151
|
Gera A, Steinberg GK, Guzman R. In vivo neural stem cell imaging: current modalities and future directions. Regen Med 2010; 5:73-86. [PMID: 20017696 DOI: 10.2217/rme.09.79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells have been proposed as a promising therapy for treating a wide variety of neuropathologies. While several studies have demonstrated the therapeutic benefits of neural stem cells, the exact mechanism remains elusive. In order to facilitate research efforts to understand these mechanisms, and before neural stem cell-based therapies can be utilized in a clinical context, we must develop means of monitoring these cells in vivo. However, because of tissue depth and the blood-brain barrier, in vivo imaging of neural stem cells in the brain has unique challenges that do not apply to stem cells for other purposes. In this paper, we review contemporary methods for in vivo neural stem cell imaging, including MRI, PET and optical imaging techniques.
Collapse
Affiliation(s)
- Atul Gera
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, 300 Pasteur Drive, R2111, Stanford, CA 94305-95327, USA
| | | | | |
Collapse
|
152
|
Poirier-Quinot M, Frasca G, Wilhelm C, Luciani N, Ginefri JC, Darrasse L, Letourneur D, Le Visage C, Gazeau F. High-Resolution 1.5-Tesla Magnetic Resonance Imaging for Tissue-Engineered Constructs: A Noninvasive Tool to Assess Three-Dimensional Scaffold Architecture and Cell Seeding. Tissue Eng Part C Methods 2010; 16:185-200. [DOI: 10.1089/ten.tec.2009.0015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Marie Poirier-Quinot
- Unité de Recherche en Résonance Magnétique Médicale, (U2R2M) UMR 8081 CNRS, Université Paris Sud, Orsay, France
| | - Guillaume Frasca
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université Paris–Diderot, Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université Paris–Diderot, Paris, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université Paris–Diderot, Paris, France
| | - Jean-Christophe Ginefri
- Unité de Recherche en Résonance Magnétique Médicale, (U2R2M) UMR 8081 CNRS, Université Paris Sud, Orsay, France
| | - Luc Darrasse
- Unité de Recherche en Résonance Magnétique Médicale, (U2R2M) UMR 8081 CNRS, Université Paris Sud, Orsay, France
| | - Didier Letourneur
- Inserm U698, Bio-ingénierie Cardiovasculaire, CHU X. Bichat, Paris, France
| | | | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université Paris–Diderot, Paris, France
| |
Collapse
|
153
|
Nohroudi K, Arnhold S, Berhorn T, Addicks K, Hoehn M, Himmelreich U. In Vivo MRI Stem Cell Tracking Requires Balancing of Detection Limit and Cell Viability. Cell Transplant 2010; 19:431-41. [DOI: 10.3727/096368909x484699] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell-based therapy using adult mesenchymal stem cells (MSCs) has already been the subject of clinical trials, but for further development and optimization the distribution and integration of the engrafted cells into host tissues have to be monitored. Today, for this purpose magnetic resonance imaging (MRI) is the most suitable technique, and micron-sized iron oxide particles (MPIOs) used for labeling are favorable due to their low detection limit. However, constitutional data concerning labeling efficiency, cell viability, and function are lacking. We demonstrate that cell viability and migratory potential of bone marrow mesenchymal stromal cells (BMSCs) are negatively correlated with incorporated MPIOs, presumably due to interference with the actin cytoskeleton. Nevertheless, labeling of BMSCs with low amounts of MPIOs results in maintained cellular function and sufficient contrast for in vivo observation of single cells by MRI in a rat glioma model. Conclusively, though careful titration is indicated, MPIOs are a promising tool for in vivo cell tracking and evaluation of cell-based therapies.
Collapse
Affiliation(s)
- K. Nohroudi
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - S. Arnhold
- Department of Veterinary Anatomy, University of Giessen, Giessen, Germany
| | - T. Berhorn
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - K. Addicks
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - M. Hoehn
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - U. Himmelreich
- Max Planck Institute for Neurological Research, Cologne, Germany
| |
Collapse
|
154
|
Crabbe A, Vandeputte C, Dresselaers T, Sacido AA, Verdugo JMG, Eyckmans J, Luyten FP, Van Laere K, Verfaillie CM, Himmelreich U. Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant 2010; 19:919-36. [PMID: 20350351 DOI: 10.3727/096368910x494623] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ultimate therapy for ischemic stroke is restoration of blood supply in the ischemic region and regeneration of lost neural cells. This might be achieved by transplanting cells that differentiate into vascular or neuronal cell types, or secrete trophic factors that enhance self-renewal, recruitment, long-term survival, and functional integration of endogenous stem/progenitor cells. Experimental stroke models have been developed to determine potential beneficial effect of stem/progenitor cell-based therapies. To follow the fate of grafted cells in vivo, a number of noninvasive imaging approaches have been developed. Magnetic resonance imaging (MRI) is a high-resolution, clinically relevant method allowing in vivo monitoring of cells labeled with contrast agents. In this study, labeling efficiency of three different stem cell populations [mouse embryonic stem cells (mESC), rat multipotent adult progenitor cells (rMAPC), and mouse mesenchymal stem cells (mMSC)] with three different (ultra)small superparamagnetic iron oxide [(U)SPIO] particles (Resovist, Endorem, Sinerem) was compared. Labeling efficiency with Resovist and Endorem differed significantly between the different stem cells. Labeling with (U)SPIOs in the range that allows detection of cells by in vivo MRI did not affect differentiation of stem cells when labeled with concentrations of particles needed for MRI-based visualization. Finally, we demonstrated that labeled rMAPC could be detected in vivo and that labeling did not interfere with their migration. We conclude that successful use of (U)SPIOs for MRI-based visualization will require assessment of the optimal (U)SPIO for each individual (stem) cell population to ensure the most sensitive detection without associated toxicity.
