151
|
Sharma NS, Nagrath D, Yarmush ML. Adipocyte-derived basement membrane extract with biological activity: applications in hepatocyte functional augmentation in vitro. FASEB J 2010; 24:2364-74. [PMID: 20233948 DOI: 10.1096/fj.09-135095] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural and synthetic biomaterials utilized in tissue engineering applications require a dynamic interplay of complex macromolecular compositions of hydrated extracellular matrices (ECMs) and soluble growth factors. The challenges in utilizing synthetic ECMs is the effective control of temporal and spatial complexity of multiple signal presentation, as compared to natural ECMs that possess the inherent properties of biological recognition, including presentation of receptor-binding ligands, susceptibility to cell-triggered proteolytic degradation, and remodeling. We have developed a murine preadipocyte differentiation system for generating a natural basement membrane extract (Adipogel) comprising ECM proteins (collagen IV, laminin, hyaluronan, and fibronectin) and including relevant growth factors (hepatocyte growth factor, vascular endothelial growth factor, and leukemia inhibitory factor). We have shown the effective utilization of the growth factor-enriched extracellular matrix for enhanced albumin synthesis rate of primary hepatocyte cultures for a period of 10 d as compared to collagen sandwich cultures and comparable or higher function as compared to Matrigel cultures. We have also demonstrated comparable cytochrome P450 1A1 activity for the collagen-Adipogel condition to the collagen double-gel and Matrigel culture conditions. A metabolic analysis revealed that utilization of Adipogel in primary hepatocyte cultures increased serine, glycine, threonine, alanine, tyrosine, valine, methionine, lysine, isoleucine, leucine, phenylalanine, taurine, cysteine, and glucose uptake rates to enhance hepatocyte protein synthesis as compared to collagen double-gel cultures. The demonstrated synthesis, isolation, characterization, and application of Adipogel provide immense potential for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Nripen S Sharma
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
152
|
Application of Recombinant Fusion Proteins for Tissue Engineering. Ann Biomed Eng 2010; 38:683-93. [DOI: 10.1007/s10439-010-9935-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 01/17/2010] [Indexed: 10/19/2022]
|
153
|
Ryu YM, Hah YS, Park BW, Kim DR, Roh GS, Kim JR, Kim UK, Rho GJ, Maeng GH, Byun JH. Osteogenic differentiation of human periosteal-derived cells in a three-dimensional collagen scaffold. Mol Biol Rep 2010; 38:2887-94. [PMID: 20107909 DOI: 10.1007/s11033-010-9950-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/14/2010] [Indexed: 01/17/2023]
Abstract
This study examined the osteogenic differentiation of cultured human periosteal-derived cells grown in a three dimensional collagen-based scaffold. Periosteal explants with the appropriate dimensions were harvested from the mandible during surgical extraction of lower impacted third molar. Periosteal-derived cells were introduced into cell culture. After passage 3, the cells were divided into two groups and cultured for 28 days. In one group, the cells were cultured in two-dimensional culture dishes with osteogenic inductive medium containing dexamethasone, ascorbic acid, and β-glycerophosphate. In the other group, the cells were seeded onto a three-dimensional collagen scaffold and cultured under the same conditions. We examined the bioactivity of alkaline phosphatase (ALP), the RT-PCR analysis for ALP and osteocalcin, and measurements of the calcium content in the periosteal-derived cells of two groups. Periosteal-derived cells were successfully differentiated into osteoblasts in the collagen-based scaffold. The ALP activity in the periosteal-derived cells was appreciably higher in the three-dimensional collagen scaffolds than in the two-dimensional culture dishes. The levels of ALP and osteocalcin mRNA in the periosteal-derived cells was also higher in the three-dimensional collagen scaffolds than in the two-dimensional culture dishes. The calcium level in the periosteal-derived cells seeded onto three-dimensional collagen scaffolds showed a 5.92-fold increase on day 7, 3.28-fold increase on day 14, 4.15-fold increase on day 21, and 2.91-fold increase on day 28, respectively, compared with that observed in two-dimensional culture dishes. These results suggest that periosteal-derived cells have good osteogenic capacity in a three-dimensional collagen scaffold, which provides a suitable environment for the osteoblastic differentiation of these cells.
Collapse
Affiliation(s)
- Young-Mo Ryu
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, Biomedical Center (BK21), Gyeongsang National University School of Medicine, Jinju 660-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Bimodal Porous Scaffolds by Sequential Electrospinning of Poly(glycolic acid) with Sucrose Particles. INT J POLYM SCI 2010. [DOI: 10.1155/2010/436178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrospinning is a method to produce fine, biopolymer mesh with a three-dimensional architecture that mimics native extra-cellular matrix. Due to the small fiber diameter created in this process, conventional electrospun scaffolds have pore sizes smaller than the diameter of most cells. These scaffolds have limited application in tissue engineering due to poor cell penetration. We developed a hybrid electrospinning/particulate leaching technique to create scaffolds with increased porosity and improved cellular ingrowth. Poly(glycolic acid) (PGA) and a sucrose-ethanol suspension were electrospun in equal, alternating sequences at intervals of one, two, and ten minutes each. The scaffolds revealed fiber mesh with micropores of 10 m and uniformly distributed sucrose particles. Particulate leaching of sucrose from the one- or two-minute scaffolds revealed honeycomb structures with interconnected macropores between 50 and 250 m. Sucrose leaching from the ten-minute scaffolds resulted in laminated structures with isolated macropores between 200 and 350 m. Macropore size was directly proportional to the duration of the sucrose spinning interval. After 24 hours of cell culture, conventionally spun scaffolds demonstrated no cellular penetration. Conversely, the PGA/sucrose scaffolds demonstrated deep cellular penetration. This hybrid technique represents a novel method of generating electrospun scaffolds with interconnected pores suitable for cellular ingrowth.
Collapse
|
155
|
Martins AM, Alves CM, Kurtis Kasper F, Mikos AG, Reis RL. Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b916259n] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
156
|
Tirella A, Orsini A, Vozzi G, Ahluwalia A. A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication 2009; 1:045002. [DOI: 10.1088/1758-5082/1/4/045002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
157
|
Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2009; 7:229-58. [PMID: 19864266 DOI: 10.1098/rsif.2009.0403] [Citation(s) in RCA: 414] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Situations where normal autografts cannot be used to replace damaged skin often lead to a greater risk of mortality, prolonged hospital stay and increased expenditure for the National Health Service. There is a substantial need for tissue-engineered skin bioconstructs and research is active in this field. Significant progress has been made over the years in the development and clinical use of bioengineered components of the various skin layers. Off-the-shelf availability of such constructs, or production of sufficient quantities of biological materials to aid rapid wound closure, are often the only means to help patients with major skin loss. The aim of this review is to describe those materials already commercially available for clinical use as well as to give a short insight to those under development. It seeks to provide skin scientists/tissue engineers with the information required to not only develop in vitro models of skin, but to move closer to achieving the ultimate goal of an off-the-shelf, complete full-thickness skin replacement.
