151
|
Chen L, Wang H, Zhang Z, Li Z, He D, Sokabe M, Chen L. DMXB (GTS-21) ameliorates the cognitive deficits in beta amyloid(25-35(-) ) injected mice through preventing the dysfunction of alpha7 nicotinic receptor. J Neurosci Res 2010; 88:1784-94. [PMID: 20127813 DOI: 10.1002/jnr.22345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Intracerebroventricular injection of beta-amyloid(25-35) (Abeta(25-35)) in mice leads to cognitive deficits with the dysfunction of alpha7 nicotinic acetylcholine receptor (alpha7nAChR) within 1-2 weeks in a dose-dependent manner. The present study focused on the effect of DMXB, a selective alpha7nAChR agonist, on Abeta(25-35) (3 nmol)-impaired spatial memory and alpha7nAChR function. We found that the treatment with DMXB on days 1-10 after Abeta(25-35) injection dose-dependently prevented Abeta(25-35)-induced impairment of acquisition performance and probe trail test in Morris water maze. Importantly, the treatment with DMXB (1 mg/kg) perfectly prevented Abeta(25-35)-induced depression of alpha7nAChR response, which was associated with improving the probability of presynaptic glutamate release and the induction of high-frequency stimulation (HFS)-dependent long-term potentiation (LTP) in hippocampal Schaffer collaterale-CA1 synapse. Furthermore, although either the basal level of extracellular signal-regulated kinase 2 (ERK2) or its phosphorylation in the hippocampus had no difference between control and Abeta(25-35) mice, the Abeta(25-35) injection significantly attenuated HFS-triggered increase in ERK2 phosphorylation. The treatment with DMXB also rescued the ERK2 phosphorylation triggered by HFS in Abeta(25-35) mice that is required for LTP induction. This study firstly provides in vivo evidence that the anti-amnesic effect of DMXB is likely due to preventing the Abeta(25-35)-induced dysfunction of alpha7nAChR.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
152
|
Alkam T, Nitta A, Furukawa-Hibi Y, Niwa M, Mizoguchi H, Yamada K, Nabeshima T. Oral supplementation with Leu-Ile, a hydrophobic dipeptide, prevents the impairment of memory induced by amyloid beta in mice via restraining the hyperphosphorylation of extracellular signal-regulated kinase. Behav Brain Res 2010; 210:184-90. [DOI: 10.1016/j.bbr.2010.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 02/06/2010] [Accepted: 02/12/2010] [Indexed: 11/25/2022]
|
153
|
Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci 2010; 30:3326-38. [PMID: 20203192 DOI: 10.1523/jneurosci.5098-09.2010] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.
Collapse
|
154
|
Tarozzi A, Morroni F, Merlicco A, Bolondi C, Teti G, Falconi M, Cantelli-Forti G, Hrelia P. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity. Neurosci Lett 2010; 473:72-6. [DOI: 10.1016/j.neulet.2010.02.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/19/2010] [Accepted: 02/02/2010] [Indexed: 11/26/2022]
|
155
|
Chang KH, de Pablo Y, Lee HP, Lee HG, Smith MA, Shah K. Cdk5 is a major regulator of p38 cascade: relevance to neurotoxicity in Alzheimer's disease. J Neurochem 2010; 113:1221-9. [PMID: 20345761 DOI: 10.1111/j.1471-4159.2010.06687.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase (Cdk) 5 and p38 activities are significantly increased in Alzheimer's Disease (AD). Both p38 and Cdk5 promote neurodegeneration upon deregulation. However, to date the mechanistic link between Cdk5 and p38 remains unclear. This study presents the first mechanism showing Cdk5 as a major regulator of p38 cascade in neurons and in transgenic mouse model of AD. Using beta-amyloid and glutamate as the neurotoxic stimuli, our results show that deregulated Cdk5 induces p38 activation by increasing reactive oxygen species (ROS) in neuronal cells and in primary cortical neurons. Elimination of ROS inhibits p38 activation, revealing ROS as major stimuli of the p38 cascade. Importantly, Cdk5-mediated p38 activation increases c-Jun expression, thereby revealing a mechanistic link between deregulated Cdk5 and c-Jun level in AD brains. c-Jun is over-expressed in AD, and is believed to contribute significantly to neurodegeneration. Based on the proposed mechanism, Cdk5 inhibition is more neuroprotective relative to p38 and c-Jun, suggesting that Cdk5 is an upstream regulator of neurodegenerative pathways triggered by p38 and a preferable therapeutic target for AD.
Collapse
Affiliation(s)
- Kuei-Hua Chang
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
156
|
Hashimoto M, Katakura M, Hossain S, Rahman A, Shimada T, Shido O. Docosahexaenoic acid withstands the Aβ(25-35)-induced neurotoxicity in SH-SY5Y cells. J Nutr Biochem 2010; 22:22-9. [PMID: 20226652 DOI: 10.1016/j.jnutbio.2009.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 10/30/2009] [Accepted: 11/06/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND Docosahexaenoic acid (DHA, C22:6, n-3) ameliorates the memory-related learning deficits of Alzheimer's disease (AD), which is characterized by fibrillar amyloid deposits in the affected brains. Here, we have investigated whether DHA-induced inhibition of Amyloid β-peptide(25-35) (Aβ(25-35)) fibrillation limits or deteriorates the toxicity of the human neuroblastoma cells (SH-SY5Y). EXPERIMENTAL METHODS In vitro fibrillation of Aβ(25-35) was performed in the absence or presence of DHA. Afterwards, SH-SY5Y cells were incubated with Aβ(25-35) in absence or presence 20 μM DHA to evaluate its effect on the Aβ(25-35)-induced neurotoxicity by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)]-redox and TUNEL (TdT-mediated dUTP-biotin nick end-labeling) assay and immunohistochemistry. The level of Aβ(25-35)-induced lipid peroxide (LPO) was determined in the absence or presence of oligomer-specific antibody. Fatty acid profile was estimated by gas chromatography. RESULTS DHA significantly reduced the Aβ(25-35) in vitro fibrillation, as indicated by fluorospectroscopy and transmission electron microscopy. Aβ(25-35) decreased the MTT-redox activity and increased the apoptotic damage and levels of LPO when compared with those of the controls. However, when the SH-SY5Y cells were treated with Aβ(25-35) in the presence of DHA, MTT redox potential significantly increased and the levels LPO decreased, suggesting an inhibition of the Aβ(25-35)-induced neurotoxicity. DHA improved the Aβ(25-35) induced DNA damage and axodendritic loss, with a concomitant increase in the cellular level of DHA, suggesting DHA protects the cell from neurotoxic degeneration. CONCLUSION DHA not only inhibits the in vitro fibrillation but also resists the Aβ(25-35)-induced toxicity in the neuronal cells. This might be the basis of the DHA-induced amelioration of Aβ-induced neurodegeneration and related cognitive deficits.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | | | | | | | | | | |
Collapse
|
157
|
Peña F, Ordaz B, Balleza-Tapia H, Bernal-Pedraza R, Márquez-Ramos A, Carmona-Aparicio L, Giordano M. Beta-amyloid protein (25-35) disrupts hippocampal network activity: role of Fyn-kinase. Hippocampus 2010; 20:78-96. [PMID: 19294646 DOI: 10.1002/hipo.20592] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early cognitive deficit characteristic of early Alzheimer's disease seems to be produced by the soluble forms of beta-amyloid protein. Such cognitive deficit correlates with neuronal network dysfunction that is reflected as alterations in the electroencephalogram of both Alzheimer patients and transgenic murine models of such disease. Correspondingly, recent studies have demonstrated that chronic exposure to betaAP affects hippocampal oscillatory properties. However, it is still unclear if such neuronal network dysfunction results from a direct action of betaAP on the hippocampal circuit or it is secondary to the chronic presence of the protein in the brain. Therefore, we aimed to explore the effect of acute exposure to betaAP(25-35) on hippocampal network activity both in vitro and in vivo, as well as on intrinsic and synaptic properties of hippocampal neurons. We found that betaAP(25-35), reversibly, affects spontaneous hippocampal population activity in vitro. Such effect is not produced by the inverse sequence betaAP(35-25) and is reproduced by the full-length peptide betaAP(1-42). Correspondingly betaAP(25-35), but not the inverse sequence betaAP(35-25), reduces theta-like activity recorded from the hippocampus in vivo. The betaAP(25-35)-induced disruption in hippocampal network activity correlates with a reduction in spontaneous neuronal activity and synaptic transmission, as well as with an inhibition in the subthreshold oscillations produced by pyramidal neurons in vitro. Finally, we studied the involvement of Fyn-kinase on the betaAP(25-35)-induced disruption in hippocampal network activity in vitro. Interestingly, we found that such phenomenon is not observed in slices obtained from Fyn-knockout mice. In conclusion, our data suggest that betaAP acutely affects proper hippocampal function through a Fyn-dependent mechanism. We propose that such alteration might be related to the cognitive impairment observed, at least, during the early phases of Alzheimer's disease.
