151
|
Li Z, Gao H, Zeng P, Jia Y, Kong X, Xu K, Bai R. Secondary Degeneration of White Matter After Focal Sensorimotor Cortical Ischemic Stroke in Rats. Front Neurosci 2021; 14:611696. [PMID: 33536869 PMCID: PMC7848148 DOI: 10.3389/fnins.2020.611696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic lesions could lead to secondary degeneration in remote regions of the brain. However, the spatial distribution of secondary degeneration along with its role in functional deficits is not well understood. In this study, we explored the spatial and connectivity properties of white matter (WM) secondary degeneration in a focal unilateral sensorimotor cortical ischemia rat model, using advanced microstructure imaging on a 14 T MRI system. Significant axonal degeneration was observed in the ipsilateral external capsule and even remote regions including the contralesional external capsule and corpus callosum. Further fiber tractography analysis revealed that only fibers having direct axonal connections with the primary lesion exhibited a significant degeneration. These results suggest that focal ischemic lesions may induce remote WM degeneration, but limited to fibers tied to the primary lesion. These “direct” fibers mainly represent perilesional, interhemispheric, and subcortical axonal connections. At last, we found that primary lesion volume might be the determining factor of motor function deficits.
Collapse
Affiliation(s)
- Zhaoqing Li
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Huan Gao
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
| | - Pingmei Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yinhang Jia
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| |
Collapse
|
152
|
Lehmann N, Aye N, Kaufmann J, Heinze HJ, Düzel E, Ziegler G, Taubert M. Longitudinal Reproducibility of Neurite Orientation Dispersion and Density Imaging (NODDI) Derived Metrics in the White Matter. Neuroscience 2021; 457:165-185. [PMID: 33465411 DOI: 10.1016/j.neuroscience.2021.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing ["VBM-style"], ROI-based analysis). We observed high test-retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field.
Collapse
Affiliation(s)
- Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany.
| | - Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Leibniz-Institute for Neurobiology (LIN), Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Emrah Düzel
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AZ, UK
| | - Gabriel Ziegler
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
153
|
Mohammadi S, Callaghan MF. Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging. J Neurosci Methods 2021; 348:108990. [PMID: 33129894 PMCID: PMC7840525 DOI: 10.1016/j.jneumeth.2020.108990] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD This is the second review on the topic of g-ratio mapping using MRI. RESULTS This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
154
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
155
|
Andersson M, Kjer HM, Rafael-Patino J, Pacureanu A, Pakkenberg B, Thiran JP, Ptito M, Bech M, Bjorholm Dahl A, Andersen Dahl V, Dyrby TB. Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure-function relationship. Proc Natl Acad Sci U S A 2020; 117:33649-33659. [PMID: 33376224 PMCID: PMC7777205 DOI: 10.1073/pnas.2012533117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Axonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory. Within single axons, we find that the variation in diameter and conduction velocity correlates with the mean diameter, contesting the value of precise diameter determination in larger axons. These complex 3D axon morphologies drive previously reported 2D trends in axon diameter and g-ratio. Furthermore, we find that these morphologies bias the estimates of axon diameter with diffusion magnetic resonance imaging and, ultimately, impact the investigation and formulation of the axon structure-function relationship.
Collapse
Affiliation(s)
- Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark;
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Hans Martin Kjer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen, Denmark
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland
- Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada
- Department of Neuroscience, Faculty of Health Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Bech
- Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, 221 85 Lund, Sweden
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark;
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
156
|
Pieri V, Sanvito F, Riva M, Petrini A, Rancoita PMV, Cirillo S, Iadanza A, Bello L, Castellano A, Falini A. Along-tract statistics of neurite orientation dispersion and density imaging diffusion metrics to enhance MR tractography quantitative analysis in healthy controls and in patients with brain tumors. Hum Brain Mapp 2020; 42:1268-1286. [PMID: 33274823 PMCID: PMC7927309 DOI: 10.1002/hbm.25291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Along‐tract statistics analysis enables the extraction of quantitative diffusion metrics along specific white matter fiber tracts. Besides quantitative metrics derived from classical diffusion tensor imaging (DTI), such as fractional anisotropy and diffusivities, new parameters reflecting the relative contribution of different diffusion compartments in the tissue can be estimated through advanced diffusion MRI methods as neurite orientation dispersion and density imaging (NODDI), leading to a more specific microstructural characterization. In this study, we extracted both DTI‐ and NODDI‐derived quantitative microstructural diffusion metrics along the most eloquent fiber tracts in 15 healthy subjects and in 22 patients with brain tumors. We obtained a robust intraprotocol reference database of normative along‐tract microstructural metrics, and their corresponding plots, from healthy fiber tracts. Each diffusion metric of individual patient's fiber tract was then plotted and statistically compared to the normative profile of the corresponding metric from the healthy fiber tracts. NODDI‐derived metrics appeared to account for the pathological microstructural changes of the peritumoral tissue more accurately than DTI‐derived ones. This approach may be useful for future studies that may compare healthy subjects to patients diagnosed with other pathological conditions.
Collapse
Affiliation(s)
- Valentina Pieri
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Sanvito
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Alessandro Petrini
- Department of Computer Science, Università degli Studi di Milano, Milan, Italy
| | - Paola M V Rancoita
- University Centre for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Cirillo
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Iadanza
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Antonella Castellano
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
157
|
Lee HH, Fieremans E, Novikov DS. Realistic Microstructure Simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images. J Neurosci Methods 2020; 350:109018. [PMID: 33279478 DOI: 10.1016/j.jneumeth.2020.109018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Monte Carlo simulations of diffusion are commonly used as a model validation tool as they are especially suitable for generating the diffusion MRI signal in complicated tissue microgeometries. NEW METHOD Here we describe the details of implementing Monte Carlo simulations in three-dimensional (3d) voxelized segmentations of cells in microscopy images. Using the concept of the corner reflector, we largely reduce the computational load of simulating diffusion within and exchange between multiple cells. Precision is further achieved by GPU-based parallel computations. RESULTS Our simulation of diffusion in white matter axons segmented from a mouse brain demonstrates its value in validating biophysical models. Furthermore, we provide the theoretical background for implementing a discretized diffusion process, and consider the finite-step effects of the particle-membrane reflection and permeation events, needed for efficient simulation of interactions with irregular boundaries, spatially variable diffusion coefficient, and exchange. COMPARISON WITH EXISTING METHODS To our knowledge, this is the first Monte Carlo pipeline for MR signal simulations in a substrate composed of numerous realistic cells, accounting for their permeable and irregularly-shaped membranes. CONCLUSIONS The proposed RMS pipeline makes it possible to achieve fast and accurate simulations of diffusion in realistic tissue microgeometry, as well as the interplay with other MR contrasts. Presently, RMS focuses on simulations of diffusion, exchange, and T1 and T2 NMR relaxation in static tissues, with a possibility to straightforwardly account for susceptibility-induced T2* effects and flow.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA.
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| |
Collapse
|
158
|
Carlisle N, Glazewska-Hallin A, Story L, Carter J, Seed PT, Suff N, Giblin L, Hutter J, Napolitano R, Rutherford M, Alexander DC, Simpson N, Banerjee A, David AL, Shennan AH. CRAFT (Cerclage after full dilatation caesarean section): protocol of a mixed methods study investigating the role of previous in-labour caesarean section in preterm birth risk. BMC Pregnancy Childbirth 2020; 20:698. [PMID: 33198663 PMCID: PMC7667480 DOI: 10.1186/s12884-020-03375-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Full dilatation caesarean sections are associated with recurrent early spontaneous preterm birth and late miscarriage. The risk following first stage caesarean sections, are less well defined, but appears to be increased in late-first stage of labour. The mechanism for this increased risk of late miscarriage and early spontaneous preterm birth in these women is unknown and there are uncertainties with regards to clinical management. Current predictive models of preterm birth (based on transvaginal ultrasound and quantitative fetal fibronectin) have not been validated in these women and it is unknown whether the threshold to define a short cervix (≤25 mm) is reliable in predicting the risk of preterm birth. In addition the efficacy of standard treatments or whether benefit may be derived from prophylactic interventions such as a cervical cerclage is unknown. METHODS There are three distinct components to the CRAFT project (CRAFT-OBS, CRAFT-RCT and CRAFT-IMG). CRAFT-OBS Observational Study; To evaluate subsequent pregnancy risk of preterm birth in women with a prior caesarean section in established labour. This prospective study of cervical length and quantitative fetal fibronectin data will establish a predictive model of preterm birth. CRAFT-RCT Randomised controlled trial arm; To assess treatment for short cervix in women at high risk of preterm birth following a fully dilated caesarean section. CRAFT-IMG Imaging sub-study; To evaluate the use of MRI and transvaginal ultrasound imaging of micro and macrostructural cervical features which may predispose to preterm birth in women with a previous fully dilated caesarean section, such as scar position and niche. DISCUSSION The CRAFT project will quantify the risk of preterm birth or late miscarriage in women with previous in-labour caesarean section, define the best management and shed light on pathological mechanisms so as to improve the care we offer to women and their babies. TRIAL REGISTRATION CRAFT was prospectively registered on 25th November 2019 with the ISRCTN registry ( https://doi.org/10.1186/ISRCTN15068651 ).