Collapse
Affiliation(s)
- Rostislav V Shevchenko
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | | | | |
Collapse
|
158
|
Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:199-215. [PMID: 18544016 DOI: 10.1089/ten.teb.2007.0435] [Citation(s) in RCA: 593] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tissue engineering combines cell and molecular biology with materials and mechanical engineering to replace damaged or diseased organs and tissues. Fibrin is a critical blood component responsible for hemostasis, which has been used extensively as a biopolymer scaffold in tissue engineering. In this review we summarize the latest developments in organ and tissue regeneration using fibrin as the scaffold material. Commercially available fibrinogen and thrombin are combined to form a fibrin hydrogel. The incorporation of bioactive peptides and growth factors via a heparin-binding delivery system improves the functionality of fibrin as a scaffold. New technologies such as inkjet printing and magnetically influenced self-assembly can alter the geometry of the fibrin structure into appropriate and predictable forms. Fibrin can be prepared from autologous plasma, and is available as glue or as engineered microbeads. Fibrin alone or in combination with other materials has been used as a biological scaffold for stem or primary cells to regenerate adipose tissue, bone, cardiac tissue, cartilage, liver, nervous tissue, ocular tissue, skin, tendons, and ligaments. Thus, fibrin is a versatile biopolymer, which shows a great potential in tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
159
|
Vermeulen P, Dickens S, Degezelle K, Van den Berge S, Hendrickx B, Vranckx JJ. A Plasma-Based Biomatrix Mixed with Endothelial Progenitor Cells and Keratinocytes Promotes Matrix Formation, Angiogenesis, and Reepithelialization in Full-Thickness Wounds. Tissue Eng Part A 2009; 15:1533-42. [DOI: 10.1089/ten.tea.2008.0246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Pieter Vermeulen
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stijn Dickens
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karlien Degezelle
- Department of Intensive Care—Perfusion Sciences, KU Leuven University Hospital, Leuven, Belgium
| | - Stefaan Van den Berge
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Benoit Hendrickx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
160
|
Park SH, Cui JH, Park SR, Min BH. Potential of Fortified Fibrin/Hyaluronic Acid Composite Gel as a Cell Delivery Vehicle for Chondrocytes. Artif Organs 2009; 33:439-47. [DOI: 10.1111/j.1525-1594.2009.00744.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
161
|
Ijiri H, Coulibaly F, Nishimura G, Nakai D, Chiu E, Takenaka C, Ikeda K, Nakazawa H, Hamada N, Kotani E, Metcalf P, Kawamata S, Mori H. Structure-based targeting of bioactive proteins into cypovirus polyhedra and application to immobilized cytokines for mammalian cell culture. Biomaterials 2009; 30:4297-308. [PMID: 19477509 DOI: 10.1016/j.biomaterials.2009.04.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 04/28/2009] [Indexed: 12/13/2022]
Abstract
Certain insect viruses produce stable infectious micro-crystals called polyhedra which function to protect the virus after the death of infected larvae. Polyhedra form within infected cells and contain numerous virus particles embedded in a crystalline lattice of the viral protein polyhedrin. We have previously demonstrated that the N-terminal 75 amino acids of the Bombx mori cypovirus (BmCPV) turret protein (VP3) can function as a polyhedrin recognition signal leading to the incorporation of foreign proteins into polyhedra. Foreign proteins tagged with the VP3 polyhedrin recognition signal were incorporated into polyhedra by co-expression with polyhedrin in insect cells. We have used this method to encapsulate a wide variety of foreign proteins into polyhedra. The atomic structure of BmCPV polyhedrin showed that the N-terminal H1 alpha-helix of polyhedrin plays a significant role in cross-linking and stabilizing polyhedra. Here we show that the polyhedrin H1-helix can also function as a polyhedrin recognition signal and can be used like the VP3 N-terminal sequence to target foreign proteins into polyhedra. In addition, the two targeting methods can be used together to produce polyhedra containing both EGFP and Discosoma sp. Red Fluorescent Protein (DsRed). The modified polyhedra were imaged using dual-wavelength confocal microscopy showing that the two foreign proteins are uniformly incorporated into polyhedra at similar levels. We have investigated the biological and physiological properties of fibroblast growth factor-2 (FGF-2), FGF-7 and epidermal growth factor (EGF) immobilized on polyhedra with either the H1 or the VP3 tag. Growth factors produced by both methods were functional, inducing the growth of fibroblast cells and keratinocytes. The results demonstrate the utility and flexibility of modified polyhedra for encapsulating and stabilizing bioactive proteins.
Collapse
Affiliation(s)
- Hiroshi Ijiri
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery. Int J Biol Macromol 2009; 44:229-35. [DOI: 10.1016/j.ijbiomac.2008.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/17/2022]
|
163
|
Production of heparin-containing hydrogels for modulating cell responses. Acta Biomater 2009; 5:865-75. [PMID: 19167277 DOI: 10.1016/j.actbio.2008.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/14/2008] [Accepted: 12/08/2008] [Indexed: 02/05/2023]
Abstract
Successful tissue regeneration requires that biomaterials have optimal bioactivity and mechanical properties. Heparin-containing hydrogels that can be crosslinked in situ were designed to contain tunable amounts of biological components (e.g. heparin, arginine-glycine-aspartate (RGD)) as well as to exhibit controlled mechanical properties (e.g. shear modulus). These gel parameters can also be tuned to provide controlled delivery of proteins, such as growth factors, for regulating cellular behavior. Maleimide-functionalized low-molecular-weight heparin (LWMH) was conjugated to a poly(ethylene glycol) (PEG) hydrogel. The elastic shear modulus, as assessed via oscillatory rheology experiments, could be tuned by the concentration of polymer in the hydrogel, and by the end group functionality of PEG. Hydrogels of two different moduli (2.8 and 0.4kPa) were used to study differences in the response of human aortic adventitial fibroblasts (AoAF) in two-dimensional cell culture experiments. These experiments indicated that the AoAFs show improved adhesion to materials with the higher modulus. Evaluation of cell responses to hydrogels with RGD linked to the hydrogels via conjugation to PEG or to LMWH indicated improved cellular responses to these materials when the bioactive ligands were chemically attached through linkage to the PEG rather than to the LMWH. These results highlight important design considerations in the tailoring of these materials for cardiovascular tissue engineering applications.