Collapse
Affiliation(s)
- Fernando Peña
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados Sede Sur, México, D.F., México.
| | | | | | | | | | | | | |
Collapse
|
158
|
Duclot F, Meffre J, Jacquet C, Gongora C, Maurice T. Mice knock out for the histone acetyltransferase p300/CREB binding protein-associated factor develop a resistance to amyloid toxicity. Neuroscience 2010; 167:850-63. [PMID: 20219649 DOI: 10.1016/j.neuroscience.2010.02.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/11/2010] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
Abstract
p300/CREB binding protein-associated factor (PCAF) regulates gene expression by acting through histone acetylation and as a transcription coactivator. Although histone acetyltransferases were involved in the toxicity induced by amyloid-beta (Abeta) peptides, nothing is known about PCAF. We here analyzed the sensitivity of PCAF knockout (KO) mice to the toxic effects induced by i.c.v. injection of Abeta(25-35) peptide, a nontransgenic model of Alzheimer's disease. PCAF wild-type (WT) and KO mice received Abeta(25-35) (1, 3 or 9 nmol) or scrambled Abeta(25-35) (9 nmol) as control. After 7 days, Abeta(25-35) toxicity was measured in the hippocampus of WT mice by a decrease in CA1 pyramidal cells and increases in oxidative stress, endoplasmic reticulum stress and induction of apoptosis. Memory deficits were observed using spontaneous alternation, water-maze learning and passive avoidance. Non-treated PCAF KO mice showed a decrease in CA1 cells and learning alterations. However, Abeta(25-35) injection failed to induce toxicity or worsen the deficits. This resistance to Abeta(25-35) toxicity did not involve changes in glutamate or acetylcholine systems. Examination of enzymes involved in Abeta generation or degradation revealed changes in transcription of presenilins, activity of neprilysin (NEP) and an absence of Abeta(25-35)-induced regulation of NEP activity in PCAF KO mice, partly due to an altered expression of somatostatin (SRIH). We conclude that PCAF regulates the expression of proteins involved in Abeta generation and degradation, thus rendering PCAF KO insensitive to amyloid toxicity. Modulating acetyltransferase activity may offer a new way to develop anti-amyloid therapies.
Collapse
Affiliation(s)
- F Duclot
- INSERM U 710, Montpellier, France
| | | | | | | | | |
Collapse
|
159
|
Li L, Xu B, Zhu Y, Chen L, Sokabe M, Chen L. DHEA prevents Aβ25-35-impaired survival of newborn neurons in the dentate gyrus through a modulation of PI3K-Akt-mTOR signaling. Neuropharmacology 2010; 59:323-33. [PMID: 20167228 DOI: 10.1016/j.neuropharm.2010.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/03/2010] [Accepted: 02/09/2010] [Indexed: 11/25/2022]
Abstract
Infusion (i.c.v.) of beta-amyloid 25-35 (Abeta(25-35)) stimulates proliferation of progenitor cells in the hippocampal dentate gyrus (DG) of adult male mice, but a large population of the newborn cells will die in the 2nd week after birth, a critical period for neurite growth. Neurosteroid dehydroepiandrosterone (DHEA) has been demonstrated to promote neurite growth. Herein, we report that the DHEA-treatment on 6-12 days after BrdU-injection (BrdU-D(6-12)) dose-dependently attenuates the loss of newborn neurons induced by Abeta(25-35)-infusion. The DHEA-neuroprotection was blocked by the sigma(1) receptor antagonist NE100 and mimicked by the sigma(1) receptor agonist PRE084 when administered on BrdU-D(6-12). The DHEA-action was sensitive to the PI3K inhibitor LY294002 and the mammalian target of rapamycin (mTOR) inhibitor rapamycin. The Abeta(25-35)-infusion decreased the levels of Akt, mTOR and p70S6k phosphorylation, which could be rescued by DHEA-treatment in a sigma(1) receptor-dependent manner. Furthermore, the Abeta(25-35)-infusion led to a decrease in the dendritic density and length of doublecortin positive cells in the DG, which also was improved by the DHEA-treatment on BrdU-D(6-12). These findings suggest that DHEA prevents the Abeta(25-35)-impaired survival and dendritic growth of newborn neurons through a sigma(1) receptor-mediated modulation of PI3K-Akt-mTOR-p70S6k signaling.
Collapse
Affiliation(s)
- Liang Li
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
160
|
Liu RT, Zou LB, Fu JY, Lu QJ. Effects of liquiritigenin treatment on the learning and memory deficits induced by amyloid beta-peptide (25-35) in rats. Behav Brain Res 2010; 210:24-31. [PMID: 20117143 DOI: 10.1016/j.bbr.2010.01.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 02/07/2023]
Abstract
Considerable evidence has emerged supporting the neuroprotective and cognition-preserving effects of estrogen, but these benefits are complicated by the evidence that estrogen increases the risk of certain cancers. Selective estrogen receptor modulators (SERMs) that specifically target the brain while avoiding peripheral organs offer a way to allow the application of estrogen treatment to neurodegenerative diseases with fewer undesirable effects. In an attempt to find such estrogen substitutes, liquiritigenin was discovered as a relatively selective estrogen receptor beta (ERbeta) agonist. In the present study, we extend our previous findings to investigate the effects of liquiritigenin on the learning and memory deficits and related neuropathology in Abeta(25-35) hippocampal-injected rats. Our results show that liquiritigenin treatment improves the behavioral performance of the model rats and attenuates neuronal loss in the brain. More importantly, liquiritigenin treatment decreases mRNA levels and protein expression of Notch-2, an effect that could promote the generation of new neurons. These findings provide evidence for the beneficial activity of liquiritigenin in a brain-injured rat model and support the continued investigation of SERMs such as liquiritigenin as an alternative to estrogen-based hormone therapy in reducing the risk of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Rui Ting Liu
- School of Life Science and Biological Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | |
Collapse
|
161
|
Gulyaeva NV, Stepanichev MY. Abeta(25-35) as proxyholder for amyloidogenic peptides: in vivo evidence. Exp Neurol 2010; 222:6-9. [PMID: 20043907 DOI: 10.1016/j.expneurol.2009.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022]
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity & Neurophysiology, Russian Academy of Sciences, 5a Butlerov Street, Moscow 117485, Russia.
| | | |
Collapse
|
162
|
Wei G, Jewett AI, Shea JE. Structural diversity of dimers of the Alzheimer amyloid-β(25–35) peptide and polymorphism of the resulting fibrils. Phys Chem Chem Phys 2010; 12:3622-9. [DOI: 10.1039/c000755m] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
163
|
Maltsev A, Galzitskaya O. Formation and participation of nano-amyloids in pathogenesis of Alzheimer's disease and other amyloidogenic diseases. ACTA ACUST UNITED AC 2010. [DOI: 10.18097/pbmc20105606624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Studies of neurodegenetrative disorders have become particularly actual attracting the attention of researchers from over the world because of the dissemination of Alzheimer's disease. The reason for such pathogenesis is the transition of a "healthy" molecule or peptide from the native conformation into a very stable "pathological" isoform. During this, molecules in the "pathological" conformation aggregate, forming amyloid fibrils that can increase without any control. Novel knowledge is required on sporadic isoforms of Alzheimer's disease, on the nature of triggering mechanisms of conformational transitions of beta-amyloid fragments from normally functioning proteins into new formations - nano-beta-amyloids - that spiral out of control of neurons and organism which leads to the loss of neurons. Herein we review studies devoted to the formation of amyloid fibrils and their role in pathogenesis of amyloid diseases.