Collapse
Affiliation(s)
- Naomi Carlisle
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Agnieszka Glazewska-Hallin
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Lisa Story
- Centre for the Developing Brain, King's College London, 1st Floor South Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Jenny Carter
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Paul T Seed
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Natalie Suff
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Lucie Giblin
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Jana Hutter
- Centre for the Developing Brain, King's College London, 1st Floor South Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Raffaele Napolitano
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, Room 244, Medical School Building, Huntley Street, London, WC1E 6AU, UK
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, 1st Floor South Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Daniel C Alexander
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nigel Simpson
- Delivery Suite, C Floor, Clarendon Wing, The General Infirmary at Leeds, Belmont Grove, Leeds, LS2 9NS, UK
| | - Amrita Banerjee
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, Room 244, Medical School Building, Huntley Street, London, WC1E 6AU, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, Room 244, Medical School Building, Huntley Street, London, WC1E 6AU, UK.,NIHR University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road, London, W1T 7DN, UK
| | - Andrew H Shennan
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
159
|
Fang C, Nguyen VD, Wassermann D, Li JR. Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module. Neuroimage 2020; 222:117198. [PMID: 32730957 DOI: 10.1016/j.neuroimage.2020.117198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023] Open
Abstract
The diffusion MRI signal arising from neurons can be numerically simulated by solving the Bloch-Torrey partial differential equation. In this paper we present the Neuron Module that we implemented within the Matlab-based diffusion MRI simulation toolbox SpinDoctor. SpinDoctor uses finite element discretization and adaptive time integration to solve the Bloch-Torrey partial differential equation for general diffusion-encoding sequences, at multiple b-values and in multiple diffusion directions. In order to facilitate the diffusion MRI simulation of realistic neurons by the research community, we constructed finite element meshes for a group of 36 pyramidal neurons and a group of 29 spindle neurons whose morphological descriptions were found in the publicly available neuron repository NeuroMorpho.Org. These finite elements meshes range from having 15,163 nodes to 622,553 nodes. We also broke the neurons into the soma and dendrite branches and created finite elements meshes for these cell components. Through the Neuron Module, these neuron and cell components finite element meshes can be seamlessly coupled with the functionalities of SpinDoctor to provide the diffusion MRI signal attributable to spins inside neurons. We make these meshes and the source code of the Neuron Module available to the public as an open-source package. To illustrate some potential uses of the Neuron Module, we show numerical examples of the simulated diffusion MRI signals in multiple diffusion directions from whole neurons as well as from the soma and dendrite branches, and include a comparison of the high b-value behavior between dendrite branches and whole neurons. In addition, we demonstrate that the neuron meshes can be used to perform Monte-Carlo diffusion MRI simulations as well. We show that at equivalent accuracy, if only one gradient direction needs to be simulated, SpinDoctor is faster than a GPU implementation of Monte-Carlo, but if many gradient directions need to be simulated, there is a break-even point when the GPU implementation of Monte-Carlo becomes faster than SpinDoctor. Furthermore, we numerically compute the eigenfunctions and the eigenvalues of the Bloch-Torrey and the Laplace operators on the neuron geometries using a finite elements discretization, in order to give guidance in the choice of the space and time discretization parameters for both finite elements and Monte-Carlo approaches. Finally, we perform a statistical study on the set of 65 neurons to test some candidate biomakers that can potentially indicate the soma size. This preliminary study exemplifies the possible research that can be conducted using the Neuron Module.
Collapse
Affiliation(s)
- Chengran Fang
- INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France; INRIA Saclay, Equipe Parietal, 1 Rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France
| | - Van-Dang Nguyen
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden
| | - Demian Wassermann
- INRIA Saclay, Equipe Parietal, 1 Rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France
| | - Jing-Rebecca Li
- INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
| |
Collapse
|
160
|
NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing. Neuroimage 2020; 226:117539. [PMID: 33186723 PMCID: PMC7881933 DOI: 10.1016/j.neuroimage.2020.117539] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023] Open
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.
Collapse
|
161
|
The connections of the insular VEN area in great apes: A histologically-guided ex vivo diffusion tractography study. Prog Neurobiol 2020; 195:101941. [PMID: 33159998 DOI: 10.1016/j.pneurobio.2020.101941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
We mapped the connections of the insular von Economo neuron (VEN) area in ex vivo brains of a bonobo, an orangutan and two gorillas with high angular resolution diffusion MRI imaging acquired in 36 h imaging sessions for each brain. The apes died of natural causes without neurological disorders. The localization of the insular VEN area was based on cresyl violet-stained histological sections from each brain that were coregistered with structural and diffusion images from the same individuals. Diffusion MRI tractography showed that the insular VEN area is connected with olfactory, gustatory, visual and other sensory systems, as well as systems for the mediation of appetite, reward, aversion and motivation. The insular VEN area in apes is most strongly connected with frontopolar cortex, which could support their capacity to choose voluntarily among alternative courses of action particularly in exploring for food resources. The frontopolar cortex may also support their capacity to take note of potential resources for harvesting in the future (prospective memory). All of these faculties may support insight and volitional choice when contemplating courses of action as opposed to rule-based decision-making.
Collapse
|
162
|
Yi SY, Stowe NA, Barnett BR, Dodd K, Yu JPJ. Microglial Density Alters Measures of Axonal Integrity and Structural Connectivity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1061-1068. [PMID: 32507509 PMCID: PMC7709542 DOI: 10.1016/j.bpsc.2020.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022]
Abstract
Diffusion tensor imaging (DTI) has fundamentally transformed how we interrogate diseases and disorders of the brain in neuropsychiatric illness. DTI and recently developed multicompartment diffusion-weighted imaging (MC-DWI) techniques, such as NODDI (neurite orientation dispersion and density imaging), measure diffusion anisotropy presuming a static neuroglial environment; however, microglial morphology and density are highly dynamic in psychiatric illness, and how alterations in microglial density might influence intracellular measures of diffusion anisotropy in DTI and MC-DWI brain microstructure is unknown. To address this question, DTI and MC-DWI studies of murine brains depleted of microglia were performed, revealing significant alterations in axonal integrity and fiber tractography in DTI and in commonly used MC-DWI models. With accumulating evidence of the role of microglia in neuropsychiatric illness, our findings uncover the unexpected contribution of microglia to measures of axonal integrity and structural connectivity and provide unanticipated insights into the potential influence of microglia in diffusion imaging studies of neuropsychiatric disease.
Collapse
Affiliation(s)
- Sue Y Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicholas A Stowe
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Keith Dodd
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
163
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
164
|
Magnetic resonance diffusion tensor tractography of a midbrain auditory circuit in Alligator. Neurosci Lett 2020; 738:135251. [PMID: 32679057 DOI: 10.1016/j.neulet.2020.135251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022]
Abstract
Knowledge of brain circuitry is critical for understanding the organization, function, and evolution of central nervous systems. Most commonly, brain connections have been elucidated using histological and experimental methods that require animal sacrifice. On the other hand, magnetic resonance diffusion tensor imaging and associated tractography have emerged as a preferred method to noninvasively visualize brain white matter tracts. However, existing studies have primarily examined large, heavily myelinated fiber tracts. Whether tractography can visualize fiber bundles that contain thin and poorly myelinated axons is uncertain. To address this question, the midbrain auditory pathway to the thalamus was investigated in Alligator. This species was chosen because of its evolutionary importance as it is the reptilian group most closely related to birds and because its brain contains many thin and poorly myelinated tracts. Furthermore, this auditory pathway is well documented in other reptiles, including a related crocodilian. Histological observations and experimental determination of anterograde connections confirmed this path in Alligator. Tractography identified these tracts in Alligator and provided a 3-dimensional picture that accurately identified the neural elements of this circuit. In addition, tractography identified one possible unrecognized pathway. These results demonstrate that tractography can visualize circuits containing thin, poorly myelinated fibers. These findings open the door for future studies to examine these types of pathways in other vertebrates.
Collapse
|
165
|
Mito R, Dhollander T, Xia Y, Raffelt D, Salvado O, Churilov L, Rowe CC, Brodtmann A, Villemagne VL, Connelly A. In vivo microstructural heterogeneity of white matter lesions in healthy elderly and Alzheimer's disease participants using tissue compositional analysis of diffusion MRI data. Neuroimage Clin 2020; 28:102479. [PMID: 33395971 PMCID: PMC7652769 DOI: 10.1016/j.nicl.2020.102479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
White matter hyperintensities (WMH) are regions of high signal intensity typically identified on fluid attenuated inversion recovery (FLAIR). Although commonly observed in elderly individuals, they are more prevalent in Alzheimer's disease (AD) patients. Given that WMH appear relatively homogeneous on FLAIR, they are commonly partitioned into location- or distance-based classes when investigating their relevance to disease. Since pathology indicates that such lesions are often heterogeneous, probing their microstructure in vivo may provide greater insight than relying on such arbitrary classification schemes. In this study, we investigated WMH in vivo using an advanced diffusion MRI method known as single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD), which models white matter microstructure while accounting for grey matter and CSF compartments. Diffusion MRI data and FLAIR images were obtained from AD (n = 48) and healthy elderly control (n = 94) subjects. WMH were automatically segmented, and classified: (1) as either periventricular or deep; or (2) into three distance-based contours from the ventricles. The 3-tissue profile of WMH enabled their characterisation in terms of white matter-, grey matter-, and fluid-like characteristics of the diffusion signal. Our SS3T-CSD findings revealed substantial heterogeneity in the 3-tissue profile of WMH, both within lesions and across the various classes. Moreover, this heterogeneity information indicated that the use of different commonly used WMH classification schemes can result in different disease-based conclusions. We conclude that future studies of WMH in AD would benefit from inclusion of microstructural information when characterising lesions, which we demonstrate can be performed in vivo using SS3T-CSD.
Collapse
Affiliation(s)
- Remika Mito
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
| | - Thijs Dhollander
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ying Xia
- CSIRO, Health & Biosecurity, The Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - David Raffelt
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Olivier Salvado
- CSIRO, Health & Biosecurity, The Australian eHealth Research Centre, Brisbane, Queensland, Australia; CSIRO Data61, Sydney, New South Wales, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| | - Christopher C Rowe
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia; Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; Eastern Clinical Research Unit, Monash University, Box Hill Hospital, Melbourne, Victoria, Australia
| | - Victor L Villemagne
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia; Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
166
|
Qin Y, Liu Z, Liu C, Li Y, Zeng X, Ye C. Super-Resolved q-Space deep learning with uncertainty quantification. Med Image Anal 2020; 67:101885. [PMID: 33227600 DOI: 10.1016/j.media.2020.101885] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
Diffusion magnetic resonance imaging (dMRI) provides a noninvasive method for measuring brain tissue microstructure. q-Space deep learning(q-DL) methods have been developed to accurately estimate tissue microstructure from dMRI scans acquired with a reduced number of diffusion gradients. In these methods, deep networks are trained to learn the mapping directly from diffusion signals to tissue microstructure. However, the quality of tissue microstructure estimation can be limited not only by the reduced number of diffusion gradients but also by the low spatial resolution of typical dMRI acquisitions. Therefore, in this work we extend q-DL to super-resolved tissue microstructure estimation and propose super-resolvedq-DL (SR-q-DL), where deep networks are designed to map low-resolution diffusion signals undersampled in the q-space to high-resolution tissue microstructure. Specifically, we use a patch-based strategy, where a deep network takes low-resolution patches of diffusion signals as input and outputs high-resolution tissue microstructure patches. The high-resolution patches are then combined to obtain the final high-resolution tissue microstructure map. Motivated by existing q-DL methods, we integrate the sparsity of diffusion signals in the network design, which comprises two functional components. The first component computes sparse representation of diffusion signals for the low-resolution input patch, and the second component maps the low-resolution sparse representation to high-resolution tissue microstructure. The weights in the two components are learned jointly and the trained network performs end-to-end tissue microstructure estimation. In addition to SR-q-DL, we further propose probabilistic SR-q-DL, which can quantify the uncertainty of the network output as well as achieve improved estimation accuracy. In probabilistic SR-q-DL, a deep ensemble strategy is used. Specifically, the deep network for SR-q-DL is revised to produce not only tissue microstructure estimates but also the uncertainty of the estimates. Then, multiple deep networks are trained and their results are fused for the final prediction of high-resolution tissue microstructure and uncertainty quantification. The proposed method was evaluated on two independent datasets of brain dMRI scans. Results indicate that our approach outperforms competing methods in terms of estimation accuracy. In addition, uncertainty measures provided by our method correlate with estimation errors, which indicates potential application of the proposed uncertainty quantification method in brain studies.