Collapse
|
164
|
Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 2009; 30:751-6. [PMID: 19010528 DOI: 10.1016/j.biomaterials.2008.09.059] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
|
165
|
Neuss S, Stainforth R, Salber J, Schenck P, Bovi M, Knüchel R, Perez-Bouza A. Long-term survival and bipotent terminal differentiation of human mesenchymal stem cells (hMSC) in combination with a commercially available three-dimensional collagen scaffold. Cell Transplant 2009; 17:977-86. [PMID: 19069639 DOI: 10.3727/096368908786576462] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Researchers working in the field of tissue engineering ideally combine autologous cells and biocompatible scaffolds to replace defect tissues/organs. Due to their differentiation capacity, mesenchym-derived stem cells, such as human mesenchymal stem cells (hMSC), are a promising autologous cell source for the treatment of human diseases. As natural precursors for mesenchymal tissues, hMSC are particularly suitable for bone, cartilage, and adipose tissue replacement. In this study a detailed histological and ultrastructural analysis of long-term cultured and terminally differentiated hMSC on 3D collagen scaffolds was performed. Standardized 2D differentiation protocols for hMSC into adipocytes and osteoblasts were adapted for long-term 3D in vitro cultures in porous collagen matrices. After a 50-day culture period, large numbers of mature adipocytes and osteoblasts were clearly identifiable within the scaffolds. The adipocytes exhibited membrane free lipid vacuoles. The osteoblasts were arranged in close association with hydroxyapatite crystals, which were deposited on the surrounding fibers. The collagen matrix was remodeled and adopted a contracted and curved form. Human MSC survive long-term culture within these scaffolds and could be terminally differentiated into adipocytes and osteoblasts. Thus, the combination of hMSC and this particular collagen scaffold is a possible candidate for bone and adipose tissue replacement strategies.
Collapse
Affiliation(s)
- S Neuss
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
166
|
Tran PA, Sarin L, Hurt RH, Webster TJ. Opportunities for nanotechnology-enabled bioactive bone implants. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b814334j] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
167
|
Tokarev I, Motornov M, Minko S. Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b906765e] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
168
|
Velzenberger E, Pezron I, Legeay G, Nagel MD, El Kirat K. Probing fibronectin-surface interactions: a multitechnique approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11734-11742. [PMID: 18816077 DOI: 10.1021/la801727p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development of adhesive as well as antiadhesive surfaces is essential in various biomaterial applications. In this study, we have used a multidisciplinary approach that combines biological and physicochemical methods to progress in our understanding of cell-surface interactions. Four model surfaces have been used to investigate fibronectin (Fn) adsorption and the subsequent morphology and adhesion of preosteoblasts. Such experimental conditions lead us to distinguish between anti- and proadhesive substrata. Our results indicate that Fn is not able to induce cell adhesion on antiadhesive materials. On adhesive substrata, Fn did not increase the number of adherent cells but favored their spreading. This work also examined Fn-surface interactions using ELISA immunoassays, fluorescent labeling of Fn, and force spectroscopy with Fn-modified tips. The results provided clear evidence of the advantages and limitations of each technique. All of the techniques confirmed the important adsorption of Fn on proadhesive surfaces for cells. By contrast, antiadhesive substrata for cells avoided Fn adsorption. Furthermore, ELISA experiments enabled us to verify the accessibility of cell binding sites to adsorbed Fn molecules.
Collapse
Affiliation(s)
- Elodie Velzenberger
- Université de Technologie de Compiègne (UTC), BP 20529, 60205 Compiègne Cedex, France.
| | | | | | | | | |
Collapse
|
169
|
Blan NR, Birla RK. Design and fabrication of heart muscle using scaffold-based tissue engineering. J Biomed Mater Res A 2008; 86:195-208. [PMID: 17972281 DOI: 10.1002/jbm.a.31642] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiac tissue engineering strategies are based on the development of functional models of heart muscle in vitro. Our research is focused on evaluating the feasibility of different tissue engineering platforms to support the formation of heart muscle. Our previous work was focused on developing three-dimensional (3D) models of heart muscle using self-organization strategies and biodegradable hydrogels. To build on this work, our current study describes a third tissue engineering platform using polymer-based scaffolding technology to engineer functional heart muscle in vitro. Porous scaffolds were fabricated by solubilizing chitosan in dilute glacial acetic acid, transferring the solution to a mold, freezing the mold at -80 degrees C followed by overnight lyophilization. The scaffolds were rehydrated in sodium hydroxide to neutralize the pH, sterilized in 70% ethanol and cellularized using primary cardiac myocytes. Several variables were studied: effect of polymer concentration and chitosan solution volume (i.e., scaffold thickness) on scaffold fabrication, effect of cell number and time in culture on active force generated by cardiomyocyte-seeded scaffolds and the effect of lysozyme on scaffold degradation. Histology (hematoxylin and eosin) and contractility (active, baseline and specific force, electrical pacing) were evaluated for the cellularized constructs under different conditions. We found that a polymer concentration in the range 1.0-2.5% (w/v) was most suitable for scaffold fabrication while a scaffold thickness of 200 microm was optimal for cardiac cell functionality. Direct injection of the cells on the scaffold did not result in contractile constructs due to low cell retention. Fibrin gel was required to retain the cells within the constructs and resulted in the formation of contractile constructs. We found that lower cell seeding densities, in the range of 1-2 million cells, resulted in the formation of contractile heart muscle, termed smart material integrated heart muscle (SMIHMs). Chitosan concentration of 1-2% (w/v) did not have a significant effect on the active twitch force of SMIHMs. We found that scaffold thickness was an important variable and only the thinnest scaffolds evaluated (200 microm) generated any measurable active twitch force upon electrical stimulation. The maximum active force for SMIHMs was found to be 439.5 microN while the maximum baseline force was found to be 2850 microN, obtained after 11 days in culture. Histological evaluation showed a fairly uniform cell distribution throughout the thickness of the scaffold. We found that lysozyme concentration had a profound effect on scaffold degradation with complete scaffold degradation being achieved in 2 h using a lysozyme concentration of 1 mg/mL. Slower degradation times (in the order of weeks) were achieved by decreasing the lysozyme concentration to 0.01 mg/mL. In this study, we provide a detailed description for the formation of contractile 3D heart muscle utilizing scaffold-based methods. We demonstrate the effect of several variables on the formation and culture of SMIHMs.
Collapse
Affiliation(s)
- Nicole R Blan
- Deparment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
170
|
Tissue engineering a complete vaginal replacement from a small biopsy of autologous tissue. Transplantation 2008; 86:208-14. [PMID: 18645481 DOI: 10.1097/tp.0b013e31817f1686] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND In women, a healthy, patent vagina is important for the maintenance of a good quality of life. Apart from congenital abnormalities, such as cloacal exstrophy, intersex disorders, and an absence of the posterior two thirds of the organ, individuals may also suffer from cancer, trauma, infection, inflammation, or iatrogenic injuries leading to tissue damage and loss -- all of which require vaginal repair or replacement. Of necessity, reconstruction is often performed with nonvaginal tissue substitutes, such as segments of large intestine or skin, which are not anatomically or functionally ideal (Hendren and Atala, J Urol 1994; 152: 752; Hendren and Atala, J Pediatr Surg 1995; 30: 91). Whenever such tissue is used additional complications often ensue, such as strictures, infection, hair growth, graft shrinkage, diverticuli, and even malignancy (Filipas et al., BJU Int 2000; 85: 715; Lai and Chang, Changgeng Yi Xue Za Zhi 1999; 22: 253; Parsons et al., J Pediatr Surg 2002; 37: 629; Seccia et al., Ann Plast Surg 2002; 49: 379; Filipas, Curr Opin Urol 2001; 11: 267). METHODS Using a rabbit model, we report here the construction of a functional vagina using autologous cells expanded from a small vaginal biopsy. RESULTS.: Six months after total vaginal replacement, radiographic analysis of rabbits implanted with the neovagina demonstrated wide, patent vaginal calibers without strictures. Histologic analysis revealed well-organized epithelial and muscle cell layers. Physiologic studies showed normal-range responses to electrical stimulation or to an adrenergic agonist. CONCLUSIONS These data indicate that a tissue engineering approach to clinical vaginal reconstruction in women is now a realistic possibility.