Collapse
Affiliation(s)
- A.V. Maltsev
- Russian Gerontological Research Clinical Center, Russian Ministry of Health Care
Institute of Biological Instrumentation, Russian Academy of Sciences
| | - O.V. Galzitskaya
- Insitute of Protein Research, Russian Academy of Sciences, Pushchino
| |
Collapse
|
164
|
Aliaga E, Silhol M, Bonneau N, Maurice T, Arancibia S, Tapia-Arancibia L. Dual response of BDNF to sublethal concentrations of beta-amyloid peptides in cultured cortical neurons. Neurobiol Dis 2009; 37:208-17. [PMID: 19822210 DOI: 10.1016/j.nbd.2009.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/25/2009] [Accepted: 10/02/2009] [Indexed: 02/06/2023] Open
Abstract
Beta-amyloid (Abeta) deposition is one important pathological hallmark in Alzheimer's disease (AD). However, low levels of Abeta may modify critical endogenous protection systems before neurodegeneration occurs. We examined the time-course effect of sublethal concentrations of Abeta on total BDNF (panBDNF), BDNF transcripts (I, II, IV and VI), trkB.FL, trkB.T1 and p75(NGFR) mRNA expression in cultured cortical neurons. We have shown that Abeta exhibited a dual response on BDNF mRNA, i.e. an increase at short times (3-5 h) and a dramatic decrease at longer times (24 or 48 h). The early increase in BDNF expression seems to be driven by increased expression of transcripts I and IV. The BDNF drop was specific since did not occur for other mRNAs examined. The BDNF protein content showed a similar profile but did not follow the dramatic reduction as its encoding mRNA. These observations may help to explain cognitive deficits observed at initial stages of AD.
Collapse
Affiliation(s)
- E Aliaga
- Centro de Neurobiología y Plasticidad del Desarrollo, Departamento de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
The highly toxic A beta (25-35) is a peculiar peptide that differs from all the other commonly studied beta-amyloid peptides because of its extremely rapid aggregation properties and enhanced neurotoxicity. We investigated A beta (25-35) aggregation in H2O at pH 3.0 and at pH 7.4 by means of in-solution analyses. Adopting UV spectroscopy, Congo red spectrophotometry and thioflavin T fluorimetry, we were able to quantify, in water, the very fast assembling time necessary for A beta (25-35) to form stable insoluble aggregates and their ability to seed or not seed fibril growth. Our quantitative results, which confirm a very rapid assembly leading to stable insoluble aggregates of A beta (25-35) only when incubated at pH 7.4, might be helpful for designing novel aggregation inhibitors and to shed light on the in vivo environment in which fibril formation takes place.
Collapse
|
166
|
Sun KH, Lee HG, Smith MA, Shah K. Direct and indirect roles of cyclin-dependent kinase 5 as an upstream regulator in the c-Jun NH2-terminal kinase cascade: relevance to neurotoxic insults in Alzheimer's disease. Mol Biol Cell 2009; 20:4611-9. [PMID: 19776350 DOI: 10.1091/mbc.e09-05-0433] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Significant increase in JNK, c-Jun, and Cdk5 activities are reported in Alzheimer's disease (AD). Inhibition of c-Jun prevents neuronal cell death in in vivo AD models, highlighting it as a major JNK effector. Both JNK and Cdk5 promote neurodegeneration upon deregulation; however, Cdk5 has not been mechanistically linked to JNK or c-Jun. This study presents the first mechanism showing Cdk5 as a major regulator of the JNK cascade. Deregulated Cdk5 induces biphasic activation of JNK pathway. The first phase revealed c-Jun as a direct substrate of Cdk5, whose activation is independent of reactive oxygen species (ROS) and JNK. In the second phase, Cdk5 activates c-Jun via ROS-mediated activation of JNK. Rapid c-Jun activation is supported by in vivo data showing c-Jun phosphorylation in cerebral cortex upon p25 induction in transgenic mice. Cdk5-mediated biphasic activation of c-Jun highlights c-Jun, rather than JNK, as an important therapeutic target, which was confirmed in neuronal cells. Finally, Cdk5 inhibition endows superior protection against neurotoxicity, suggesting that Cdk5 is a preferable therapeutic target for AD relative to JNK and c-Jun.
Collapse
Affiliation(s)
- Kai-Hui Sun
- Department of Chemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
167
|
Kaminsky YG, Marlatt MW, Smith MA, Kosenko EA. Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: evidence for Abeta(25-35). Exp Neurol 2009; 221:26-37. [PMID: 19751725 DOI: 10.1016/j.expneurol.2009.09.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 11/28/2022]
Abstract
Amyloid-beta peptide (Abeta) is a central player in the pathogenesis and diagnosis of Alzheimer disease. It aggregates to form the core of Alzheimer disease-associated plaques found in coordination with tau deposits in diseased individuals. Despite this clinical relevance, no single hypothesis satisfies and explicates the role of Abeta in toxicity and progression of the disease. To explore this area, investigators have focused on mechanisms of cellular dysfunction, aggregation, and maladaptive responses. Extensive research has been conducted using various methodologies to investigate Abeta peptides and oligomers, and these multiple facets have provided a wealth of data from specific models. Notably, the utility of each experiment must be considered in regards to the brain environment. The use of Abeta(25-35) in studies of cellular dysfunction has provided data indicating that the peptide is indeed responsible for multiple disturbances to cellular integrity. We will review how Abeta peptide induces oxidative stress and calcium homeostasis, and how multiple enzymes are deleteriously impacted by Abeta(25-35). Understanding and discussing the origin and properties of Abeta peptides is essential to evaluating their effects on various intracellular metabolic processes. Attention will also be specifically directed to metabolic compartmentation in affected brain cells, including mitochondrial, cytosolic, nuclear, and lysosomal enzymes.
Collapse
Affiliation(s)
- Yury G Kaminsky
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Russia.
| | | | | | | |
Collapse
|
168
|
Lu P, Mamiya T, Lu LL, Mouri A, Niwa M, Hiramatsu M, Zou LB, Nagai T, Ikejima T, Nabeshima T. Silibinin attenuates amyloid beta(25-35) peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice. J Pharmacol Exp Ther 2009; 331:319-26. [PMID: 19638571 DOI: 10.1124/jpet.109.155069] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Alzheimer's disease (AD), the deposition of amyloid peptides is invariably associated with oxidative stress and inflammatory responses. Silibinin (silybin), a flavonoid derived from the herb milk thistle, has potent anti-inflammatory and antioxidant activities. However, it remains unclear whether silibinin improves amyloid beta (Abeta) peptide-induced neurotoxicity. In this study, we examined the effect of silibinin on the fear-conditioning memory deficits, inflammatory response, and oxidative stress induced by the intracerebroventricular injection of Abeta peptide(25-35) (Abeta(25-35)) in mice. Mice were treated with silibinin (2, 20, and 200 mg/kg p.o., once a day for 8 days) from the day of the Abeta(25-35) injection (day 0). Memory function was evaluated in cued and contextual fear-conditioning tests (day 6). Nitrotyrosine levels in the hippocampus and amygdala were examined (day 8). The mRNA expression of inducible nitric-oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-alpha) in the hippocampus and amygdala was measured 2 h after the Abeta(25-35) injection. We found that silibinin significantly attenuated memory deficits caused by Abeta(25-35) in the cued and contextual fear-conditioning test. Silibinin significantly inhibited the increase in nitrotyrosine levels in the hippocampus and amygdala induced by Abeta(25-35). Nitrotyrosine levels in these regions were negatively correlated with memory performance. Moreover, real-time RT-PCR revealed that silibinin inhibited the overexpression of iNOS and TNF-alpha mRNA in the hippocampus and amygdala induced by Abeta(25-35). These findings suggest that silibinin (i) attenuates memory impairment through amelioration of oxidative stress and inflammatory response induced by Abeta(25-35) and (ii) may be a potential candidate for an AD medication.
Collapse
Affiliation(s)
- P Lu
- Department of Chemical Pharmacology, Meijo University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Kaminsky YG, Kosenko EA. Effects of amyloid-beta peptides on hydrogen peroxide-metabolizing enzymes in rat brainin vivo. Free Radic Res 2009; 42:564-73. [DOI: 10.1080/10715760802159057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
170
|
Lu P, Mamiya T, Lu LL, Mouri A, Zou L, Nagai T, Hiramatsu M, Ikejima T, Nabeshima T. Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 2009; 157:1270-7. [PMID: 19552690 DOI: 10.1111/j.1476-5381.2009.00295.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Accumulated evidence suggests that oxidative stress is involved in amyloid beta (Abeta)-induced cognitive dysfunction. Silibinin (silybin), a flavonoid derived from the herb milk thistle (Silybum marianum), has been shown to have antioxidative properties; however, it remains unclear whether silibinin improves Abeta-induced neurotoxicity. In the present study, we examined the effect of silibinin on the memory impairment and accumulation of oxidative stress induced by Abeta(25-35) in mice. EXPERIMENTAL APPROACH Aggregated Abeta(25-35) (3 nmol) was intracerebroventricularly administered to mice. Treatment with silibinin (2, 20 and 200 mg.kg(-1), once a day, p.o.) was started immediately after the injection of Abeta(25-35). Locomotor activity was evaluated 6 days after the Abeta(25-35) treatment, and cognitive function was evaluated in a Y-maze and novel object recognition tests 6-11 days after the Abeta(25-35) treatment. The levels of lipid peroxidation (malondialdehyde) and antioxidant (glutathione) in the hippocampus were measured 7 days after the Abeta(25-35) injection. KEY RESULTS Silibinin prevented the memory impairment induced by Abeta(25-35) in the Y-maze and novel object recognition tests. Repeated treatment with silibinin attenuated the Abeta(25-35)-induced accumulation of malondialdehyde and depletion of glutathione in the hippocampus. CONCLUSIONS AND IMPLICATIONS Silibinin prevents memory impairment and oxidative damage induced by Abeta(25-35) and may be a potential therapeutic agent for Alzheimer's disease.
