have shown that long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of tumors. In this study, we explored the function and molecular mechanism of lncRNA SPINT1-AS1 in breast cancer progression. METHODS A total of 30 patients and 25 healthy controls were enrolled to detect the expression of SPINT1-AS1 in the serum by RT-qPCR. CCK-8 assay, clone formation assay, EdU assay, Transwell assay, Flow cytometry for apoptosis assay and wound healing assays were used to explore the effects of SPINT1-AS1 on the proliferation and migration of breast cancer cells. Bioinformatics analysis were used to enrich the downstream target genes and related pathways of miRNAs interacting with SPINT1-AS1, construct a competitive endogenous RNA (ceRNA) network diagram. RESULTS SPINT1-AS1 is up-regulated in the serum of breast cancer patients and breast cancer cell lines. The proliferation and migration ability of breast cancer cells were decreased significantly after SPINT1-AS1 knockdown, and it may inhibit its expression by sponging miR-let-7a/b/i-5p, thereby promoting breast cancer progression. CONCLUSIONS SPINT1-AS1 can promote the proliferation and migration of breast cancer cells by regulating miR-let-7a/b/i-5p, suggesting that it may be an important regulator of breast cancer progression.
Collapse
|
198
|
Zhang DY, Sun QC, Zou XJ, Song Y, Li WW, Guo ZQ, Liu SS, Liu L, Wu DH. Long noncoding RNA UPK1A-AS1 indicates poor prognosis of hepatocellular carcinoma and promotes cell proliferation through interaction with EZH2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:229. [PMID: 33121524 PMCID: PMC7596966 DOI: 10.1186/s13046-020-01748-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dysregulation of long non-coding RNAs (lncRNAs) is responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. A growing number of lncRNAs have been reported in hepatocellular carcinoma (HCC), but their functional and mechanistic roles remain unclear. METHODS Gene Set Enrichment Analysis was used to investigate the molecular mechanism of UPK1A antisense RNA 1 (UPK1A-AS1). Cell Counting Kit-8 assays, EdU assays, flow cytometry, western blotting, and xenograft assays were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells in vitro and in vivo. Bioinformatics analyses and quantitative polymerase chain reaction (qRT-PCR) were performed to explore the interplay between UPK1A-AS1 and enhancer of zeste homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA pull-down assays, western blotting, and qRT-PCR were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA sequencing data from The Cancer Genome Atlas datasets. RESULTS We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle-related genes, including CCND1, CDK2, CDK4, CCNB1, and CCNB2, were significantly upregulated in HCC cells overexpressing UPK1A-AS1. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to increased H27K3 trimethylation. Targeting EZH2 with specific small interfering RNA impaired the UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression-related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and the upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. CONCLUSIONS Our study revealed that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression through interaction with EZH2 and sponging of miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.
Collapse
Affiliation(s)
- Dong-Yan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Qing-Can Sun
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Xue-Jing Zou
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yang Song
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Wen-Wen Li
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ze-Qin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shan-Shan Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
199
|
Song Z, Jia N, Li W, Zhang XY. LINC01572 Regulates Cisplatin Resistance in Gastric Cancer Cells by Mediating miR-497-5p. Onco Targets Ther 2020; 13:10877-10887. [PMID: 33149605 PMCID: PMC7602899 DOI: 10.2147/ott.s267915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chemotherapy resistance has long been recognized as a major obstacle to cancer treatment. Therefore, elucidating the underlying mechanisms of chemotherapy resistance is conducive to developing new strategies to improve patients' response to chemotherapy drugs. Materials and Methods Real-time quantitative PCR (QPCR) was applied to measure the expression levels of lncRNAs. LINC01572 was down-regulated or up-regulated in GC cells transfected with either LINC01572 shRNA or overexpression vectors. In vitro and in vivo experiments were conducted to investigate the role of LINC01572 in autophagy-related chemotherapy resistance. Results Compared with the parental cells, drug-resistant GC cells had a higher level of LINC01572. Silencing of LINC01572 inhibited chemotherapy-induced autophagy, while its knockout sensitized GC cells against chemotherapy drugs. As a competitive endogenous RNA of miR-497-5p, LINC01572 weakened the inhibitory effect of miR-497-5p on ATG14, leading to chemically induced autophagy and chemotherapy resistance in GC cells. Conclusion A new mechanism of GC autophagy-related chemotherapy resistance regulated by lncRNA was explored in this study, providing a new perspective for understanding chemotherapy resistance.
Collapse
Affiliation(s)
- Zhe Song
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, Mainland China
| | - Nan Jia
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, Mainland China
| | - Wei Li
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, Mainland China
| | - Xiao-Yu Zhang
- Department of Thyroid and Breast III, Cangzhou Central Hospital, Cangzhou, Hebei Province, Mainland China
| |
Collapse
|
200
|
Jin M, Ren J, Luo M, You Z, Fang Y, Han Y, Li G, Liu H. Long non-coding RNA JPX correlates with poor prognosis and tumor progression in non-small-cell lung cancer by interacting with miR-145-5p and CCND2. Carcinogenesis 2020; 41:634-645. [PMID: 31253987 DOI: 10.1093/carcin/bgz125] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 01/27/2023] Open
Abstract
Emerging studies have shown that the aberrant expression and function of long non-coding RNAs (lncRNAs) are involved in carcinogenesis and the development of various cancers. The long noncoding RNA JPX (lncRNA JPX) on the X chromosome is an activator of X-inactive-specific transcript (XIST) and is a molecular switch for X-chromosome inactivation. However, the exact mechanism by which JPX acts in non-small-cell lung cancer (NSCLC) is not well studied. Here, through integrating clinical data and a series of functional experiments, we found that lncRNA JPX expression is significantly upregulated in NSCLC tissues compared with that in paired adjacent normal tissues from two independent datasets and significantly associated with a poor survival and other malignant phenotypes (tumor stage, tumor volume) of NSCLC. Furthermore, we elucidated that JPX functions as an oncogene in NSCLC-promoting cell proliferation and cell migration by affecting cell-cycle progression. Mechanistically, JPX upregulates cyclin D2 (CCND2) expression in a competing endogenous RNA mechanism by interacting with miR-145-5p, thus provoking the development and progression of NSCLC. These findings reveal the mechanism of X-chromosome lncRNA JPX and its core regulatory circuitry JPX/miR-145-5p/CCND2 in the development and progression of NSCLC, which bring us closer to an understanding of the molecular drivers of NSCLC.
Collapse
Affiliation(s)
- Meng Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Miao Luo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Zhenxi You
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yuanyuan Fang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yin Han
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Guangcai Li
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|