Collapse
|
171
|
Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH. The effect of gelatin incorporation into electrospun poly(l-lactide-co-ɛ-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 2008; 29:1872-9. [DOI: 10.1016/j.biomaterials.2007.12.029] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/22/2007] [Indexed: 10/22/2022]
|
172
|
Pham QP, Kasper FK, Scott Baggett L, Raphael RM, Jansen JA, Mikos AG. The influence of an in vitro generated bone-like extracellular matrix on osteoblastic gene expression of marrow stromal cells. Biomaterials 2008; 29:2729-39. [PMID: 18367245 DOI: 10.1016/j.biomaterials.2008.02.025] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/28/2008] [Indexed: 01/15/2023]
Abstract
The function and development of cells rely heavily on the signaling interactions with the surrounding extracellular matrix (ECM). Therefore, a tissue engineering scaffold should mimic native ECM to recreate the in vivo environment. Previously, we have shown that an in vitro generated ECM secreted by cultured cells enhances the mineralized matrix deposition of marrow stromal cells (MSCs). In this study, MSC expression of 45 bone-related genes using real-time reverse transcriptase polymerase chain reaction (RT-PCR) was determined. Upregulation of osteoblastic markers such as collagen type I, matrix extracellular phosphoglycoprotein with ASARM motif, parathyroid hormone receptor, and osteocalcin, indicated that the MSCs on plain titanium scaffolds differentiated down the osteoblastic lineage and deposited a mineralized matrix on day 12. Significant mineralized matrix deposition was observed as early as day 4 on ECM-containing scaffolds and was associated with the enhancement in expression of a subset of osteoblast-specific genes that included a 2-fold increase in osteopontin expression at day 1 and a 6.5-fold increase in osteocalcin expression at day 4 as well as downregulation of chondrogenic gene markers. These results were attributed to the cellular interactions with growth factors and matrix molecules that are likely present in the in vitro generated ECM since the genes for insulin-like growth factor 1, insulin-like growth factor 2, vascular endothelial growth factor, dentin matrix protein, collagen type IV, cartilage oligomeric protein, and matrix metalloproteinase 13 were significantly upregulated during ECM construct generation. Overall, the data demonstrate that modulation of MSC differentiation occurs at the transcriptional level and gene expression of bone-related proteins is differentially regulated by the ECM. This study presents enormous implications for tissue engineering strategies, as it demonstrates that modification of a biomaterial with an in vitro generated ECM containing cell-generated bioactive signaling molecules can effectively direct gene expression and differentiation of seeded progenitor cell populations.
Collapse
Affiliation(s)
- Quynh P Pham
- Department of Bioengineering, Rice University, MS-142, P.O. Box 1892, Houston, TX 77251-1892, USA
| | | | | | | | | | | |
Collapse
|
173
|
Khait L, Hecker L, Blan NR, Coyan G, Migneco F, Huang YC, Birla RK. Getting to the Heart of Tissue Engineering. J Cardiovasc Transl Res 2008; 1:71-84. [DOI: 10.1007/s12265-007-9005-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
|
174
|
Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, Grafahrend D, Groger A, Hemmrich K, Herr A, Jahnen-Dechent W, Mastitskaya S, Perez-Bouza A, Rosewick S, Salber J, Wöltje M, Zenke M. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials 2008; 29:302-13. [DOI: 10.1016/j.biomaterials.2007.09.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 09/18/2007] [Indexed: 01/09/2023]
|
175
|
Bitar M, Brown RA, Salih V, Kidane AG, Knowles JC, Nazhat SN. Effect of Cell Density on Osteoblastic Differentiation and Matrix Degradation of Biomimetic Dense Collagen Scaffolds. Biomacromolecules 2007; 9:129-35. [DOI: 10.1021/bm701112w] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Malak Bitar
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Robert A. Brown
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Vehid Salih
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Asmeret G. Kidane
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Showan N. Nazhat
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| |
Collapse
|
176
|
Furth ME, Atala A, Van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 2007; 28:5068-73. [PMID: 17706763 DOI: 10.1016/j.biomaterials.2007.07.042] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/17/2007] [Indexed: 12/22/2022]
Abstract
As a prominent tool in regenerative medicine, tissue engineering (TE) has been an active field of scientific research for nearly three decades. Clinical application of TE technologies has been relatively restricted, however, owing in part to the limited number of biomaterials that are approved for human use. While many excellent biomaterials have been developed in recent years, their translation into clinical practice has been slow. As a consequence, many investigators still employ biodegradable polymers that were first approved for use in humans over 30 years ago. During normal development tissue morphogenesis is heavily influenced by the interaction of cells with the extracellular matrix (ECM). Yet simple polymers, while providing architectural support for neo-tissue development, do not adequately mimic the complex interactions between adult stem and progenitor cells and the ECM that promote functional tissue regeneration. Future advances in TE and regenerative medicine will depend on the development of "smart" biomaterials that actively participate in the formation of functional tissue. Clinical translation of these new classes of biomaterials will be supported by many of the same evaluation tools as those developed and described by Professor David F. Williams and colleagues over the past 30 years.
Collapse
Affiliation(s)
- Mark E Furth
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | | | | |
Collapse
|
177
|
Koide T. Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering. Philos Trans R Soc Lond B Biol Sci 2007; 362:1281-91. [PMID: 17581806 PMCID: PMC2440396 DOI: 10.1098/rstb.2007.2115] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collagens, characterized by a unique triple-helical structure, are the predominant component of extracellular matrices (ECMs) existing in all multicellular animals. Collagens not only maintain structural integrity of tissues and organs, but also regulate a number of biological events, including cell attachment, migration and differentiation, tissue regeneration and animal development. The specific functions of collagens are generally triggered by specific interactions of collagen-binding molecules (membrane receptors, soluble factors and other ECM components) with certain structures displayed on the collagen triple helices. Thus, synthetic triple-helical peptides that mimic the structure of native collagens have been used to investigate the individual collagen-protein interactions, as well as collagen structure and stability. The first part of this article illustrates the design of various collagen-mimetic peptides and their recent applications in matrix biology. Collagen is also acknowledged as one of the most promising biomaterials in regenerative medicine and tissue engineering. However, the use of animal-derived collagens in human could put the recipients at risks of pathogen transmission or allergic reactions. Hence, the production of safe artificial collagen surrogates is currently of considerable interest. The latter part of this article reviews recent attempts to develop artificial collagens as novel biomaterials.