Collapse
Affiliation(s)
- P Lu
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Villard V, Espallergues J, Keller E, Alkam T, Nitta A, Yamada K, Nabeshima T, Vamvakides A, Maurice T. Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35)-induced toxicity in mice. Neuropsychopharmacology 2009; 34:1552-66. [PMID: 19052542 DOI: 10.1038/npp.2008.212] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The antiamnesic and neuroprotective activities of the new aminotetrahydrofuran derivative tetrahydro-N,N-dimethyl-5,5-diphenyl-3-furanmethanamine hydrochloride (ANAVEX1-41), a nonselective muscarinic receptor ligand and sigma1 protein activator, were examined in mice injected intracerebroventricularly with amyloid beta(25-35) (Abeta(25-35)) peptide (9 nmol). Abeta(25-35) impaired significantly spontaneous alternation performance, a spatial working memory, and passive avoidance response. When ANAVEX1-41 (1-1000 microg/kg i.p.) was administered 7 days after Abeta(25-35), ie, 20 min before the behavioral tests, it significantly reversed the Abeta(25-35)-induced deficits, the most active doses being in the 3-100 microg/kg range. When the compound was preadministered 20 min before Abeta(25-35), ie, 7 days before the tests, it prevented the learning impairments at 30-100 microg/kg. Morphological analysis of corticolimbic structures showed that Abeta(25-35) induced a significant cell loss in the CA1 pyramidal cell layer of the hippocampus that was prevented by ANAVEX1-41 (100 microg/kg). Increased number of glial fibrillary acidic protein immunopositive cells in the retrosplenial cortex or throughout the hippocampus revealed an Abeta(25-35)-induced inflammation that was prevented by ANAVEX1-41. The drug also prevented the parameters of Abeta(25-35)-induced oxidative stress measured in hippocampus extracts, ie, the increases in lipid peroxidation and protein nitration. ANAVEX1-41, however, failed to prevent Abeta(25-35)-induced caspase-9 expression. The compound also blocked the Abeta(25-35)-induced caspase-3 expression, a marker of apoptosis. Both the muscarinic antagonist scopolamine and the sigma1 protein inactivator BD1047 prevented the beneficial effects of ANAVEX1-41 (30 or 100 microg/kg) against Abeta(25-35)-induced learning impairments, suggesting that muscarinic and sigma1 targets are involved in the drug effect. A synergic effect could indeed account for the very low active doses measured in vivo. These data outline the therapeutic potential of ANAVEX1-41 as a neuroprotective agent in Alzheimer's disease.
Collapse
Affiliation(s)
- Vanessa Villard
- INSERM U.710, University of Montpellier 2, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Hashimoto M, Shahdat HM, Katakura M, Tanabe Y, Gamoh S, Miwa K, Shimada T, Shido O. Effects of docosahexaenoic acid on in vitro amyloid beta peptide 25–35 fibrillation. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:289-96. [DOI: 10.1016/j.bbalip.2009.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/22/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
|
173
|
Burgos-Ramos E, Martos-Moreno GÁ, López MG, Herranz R, Aguado-Llera D, Egea J, Frechilla D, Cenarruzabeitia E, León R, Arilla-Ferreiro E, Argente J, Barrios V. The N-terminal tripeptide of insulin-like growth factor-I protects against β-amyloid-induced somatostatin depletion by calcium and glycogen synthase kinase 3β modulation. J Neurochem 2009; 109:360-70. [DOI: 10.1111/j.1471-4159.2009.05980.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
174
|
Limón ID, Mendieta L, Díaz A, Chamorro G, Espinosa B, Zenteno E, Guevara J. Neuroprotective effect of alpha-asarone on spatial memory and nitric oxide levels in rats injected with amyloid-beta((25-35)). Neurosci Lett 2009; 453:98-103. [PMID: 19356601 DOI: 10.1016/j.neulet.2009.02.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 11/27/2022]
Abstract
The chemical alpha-asarone is an important active substance of the Acori graminei rhizome (AGR). It has pharmacological effects that include antihyperlipidemic, antiinflammatory, and antioxidant activity. Our aim was to study the effects alpha-asarone on nitric oxide (NO) levels in the hippocampus and temporal cortex of the rat after injection of the fraction 25-35 from amyloid-beta (Abeta((25-35))). In addition we examined the working spatial memory in an eight-arm radial maze. Our results showed a significant increase of nitrites in the hippocampus and temporal cortex of Abeta((25-35))-treated rats. Other evidence of neuronal damage was the expression of a glial-fibrillar-acid protein and a silver staining. There were impairments in the spatial memory evaluated in the eight-arm radial maze. We wanted to determine whether alpha-asarone improves the memory correlated with NO overproduction and neuronal damage caused by the injection of Abeta((25-35)) into rats. Then animals received a 16-day treatment of alpha-asarone before the Abeta((25-35)) injection. Our results show a significant decrease of nitrite levels in the hippocampus and temporal cortex, without astrocytosis and silver-staining cells, which correlates with memory improvement in the alpha-asarone-treated group. Our results suggest that alpha-asarone may protect neurons against Abeta((25-35))-caused neurotoxicity by inhibiting the effects of NO overproduction in the hippocampus and temporal cortex.
Collapse
Affiliation(s)
- Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | | | | | | | | |
Collapse
|
175
|
Minocycline prevents Aβ(25–35)-induced reduction of somatostatin and neprilysin content in rat temporal cortex. Life Sci 2009; 84:205-10. [DOI: 10.1016/j.lfs.2008.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/18/2008] [Accepted: 11/26/2008] [Indexed: 11/20/2022]
|
176
|
Pregnenolone protects the PC-12 cell line against amyloid beta peptide toxicity but its sulfate ester does not. Chem Biol Interact 2008; 177:65-70. [PMID: 18926803 DOI: 10.1016/j.cbi.2008.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/24/2022]
Abstract
Pregnenolone (P), the main precursor of the steroids, and its sulfate ester, pregnenolone sulfate (PS), are the major neurosteroids produced in the neural tissue. Many neuroendocrinological studies stressed the neuroprotective role of neurosteroids although it has been suggested that the inhibition of P and PS synthesis can delay neuronal cell death. The potential roles of P and PS in vital neuronal functions and in amyloid beta peptide (Abeta) toxicity are not clearly identified. This work aims to investigate the effects of P and PS on cell viability and Abeta peptide toxicity in a concentration and exposure time-dependent manner in rat PC-12 cells. The cells were treated with 20muM Abeta peptide 25-35 and variable concentrations of P and PS ranging from 0.5muM to 100muM. To examine the effects of steroid treatment on Abeta peptide toxicity, 0.5muM (low) and 50muM (high) neurosteroids were used. The cell viability and lactate dehydrogenase release of cells were evaluated after 24, 48 and 72h. Morphological changes of cells were also examined. The treatment with higher than 1muM concentrations of P and PS significantly decreased the cell viability comparing to untreated cells. At lower concentrations, P and PS had no toxic actions until 72h. The Abeta treatment resulted in a significant decrease in cell viability comparing to untreated cells. P showed a dose-dependent protective effect against Abeta peptide in PC-12 cells. But its sulfate ester did not have the same effect on Abeta peptide toxicity, even it significantly decreased cell viability in Abeta-treated cells. Consequently, the discrepant effects of P and PS on Abeta peptide toxicity may provide insight on the pathogenesis of Alzheimer's disease.