Collapse
Affiliation(s)
- Yu Qin
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China
| | - Zhiwen Liu
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China
| | - Chenghao Liu
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China
| | - Yuxing Li
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China
| | - Xiangzhu Zeng
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Chuyang Ye
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China.
| |
Collapse
|
167
|
Novikov DS. The present and the future of microstructure MRI: From a paradigm shift to normal science. J Neurosci Methods 2020; 351:108947. [PMID: 33096152 DOI: 10.1016/j.jneumeth.2020.108947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022]
Abstract
The aspiration of imaging tissue microstructure with MRI is to uncover micrometer-scale tissue features within millimeter-scale imaging voxels, in vivo. This kind of super-resolution has fueled a paradigm shift within the biomedical imaging community. However, what feels like an ongoing revolution in MRI, has been conceptually experienced in physics decades ago; from this point of view, our current developments can be seen as Thomas Kuhn's "normal science" stage of progress. While the concept of model-based quantification below the nominal imaging resolution is not new, its possibilities in neuroscience and neuroradiology are only beginning to be widely appreciated. This disconnect calls for communicating the progress of tissue microstructure MR imaging to its potential users. Here, a number of recent research developments are outlined in terms of the overarching concept of coarse-graining the tissue structure over an increasing diffusion length. A variety of diffusion models and phenomena are summarized on the phase diagram of diffusion MRI, with the unresolved problems and future directions corresponding to its unexplored domains.
Collapse
Affiliation(s)
- Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
168
|
Jahng GH, Lee MB, Kim HJ, Je Woo E, Kwon OI. Low-frequency dominant electrical conductivity imaging of in vivo human brain using high-frequency conductivity at Larmor-frequency and spherical mean diffusivity without external injection current. Neuroimage 2020; 225:117466. [PMID: 33075557 DOI: 10.1016/j.neuroimage.2020.117466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022] Open
Abstract
Diffusion weighted imaging based on random Brownian motion of water molecules within a voxel provides information on the micro-structure of biological tissues through water molecule diffusivity. As the electrical conductivity is primarily determined by the concentration and mobility of ionic charge carriers, the macroscopic electrical conductivity of biological tissues is also related to the diffusion of electrical ions. This paper aims to investigate the low-frequency electrical conductivity by relying on a pre-defined biological model that separates the brain into the intracellular (restricted) and extracellular (hindered) compartments. The proposed method uses B1 mapping technique, which provides a high-frequency conductivity distribution at Larmor frequency, and the spherical mean technique, which directly estimates the microscopic tissue structure based on the water molecule diffusivity and neurite orientation distribution. The total extracellular ion concentration, which is separated from the high-frequency conductivity, is recovered using the estimated diffusivity parameters and volume fraction in each compartment. We propose a method to reconstruct the low-frequency dominant conductivity tensor by taking into consideration the extracted extracellular diffusion tensor map and the reconstructed electrical parameters. To demonstrate the reliability of the proposed method, we conducted two phantom experiments. The first one used a cylindrical acrylic cage filled with an agar in the background region and four anomalies for the effect of ion concentration on the electrical conductivity. The other experiment, in which the effect of ion mobility on the conductivity was verified, used cell-like materials with thin insulating membranes suspended in an electrolyte. Animal and human brain experiments were conducted to visualize the low-frequency dominant conductivity tensor images. The proposed method using a conventional MRI scanner can predict the internal current density map in the brain without directly injected external currents.
Collapse
Affiliation(s)
- Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Mun Bae Lee
- Department of Mathematics, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyung Joong Kim
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eung Je Woo
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Oh-In Kwon
- Department of Mathematics, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
169
|
Zhu T, Peng Q, Ouyang A, Huang H. Neuroanatomical underpinning of diffusion kurtosis measurements in the cerebral cortex of healthy macaque brains. Magn Reson Med 2020; 85:1895-1908. [PMID: 33058286 DOI: 10.1002/mrm.28548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the neuroanatomical underpinning of healthy macaque brain cortical microstructure measured by diffusion kurtosis imaging (DKI), which characterizes non-Gaussian water diffusion. METHODS High-resolution DKI was acquired from 6 postmortem macaque brains. Neurofilament density (ND) was quantified based on structure tensor from neurofilament histological images of a different macaque brain sample. After alignment of DKI-derived mean kurtosis (MK) maps to the histological images, MK and histology-based ND were measured at corresponding regions of interests characterized by distinguished cortical MK values in the prefrontal/precentral-postcentral and temporal cortices. Pearson correlation was performed to test significant correlation between these cortical MK and ND measurements. RESULTS Heterogeneity of cortical MK across different cortical regions was revealed, with significantly and consistently higher MK measurements in the prefrontal/precentral-postcentral cortex compared to those in the temporal cortex across all six scanned macaque brains. Corresponding higher ND measurements in the prefrontal/precentral-postcentral cortex than in the temporal cortex were also found. The heterogeneity of cortical MK is associated with heterogeneity of histology-based ND measurements, with significant correlation between cortical MK and corresponding ND measurements (P < .005). CONCLUSION These findings suggested that DKI-derived MK can potentially be an effective noninvasive biomarker quantifying underlying neuroanatomical complexity inside the cerebral cortical mantle for clinical and neuroscientific research.
Collapse
Affiliation(s)
- Tianjia Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qinmu Peng
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Austin Ouyang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
170
|
Beck D, de Lange AMG, Maximov II, Richard G, Andreassen OA, Nordvik JE, Westlye LT. White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction. Neuroimage 2020; 224:117441. [PMID: 33039618 DOI: 10.1016/j.neuroimage.2020.117441] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
The macro- and microstructural architecture of human brain white matter undergoes substantial alterations throughout development and ageing. Most of our understanding of the spatial and temporal characteristics of these lifespan adaptations come from magnetic resonance imaging (MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of brain white matter with unprecedented sensitivity and detail. However, with some notable exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and diffusion tensor imaging (DTI) based on conventional single-shell dMRI. In this mixed cross-sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dMRI datasets, we combined complementary dMRI models to investigate age trajectories in healthy individuals aged 18 to 94 years (57.12% women). Using linear mixed effect models and machine learning based brain age prediction, we assessed the age-dependence of diffusion metrics, and compared the age prediction accuracy of six different diffusion models, including diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-compartment (SMT-mc), and white matter tract integrity (WMTI). The results showed that the age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research, and that the highest performing advanced dMRI models showed comparable age prediction accuracy to conventional DTI. Linear mixed effects models and Wilk's theorem analysis showed that the 'FA fine' metric of the RSI model and 'orientation dispersion' (OD) metric of the NODDI model showed the highest sensitivity to age. The results indicate that advanced diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-related microstructural changes of white matter in the brain that complement and extend the contribution of conventional DTI.
Collapse
Affiliation(s)
- Dani Beck
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Oslo, Norway.
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Lars T Westlye
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| |
Collapse
|
171
|
Naughton NM, Tennyson CG, Georgiadis JG. Lattice Boltzmann method for simulation of diffusion magnetic resonance imaging physics in multiphase tissue models. Phys Rev E 2020; 102:043305. [PMID: 33212689 DOI: 10.1103/physreve.102.043305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
We report an implementation of the lattice Boltzmann method (LBM) to integrate the Bloch-Torrey equation, which describes the evolution of the transverse magnetization vector and the fate of the signal of diffusion magnetic resonance imaging (dMRI). Motivated by the need to interpret dMRI experiments in biological tissues, and to offset the small time-step limitation of classical LBM, a hybrid LBM scheme is introduced and implemented to solve the Bloch-Torrey equation. A membrane boundary condition is presented which is able to accurately represent the effects of thin curvilinear membranes typically found in biological tissues. As implemented, the hybrid LBM scheme accommodates piece-wise uniform transport, dMRI parameters, periodic and mirroring outer boundary conditions, and finite membrane permeabilities on non-boundary-conforming inner boundaries. By comparing with analytical solutions of limiting cases, we demonstrate that the hybrid LBM scheme is more accurate than the classical LBM scheme. The proposed explicit LBM scheme maintains second-order spatial accuracy, stability, and first-order temporal accuracy for a wide range of parameters. The parallel implementation of the hybrid LBM code in a multi-CPU computer system, as well as on GPUs, is straightforward and efficient. Along with offering certain advantages over finite element or Monte Carlo schemes, the proposed hybrid LBM constitutes a flexible scheme that can by easily adapted to model more complex interfacial conditions and physics in heterogeneous multiphase tissue models and to accommodate sophisticated dMRI sequences.