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan.
| |
Collapse
|
178
|
Metcalfe AD, Ferguson MWJ. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007; 28:5100-13. [PMID: 17688942 DOI: 10.1016/j.biomaterials.2007.07.031] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 07/17/2007] [Indexed: 12/22/2022]
Abstract
The development and use of artificial skin in treating acute and chronic wounds has, over the last 30 years, advanced from a scientific concept to a series of commercially viable products. Many important clinical milestones have been reached and the number of artificial skin substitutes licensed for clinical use is growing, but they have yet to replace the current "gold standard" of an autologous skin graft. Currently available skin substitutes often suffer from a range of problems that include poor integration (which in many cases is a direct result of inadequate vascularisation), scarring at the graft margins and a complete lack of differentiated structures. The ultimate goal for skin tissue engineers is to regenerate skin such that the complete structural and functional properties of the wounded area are restored to the levels before injury. New synthetic biomaterials are constantly being developed that may enable control over wound repair and regeneration mechanisms by manipulating cell adhesion, growth and differentiation and biomechanics for optimal tissue development. In this review, the clinical developments in skin bioengineering are discussed, from conception through to the development of clinically viable products. Central to the discussion is the development of the next generation of skin replacement therapy, the success of which is likely to be underpinned with our knowledge of wound repair and regeneration.
Collapse
Affiliation(s)
- Anthony D Metcalfe
- UK Centre for Tissue Engineering (UKCTE), Faculty of Life Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
179
|
Abstract
Mortalities resulting from cardiovascular disorders remain high, with an urgent need to develop novel treatment modalities. Tissue-engineering therapies aim to provide cell-based alternatives to conventional options. Significant technological advancements have occurred during the last decade towards the fabrication of functional 3D heart muscle in vitro. More recent research has focused on the development of cell-based cardiac pumps and tissue-engineered ventricles. The global objective of this collective work is to simulate the functional performance of the left ventricle, utilizing completely cell-based options. Current prototypes have shown several physiological performance metrics, including the ability of these devices to generate intraluminal pressure upon electrical stimulation. This review will highlight the transition from tissue engineering 3D heart muscle to cell-based cardiac pumps/ventricles.
Collapse
Affiliation(s)
- L Khait
- The University of Michigan, Section of Cardiac Surgery, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
180
|
Abstract
The reimplantation method of cultured chondrocytes broadly has been offered as an
alternative for articular cartilage repair. A variety of biologically derived and synthetic polymeric
and hydrogel materials also have been investigated for good cell delivery efficiency. Preciously, we
examined the feasibility of fibrin gel, mixed with hyaluronic acid(HA) as a cell delivery carrier. In
order to reinforce the material, hybrid biomaterials of fibrin/HA composite gels with fibrinolysis
inhibition factors(FIFs: aprotinin, DI101, EACA) have been investigated in the present work
because we did not satisfy a little progress. These fibrin/HA composite gels added FIFs maintained
their structural integrity in long-term culture over 4th weeks. Contrary to our expectation the mass of
the fibrin/HA composite with DI 101 was significantly superior to the ones of other combinations.
In histological evidence, all of them are showed good positive result of stain of Safranin-O and
alcian blue during the culture period. In gross examination, samples of all groups grossly resembled
cartilage in color and were resistant to external compression. Our study demonstrates that most
favorable polymer can be used good quality tissue engineered cartilage and in this culture systems
have been useful for studying the basic biology of chondrocyte biosynthesis of ECM and new
cartilage matrix formation without a loss of volume. After all, we proved the safety of inhibitors of
the fibrinolytic system without hazardous effect on cell behavior and found out that DI 101 would
be the most effective agent.
Collapse
|
181
|
Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 2007; 4:413-37. [PMID: 17251138 PMCID: PMC2373411 DOI: 10.1098/rsif.2006.0179] [Citation(s) in RCA: 461] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/08/2006] [Indexed: 12/12/2022] Open
Abstract
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.
Collapse
Affiliation(s)
| | - Mark W.J Ferguson
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
182
|
Abstract
Skin, the largest organ in the body, protects against toxins and microorganisms in the environment and serves to prevent dehydration of all non-aquatic animals. Immune surveillance, sensory detection, and self-healing are other critical functions of the skin. Loss of skin integrity because of injury or illness may result acutely in substantial physiologic imbalance and ultimately in significant disability or even death. It is estimated that, in 1992, there were 35.2 million cases of significant skin loss (US data) that required major therapeutic intervention. Of these, approximately 7 million wounds become chronic. Regardless of the specific advanced wound care product, the ideal goal would be to regenerate tissues such that both the structural and functional properties of the wounded tissue are restored to the levels before injury. The advent of tissue-engineered skin replacements revolutionized the therapeutic potential for recalcitrant wounds and for wounds that are not amenable to primary closure. This article will introduce the reader to the field of tissue engineering, briefly review tissue-engineered skin replacement from a historical perspective and then review current state-of-the-art concepts from our vantage point.
Collapse
Affiliation(s)
- Richard A F Clark
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York 11794-8165, USA.
| | | | | |
Collapse
|
183
|
Turhani D, Weissenböck M, Stein E, Wanschitz F, Ewers R. Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. J Oral Maxillofac Surg 2007; 65:485-93. [PMID: 17307597 DOI: 10.1016/j.joms.2005.12.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/12/2005] [Accepted: 12/22/2005] [Indexed: 01/30/2023]
Abstract
PURPOSE Tissue engineering of bone entails the successful interplay between osteoinductive factors, osteogenic cells, their extracellular environment, and an osteoconductive biomaterial scaffold. Naturally produced ceramics, like hydroxyapatite (HA) calcified from red algae, are the most promising materials for use as scaffolds in this field. We hypothesized that extracellular matrix compartments and osteoinductive factors could further ameliorate the bioactivity of the scaffold. MATERIALS AND METHODS Osteosarcoma cells with proven osteogenic phenotype (SaOS-2) were cultured onto type I collagen coated (Coll I/HA) and noncollagen coated HA granules (NC/HA) gained from red algae (C GRAFT/Algipore). Cells grown on tissue culture polystyrene dishes (TCPS) were used as controls. Second, SaOS-2 cells cultured on Coll I/HA, NC/HA, and TCPS were treated with recombinant human bone morphogenetic protein-2 (rhBMP-2) in different concentrations (10, 100, and 500 ng/mL). Non rhBMP-2-treated cultures were used as controls. Cultures of both experiments were grown under osteogenic differentiation conditions and after 24, 48, and 72 hours assays for cell viability, apoptosis, alkaline phosphatase activity (ALP), and osteocalcin (OC) secretion were done. RESULTS Coating of HA granules with type I collagen showed higher cell viability in rhBMP-2-treated and nontreated cells. Supplementation of cultured cells with exogenous rhBMP-2 showed a dose-dependent effect only in the TCPS group. No alterations of the apoptotic rate within 1 investigation group were found. Addition of rhBMP-2 did not significantly alter the specific OC secretion of cells grown on Coll I/HA and TCPS. CONCLUSION These in vitro findings show that in the initial period of cultivation and up to 72 hours, the coating of HA granules with collagen type I had positive effects on cell viability and osteoblastic characteristics of osteoblastic cells. In contrast, the supplementation with exogenous rhBMP-2 shows no dose-dependent effects. The combination of collagen type I and exogenous rhBMP-2 did not ameliorate the bioactivity of hydroxyapatite calcified from red algae in the initial period of cultivation.