Collapse
|
177
|
Sun KH, de Pablo Y, Vincent F, Shah K. Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 2008; 107:265-78. [PMID: 18691386 DOI: 10.1111/j.1471-4159.2008.05616.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress is one of the earliest events in Alzheimer's disease (AD). A chemical genetic screen revealed that deregulated cyclin-dependent kinase 5 (Cdk5) may cause oxidative stress by compromising the cellular anti-oxidant defense system. Using novel Cdk5 modulators, we show the mechanism by which Cdk5 can induce oxidative stress in the disease's early stage and cell death in the late stage. Cdk5 dysregulation upon neurotoxic insults results in reactive oxygen species (ROS) accumulation in neuronal cells because of the inactivation of peroxiredoxin I and II. Sole temporal activation of Cdk5 also increases ROS, suggesting its major role in this process. Cdk5 inhibition rescues mitochondrial damage upon neurotoxic insults, thereby revealing Cdk5 as an upstream regulator of mitochondrial dysfunction. As mitochondrial damage results in elevated ROS and Ca(2+) levels, both of which activate Cdk5, we propose that a feedback loop occurs in late stage of AD and leads to cell death (active Cdk5 --> ROS --> excess ROS --> mitochondrial damage --> ROS --> hyperactive Cdk5 --> severe oxidative stress and cell injury --> cell death). Cdk5 inhibition upon neurotoxic insult prevents cell death significantly, supporting this hypothesis. As oxidative stress and mitochondrial dysfunction play pivotal roles in promoting neurodegeneration, Cdk5 could be a viable therapeutic target for AD.
Collapse
Affiliation(s)
- Kai-Hui Sun
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
178
|
Frozza RL, Horn AP, Hoppe JB, Simão F, Gerhardt D, Comiran RA, Salbego CG. A comparative study of beta-amyloid peptides Abeta1-42 and Abeta25-35 toxicity in organotypic hippocampal slice cultures. Neurochem Res 2008; 34:295-303. [PMID: 18686032 DOI: 10.1007/s11064-008-9776-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 06/09/2008] [Indexed: 12/28/2022]
Abstract
Accumulation of the neurotoxic amyloid beta-peptide (Abeta) in the brain is a hallmark of Alzheimer's disease (AD). Several synthetic Abeta peptides have been used to study the mechanisms of toxicity. Here, we sought to establish comparability between two commonly used Abeta peptides Abeta1-42 and Abeta25-35 on an in vitro model of Abeta toxicity. For this purpose we used organotypic slice cultures of rat hippocampus and observed that both Abeta peptides caused similar toxic effects regarding to propidium iodide uptake and caspase-3 activation. In addition, we also did not observe any effect of both peptides on Akt and PTEN phosphorylation; otherwise the phosphorylation of GSK-3beta was increased. Although further studies are necessary for understanding mechanisms underlying Abeta peptide toxicity, our results provide strong evidence that Abeta1-42 and the Abeta25-35 peptides induce neural injury in a similar pattern and that Abeta25-35 is a convenient tool for the investigation of neurotoxic mechanisms involved in AD.
Collapse
Affiliation(s)
- Rudimar Luiz Frozza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Ramiro Barcelos, 2600 - anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | | | | | | | | | | |
Collapse
|
179
|
Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. ACTA ACUST UNITED AC 2008; 59:201-20. [PMID: 18708092 DOI: 10.1016/j.brainresrev.2008.07.007] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/13/2023]
Abstract
The decline observed during aging involves multiple factors that influence several systems. It is the case for learning and memory processes which are severely reduced with aging. It is admitted that these cognitive effects result from impaired neuronal plasticity, which is altered in normal aging but mainly in Alzheimer disease. Neurotrophins and their receptors, notably BDNF, are expressed in brain areas exhibiting a high degree of plasticity (i.e. the hippocampus, cerebral cortex) and are considered as genuine molecular mediators of functional and morphological synaptic plasticity. Modification of BDNF and/or the expression of its receptors (TrkB.FL, TrkB.T1 and TrkB.T2) have been described during normal aging and Alzheimer disease. Interestingly, recent findings show that some physiologic or pathologic age-associated changes in the central nervous system could be offset by administration of exogenous BDNF and/or by stimulating its receptor expression. These molecules may thus represent a physiological reserve which could determine physiological or pathological aging. These data suggest that boosting the expression or activity of these endogenous protective systems may be a promising therapeutic alternative to enhance healthy aging.
Collapse
|
180
|
Zangger K, Gößler R, Khatai L, Lohner K, Jilek A. Structures of the glycine-rich diastereomeric peptides bombinin H2 and H4. Toxicon 2008; 52:246-54. [DOI: 10.1016/j.toxicon.2008.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 11/26/2022]
|
181
|
Arancibia S, Silhol M, Moulière F, Meffre J, Höllinger I, Maurice T, Tapia-Arancibia L. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis 2008; 31:316-26. [PMID: 18585459 DOI: 10.1016/j.nbd.2008.05.012] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/31/2008] [Accepted: 05/15/2008] [Indexed: 12/20/2022] Open
Abstract
We examined the potential protective effect of BDNF against beta-amyloid-induced neurotoxicity in vitro and in vivo in rats. In neuronal cultures, BDNF had specific and dose-response protective effects on neuronal toxicity induced by Abeta(1-42) and Abeta(25-35). It completely reversed the toxic action induced by Abeta(1-42) and partially that induced by Abeta(25-35). These effects involved TrkB receptor activation since they were inhibited by K252a. Catalytic BDNF receptors (TrkB.FL) were localized in vitro in cortical neurons (mRNA and protein). In in vivo experiments, Abeta(25-35) was administered into the indusium griseum or the third ventricle and several parameters were measured 7 days later to evaluate potential Abeta(25-35)/BDNF interactions, i.e. local measurement of BDNF release, number of hippocampal hilar cells expressing SRIH mRNA and assessment of the corpus callosum damage (morphological examination, pyknotic nuclei counting and axon labeling with anti-MBP antibody). We conclude that BDNF possesses neuroprotective properties against toxic effects of Abeta peptides.
Collapse
Affiliation(s)
- S Arancibia
- Univ Montpellier 2, Montpellier, F-34095, France.
| | | | | | | | | | | | | |
Collapse
|
182
|
Alkam T, Nitta A, Mizoguchi H, Itoh A, Murai R, Nagai T, Yamada K, Nabeshima T. The Extensive Nitration of Neurofilament Light Chain in the Hippocampus Is Associated with the Cognitive Impairment Induced by Amyloid β in Mice. J Pharmacol Exp Ther 2008; 327:137-47. [DOI: 10.1124/jpet.108.141309] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
183
|
Sun KH, de Pablo Y, Vincent F, Johnson EO, Chavers AK, Shah K. Novel genetic tools reveal Cdk5's major role in Golgi fragmentation in Alzheimer's disease. Mol Biol Cell 2008; 19:3052-69. [PMID: 18480410 PMCID: PMC2441653 DOI: 10.1091/mbc.e07-11-1106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/15/2008] [Accepted: 05/05/2008] [Indexed: 12/17/2022] Open
Abstract
Golgi fragmentation is a common feature in multiple neurodegenerative diseases; however, the precise mechanism that causes fragmentation remains obscure. A potential link between Cdk5 and Golgi fragmentation in Alzheimer's disease (AD) was investigated in this study. Because Golgi is physiologically fragmented during mitosis by Cdc2 kinase and current Cdk5-specific chemical inhibitors target Cdc2 as well, development of novel tools to modulate Cdk5 activity was essential. These enzyme modulators, created by fusing TAT sequence to Cdk5 activators and an inhibitor peptide, enable specific activation and inhibition of Cdk5 activity with high temporal control. These genetic tools revealed a major role of Cdk5 in Golgi fragmentation upon beta-amyloid and glutamate stimulation in differentiated neuronal cells and primary neurons. A crucial role of Cdk5 was further confirmed when Cdk5 activation alone resulted in robust Golgi disassembly. The underlying mechanism was unraveled using a chemical genetic screen, which yielded cis-Golgi matrix protein GM130 as a novel substrate of Cdk5. Identification of the Cdk5 phosphorylation site on GM130 suggested a mechanism by which Cdk5 may cause Golgi fragmentation upon deregulation in AD. As Cdk5 is activated in several neurodegenerative diseases where Golgi disassembly also occurs, this may be a common mechanism among multiple disorders.