Collapse
Affiliation(s)
- Noel M Naughton
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - John G Georgiadis
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
172
|
Huynh KM, Wu Y, Thung KH, Ahmad S, Taylor HP, Shen D, Yap PT. Characterizing Intra-soma Diffusion with Spherical Mean Spectrum Imaging. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2020; 12267:354-363. [PMID: 34223563 PMCID: PMC8248904 DOI: 10.1007/978-3-030-59728-3_35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Most brain microstructure models are dedicated to the quantification of white matter microstructure, using for example sticks, cylinders, and zeppelins to model intra- and extra-axonal environments. Gray matter presents unique micro-architecture with cell bodies (somas) exhibiting diffusion characteristics that differ from axons in white matter. In this paper, we introduce a method to quantify soma microstructure, giving measures such as volume fraction, diffusivity, and kurtosis. Our method captures a spectrum of diffusion patterns and scales and does not rely on restrictive model assumptions. We show that our method yields unique and meaningful contrasts that are in agreement with histological data. We demonstrate its application in the mapping of the distinct spatial patterns of soma density in the cortex.
Collapse
Affiliation(s)
- Khoi Minh Huynh
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Kim-Han Thung
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Sahar Ahmad
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Hoyt Patrick Taylor
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Dinggang Shen
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Pew-Thian Yap
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
173
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|
174
|
Piredda GF, Hilbert T, Thiran JP, Kober T. Probing myelin content of the human brain with MRI: A review. Magn Reson Med 2020; 85:627-652. [PMID: 32936494 DOI: 10.1002/mrm.28509] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Rapid and efficient transmission of electric signals among neurons of vertebrates is ensured by myelin-insulating sheaths surrounding axons. Human cognition, sensation, and motor functions rely on the integrity of these layers, and demyelinating diseases often entail serious cognitive and physical impairments. Magnetic resonance imaging radically transformed the way these disorders are monitored, offering an irreplaceable tool to noninvasively examine the brain structure. Several advanced techniques based on MRI have been developed to provide myelin-specific contrasts and a quantitative estimation of myelin density in vivo. Here, the vast offer of acquisition strategies developed to date for this task is reviewed. Advantages and pitfalls of the different approaches are compared and discussed.
Collapse
Affiliation(s)
- Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
175
|
Eed A, Cerdán Cerdá A, Lerma J, De Santis S. Diffusion-weighted MRI in neurodegenerative and psychiatric animal models: Experimental strategies and main outcomes. J Neurosci Methods 2020; 343:108814. [PMID: 32569785 DOI: 10.1016/j.jneumeth.2020.108814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Preclinical MRI approaches constitute a key tool to study a wide variety of neurological and psychiatric illnesses, allowing a more direct investigation of the disorder substrate and, at the same time, the possibility of back-translating such findings to human subjects. However, the lack of consensus on the optimal experimental scheme used to acquire the data has led to relatively high heterogeneity in the choice of protocols, which can potentially impact the comparison between results obtained by different groups, even using the same animal model. This is especially true for diffusion-weighted MRI data, where certain experimental choices can impact not only on the accuracy and precision of the extracted biomarkers, but also on their biological meaning. With this in mind, we extensively examined preclinical imaging studies that used diffusion-weighted MRI to investigate neurodegenerative, neurodevelopmental and psychiatric disorders in rodent models. In this review, we discuss the main findings for each preclinical model, with a special focus on the analysis and comparison of the different acquisition strategies used across studies and their impact on the heterogeneity of the findings.
Collapse
Affiliation(s)
- Amr Eed
- Instituto de Neurociencias, CSIC, UMH, San Juan de Alicante, Alicante, Spain
| | | | - Juan Lerma
- Instituto de Neurociencias, CSIC, UMH, San Juan de Alicante, Alicante, Spain
| | - Silvia De Santis
- Instituto de Neurociencias, CSIC, UMH, San Juan de Alicante, Alicante, Spain; CUBRIC, School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
176
|
Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods 2020; 346:108908. [PMID: 32814118 DOI: 10.1016/j.jneumeth.2020.108908] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Diffusion MRI (dMRI) has proven to be a useful imaging approach for both clinical diagnosis and research investigating the microstructures of nervous tissues, and it has helped us to better understand the neurophysiological mechanisms of many diseases. Though diffusion tensor imaging (DTI) has long been the default tool to analyze dMRI data in clinical research, acquisition with stronger diffusion weightings beyond the DTI regimen is now possible with modern clinical scanners, potentially enabling even more detailed characterization of tissue microstructures. To take advantage of such data, neurite orientation dispersion and density imaging (NODDI) has been proposed as a way to relate the dMRI signal to tissue features via biophysically inspired modeling. The number of reports demonstrating the potential clinical utility of NODDI is rapidly increasing. At the same time, the pitfalls and limitations of NODDI, and general challenges in microstructure modeling, are becoming increasingly recognized by clinicians. dMRI microstructure modeling is a rapidly evolving field with great promise, where people from different scientific backgrounds, such as physics, medicine, biology, neuroscience, and statistics, are collaborating to build novel tools that contribute to improving human healthcare. Here, we review the applications of NODDI in clinical research and discuss future perspectives for investigations toward the implementation of dMRI microstructure imaging in clinical practice.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, The University of Tokyo, Tokyo, Japan; Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
177
|
ConFiG: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation. Neuroimage 2020; 220:117107. [PMID: 32622984 PMCID: PMC7903162 DOI: 10.1016/j.neuroimage.2020.117107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 11/27/2022] Open
Abstract
This paper presents Contextual Fibre Growth (ConFiG), an approach to generate white matter numerical phantoms by mimicking natural fibre genesis. ConFiG grows fibres one-by-one, following simple rules motivated by real axonal guidance mechanisms. These simple rules enable ConFiG to generate phantoms with tuneable microstructural features by growing fibres while attempting to meet morphological targets such as user-specified density and orientation distribution. We compare ConFiG to the state-of-the-art approach based on packing fibres together by generating phantoms in a range of fibre configurations including crossing fibre bundles and orientation dispersion. Results demonstrate that ConFiG produces phantoms with up to 20% higher densities than the state-of-the-art, particularly in complex configurations with crossing fibres. We additionally show that the microstructural morphology of ConFiG phantoms is comparable to real tissue, producing diameter and orientation distributions close to electron microscopy estimates from real tissue as well as capturing complex fibre cross sections. Signals simulated from ConFiG phantoms match real diffusion MRI data well, showing that ConFiG phantoms can be used to generate realistic diffusion MRI data. This demonstrates the feasibility of ConFiG to generate realistic synthetic diffusion MRI data for developing and validating microstructure modelling approaches. We present ConFiG, a biologically motivated numerical phantom generator for white matter. ConFiG produces phantoms with state-of-the-art density and realistic microstructure. Diffusion MRI simulations in ConFiG phantoms are comparable to real dMRI signals.
Collapse
|
178
|
Schiavi S, Ocampo-Pineda M, Barakovic M, Petit L, Descoteaux M, Thiran JP, Daducci A. A new method for accurate in vivo mapping of human brain connections using microstructural and anatomical information. SCIENCE ADVANCES 2020; 6:eaba8245. [PMID: 32789176 PMCID: PMC7399649 DOI: 10.1126/sciadv.aba8245] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Diffusion magnetic resonance imaging is a noninvasive imaging modality that has been extensively used in the literature to study the neuronal architecture of the brain in a wide range of neurological conditions using tractography. However, recent studies highlighted that the anatomical accuracy of the reconstructions is inherently limited and challenged its appropriateness. Several solutions have been proposed to tackle this issue, but none of them proved effective to overcome this fundamental limitation. In this work, we present a novel processing framework to inject into the reconstruction problem basic prior knowledge about brain anatomy and its organization and evaluate its effectiveness using both simulated and real human brain data. Our results indicate that our proposed method dramatically increases the accuracy of the estimated brain networks and, thus, represents a major step forward for the study of connectivity.
Collapse
Affiliation(s)
- Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Muhamed Barakovic
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Petit
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | |
Collapse
|
179
|
Moeller S, Pisharady Kumar P, Andersson J, Akcakaya M, Harel N, Ma RE, Wu X, Yacoub E, Lenglet C, Ugurbil K. Diffusion Imaging in the Post HCP Era. J Magn Reson Imaging 2020; 54:36-57. [PMID: 32562456 DOI: 10.1002/jmri.27247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diffusion imaging is a critical component in the pursuit of developing a better understanding of the human brain. Recent technical advances promise enabling the advancement in the quality of data that can be obtained. In this review the context for different approaches relative to the Human Connectome Project are compared. Significant new gains are anticipated from the use of high-performance head gradients. These gains can be particularly large when the high-performance gradients are employed together with ultrahigh magnetic fields. Transmit array designs are critical in realizing high accelerations in diffusion-weighted (d)MRI acquisitions, while maintaining large field of view (FOV) coverage, and several techniques for optimal signal-encoding are now available. Reconstruction and processing pipelines that precisely disentangle the acquired neuroanatomical information are established and provide the foundation for the application of deep learning in the advancement of dMRI for complex tissues. Level of Evidence: 3 Technical Efficacy Stage: Stage 3.
Collapse
Affiliation(s)
- Steen Moeller
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pramod Pisharady Kumar
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mehmet Akcakaya
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Noam Harel
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ruoyun Emily Ma
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
180
|
Andersen KW, Lasič S, Lundell H, Nilsson M, Topgaard D, Sellebjerg F, Szczepankiewicz F, Siebner HR, Blinkenberg M, Dyrby TB. Disentangling white-matter damage from physiological fibre orientation dispersion in multiple sclerosis. Brain Commun 2020; 2:fcaa077. [PMID: 32954329 PMCID: PMC7472898 DOI: 10.1093/braincomms/fcaa077] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023] Open
Abstract
Multiple sclerosis leads to diffuse damage of the central nervous system, affecting also the normal-appearing white matter. Demyelination and axonal degeneration reduce regional fractional anisotropy in normal-appearing white matter, which can be routinely mapped with diffusion tensor imaging. However, the standard fractional anisotropy metric is also sensitive to physiological variations in orientation dispersion of white matter fibres. This complicates the detection of disease-related damage in large parts of cerebral white matter where microstructure physiologically displays a high degree of fibre dispersion. To resolve this ambiguity, we employed a novel tensor-valued encoding method for diffusion MRI, which yields a microscopic fractional anisotropy metric that is unaffected by regional variations in orientation dispersion. In 26 patients with relapsing-remitting multiple sclerosis, 14 patients with primary-progressive multiple sclerosis and 27 age-matched healthy controls, we compared standard fractional anisotropy mapping with the novel microscopic fractional anisotropy mapping method, focusing on normal-appearing white matter. Mean microscopic fractional anisotropy and standard fractional anisotropy of normal-appearing white matter were significantly reduced in both patient groups relative to healthy controls, but microscopic fractional anisotropy yielded a better reflection of disease-related white-matter alterations. The reduction in mean microscopic fractional anisotropy showed a significant positive linear relationship with physical disability, as reflected by the expanded disability status scale. Mean reduction of microscopic fractional anisotropy in normal-appearing white matter also scaled positively with individual cognitive dysfunction, as measured with the symbol digit modality test. Mean microscopic fractional anisotropy reduction in normal-appearing white matter also showed a positive relationship with total white-matter lesion load as well as lesion load in specific tract systems. None of these relationships between normal-appearing white-matter microstructure and clinical, cognitive or structural measures emerged when using mean fractional anisotropy. Together, the results provide converging evidence that microscopic fractional anisotropy mapping substantially advances the assessment of cerebral white matter in multiple sclerosis by disentangling microstructure damage from variations in physiological fibre orientation dispersion at the stage of data acquisition. Since tensor-valued encoding can be implemented in routine diffusion MRI, microscopic fractional anisotropy mapping bears considerable potential for the future assessment of disease progression in normal-appearing white matter in both relapsing-remitting and progressive forms of multiple sclerosis as well as other white-matter-related brain diseases.