Collapse
Affiliation(s)
- Dritan Turhani
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
184
|
Pereira M, Sharma RI, Penkala R, Gentzel TA, Schwarzbauer JE, Moghe PV. Engineered Cell-Adhesive Nanoparticles Nucleate Extracellular Matrix Assembly. ACTA ACUST UNITED AC 2007; 13:567-78. [PMID: 17518603 DOI: 10.1089/ten.2006.0228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tissue engineering aims to regenerate new biological tissue for replacing diseased or injured tissues. We propose a new approach to accelerate the deposition of cell-secreted matrix proteins into extracellular matrix fibrils. We examined whether dynamic substrates with nanoscale ligand features allowing for alpha5beta1 integrin recruiting, cellular tension generation, and alpha5beta1 integrin mobility would enhance fibronectin matrix assembly in a ligand model system that is routinely not sufficient for its induction. To this end, we developed biodynamic substrates consisting of cell adhesive fragment from the 9th and 10th type repeats of fibronectin (FNf ) functionalized to 100 nm prefabricated albumin nanoparticles (ANPs). FNf-ANPs modulated cellular spreading processes, promoting the development of stellate or dendritic morphologies. Concomitant with the spreading, FNf-ANPs rapidly recruited beta1 integrins to focal contacts and promoted the migration of beta1 integrins centripetally from the cell periphery toward the center. FNf-ANPs stimulated the deposition of secreted fibronectin into matrix fibrils; FNf, the key ligand alone, was not sufficient for fibronectin fibrillogenesis. When FNf-ANPs were displayed from "immobilized" substrates, abolishing any mobility of ligated beta1 integrins, fibronectin matrix assembly was abrogated, implicating the role of dynamic matrix display on matrix assembly. Receptor ligation of FNf-ANPs via noncontractile adhesions was not sufficient to stimulate fibrillogenesis, and Rho-kinase inhibitors abolished fibronectin matrix deposition. Our approach highlights the possibility of engineering integrin-based extracellular matrix assembly using nanotechnology, which may have implications for improved biomaterials for wound repair and basic understanding of matrix remodeling within pathogenesis and biomedicine.
Collapse
Affiliation(s)
- Marian Pereira
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
185
|
Hecker L, Birla RK. Engineering the heart piece by piece: state of the art in cardiac tissue engineering. Regen Med 2007; 2:125-44. [PMID: 17465746 DOI: 10.2217/17460751.2.2.125] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
According to the National Transplant Society, more than 7000 Americans in need of organs die every year owing to a lack of lifesaving organs. Bioengineering 3D organs in vitro for subsequent implantation may provide a solution to this problem. The field of tissue engineering in its most rudimentary form is focused on the developed of transplantable organ substitutes in the laboratory. The objective of this article is to introduce important technological hurdles in the field of cardiac tissue engineering. This review starts with an overview of tissue engineering, followed by an introduction to the field of cardiovascular tissue engineering and finally summarizes some of the key advances in cardiac tissue engineering; specific topics discussed in this article include cell sourcing and biomaterials, in vitro models of cardiac muscle and bioreactors. The article concludes with thoughts on the utility of tissue-engineering models in basic research as well as critical technological hurdles that need to be addressed in the future.
Collapse
Affiliation(s)
- Louise Hecker
- Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
186
|
Misra SK, Watts PCP, Valappil SP, Silva SRP, Roy I, Boccaccini AR. Poly(3- hydroxybutyrate)/Bioglass(®) composite films containing carbon nanotubes. NANOTECHNOLOGY 2007; 18:075701. [PMID: 21730509 DOI: 10.1088/0957-4484/18/7/075701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Poly(3hydroxybutyrate) (P(3HB))/Bioglass(®) composites incorporating multiwalled carbon nanotubes (MWCNTs) have been successfully prepared by the solvent casting technique. The microstructure, electrical properties and bioactivity of the composites were characterized using scanning electron microscopy, x-ray diffraction and current-voltage measurements. Different concentrations of MWCNTs were used to determine their effect on the electrical properties of the composites. MWCNTs and Bioglass(®) particles were found to be homogeneously dispersed throughout the P(3HB) matrix. The electrical resistance of the composite samples decreased on increasing the MWCNT concentration, as expected. An in vitro degradation study in simulated body fluid (SBF) was carried out on composite samples. The formation of hydroxyapatite on the surfaces of P(3HB)/Bioglass(®)/MWCNT composite films was confirmed after two months of immersion in SBF. This hydroxyapatite layer was not formed on the neat polymeric films and on composites containing MWCNTs only (without Bioglass(®)). It was found that the presence of MWCNTs did not hinder the bioactivity of the Bioglass(®) particles, as confirmed by SEM and XRD studies on composite samples.
Collapse
Affiliation(s)
- S K Misra
- Department of Materials, Imperial College London, London SW7 2BP, UK
| | | | | | | | | | | |
Collapse
|
187
|
Bitar M, Salih V, Brown RA, Nazhat SN. Effect of multiple unconfined compression on cellular dense collagen scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:237-44. [PMID: 17323154 DOI: 10.1007/s10856-006-0685-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/19/2006] [Indexed: 05/14/2023]
Abstract
Plastic compression of hydrated collagen gels rapidly produces biomimetic scaffolds of improved mechanical properties. These scaffolds can potentially be utilised as cell seeded systems for bone tissue engineering. This work investigated the influence of multiple unconfined compression on the biocompatibility and mechanical properties of such systems. Single and double compressed dense collagen matrices were produced and characterised for protein dry weight, morphology and mechanical strength. Compression related maintenance of the seeded HOS TE85 cell line viability in relation to the extent of compression was evaluated up to 10 days in culture using the TUNEL assay. Fluorescence Live/Dead assay was conducted to examine overall cell survival and morphology. Cell induced structural changes in the dense collagenous scaffolds were assessed by routine histology. The mechanical properties of the cellular scaffolds were also evaluated as a function of time in culture. It is clear that a single plastic compression step produced dense collagenous scaffolds capable of maintaining considerable cell viability and function as signs of matrix remodeling, and maintenance of mechanical properties were evident. Such scaffolds should therefore be further developed as systems for bone tissue regeneration.