Collapse
Affiliation(s)
- Kai-Hui Sun
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Yolanda de Pablo
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Fabien Vincent
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Emmanuel O. Johnson
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Angela K. Chavers
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Kavita Shah
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
184
|
Burgos-Ramos E, Hervás-Aguilar A, Aguado-Llera D, Puebla-Jiménez L, Hernández-Pinto AM, Barrios V, Arilla-Ferreiro E. Somatostatin and Alzheimer's disease. Mol Cell Endocrinol 2008; 286:104-11. [PMID: 18359553 DOI: 10.1016/j.mce.2008.01.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by the cerebral deposition of senile plaques that are mainly composed of a set of peptides referred to as amyloid beta-peptides (Abeta). Among the numerous neuropeptides produced in intrinsic cortical and hippocampal neurons, somatostatin (SRIF) has been found to be the most consistently reduced in the brain and cerebrospinal fluid of AD patients. SRIF receptors (SSTR), which mediate the neuromodulatory signals of SRIF, are also markedly depleted in the AD brain, there being subtype-selective alterations in cortical areas. In the rat temporal cortex, we have shown that intracerebroventricular infusion of Abeta25-35 results in a decrease in SRIF-like immunoreactivity and in SRIF receptor subtype 2 (SSTR2) mRNA and protein levels, in correlation with a decrease in SSTR functionality. Insulin-like growth factor-I prevents the reduction in these parameters induced by Abeta25-35. Abeta has recently been demonstrated to be degraded primarily by a neutral endopeptidase, neprilysin, in the brain. SRIF regulates brain Abeta levels via modulation of neprilysin activity. Because SRIF expression in the brain declines upon aging in various mammals, including rodents, apes and humans, the aging-dependent reduction of SRIF has been hypothesized to trigger accumulation of Abeta in the brain by suppressing neprilysin action. Here we present an overview of recent advances on the role of SRIF in AD and its relationship with Abeta peptides.
Collapse
Affiliation(s)
- E Burgos-Ramos
- Unidad de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
185
|
Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Multifunction of myricetin on A beta: neuroprotection via a conformational change of A beta and reduction of A beta via the interference of secretases. J Neurosci Res 2008; 86:368-77. [PMID: 17722071 DOI: 10.1002/jnr.21476] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Myricetin (3,3',4',5,5',7-hexahydroxyflavone) is classified as a flavonoid with strong antioxidant effects. Oxidative stress plays a key role in various neurological diseases such as ischemia and Alzheimer's disease (AD). To elucidate whether myricetin could counter the progress of AD, we examined the effects of myricetin on neurotoxicity induced by beta-amyloid (A beta), a component of senile plaques in the AD brain. We found that cultured rat primary cortical neurons treated for 48 hr with A beta1-42 (1 microM) induced significant neuronal injury. Conformationally altered A beta1-42 caused apoptotic changes, such as nuclear fragmentation, as shown by DAPI staining. Pre- and simultaneous administration of myricetin and A beta1-42 reduced A beta neurotoxicity in a concentration-dependent manner. By using circular dichroism spectroscopy and a thioflavin T binding assay, we show that myricetin (10 microM, 48 hr) prevented structural changes in A beta1-42 from a random coil to a beta-sheet-rich structure. A beta1-42-induced apoptotic changes and caspase-3 activation were reduced by myricetin treatment. Furthermore, we determined that administration of myricetin significantly decreased A beta1-40 and A beta1-42 levels in culture media. These effects were based on two mechanisms: the activation and up-regulation of alpha-secretase (ADAM10) protein levels as indicated by fluorescence resonance energy transfer (FRET) assay and immunoblot analysis and the direct binding and inhibition of beta-secretase (BACE-1) indicated by cell-free FRET assays. Evidently, myricetin has multiple functions to counter the progress of AD by the reduction of A beta production and the detoxification of A beta through a structural change.
Collapse
Affiliation(s)
- Yoshiari Shimmyo
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
186
|
Stepanichev MY, Onufriev MV, Yakovlev AA, Khrenov AI, Peregud DI, Vorontsova ON, Lazareva NA, Gulyaeva NV. Amyloid-β (25–35) increases activity of neuronal NO-synthase in rat brain. Neurochem Int 2008; 52:1114-24. [DOI: 10.1016/j.neuint.2007.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/29/2007] [Indexed: 01/20/2023]
|
187
|
Burgos-Ramos E, Puebla-Jiménez L, Arilla-Ferreiro E. Minocycline provides protection against beta-amyloid(25-35)-induced alterations of the somatostatin signaling pathway in the rat temporal cortex. Neuroscience 2008; 154:1458-66. [PMID: 18555616 DOI: 10.1016/j.neuroscience.2008.04.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/16/2008] [Accepted: 04/20/2008] [Indexed: 11/19/2022]
Abstract
Minocycline is a semi-synthetic second-generation tetracycline known to improve cognition in amyloid precursor protein transgenic mice. Whether it can protect the somatostatin (SRIF) receptor-effector system, also involved in learning and memory, from alterations induced by chronic i.c.v. infusion of beta-amyloid peptide (Abeta)(25-35) is presently unknown. Hence, in the present study, we tested the effects of minocycline on the SRIF signaling pathway in the rat temporal cortex. To this end, male Wistar rats were injected with minocycline (45 mg/kg body weight) i.p. twice on the first day of treatment. On the following day and during 14 days, Abeta(25-35) was administered i.c.v. via an osmotic minipump connected to a cannula implanted in the left lateral ventricle (300 pmol/day). Minocycline (22.5 mg/kg, i.p.) was injected once again the last 2 days of the Abeta(25-35) infusion. The animals were killed by decapitation 24 h after the last drug injection. Our results show that minocycline prevents the decrease in SRIF receptor density and somatostatin receptor (sst) 2 expression and the attenuated capacity of SRIF to inhibit adenylyl cyclase (AC) activity, alterations present in the temporal cortex of Abeta(25-35)-treated rats. Furthermore, minocycline blocks the Abeta(25-35)-induced decrease in phosphorylated cyclic AMP (cAMP) response element binding protein (p-CREB) content and G-protein-coupled receptor kinase 2 (GRK) protein expression in this brain area. Altogether, the present data demonstrate that minocycline in vivo provides protection against Abeta-induced impairment of the SRIF signal transduction pathway in the rat temporal cortex and suggest that it may have a potential as a therapeutic agent in human Alzheimer's disease, although further studies are warranted.
Collapse
Affiliation(s)
- E Burgos-Ramos
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | | |
Collapse
|
188
|
Jayaraman M, Kannayiram G, Rajadas J. Amyloid toxicity in skeletal myoblasts: Implications for inclusion-body myositis. Arch Biochem Biophys 2008; 474:15-21. [PMID: 18397759 DOI: 10.1016/j.abb.2008.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 03/15/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
Abstract
Skeletal muscle disorder, inclusion-body myositis (IBM) has been known for accumulation of amyloid characteristic proteins in muscle. To understand the biophysical basis of IBM, the interaction of amyloid fibrils with skeletal myoblast cells (SMC) has been studied in vitro. Synthetic insulin fibrils and Abeta(25-35) fibrils were used for this investigation. From the saturation binding analysis, the calculated dissociation constant (K(d)) for insulin fibril and Abeta(25-35) fibrils were 69.37+/-11.17nM and 115.60+/-12.17nM, respectively. The fibrillar insulin comparatively has higher affinity binding to SMC than Abeta fibrils. The competitive binding studies with native insulin showed that the amount of bound insulin fibril was significantly decreased due to displacement of native insulin. However, the presence of native insulin is not altered the binding of beta-amyloid fibril. The cytotoxicity of insulin amyloid intermediates was measured. The pre-fibrillar intermediates of insulin showed significant toxicity (35%) as compared to matured fibrils. Myoblast treated with beta-amyloid fibrils showed more oxidative damage than the insulin fibril. Cell differentiating action of amyloidic insulin was assayed by creatine kinase activity. The insulin fibril treated cells differentiated more slowly compared to native insulin. However, beta-amyloid fibrils do not show cell differentiation property. These findings reinforce the hypothesis that accumulation of amyloid related proteins is significant for the pathological events that could lead to muscle degeneration and weakness in IBM.
Collapse
Affiliation(s)
- Murali Jayaraman
- Bioorganic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | |
Collapse
|
189
|
Alkam T, Nitta A, Mizoguchi H, Saito K, Seshima M, Itoh A, Yamada K, Nabeshima T. Restraining tumor necrosis factor-alpha by thalidomide prevents the amyloid beta-induced impairment of recognition memory in mice. Behav Brain Res 2007; 189:100-6. [PMID: 18325608 DOI: 10.1016/j.bbr.2007.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 12/12/2022]
Abstract
No effective remedy has currently been realized to prevent the cognitive impairments of Alzheimer's disease (AD). The interruption of the toxic pathways of amyloid beta peptide (Abeta) still remains promising for the treatment. The involvement of tumor necrosis factor-alpha (TNF-alpha) in the toxicity of Abeta(1-40) in recent reports provide a fresh target for the interruption. In the current study, we evaluated the feasibility of a strategy that target TNF-alpha to prevent the impairment of memory induced by Abeta. The i.c.v-injection of Abeta(25-35) increased the hippocampal mRNA expression of both TNF-alpha and inducible nitric oxide synthase (iNOS), of which the former was stronger. The knock-out of TNF-alpha (TNF-alpha (-/-)) in mouse prevented the increase of iNOS mRNA induced by Abeta(25-35). Not only the inhibition of iNOS activity but also TNF-alpha (-/-) prevented the nitration of proteins in the hippocampus and the impairment of recognition memory in mice induced by Abeta(25-35). Daily treatment with thalidomide (20 mg/kg), a preferential degrader of TNF-alpha mRNA, or i.c.v.-injection of an anti-TNF-alpha antibody (10 etag/mouse) prevented the nitration of proteins in the hippocampus and the impairment of recognition memory induced by Abeta(25-35) or Abeta(1-40) in mice. These results suggested the practicability of targeting TNF-alpha as a preventive strategy against Abeta-mediated cognitive impairments.