Collapse
Affiliation(s)
- Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Samo Lasič
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Random Walk Imaging, AB, 222 24 Lund, Sweden
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Markus Nilsson
- Department of Radiology, Clinical Sciences, Lund, Lund University, 221 00 Lund, Sweden
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Filip Szczepankiewicz
- Department of Medical Radiation Physics, Clinical Sciences, Lund, Lund University, 221 00 Lund, Sweden
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen NV, Denmark
| | - Morten Blinkenberg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2700 Kongens Lyngby, Denmark
| |
Collapse
|
181
|
Pines AR, Cieslak M, Larsen B, Baum GL, Cook PA, Adebimpe A, Dávila DG, Elliott MA, Jirsaraie R, Murtha K, Oathes DJ, Piiwaa K, Rosen AFG, Rush S, Shinohara RT, Bassett DS, Roalf DR, Satterthwaite TD. Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood. Dev Cogn Neurosci 2020; 43:100788. [PMID: 32510347 PMCID: PMC7200217 DOI: 10.1016/j.dcn.2020.100788] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Multi-shell imaging sequences may improve sensitivity to developmental effects. Models that leverage multi-shell information are often less sensitive to the confounding effects of motion. Multi-shell sequences and models that leverage this data may be of particular utility for studying the developing brain.
Diffusion weighted imaging (DWI) has advanced our understanding of brain microstructure evolution over development. Recently, the use of multi-shell diffusion imaging sequences has coincided with advances in modeling the diffusion signal, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent Propagator MRI (MAPL). However, the relative utility of recently-developed diffusion models for understanding brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact is a major confound for studies of development, the vulnerability of metrics derived from contemporary models to in-scanner motion has not been described. Accordingly, in a sample of 120 youth and young adults (ages 12–30) we evaluated metrics derived from diffusion tensor imaging (DTI), NODDI, and MAPL for associations with age and in-scanner head motion at multiple scales. Specifically, we examined mean white matter values, white matter tracts, white matter voxels, and connections in structural brain networks. Our results revealed that multi-shell diffusion imaging data can be leveraged to robustly characterize neurodevelopment, and demonstrate stronger age effects than equivalent single-shell data. Additionally, MAPL-derived metrics were less sensitive to the confounding effects of head motion. Our findings suggest that multi-shell imaging data and contemporary modeling techniques confer important advantages for studies of neurodevelopment.
Collapse
Affiliation(s)
- Adam R Pines
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Matthew Cieslak
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Graham L Baum
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Azeez Adebimpe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Diego G Dávila
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Mark A Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Robert Jirsaraie
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Kristin Murtha
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Kayla Piiwaa
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Adon F G Rosen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Sage Rush
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Danielle S Bassett
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, United States; Santa Fe Institute, Santa Fe, NM, 87501, United States
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | | |
Collapse
|
182
|
Palombo M, Ianus A, Guerreri M, Nunes D, Alexander DC, Shemesh N, Zhang H. SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 2020; 215:116835. [PMID: 32289460 PMCID: PMC8543044 DOI: 10.1016/j.neuroimage.2020.116835] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 11/29/2022] Open
Abstract
This work introduces a compartment-based model for apparent cell body (namely soma) and neurite density imaging (SANDI) using non-invasive diffusion-weighted MRI (DW-MRI). The existing conjecture in brain microstructure imaging through DW-MRI presents water diffusion in white (WM) and gray (GM) matter as restricted diffusion in neurites, modelled by infinite cylinders of null radius embedded in the hindered extra-neurite water. The extra-neurite pool in WM corresponds to water in the extra-axonal space, but in GM it combines water in the extra-cellular space with water in soma. While several studies showed that this microstructure model successfully describe DW-MRI data in WM and GM at b ≤ 3,000 s/mm2 (or 3 ms/μm2), it has been also shown to fail in GM at high b values (b≫3,000 s/mm2 or 3 ms/μm2). Here we hypothesise that the unmodelled soma compartment (i.e. cell body of any brain cell type: from neuroglia to neurons) may be responsible for this failure and propose SANDI as a new model of brain microstructure where soma of any brain cell type is explicitly included. We assess the effects of size and density of soma on the direction-averaged DW-MRI signal at high b values and the regime of validity of the model using numerical simulations and comparison with experimental data from mouse (bmax = 40,000 s/mm2, or 40 ms/μm2) and human (bmax = 10,000 s/mm2, or 10 ms/μm2) brain. We show that SANDI defines new contrasts representing complementary information on the brain cyto- and myelo-architecture. Indeed, we show maps from 25 healthy human subjects of MR soma and neurite signal fractions, that remarkably mirror contrasts of histological images of brain cyto- and myelo-architecture. Although still under validation, SANDI might provide new insight into tissue architecture by introducing a new set of biomarkers of potential great value for biomedical applications and pure neuroscience.
Collapse
Affiliation(s)
- Marco Palombo
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.
| | - Andrada Ianus
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Michele Guerreri
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK
| | - Daniel Nunes
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Daniel C Alexander
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Hui Zhang
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK
| |
Collapse
|
183
|
Vanderweyen DC, Theaud G, Sidhu J, Rheault F, Sarubbo S, Descoteaux M, Fortin D. The role of diffusion tractography in refining glial tumor resection. Brain Struct Funct 2020; 225:1413-1436. [PMID: 32180019 DOI: 10.1007/s00429-020-02056-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
Primary brain tumors are notoriously hard to resect surgically. Due to their infiltrative nature, finding the optimal resection boundary without damaging healthy tissue can be challenging. One potential tool to help make this decision is diffusion-weighted magnetic resonance imaging (dMRI) tractography. dMRI exploits the diffusion of water molecule along axons to generate a 3D modelization of the white matter bundles in the brain. This feature is particularly useful to visualize how a tumor affects its surrounding white matter and plan a surgical path. This paper reviews the different ways in which dMRI can be used to improve brain tumor resection, its benefits and also its limitations. We expose surgical tools that can be paired with dMRI to improve its impact on surgical outcome, such as loading the 3D tractography in the neuronavigation system and direct electrical stimulation to validate the position of the white matter bundles of interest. We also review articles validating dMRI findings using other anatomical investigation techniques, such as postmortem dissections, manganese-enhanced MRI, electrophysiological stimulations, and phantom studies with known ground truth. We will be discussing the areas of the brain where dMRI performs well and where the future challenges are. We will conclude this review with suggestions and take home messages for neurosurgeons, tractographers, and vendors for advancing the field and on how to benefit from tractography's use in clinical practice.
Collapse
Affiliation(s)
- Davy Charles Vanderweyen
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada.
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Silvio Sarubbo
- Division of Neurosurgery, Emergency Area, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada
| |
Collapse
|
184
|
Duchêne G, Abarca-Quinones J, Feza-Bingi N, Leclercq I, Duprez T, Peeters F. Double Diffusion Encoding for Probing Radiation-Induced Microstructural Changes in a Tumor Model: A Proof-of-Concept Study With Comparison to the Apparent Diffusion Coefficient and Histology. J Magn Reson Imaging 2020; 52:941-951. [PMID: 32147929 DOI: 10.1002/jmri.27119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Microstructure analyses are gaining interest in cancer MRI as an alternative to the conventional apparent diffusion coefficient (ADC), of which the determinants remain unclear. PURPOSE To assess the sensitivity of parameters calculated from a double diffusion encoding (DDE) sequence to changes in a tumor's microstructure early after radiotherapy and to compare them with ADC and histology. STUDY TYPE Cohort study on experimental tumors. ANIMAL MODEL Sixteen WAG/Rij rats grafted with one rhabdomyosarcoma fragment in each thigh. Thirty-one were imaged at days 1 and 4, of which 17 tumors received a 20 Gy radiation dose after the first imagery. FIELD STRENGTH/SEQUENCE 3T. Diffusion-weighted imaging, DDE with flow compensated, and noncompensated measurements. ASSESSMENTS 1) To compare, after irradiation, DDE-derived parameters (intracellular fraction, cell size, and cell density) to their histological counterparts (fraction of stained area, minimal Feret diameter, and nuclei count, respectively). 2) To compare percentage changes in DDE-derived parameters and ADC. 3) To evaluate the evolution of DDE-derived parameters describing perfusion. STATISTICAL TESTS Wilcoxon rank sum test. RESULTS 1) Intracellular fraction, cell size, and cell density were respectively lower (-24%, P < 0.001), higher (+7.5%, P < 0.001) and lower (-38%, P < 0.001) in treated tumors as compared to controls. Fraction of stained area, minimal Feret diameter, and nuclei count were respectively lower (-20%, P < 0.001), higher (+28%, P < 0.001), and lower (-34%, P < 0.001) in treated tumors. 2) The magnitude of ADC's percentage change due to irradiation (16.4%) was superior to the one of cell size (8.4%, P < 0.01) but inferior to those of intracellular fraction (35.5%, P < 0.001) and cell density (42%, P < 0.001). 3) After treatment, the magnitude of the vascular fraction's decrease was higher than the increase of flow velocity (33.3%, vs. 13.3%, P < 0.001). DATA CONCLUSION The DDE sequence allows quantitatively monitoring the effects of radiotherapy on a tumor's microstructure, whereas ADC only reveals global changes. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 4. J. Magn. Reson. Imaging 2020;52:941-951.