Collapse
Affiliation(s)
- Malak Bitar
- Divsion of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray's Inn Road, London, WC1X 8LD, UK.
| | | | | | | |
Collapse
|
188
|
Gupta MK, Khokhar SK, Phillips DM, Sowards LA, Drummy LF, Kadakia MP, Naik RR. Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1315-9. [PMID: 17241052 DOI: 10.1021/la062047p] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Silk is an attractive biomaterial for use in tissue engineering applications because of its slow degradation, excellent mechanical properties, and biocompatibility. In this report, we demonstrate a simple method to cast patterned films directly from silk fibroin dissolved in an ionic liquid. The films cast from the silk ionic liquid solution were found to support normal cell proliferation and differentiation. The versatility of the silk ionic liquid solutions and the ability to process large amounts of silk into materials with controlled surface topography directly from the dissolved silk ionic liquid solution could enhance the desirability of biomaterials such as silk for a variety of applications.
Collapse
Affiliation(s)
- Maneesh K Gupta
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45432, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Chen R, Hunt JA. Biomimetic materials processing for tissue-engineering processes. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b706765h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
190
|
Abstract
Tissue engineering is a rapidly expanding field, which applies the principles and methods of physical sciences, life sciences and engineering to understand physiological and pathological systems and to modify and create cells and tissues for therapeutic applications. It has emerged as a rapidly expanding ‘interdisciplinary field’ that is a significant potential alternative wherein tissue and organ failure is addressed by implanting natural, synthetic, or semi synthetic tissue or organ mimics that grow into the required functionality or that are fully functional from the start. This review presents in a comprehensive manner the various considerations for the reconstruction of various tissues and organs as well as the various applications of this young emerging field in different disciplines.
Collapse
Affiliation(s)
- S Parveen
- Laboratory of Nanomedicine, Institute of Life Sciences , Bhubaneswar, India
| | - K Krishnakumar
- Department of Ocular pathology Vision Research Foundation Sankara Nethralaya , Chennai, India
| | - Sk Sahoo
- Laboratory of Nanomedicine, Institute of Life Sciences , Bhubaneswar, India
| |
Collapse
|
191
|
Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R, Schoen FJ, Toner M, Mooney D, Atala A, Van Dyke ME, Kaplan D, Vunjak-Novakovic G. Engineering complex tissues. TISSUE ENGINEERING 2006; 12:3307-39. [PMID: 17518671 PMCID: PMC2821210 DOI: 10.1089/ten.2006.12.3307] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article summarizes the views expressed at the third session of the workshop "Tissue Engineering--The Next Generation," which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a "guided interplay" between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from "adult biology" of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician's perspective for functional tissue regeneration, and discussed new biomaterials that can be used to develop new regenerative technologies.
Collapse
Affiliation(s)
- Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Rocha LB, Adam RL, Leite NJ, Metze K, Rossi MA. Biomineralization of polyanionic collagen–elastin matrices during cavarial bone repair. J Biomed Mater Res A 2006; 79:237-45. [PMID: 16817211 DOI: 10.1002/jbm.a.30782] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The polyanionic collagen-elastin matrices (PCEMs) are osteoconductive scaffolds that present high biocompatibility and efficacy in the regeneration of bone defects. In this study, the objective was to determine if these matrices are directly mineralized during the osteogenesis process and their influence in the organization of the new bone extracellular matrix. Samples of three PCEMs, differing in their charge density, were implanted into critical-sized calvarial bone defects created in rats and evaluated from 3 days up to 1 year after implantation. The implanted PCEMs were directly biomineralized by osteoblasts as shown by ultrastructural, histoenzymologic, and morphologic analysis. The removal of the implants occurred during the bone remodeling process. The organization of the new bone matrix was evaluated by image texture analysis determining the Shannon's entropy and the fractal dimension of digital images. The bone matrix complexity decreased as the osteogenesis progressed approaching the values obtained for the original bone structure. These results show that the PCEMs allow faster formation of new bone by direct biomineralization of its structure and skipping the biomaterial resorption phase.
Collapse
Affiliation(s)
- Lenaldo B Rocha
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
193
|
Heckmann L, Fiedler J, Mattes T, Brenner RE. Mesenchymal progenitor cells communicate via alpha and beta integrins with a three-dimensional collagen type I matrix. Cells Tissues Organs 2006; 182:143-54. [PMID: 16914917 DOI: 10.1159/000093964] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIMS The aim of our study was to investigate interactions of mesenchymal progenitor cells (MPCs) with collagen matrices. METHODS Human bone-marrow-derived MPCs were cultivated in collagen type I gels with and without inhibition of beta(1)-integrin by a specific antibody. Collagen gel contraction, cell morphology, expression of integrin subunits and several genes related to matrix synthesis and turnover as well as MPC differentiation were analyzed over 14 days. RESULTS Human MPCs markedly contracted free-floating collagen gels. Contraction was nearly completely inhibited by blocking beta(1)-integrin. Cellular morphology was elongated in the absence and mostly round in the presence of the antibody. Expression of integrin alpha(1), alpha(2) and beta(1) subunits showed several changes partly dependent on beta(1)-integrin blocking. Expression of matrix metalloproteinase-1 was elevated irrespective of beta(1)-integrin blocking and tenascin-C was subsequently induced during gel contraction. Spontaneous induction of chondrogenic, osteogenic or adipogenic differentiation was observed neither in the presence nor in the absence of the beta(1)-integrin antibody. CONCLUSION Our results indicate that the interaction of human MPCs with fibrillar collagen type I involves beta(1)- and alpha-integrin subunits and induces changes in gene expression related to extracellular matrix synthesis and turnover but not differentiation to the chondrogenic, osteogenic or adipogenic phenotype.
Collapse
Affiliation(s)
- Leslie Heckmann
- Department of Orthopedics, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
194
|
Srisuwan T, Tilkorn DJ, Wilson JL, Morrison WA, Messer HM, Thompson EW, Abberton KM. Molecular aspects of tissue engineering in the dental field. Periodontol 2000 2006; 41:88-108. [PMID: 16686928 DOI: 10.1111/j.1600-0757.2006.00176.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tanida Srisuwan
- Bernard O'Brien Institute of Microsurgery, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
195
|
Pham QP, Sharma U, Mikos AG. Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/ten.2006.12.ft-65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
196
|
Abstract
Fibrinogen and fibrin play an important role in blood clotting, fibrinolysis, cellular and matrix interactions, inflammation, wound healing, angiogenesis, and neoplasia. The contribution of fibrin(ogen) to these processes largely depends not only on the characteristics of the fibrin(ogen) itself, but also on interactions between specific-binding sites on fibrin(ogen), pro-enzymes, clotting factors, enzyme inhibitors, and cell receptors. In this review, the molecular and cellular biology of fibrin(ogen) is reviewed in the context of cutaneous wound repair. The outcome of wound healing depends largely on the fibrin structure, such as the thickness of the fibers, the number of branch points, the porosity, and the permeability. The binding of fibrin(ogen) to hemostasis proteins and platelets as well as to several different cells such as endothelial cells, smooth muscle cells, fibroblasts, leukocytes, and keratinocytes is indispensable during the process of wound repair. High-molecular-weight and low-molecular-weight fibrinogen, two naturally occurring variants of fibrin, are important determinants of angiogenesis and differ in their cell growth stimulation, clotting rate, and fibrin polymerization characteristics. Fibrin sealants have been investigated as matrices to promote wound healing. These sealants may also be an ideal delivery vehicle to deliver extra cells for the treatment of chronic wounds.