Collapse
Affiliation(s)
- Tursun Alkam
- Department of Neuropsychopharmacology & Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Murakami K, Uno M, Masuda Y, Shimizu T, Shirasawa T, Irie K. Isomerization and/or racemization at Asp23 of Abeta42 do not increase its aggregative ability, neurotoxicity, and radical productivity in vitro. Biochem Biophys Res Commun 2007; 366:745-51. [PMID: 18078812 DOI: 10.1016/j.bbrc.2007.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 12/04/2007] [Indexed: 11/16/2022]
Abstract
Aggregation of the 42-mer amyloid beta peptide (Abeta42) plays a pivotal role in the pathogenesis of Alzheimer's disease. Recent investigations suggested the isomerization and/or racemization of Asp at position 1, 7, or 23 to be associated with the pathological role of Abeta42. Our previous study indicated that the turn at positions 22 and 23 of Abeta42 is closely related to its neurotoxicity through the formation of radicals. To clarify the contribution of these modifications at Asp23 to the pathology, three isomerized and/or racemized Abeta42 mutants were prepared. l-isoAsp23- and d-Asp23-Abeta42 showed moderate aggregative ability similar to the wild type. However, d-Asp23-Abeta42 was less neurotoxic than the wild type, while l-isoAsp23-Abeta42 was as toxic as the wild type. In contrast, d-isoAsp23-Abeta42 showed weak aggregative ability without neurotoxicity. These results suggest the isomerization and/or racemization of Asp23 not to be related to the pathogenesis, but to be a consequence of chemical reactions during the long-term deposition of fibrils.
Collapse
Affiliation(s)
- Kazuma Murakami
- Laboratory of Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
191
|
Harrison RS, Sharpe PC, Singh Y, Fairlie DP. Amyloid peptides and proteins in review. Rev Physiol Biochem Pharmacol 2007; 159:1-77. [PMID: 17846922 DOI: 10.1007/112_2007_0701] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyloids are filamentous protein deposits ranging in size from nanometres to microns and composed of aggregated peptide beta-sheets formed from parallel or anti-parallel alignments of peptide beta-strands. Amyloid-forming proteins have attracted a great deal of recent attention because of their association with over 30 diseases, notably neurodegenerative conditions like Alzheimer's, Huntington's, Parkinson's, Creutzfeldt-Jacob and prion disorders, but also systemic diseases such as amyotrophic lateral sclerosis (Lou Gehrig's disease) and type II diabetes. These diseases are all thought to involve important conformational changes in proteins, sometimes termed misfolding, that usually produce beta-sheet structures with a strong tendency to aggregate into water-insoluble fibrous polymers. Reasons for such conformational changes in vivo are still unclear. Intermediate aggregated state(s), rather than precipitated insoluble polymeric aggregates, have recently been implicated in cellular toxicity and may be the source of aberrant pathology in amyloid diseases. Numerous in vitro studies of short and medium length peptides that form amyloids have provided some clues to amyloid formation, with an alpha-helix to beta-sheet folding transition sometimes implicated as an intermediary step leading to amyloid formation. More recently, quite a few non-pathological amyloidogenic proteins have also been identified and physiological properties have been ascribed, challenging previous implications that amyloids were always disease causing. This article summarises a great deal of current knowledge on the occurrence, structure, folding pathways, chemistry and biology associated with amyloidogenic peptides and proteins and highlights some key factors that have been found to influence amyloidogenesis.
Collapse
Affiliation(s)
- R S Harrison
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, QLD 4072, Brisbane, Australia
| | | | | | | |
Collapse
|
192
|
|
193
|
Studies on the role of amino acid stereospecificity in amyloid beta aggregation. J Mol Neurosci 2007; 34:35-43. [PMID: 18157656 DOI: 10.1007/s12031-007-0070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Amyloid beta (Abeta) deposition and neurodegeneration are the two related events in the pathogenesis of Alzheimer's disease. Several factors modulate the conformation and physical properties of Abeta, which in turn affects its biological functions. Among these, age-dependent changes in the stereospecificity of the amino acids comprising Abeta is one such factors. In the present study, we investigated the aggregation property of Abeta as a function of the stereospecificity of amino acids comprising the peptide. We carried out our study by comparing the physical properties of Abeta(1-40) all-L and Abeta(1-40) all-D enantiomers using various biophysical techniques. These results indicated that the aggregation and folding parameters of Abeta are stereospecific and the aggregation property strongly depends upon the amino acid sequence and their stereospecificity. This may possibly help to understand the stereospecific role of amino acids comprising Abeta in its aggregation and its relevance to neurodegeneration.
Collapse
|
194
|
Aguado-Llera D, Arilla-Ferreiro E, Chowen JA, Argente J, Puebla-Jiménez L, Frago LM, Barrios V. 17β-Estradiol protects depletion of rat temporal cortex somatostatinergic system by β-amyloid. Neurobiol Aging 2007; 28:1396-409. [PMID: 16843571 DOI: 10.1016/j.neurobiolaging.2006.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/31/2006] [Accepted: 06/12/2006] [Indexed: 01/23/2023]
Abstract
Estradiol prevents amyloid-beta peptide (Abeta)-induced cell death through estrogen receptors (ERs) and modulates somatostatin (SRIF) responsiveness in the rat brain. As intracerebroventricular (ICV) Abeta25-35 administration reduces SRIFergic tone in the temporal cortex of ovariectomized (Ovx) rats, we asked whether 17beta-estradiol (E2) treatment can restore the Abeta25-35 induced changes in SRIF content, SRIF receptor density and adenylyl cyclase (AC) activity, as well as if these effects are mediated by ERs. E2 treatment did not change Abeta25-35 levels in the temporal cortex, but partially restored the SRIFergic parameters affected by Abeta insult and decreased cell death, which was correlated with Akt activation. The ER antagonist ICI 182,780 prevented the protective effect of E2 on sst2 levels, but did not modify SRIF levels. Furthermore, ICI 182,780 treatment further decreased sst2 protein and mRNA levels when administered alone to Abeta25-35-treated rats, suggesting that it may block the effects of endogenous estrogens. These findings indicate that E2 protects the temporal cortical SRIFergic system from Abeta-induced depletion independently of Abeta accumulation.
Collapse
Affiliation(s)
- David Aguado-Llera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Avda. Menéndez Pelayo, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
195
|
Gruden MA, Davidova TB, Malisauskas M, Sewell RDE, Voskresenskaya NI, Wilhelm K, Elistratova EI, Sherstnev VV, Morozova-Roche LA. Differential neuroimmune markers to the onset of Alzheimer's disease neurodegeneration and dementia: Autoantibodies to Aβ(25–35) oligomers, S100b and neurotransmitters. J Neuroimmunol 2007; 186:181-92. [PMID: 17477976 DOI: 10.1016/j.jneuroim.2007.03.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/10/2007] [Accepted: 03/23/2007] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) autoimmunity is a focus for dementia prevention. Generated autoantibodies against major etiopathogenic molecular targets as neuroimmune markers of dementia were measured by ELISA in patient sera. Biphasic antibody levels to Abeta((25-35)) oligomers, S100b and DA were detected during distinctly diagnosed dementia stages. Abeta((25-35)) oligomer autoimmune responses reflected mild to moderate AD dementia, while those to S100b, DA and the S100b concentrations, matched moderate to severe dementia progression. 5-HT antibodies increased during mild dementia and plateaued thereafter. This autoimmunity pattern may be used as a differential biomarker profile in designing AD therapeutic strategies involving early vaccination.