Collapse
Affiliation(s)
- Gaëtan Duchêne
- Department of medical imaging, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jorge Abarca-Quinones
- Department of medical imaging, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,MRI unit, Department of medical imaging, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Natacha Feza-Bingi
- Department of medical imaging, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Laboratory of Hepato-gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Leclercq
- Department of medical imaging, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,MRI unit, Department of medical imaging, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Laboratory of Hepato-gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Thierry Duprez
- Department of medical imaging, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,MRI unit, Department of medical imaging, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Frank Peeters
- MRI unit, Department of medical imaging, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
185
|
Lampinen B, Szczepankiewicz F, Mårtensson J, van Westen D, Hansson O, Westin CF, Nilsson M. Towards unconstrained compartment modeling in white matter using diffusion-relaxation MRI with tensor-valued diffusion encoding. Magn Reson Med 2020; 84:1605-1623. [PMID: 32141131 DOI: 10.1002/mrm.28216] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE To optimize diffusion-relaxation MRI with tensor-valued diffusion encoding for precise estimation of compartment-specific fractions, diffusivities, and T2 values within a two-compartment model of white matter, and to explore the approach in vivo. METHODS Sampling protocols featuring different b-values (b), b-tensor shapes (bΔ ), and echo times (TE) were optimized using Cramér-Rao lower bounds (CRLB). Whole-brain data were acquired in children, adults, and elderly with white matter lesions. Compartment fractions, diffusivities, and T2 values were estimated in a model featuring two microstructural compartments represented by a "stick" and a "zeppelin." RESULTS Precise parameter estimates were enabled by sampling protocols featuring seven or more "shells" with unique b/bΔ /TE-combinations. Acquisition times were approximately 15 minutes. In white matter of adults, the "stick" compartment had a fraction of approximately 0.5 and, compared with the "zeppelin" compartment, featured lower isotropic diffusivities (0.6 vs. 1.3 μm2 /ms) but higher T2 values (85 vs. 65 ms). Children featured lower "stick" fractions (0.4). White matter lesions exhibited high "zeppelin" isotropic diffusivities (1.7 μm2 /ms) and T2 values (150 ms). CONCLUSIONS Diffusion-relaxation MRI with tensor-valued diffusion encoding expands the set of microstructure parameters that can be precisely estimated and therefore increases their specificity to biological quantities.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Filip Szczepankiewicz
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Department of Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | | | - Oskar Hansson
- Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Carl-Fredrik Westin
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| |
Collapse
|
186
|
Moeller S, Ramanna S, Lenglet C, Pisharady PK, Auerbach EJ, Delabarre L, Wu X, Akcakaya M, Ugurbil K. Self-navigation for 3D multishot EPI with data-reference. Magn Reson Med 2020; 84:1747-1762. [PMID: 32115756 DOI: 10.1002/mrm.28231] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE In this study, we sought to develop a self-navigation strategy for improving the reconstruction of diffusion weighted 3D multishot echo planar imaging (EPI). We propose a method for extracting the phase correction information from the acquisition itself, eliminating the need for a 2D navigator, further accelerating the acquisition. METHODS In-vivo acquisitions at 3T with 0.9 mm and 1.5 mm isotropic resolutions were used to evaluate the performance of the self-navigation strategy. Sensitivity to motion was tested using a large difference in pitch position of the head. Using a multishell diffusion weighted acquisition, tractography results were obtained at (0.9 mm)3 to validate the quality with conventional acquisition. RESULTS The use of 3D multislab EPI with self-navigation enables 3D diffusion-weighted spin echo EPI acquisitions that have the same efficiency as 2D single-shot acquisition. For matched acquisition time the image signal-to-noise ratio (SNR) between 3D and 2D acquisition is shown to be comparable for whole-brain coverage with (1.5 mm)3 resolution and for (0.9 mm)3 resolution the 3D acquisition has higher SNR than what can be obtained with 2D acquisitions using current state-of-art multiband techniques. The self-navigation technique was shown to be stable under inter-volume motion. In tractography analysis, the higher resolution afforded by our technique enabled clear delineation of the tapetum and posterior corona radiata. CONCLUSION The proposed self-navigation approach utilized a self-consistent phase in 3D diffusion weighted acquisitions. Its efficiency and stability were demonstrated for a plurality of common acquisitions. The proposed self-navigation approach allows for faster acquisition of 3D multishot EPI desirable for large field of view and/or higher resolution.
Collapse
Affiliation(s)
- Steen Moeller
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sudhir Ramanna
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Pramod K Pisharady
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Lance Delabarre
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mehmet Akcakaya
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
187
|
Brabec J, Lasič S, Nilsson M. Time-dependent diffusion in undulating thin fibers: Impact on axon diameter estimation. NMR IN BIOMEDICINE 2020; 33:e4187. [PMID: 31868995 PMCID: PMC7027526 DOI: 10.1002/nbm.4187] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 05/22/2023]
Abstract
Diffusion MRI may enable non-invasive mapping of axonal microstructure. Most approaches infer axon diameters from effects of time-dependent diffusion on the diffusion-weighted MR signal by modeling axons as straight cylinders. Axons do not, however, propagate in straight trajectories, and so far the impact of the axonal trajectory on diameter estimation has been insufficiently investigated. Here, we employ a toy model of axons, which we refer to as the undulating thin fiber model, to analyze the impact of undulating trajectories on the time dependence of diffusion. We study time-dependent diffusion in the frequency domain and characterize the diffusion spectrum by its height, width, and low-frequency behavior (power law exponent). Results show that microscopic orientation dispersion of the thin fibers is the main parameter that determines the characteristics of the diffusion spectra. At lower frequencies (longer diffusion times), straight cylinders and undulating thin fibers can have virtually identical spectra. If the straight-cylinder assumption is used to interpret data from undulating thin axons, the diameter is overestimated by an amount proportional to the undulation amplitude and microscopic orientation dispersion of the fibers. At higher frequencies (shorter diffusion times), spectra from cylinders and undulating thin fibers differ. The low-frequency behavior of the spectra from the undulating thin fibers may also differ from that of cylinders, because the power law exponent of undulating fibers can reach values below 2 for experimentally relevant frequency ranges. In conclusion, we argue that the non-straight nature of axonal trajectories should not be overlooked when analyzing and interpreting diffusion MRI data.
Collapse
Affiliation(s)
- Jan Brabec
- Department of Clinical Sciences Lund, Medical Radiation PhysicsLund UniversityLundSweden
| | | | - Markus Nilsson
- Department of Clinical Sciences Lund, Diagnostic RadiologyLund UniversityLundSweden
| |
Collapse
|
188
|
Vincent M, Palombo M, Valette J. Revisiting double diffusion encoding MRS in the mouse brain at 11.7T: Which microstructural features are we sensitive to? Neuroimage 2020; 207:116399. [PMID: 31778817 PMCID: PMC7014823 DOI: 10.1016/j.neuroimage.2019.116399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Brain metabolites, such as N-acetylaspartate or myo-inositol, are constantly probing their local cellular environment under the effect of diffusion. Diffusion-weighted NMR spectroscopy therefore presents unparalleled potential to yield cell-type specific microstructural information. Double diffusion encoding (DDE) consists in applying two diffusion blocks, where gradient's direction in the second block is varied during the course of the experiment. Unlike single diffusion encoding, DDE measurements at long mixing time display some angular modulation of the signal amplitude which reflects microscopic anisotropy (μA), while requiring relatively low gradient strength. This angular dependence has been formerly used to quantify cell fiber diameter using a model of isotropically oriented infinite cylinders. However, how additional features of the cell microstructure (such as cell body diameter, fiber length and branching) may also influence the DDE signal has been little explored. Here, we used a cryoprobe as well as state-of-the-art post-processing to perform DDE acquisitions with high accuracy and precision in the mouse brain at 11.7 T. We then compared our results to simulated DDE datasets obtained in various 3D cell models in order to pinpoint which features of cell morphology may influence the most the angular dependence of the DDE signal. While the infinite cylinder model poorly fits our experimental data, we show that incorporating branched fiber structure in our model allows more realistic interpretation of the DDE signal. Lastly, data acquired in the short mixing time regime suggest that some sensitivity to cell body diameter might be retrieved, although additional experiments would be required to further support this statement.
Collapse
Affiliation(s)
- Mélissa Vincent
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, F-92260, Fontenay-aux-Roses, France; Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, F-92260, Fontenay-aux-Roses, France
| | - Marco Palombo
- Department of Computer Science and Centre for Medical Image Computing, University College of London, London, WC1E 6BT, United Kingdom
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, F-92260, Fontenay-aux-Roses, France; Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, F-92260, Fontenay-aux-Roses, France.
| |
Collapse
|
189
|
Scher Y, Reuveni S, Cohen Y. Constant gradient FEXSY: A time-efficient method for measuring exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106667. [PMID: 31865183 DOI: 10.1016/j.jmr.2019.106667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Filter-Exchange NMR Spectroscopy (FEXSY) is a method for measurement of apparent transmembranal water exchange rates. The experiment is comprised of two co-linear sequential pulsed-field gradient (PFG) blocks, separated by a mixing period in which exchange takes place. The first block remains constant and serves as a diffusion-based filter that removes signal coming from fast-diffusing water. The mixing time and the gradient area (q-value) of the second block are varied on repeated iterations to produce a 2D data set that is analyzed using a bi-compartmental model which assumes that intra- and extra-cellular water are slow and fast diffusing, respectively. Here we suggest a variant of the FEXSY method in which measurements for different mixing times are taken at a constant gradient. This Constant Gradient FEXSY (CG-FEXSY) allows for the determination of the exchange rate by using a smaller 1D data set, so that the same information can be gathered during a considerably shorter scan time. Furthermore, in the limit of high diffusion weighting, such that the extra-cellular water signal is removed while the intra-cellular signal is retained, CG-FEXSY also allows for determination of the intra-cellular mean residence time (MRT). The theoretical results are validated on a living yeast cells sample and on a fixed porcine optic nerve, where the values obtained from the two methods are shown to be in agreement.