Collapse
Affiliation(s)
- N Laurens
- Department of Biomedical Research, TNO-Quality of Life, Gaubius Laboratory, Leiden, the Netherlands
| | | | | |
Collapse
|
197
|
Pham QP, Sharma U, Mikos AG. Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. ACTA ACUST UNITED AC 2006; 12:1197-211. [PMID: 16771634 DOI: 10.1089/ten.2006.12.1197] [Citation(s) in RCA: 1302] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interest in electrospinning has recently escalated due to the ability to produce materials with nanoscale properties. Electrospun fibers have been investigated as promising tissue engineering scaffolds since they mimic the nanoscale properties of native extracellular matrix. In this review, we examine electrospinning by providing a brief description of the theory behind the process, examining the effect of changing the process parameters on fiber morphology, and discussing the potential applications and impacts of electrospinning on the field of tissue engineering.
Collapse
Affiliation(s)
- Quynh P Pham
- Department of Bioengineering, Rice University, Houston, Texas 77251-1892, USA
| | | | | |
Collapse
|
198
|
Abukawa H, Papadaki M, Abulikemu M, Leaf J, Vacanti JP, Kaban LB, Troulis MJ. The engineering of craniofacial tissues in the laboratory: a review of biomaterials for scaffolds and implant coatings. Dent Clin North Am 2006; 50:205-16, viii. [PMID: 16530058 DOI: 10.1016/j.cden.2005.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tissue engineering is a rapidly growing interdisciplinary field that focuses on the interactions between cells, growth factors, and scaffolds to produce replacement tissue and organs. Recent developments in tissue engineering technology include refinements in isolation and differentiation of progenitor cells, 3-D printing technology to produce scaffolds, new biomaterials for scaffolds, and growth factor delivery systems. The purpose of this article is to review advances in biomaterials, scaffolds, and implant coatings for craniomaxillofacial (bone) tissue engineering.
Collapse
Affiliation(s)
- Haru Abukawa
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
199
|
Sweitzer SM, Fann SA, Borg TK, Baynes JW, Yost MJ. What Is the Future of Diabetic Wound Care? DIABETES EDUCATOR 2006; 32:197-210. [PMID: 16554422 DOI: 10.1177/0145721706286897] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With diabetes affecting 5% to 10% of the US population, development of a more effective treatment for chronic diabetic wounds is imperative. Clinically, the current treatment in topical wound management includes debridement, topical antibiotics, and a state-of-the-art topical dressing. State-of-the-art dressings are a multi-layer system that can include a collagen cellulose substrate, neonatal foreskin fibroblasts, growth factor containing cream, and a silicone sheet covering for moisture control. Wound healing time can be up to 20 weeks. The future of diabetic wound healing lies in the development of more effective artificial "smart" matrix skin substitutes. This review article will highlight the need for novel smart matrix therapies. These smart matrices will release a multitude of growth factors, cytokines, and bioactive peptide fragments in a temporally and spatially specific, event-driven manner. This timed and focal release of cytokines, enzymes, and pharmacological agents should promote optimal tissue regeneration and repair of full-thickness wounds. Development of these kinds of therapies will require multidisciplinary translational research teams. This review article outlines how current advances in proteomics and genomics can be incorporated into a multidisciplinary translational research approach for developing novel smart matrix dressings for ulcer treatment. With the recognition that the research approach will require both time and money, the best treatment approach is the prevention of diabetic ulcers through better foot care, education, and glycemic control.
Collapse
Affiliation(s)
- Sarah M Sweitzer
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, School of Medicine, Columbia, 29208, USA.
| | | | | | | | | |
Collapse
|
200
|
Datta N, P. Pham Q, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci U S A 2006; 103:2488-93. [PMID: 16477044 PMCID: PMC1413766 DOI: 10.1073/pnas.0505661103] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Indexed: 01/25/2023] Open
Abstract
This study instituted a unique approach to bone tissue engineering by combining effects of mechanical stimulation in the form of fluid shear stresses and the presence of bone-like extracellular matrix (ECM) on osteodifferentiation. Rat marrow stromal cells (MSCs) harvested from bone marrow were cultured on titanium (Ti) fiber mesh discs for 12 days in a flow perfusion system to generate constructs containing bone-like ECM. To observe osteodifferentiation and bone-like matrix deposition, these decellularized constructs and plain Ti fiber meshes were seeded with MSCs (Ti/ECM and Ti, respectively) and cultured in the presence of fluid shear stresses either with or without the osteogenic culture supplement dexamethasone. The calcium content, alkaline phosphatase activity, and osteopontin secretion were monitored as indicators of MSC differentiation. Ti/ECM constructs demonstrated a 75-fold increase in calcium content compared with their Ti counterparts after 16 days of culture. After 16 days, the presence of dexamethasone enhanced the effects of fluid shear stress and the bone-like ECM by increasing mineralization 50-fold for Ti/ECM constructs; even in the absence of dexamethasone, the Ti/ECM constructs exhibited approximately a 40-fold increase in mineralization compared with their Ti counterparts. Additionally, denatured Ti/ECM* constructs demonstrated a 60-fold decrease in calcium content compared with Ti/ECM constructs after 4 days of culture. These results indicate that the inherent osteoinductive potential of bone-like ECM along with fluid shear stresses synergistically enhance the osteodifferentiation of MSCs with profound implications on bone-tissue-engineering applications.
Collapse
Affiliation(s)
- Néha Datta
- Department of Bioengineering, Rice University, MS-142, P.O. Box 1892, Houston, TX 77251-1892
| | - Quynh P. Pham
- Department of Bioengineering, Rice University, MS-142, P.O. Box 1892, Houston, TX 77251-1892
| | - Upma Sharma
- Department of Bioengineering, Rice University, MS-142, P.O. Box 1892, Houston, TX 77251-1892
| | - Vassilios I. Sikavitsas
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, 100 East Boyd, T-335, Norman, OK 73019; and
| | - John A. Jansen
- Department of Periodontology and Biomaterials, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, MS-142, P.O. Box 1892, Houston, TX 77251-1892
| |
Collapse
|