Collapse
Affiliation(s)
- Marina A Gruden
- P. K. Anokhin Institute of Normal Physiology, RAMS, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Burgos-Ramos E, Hervás-Aguilar A, Puebla-Jiménez L, Boyano-Adánez MC, Arilla-Ferreiro E. Chronic but not acute intracerebroventricular administration of amyloid beta-peptide(25-35) decreases somatostatin content, adenylate cyclase activity, somatostatin-induced inhibition of adenylate cyclase activity, and adenylate cyclase I levels in the rat hippocampus. J Neurosci Res 2007; 85:433-42. [PMID: 17086550 DOI: 10.1002/jnr.21115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although alterations in adenylate cyclase (AC) activity and somatostatin (SRIF) receptor density have been reported in Alzheimer's disease, the effects of amyloid beta-peptide (Abeta) on these parameters in the hippocampus are unknown. Our aim was to investigate whether the peptide fragment Abeta(25-35) can affect the somatostatinergic system in the rat hippocampus. Hence, Abeta(25-35) was injected intracerebroventricularly (i.c.v.) to Wistar rats in a single dose or infused via an osmotic minipump connected to a cannula implanted in the right lateral ventricle during 14 days. The animals were decapitated 7 or 14 days after the single injection and 14 days after chronic infusion of the peptide. Chronic i.c.v. infusion of Abeta(25-35) decreased SRIF-like immunoreactive content without modifying the SRIF receptor density, SRIF receptor expression, or the Gialpha(1), Gialpha(2), and Gialpha(3) protein levels in the hippocampus. This treatment, however, caused a decrease in basal and forskolin-stimulated AC activity as well as in the capacity of SRIF to inhibit AC activity. Furthermore, the protein levels of the neural-specific AC type I were significantly decreased in the hippocampus of the treated rats, whereas an increase in the levels of AC V/VI was found, with no alterations in type VIII AC. A single i.c.v. dose of Abeta(25-35) exerted no effect on SRIF content or SRIF receptors but induced a slight decrease in forskolin-stimulated AC activity and its inhibition by SRIF. Because chronic Abeta(25-35) infusion impairs learning and memory whereas SRIF facilitates these functions, the alterations described here might be physiologically important given the decreased cognitive behavior previously reported in Abeta-treated rats.
Collapse
Affiliation(s)
- E Burgos-Ramos
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
197
|
Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E. A neural cell adhesion molecule–derived peptide reduces neuropathological signs and cognitive impairment induced by Aβ25-35. Neuroscience 2007; 145:209-24. [PMID: 17223274 DOI: 10.1016/j.neuroscience.2006.11.060] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 11/06/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
By means of i.c.v. administration of preaggregated oligomeric beta-amyloid (Abeta)25-35 peptide it was possible in rats to generate neuropathological signs related to those of early stages of Alzheimer's disease (AD). Abeta25-35-administration induced the deposition of endogenously produced amyloid protein. Furthermore, quantitative immunohistochemistry demonstrated time-related statistically significant increases in amyloid immunoreactivity, tau phosphorylation, microglial activation, and astrocytosis, and stereological investigations demonstrated statistically significant increased neuronal cell death and brain atrophy in response to Abeta25-35. Finally, the Abeta25-35-administration led to a reduced short-term memory as determined by the social recognition test. A synthetic peptide termed FGL derived from the neural cell adhesion molecule (NCAM) was able to prevent or, if already manifest, strongly reduce all investigated signs of Abeta25-35-induced neuropathology and cognitive impairment. The FGL peptide was recently demonstrated to be able to cross the blood-brain-barrier. Accordingly, we found that the beneficial effects of FGL were achieved not only by intracisternal, but also by intranasal and s.c. administration of the peptide. Furthermore, FGL-treatment was shown to inhibit the activity of GSK3beta, a kinase implicated in signaling regulating cell survival, tau phosphorylation and the processing of the amyloid precursor protein (APP). Thus, the peptide induced a statistically significant increase in the fraction of GSK3beta phosphorylated on the Ser9-position, a posttranslational modification known to inhibit the activity of the kinase. Hence, the mode of action of FGL with respect to the preventive and curative effects on Abeta25-35-induced neuropathological manifestations and cognitive impairment involves the modulation of intracellular signal-transduction mediated through GSK3beta.
Collapse
|
198
|
Liao MQ, Tzeng YJ, Chang LYX, Huang HB, Lin TH, Chyan CL, Chen YC. The correlation between neurotoxicity, aggregative ability and secondary structure studied by sequence truncated Abeta peptides. FEBS Lett 2007; 581:1161-5. [PMID: 17328898 DOI: 10.1016/j.febslet.2007.02.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/06/2007] [Accepted: 02/12/2007] [Indexed: 11/22/2022]
Abstract
Aggregated beta-amyloid (Abeta) peptides are neurotoxic and cause neuronal death both in vitro and in vivo. Although the formation of a beta-sheet structure is usual required to form aggregates, the relationship between neurotoxicity and the Abeta sequence remains unclear. To explore the correlation between Abeta sequence, secondary structure, aggregative ability, and neurotoxicity, we utilized both full-length and fragment-truncated Abeta peptides. Using a combination of spectroscopic and cellular techniques, we demonstrated that neurotoxicity and aggregative ability are correlated while the relationship between these characteristics and secondary structure is not significant. The hydrophobic C-terminus, particularly the amino acids of 17-21, 25-35, and 41-42, is the main region responsible for neurotoxicity and aggregation. Deleting residues 17-21, 25-35 or 41-42 significantly reduced the toxicity. On the other hand, truncation of the peptides at either residues 22-24 or residues 36-40 had little effect on toxicity and aggregative ability. While the N-terminal residues 1-16 may not play a major role in neurotoxicity and aggregation, a lack of N-terminal fragment Abeta peptide, (e.g. Abeta17-35), does not display the neurotoxicity of either full-length or 17-21, 25-35 truncated Abeta peptides.
Collapse
Affiliation(s)
- M Q Liao
- Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien 970, Taiwan
| | | | | | | | | | | | | |
Collapse
|
199
|
Resende R, Pereira C, Agostinho P, Vieira AP, Malva JO, Oliveira CR. Susceptibility of hippocampal neurons to Abeta peptide toxicity is associated with perturbation of Ca2+ homeostasis. Brain Res 2007; 1143:11-21. [PMID: 17336275 DOI: 10.1016/j.brainres.2007.01.071] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 01/03/2007] [Accepted: 01/15/2007] [Indexed: 11/19/2022]
Abstract
Neuritic dystrophy, loss of synapses and neuronal death in the cerebral cortex and hippocampus are hallmarks of Alzheimer's disease. The aim of the present study was to investigate the differential susceptibility of cortical and hippocampal neurons to amyloid-beta (Abeta)-induced toxicity. For that, we have used primary neuronal cultures prepared from rat brain cortex and hippocampus which were treated with the synthetic peptides Abeta25-35 or Abeta1-40. Abeta-induced apoptotic cell death was analyzed by determining caspase-3-like activity. Neuritic dystrophy was evaluated by cobalt staining and MAP2 immunoreactivity. Perturbation of Ca(2+) homeostasis caused by exposure to Abeta was evaluated by determining basal cytosolic calcium levels in the whole neuronal population and by single cell calcium imaging under basal and KCl-depolarization conditions. Finally, levels of GluR2 subunit of glutamate AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate) receptors were quantified by western blotting. Our results demonstrated that hippocampal neurons in culture are more susceptible than cortical neurons to Abeta-induced apoptosis and also that this mechanism involves the perturbation of Ca(2+) homeostasis. Accordingly, the exposure of hippocampal neurons to Abeta peptides decreases the protein levels of the GluR2 subunit of glutamate AMPA receptors that may be associated with a significant rise of cytosolic Ca(2+) concentration, leading to dendritic dystrophy and activation of apoptotic neuronal death.
Collapse
Affiliation(s)
- R Resende
- Institute of Biochemistry, Faculty of Medicine and Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
200
|
Ali I, Gupta VK, Aboul-Enein HY, Singh P, Sharma B. Role of racemization in optically active drugs development. Chirality 2007; 19:453-63. [PMID: 17393472 DOI: 10.1002/chir.20397] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
U.S. Food and Drug Administration issues certain guidelines for marketing of optically active drugs as some enantiomers racemize into human body, leading to the generation of other antipodes, which may be toxic or ballast to the human beings. Moreover, racemization reduces the administrated dosage concentration as optically active enantiomer converted into its inactive counter part. Therefore, the study of racemization of such type of drugs is an important and urgent need of today. This article describes in vitro and in vivo racemization of optically active drugs. The racemization process of various optically active drugs has been discussed considering the effect of different variables i.e. pH, temperature, concentration of the drug, ionic concentration, etc. Attempts have also been made to discuss the mechanisms of racemization. Besides, efforts have been made to suggest the safe dosages of such type of drugs too.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi, India
| | | | | | | | | |
Collapse
|