Collapse
Affiliation(s)
- Yuval Scher
- School of Chemistry, The Center for Physics and Chemistry of Living Systems, The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, The Mark Ratner Institute for Single Molecule Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Shlomi Reuveni
- School of Chemistry, The Center for Physics and Chemistry of Living Systems, The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, The Mark Ratner Institute for Single Molecule Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoram Cohen
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
190
|
Ye C, Li Y, Zeng X. An improved deep network for tissue microstructure estimation with uncertainty quantification. Med Image Anal 2020; 61:101650. [PMID: 32007700 DOI: 10.1016/j.media.2020.101650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Deep learning based methods have improved the estimation of tissue microstructure from diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients. These methods learn the mapping from diffusion signals in a voxel or patch to tissue microstructure measures. In particular, it is beneficial to exploit the sparsity of diffusion signals jointly in the spatial and angular domains, and the deep network can be designed by unfolding iterative processes that adaptively incorporate historical information for sparse reconstruction. However, the number of network parameters is huge in such a network design, which could increase the difficulty of network training and limit the estimation performance. In addition, existing deep learning based approaches to tissue microstructure estimation do not provide the important information about the uncertainty of estimates. In this work, we continue the exploration of tissue microstructure estimation using a deep network and seek to address these limitations. First, we explore the sparse representation of diffusion signals with a separable spatial-angular dictionary and design an improved deep network for tissue microstructure estimation. The procedure for updating the sparse code associated with the separable dictionary is derived and unfolded to construct the deep network. Second, with the formulation of sparse representation of diffusion signals, we propose to quantify the uncertainty of network outputs with a residual bootstrap strategy. Specifically, because of the sparsity constraint in the signal representation, we perform a Lasso bootstrap strategy for uncertainty quantification. Experiments were performed on brain dMRI scans with a reduced number of diffusion gradients, where the proposed method was applied to two representative biophysical models for describing tissue microstructure and compared with state-of-the-art methods of tissue microstructure estimation. The results show that our approach compares favorably with the competing methods in terms of estimation accuracy. In addition, the uncertainty measures provided by our method correlate with estimation errors and produce reasonable confidence intervals; these results suggest potential application of the proposed uncertainty quantification method in brain studies.
Collapse
Affiliation(s)
- Chuyang Ye
- School of Information and Electronics, Beijing Institute of Technology, Room 316, Building 4, 5 Zhongguancun South Street, Beijing 100081, China.
| | - Yuxing Li
- School of Information and Electronics, Beijing Institute of Technology, Room 316, Building 4, 5 Zhongguancun South Street, Beijing 100081, China
| | - Xiangzhu Zeng
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
191
|
Sydnor VJ, Bouix S, Pasternak O, Hartl E, Levin-Gleba L, Reid B, Tripodis Y, Guenette JP, Kaufmann D, Makris N, Fortier C, Salat DH, Rathi Y, Milberg WP, McGlinchey RE, Shenton ME, Koerte IK. Mild traumatic brain injury impacts associations between limbic system microstructure and post-traumatic stress disorder symptomatology. Neuroimage Clin 2020; 26:102190. [PMID: 32070813 PMCID: PMC7026283 DOI: 10.1016/j.nicl.2020.102190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a psychiatric disorder that afflicts many individuals, yet the neuropathological mechanisms that contribute to this disorder remain to be fully determined. Moreover, it is unclear how exposure to mild traumatic brain injury (mTBI), a condition that is often comorbid with PTSD, particularly among military personnel, affects the clinical and neurological presentation of PTSD. To address these issues, the present study explores relationships between PTSD symptom severity and the microstructure of limbic and paralimbic gray matter brain regions, as well as the impact of mTBI comorbidity on these relationships. METHODS Structural and diffusion MRI data were acquired from 102 male veterans who were diagnosed with current PTSD. Diffusion data were analyzed with free-water imaging to quantify average CSF-corrected fractional anisotropy (FA) and mean diffusivity (MD) in 18 limbic and paralimbic gray matter regions. Associations between PTSD symptom severity and regional average dMRI measures were examined with repeated measures linear mixed models. Associations were studied separately in veterans with PTSD only, and in veterans with PTSD and a history of military mTBI. RESULTS Analyses revealed that in the PTSD only cohort, more severe symptoms were associated with higher FA in the right amygdala-hippocampus complex, lower FA in the right cingulate cortex, and lower MD in the left medial orbitofrontal cortex. In the PTSD and mTBI cohort, more severe PTSD symptoms were associated with higher FA bilaterally in the amygdala-hippocampus complex, with higher FA bilaterally in the nucleus accumbens, with lower FA bilaterally in the cingulate cortex, and with higher MD in the right amygdala-hippocampus complex. CONCLUSIONS These findings suggest that the microstructure of limbic and paralimbic brain regions may influence PTSD symptomatology. Further, given the additional associations observed between microstructure and symptom severity in veterans with head trauma, we speculate that mTBI may exacerbate the impact of brain microstructure on PTSD symptoms, especially within regions of the brain known to be vulnerable to chronic stress. A heightened sensitivity to the microstructural environment of the brain could partially explain why individuals with PTSD and mTBI comorbidity experience more severe symptoms and poorer illness prognoses than those without a history of brain injury. The relevance of these microstructural findings to the conceptualization of PTSD as being a disorder of stress-induced neuronal connectivity loss is discussed.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth Hartl
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Laura Levin-Gleba
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States
| | - Benjamin Reid
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yorghos Tripodis
- Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Jeffrey P Guenette
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Morphometric Analysis, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Catherine Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton Division, Brockton, MA, United States
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
192
|
Lilley LM, Kamper S, Caldwell M, Chia ZK, Ballweg D, Vistain L, Krimmel J, Mills TA, MacRenaris K, Lee P, Waters EA, Meade TJ. Self-Immolative Activation of β-Galactosidase-Responsive Probes for In Vivo MR Imaging in Mouse Models. Angew Chem Int Ed Engl 2020; 59:388-394. [PMID: 31750611 PMCID: PMC6923588 DOI: 10.1002/anie.201909933] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Our lab has developed a new series of self-immolative MR agents for the rapid detection of enzyme activity in mouse models expressing β-galactosidase (β-gal). We investigated two molecular architectures to create agents that detect β-gal activity by modulating the coordination of water to GdIII . The first is an intermolecular approach, wherein we designed several structural isomers to maximize coordination of endogenous carbonate ions. The second involves an intramolecular mechanism for q modulation. We incorporated a pendant coordinating carboxylate ligand with a 2, 4, 6, or 8 carbon linker to saturate ligand coordination to the GdIII ion. This renders the agent ineffective. We show that one agent in particular (6-C pendant carboxylate) is an extremely effective MR reporter for the detection of enzyme activity in a mouse model expressing β-gal.
Collapse
Affiliation(s)
- Laura M Lilley
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Sarah Kamper
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Michael Caldwell
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Zer Keen Chia
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - David Ballweg
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Luke Vistain
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Jeffrey Krimmel
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Teresa Anne Mills
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Keith MacRenaris
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Paul Lee
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Emily Alexandria Waters
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, 60208-3113, USA
| |
Collapse
|
193
|
Beaudet G, Tsuchida A, Petit L, Tzourio C, Caspers S, Schreiber J, Pausova Z, Patel Y, Paus T, Schmidt R, Pirpamer L, Sachdev PS, Brodaty H, Kochan N, Trollor J, Wen W, Armstrong NJ, Deary IJ, Bastin ME, Wardlaw JM, Munõz Maniega S, Witte AV, Villringer A, Duering M, Debette S, Mazoyer B. Age-Related Changes of Peak Width Skeletonized Mean Diffusivity (PSMD) Across the Adult Lifespan: A Multi-Cohort Study. Front Psychiatry 2020; 11:342. [PMID: 32425831 PMCID: PMC7212692 DOI: 10.3389/fpsyt.2020.00342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Parameters of water diffusion in white matter derived from diffusion-weighted imaging (DWI), such as fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, AD, and RD), and more recently, peak width of skeletonized mean diffusivity (PSMD), have been proposed as potential markers of normal and pathological brain ageing. However, their relative evolution over the entire adult lifespan in healthy individuals remains partly unknown during early and late adulthood, and particularly for the PSMD index. Here, we gathered and analyzed cross-sectional diffusion tensor imaging (DTI) data from 10 population-based cohort studies in order to establish the time course of white matter water diffusion phenotypes from post-adolescence to late adulthood. DTI data were obtained from a total of 20,005 individuals aged 18.1 to 92.6 years and analyzed with the same pipeline for computing skeletonized DTI metrics from DTI maps. For each individual, MD, AD, RD, and FA mean values were computed over their FA volume skeleton, PSMD being calculated as the 90% peak width of the MD values distribution across the FA skeleton. Mean values of each DTI metric were found to strongly vary across cohorts, most likely due to major differences in DWI acquisition protocols as well as pre-processing and DTI model fitting. However, age effects on each DTI metric were found to be highly consistent across cohorts. RD, MD, and AD variations with age exhibited the same U-shape pattern, first slowly decreasing during post-adolescence until the age of 30, 40, and 50 years, respectively, then progressively increasing until late life. FA showed a reverse profile, initially increasing then continuously decreasing, slowly until the 70s, then sharply declining thereafter. By contrast, PSMD constantly increased, first slowly until the 60s, then more sharply. These results demonstrate that, in the general population, age affects PSMD in a manner different from that of other DTI metrics. The constant increase in PSMD throughout the entire adult life, including during post-adolescence, indicates that PSMD could be an early marker of the ageing process.
Collapse
Affiliation(s)
- Grégory Beaudet
- Institute of Neurodegenerative Diseases (IMN), CNRS, CEA, Bordeaux, France.,Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France
| | - Ami Tsuchida
- Institute of Neurodegenerative Diseases (IMN), CNRS, CEA, Bordeaux, France.,Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France
| | - Laurent Petit
- Institute of Neurodegenerative Diseases (IMN), CNRS, CEA, Bordeaux, France.,Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France
| | | | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Jan Schreiber
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Zdenka Pausova
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Yash Patel
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | - Nicole Kochan
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | - Julian Trollor
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Neuropsychiatric Institute Prince of Wales Hospital, Randwick, NSW, Australia
| | | | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Susana Munõz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - A Veronica Witte
- Departmet of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Departmet of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Stéphanie Debette
- Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France.,Bordeaux Population Health Research Center, Inserm, Bordeaux, France.,Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Bernard Mazoyer
- Institute of Neurodegenerative Diseases (IMN), CNRS, CEA, Bordeaux, France.,Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, Bordeaux, France
| |
Collapse
|
194
|
Solana E, Martinez-Heras E, Casas-Roma J, Calvet L, Lopez-Soley E, Sepulveda M, Sola-Valls N, Montejo C, Blanco Y, Pulido-Valdeolivas I, Andorra M, Saiz A, Prados F, Llufriu S. Modified connectivity of vulnerable brain nodes in multiple sclerosis, their impact on cognition and their discriminative value. Sci Rep 2019; 9:20172. [PMID: 31882922 PMCID: PMC6934774 DOI: 10.1038/s41598-019-56806-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Brain structural network modifications in multiple sclerosis (MS) seem to be clinically relevant. The discriminative ability of those changes to identify MS patients or their cognitive status remains unknown. Therefore, this study aimed to investigate connectivity changes in MS patients related to their cognitive status, and to define an automatic classification method to classify subjects as patients and healthy volunteers (HV) or as cognitively preserved (CP) and impaired (CI) patients. We analysed structural brain connectivity in 45 HV and 188 MS patients (104 CP and 84 CI). A support vector machine with k-fold cross-validation was built using the graph metrics features that best differentiate the groups (p < 0.05). Local efficiency (LE) and node strength (NS) network properties showed the largest differences: 100% and 69.7% of nodes had reduced LE and NS in CP patients compared to HV. Moreover, 55.3% and 57.9% of nodes had decreased LE and NS in CI compared to CP patients, in associative multimodal areas. The classification method achieved an accuracy of 74.8–77.2% to differentiate patients from HV, and 59.9–60.8% to discriminate CI from CP patients. Structural network integrity is widely reduced and worsens as cognitive function declines. Central network properties of vulnerable nodes can be useful to classify MS patients.
Collapse
Affiliation(s)
- Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Jordi Casas-Roma
- E-health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Laura Calvet
- E-health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Elisabet Lopez-Soley
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Maria Sepulveda
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Nuria Sola-Valls
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Carmen Montejo
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Magi Andorra
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Albert Saiz
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Ferran Prados
- E-health Centre, Universitat Oberta de Catalunya, Barcelona, Spain.,Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.,NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
195
|
Lee Y, Kettinger AO, Wilm BJ, Deichmann R, Weiskopf N, Lambert C, Pruessmann KP, Nagy Z. A comprehensive approach for correcting voxel-wise b-value errors in diffusion MRI. Magn Reson Med 2019; 83:2173-2184. [PMID: 31840300 PMCID: PMC7065087 DOI: 10.1002/mrm.28078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/23/2019] [Accepted: 10/22/2019] [Indexed: 01/29/2023]
Abstract
PURPOSE In diffusion MRI, the actual b-value played out on the scanner may deviate from the nominal value due to magnetic field imperfections. A simple image-based correction method for this problem is presented. METHODS The apparent diffusion constant (ADC) of a water phantom was measured voxel-wise along 64 diffusion directions at b = 1000 s/mm2 . The true diffusion constant of water was estimated, considering the phantom temperature. A voxel-wise correction factor, providing an effective b-value including any magnetic field deviations, was determined for each diffusion direction by relating the measured ADC to the true diffusion constant. To test the method, the measured b-value map was used to calculate the corrected voxel-wise ADC for additionally acquired diffusion data sets on the same water phantom and data sets acquired on a small water phantom at three different positions. Diffusion tensor was estimated by applying the measured b-value map to phantom and in vivo data sets. RESULTS The b-value-corrected ADC maps of the phantom showed the expected spatial uniformity as well as a marked improvement in consistency across diffusion directions. The b-value correction for the brain data resulted in a 5.8% and 5.5% decrease in mean diffusivity and angular differences of the primary diffusion direction of 2.71° and 0.73° inside gray and white matter, respectively. CONCLUSION The actual b-value deviates significantly from its nominal setting, leading to a spatially variable error in the common diffusion outcome measures. The suggested method measures and corrects these artifacts.
Collapse
Affiliation(s)
- Yoojin Lee
- Laboratory for Social and Neural Systems Research (SNS Lab), University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Adam O Kettinger
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Nuclear Techniques, Budapest University of Technology and Economics, Budapest, Hungary
| | - Bertram Jakob Wilm
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Ralf Deichmann
- Brain Imaging Centre, Goethe University, Frankfurt, Germany.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems Research (SNS Lab), University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
196
|
Christiaens D, Veraart J, Cordero-Grande L, Price AN, Hutter J, Hajnal JV, Tournier JD. On the need for bundle-specific microstructure kernels in diffusion MRI. Neuroimage 2019; 208:116460. [PMID: 31843710 PMCID: PMC7014821 DOI: 10.1016/j.neuroimage.2019.116460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 11/23/2022] Open
Abstract
Probing microstructure with diffusion magnetic resonance imaging (dMRI) on a scale orders of magnitude below the imaging resolution relies on biophysical modelling of the signal response in the tissue. The vast majority of these biophysical models of diffusion in white matter assume that the measured dMRI signal is the sum of the signals emanating from each of the constituent compartments, each of which exhibits a distinct behaviour in the b-value and/or orientation domain. Many of these models further assume that the dMRI behaviour of the oriented compartments (e.g. the intra-axonal space) is identical between distinct fibre populations, at least at the level of a single voxel. This implicitly assumes that any potential biological differences between fibre populations are negligible, at least as far as is measurable using dMRI. Here, we validate this assumption by means of a voxel-wise, model-free signal decomposition that, under the assumption above and in the absence of noise, is shown to be rank-1. We evaluate the effect size of signal components beyond this rank-1 representation and use permutation testing to assess their significance. We conclude that in the healthy adult brain, the dMRI signal is adequately represented by a rank-1 model, implying that biologically more realistic, but mathematically more complex fascicle-specific microstructure models do not capture statistically significant or anatomically meaningful structure, even in extended high-b diffusion MRI scans.
Collapse
Affiliation(s)
- Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
| | - Jelle Veraart
- Centre for Biomedical Imaging, NYU School of Medicine, New York, NY, USA; iMinds - Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
197
|
Anaby D, Morozov D, Seroussi I, Hametner S, Sochen N, Cohen Y. Single- and double-Diffusion encoding MRI for studying ex vivo apparent axon diameter distribution in spinal cord white matter. NMR IN BIOMEDICINE 2019; 32:e4170. [PMID: 31573745 DOI: 10.1002/nbm.4170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Mapping average axon diameter (AAD) and axon diameter distribution (ADD) in neuronal tissues non-invasively is a challenging task that may have a tremendous effect on our understanding of the normal and diseased central nervous system (CNS). Water diffusion is used to probe microstructure in neuronal tissues, however, the different water populations and barriers that are present in these tissues turn this into a complex task. Therefore, it is not surprising that recently we have witnessed a burst in the development of new approaches and models that attempt to obtain, non-invasively, detailed microstructural information in the CNS. In this work, we aim at challenging and comparing the microstructural information obtained from single diffusion encoding (SDE) with double diffusion encoding (DDE) MRI. We first applied SDE and DDE MR spectroscopy (MRS) on microcapillary phantoms and then applied SDE and DDE MRI on an ex vivo porcine spinal cord (SC), using similar experimental conditions. The obtained diffusion MRI data were fitted by the same theoretical model, assuming that the signal in every voxel can be approximated as the superposition of a Gaussian-diffusing component and a series of restricted components having infinite cylindrical geometries. The diffusion MRI results were then compared with histological findings. We found a good agreement between the fittings and the experimental data in white matter (WM) voxels of the SC in both diffusion MRI methods. The microstructural information and apparent AADs extracted from SDE MRI were found to be similar or somewhat larger than those extracted from DDE MRI especially when the diffusion time was set to 40 ms. The apparent ADDs extracted from SDE and DDE MRI show reasonable agreement but somewhat weaker correspondence was observed between the diffusion MRI results and histology. The apparent subtle differences between the microstructural information obtained from SDE and DDE MRI are briefly discussed.
Collapse
Affiliation(s)
- Debbie Anaby
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Darya Morozov
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Seroussi
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Simon Hametner
- Neuroimmunology Department, Center of Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nir Sochen
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
198
|
Lilley LM, Kamper S, Caldwell M, Chia ZK, Ballweg D, Vistain L, Krimmel J, Mills TA, MacRenaris K, Lee P, Waters EA, Meade TJ. Self‐Immolative Activation of β‐Galactosidase‐Responsive Probes for In Vivo MR Imaging in Mouse Models. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Laura M. Lilley
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Sarah Kamper
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Michael Caldwell
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Zer Keen Chia
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - David Ballweg
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Luke Vistain
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Jeffrey Krimmel
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Teresa Anne Mills
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Keith MacRenaris
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Paul Lee
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | | | - Thomas J. Meade
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
- Center for Advanced Molecular Imaging Northwestern University Evanston IL 60208-3113 USA
| |
Collapse
|
199
|
Ultra-high resolution and multi-shell diffusion MRI of intact ex vivo human brains using kT-dSTEAM at 9.4T. Neuroimage 2019; 202:116087. [DOI: 10.1016/j.neuroimage.2019.116087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023] Open
|
200
|
Martin J, Endt S, Wetscherek A, Kuder TA, Doerfler A, Uder M, Hensel B, Laun FB. Twice‐refocused stimulated echo diffusion imaging: Measuring diffusion time dependence at constant
T
1
weighting. Magn Reson Med 2019; 83:1741-1749. [DOI: 10.1002/mrm.28046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Jan Martin
- Institute of Radiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Sebastian Endt
- Institute of Radiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
- Department of Computer Science Technical University of Munich Garching Germany
| | - Andreas Wetscherek
- Joint Department of Physics The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust London United Kingdom
| | - Tristan Anselm Kuder
- Department Medical Physics in Radiology German Cancer Research Center Heidelberg Germany
| | - Arnd Doerfler
- Institute of Neuroradiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Michael Uder
- Institute of Radiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Frederik Bernd Laun
- Institute of Radiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|