Collapse
|
155
|
Chen YC, Hsiao JK, Liu HM, Lai IY, Yao M, Hsu SC, Ko BS, Chen YC, Yang CS, Huang DM. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 2010; 245:272-9. [PMID: 20338187 DOI: 10.1016/j.taap.2010.03.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 11/26/2022]
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles are very useful for monitoring cell trafficking in vivo and distinguish whether cellular regeneration originated from an exogenous cell source, which is a key issue for developing successful stem cell therapies. However, the impact of SPIO labeling on stem cell behavior remains uncertain. Here, we show the inhibitory effect of Ferucarbotran, an ionic SPIO, on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Ferucarbotran caused a dose-dependent inhibition of osteogenic differentiation, abolished the differentiation at high concentration, promoted cell migration, and activated the signaling molecules, beta-catenin, a cancer/testis antigen, SSX, and matrix metalloproteinase 2 (MMP2). An iron chelator, desferrioxamine, suppressed all the above Ferucarbotran-induced actions, demonstrating an important role of free iron in the inhibition of osteogenic differentiation that is mediated by the promotion of cell mobilization, involving the activation of a specific signaling pathway.
Collapse
Affiliation(s)
- Ying-Chun Chen
- Center for Nanomedicine Research, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Kubinová S, Syková E. Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine (Lond) 2010; 5:99-108. [PMID: 20025468 DOI: 10.2217/nnm.09.93] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of nanotechnology in cell therapy and tissue engineering offers promising future perspectives for brain and spinal cord injury treatment. Stem cells have been shown to selectively target injured brain and spinal cord tissue and improve functional recovery. To allow cell detection, superparamagnetic iron-oxide nanoparticles can be used to label transplanted cells. MRI is then a suitable method for the in vivo tracking of grafted cells in the host organism. CNS, and particularly spinal cord, injury is accompanied by tissue damage and the formation of physical and biochemical barriers that prevent axons from regenerating. One aspect of nanomedicine is the development of biologically compatible nanofiber scaffolds that mimic the structure of the extracellular matrix and can serve as a permissive bridge for axonal regeneration or as a drug-delivery system. The incorporation of biologically active epitopes and/or the utilization of these scaffolds as stem cell carriers may further enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Sárka Kubinová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague, Czech Republic
| | | |
Collapse
|
157
|
Arbab AS, Janic B, Jafari-Khouzani K, Iskander ASM, Kumar S, Varma NRS, Knight RA, Soltanian-Zadeh H, Brown SL, Frank JA. Differentiation of glioma and radiation injury in rats using in vitro produce magnetically labeled cytotoxic T-cells and MRI. PLoS One 2010; 5:e9365. [PMID: 20195476 PMCID: PMC2829084 DOI: 10.1371/journal.pone.0009365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/28/2010] [Indexed: 02/06/2023] Open
Abstract
Background A limitation with current imaging strategies of recurrent glioma undergoing radiotherapy is that tumor and radiation injury cannot be differentiated with post contrast CT or MRI, or with PET or other more complex parametric analyses of MRI data. We propose to address the imaging limitation building on emerging evidence indicating that effective therapy for recurrent glioma can be attained by sensitized T-cells following vaccination of primed dendritic cells (DCs). The purpose of this study was to determine whether cord blood T-cells can be sensitized against glioma cells (U-251) and if these sensitized cytotoxic T-cells (CTLs) can be used as cellular magnetic resonance imaging probes to identify and differentiate glioma from radiation necrosis in rodent models. Methodology/Principal Findings Cord blood T and CD14+ cells were collected. Isolated CD14+ cells were then converted to dendritic cells (DCs), primed with glioma cell lysate and used to sensitize T-cells. Phenotypical expression of the generated DCs were analyzed to determine the expression level of CD14, CD86, CD83 and HLA-DR. Cells positive for CD25, CD4, CD8 were determined in generated CTLs. Specificity of cytotoxicity of the generated CTLs was also determined by lactate dehydrogenase (LDH) release assay. Secondary proliferation capacity of magnetically labeled and unlabeled CTLs was also determined. Generated CTLs were magnetically labeled and intravenously injected into glioma bearing animals that underwent MRI on days 3 and 7 post- injection. CTLs were also administered to animals with focal radiation injury to determine whether these CTLs accumulated non-specifically to the injury sites. Multi-echo T2- and T2*-weighted images were acquired and R2 and R2* maps created. Our method produced functional, sensitized CTLs that specifically induced U251 cell death in vitro. Both labeled and unlabeled CTLs proliferated equally after the secondary stimulation. There were significantly higher CD25 positive cells (p = <0.006) in CTLs. In addition, T2- and T2*-weighted MR images showed increased low signal intensity areas in animals that received labeled CTLs as compared to the images from animals that received control cells. Histological analysis confirmed the presence of iron positive cells in sites corresponding to MRI low signal intensity regions. Significant differences (p = <0.001) in tumor R2 and R2* values were observed among the groups of animals. Animals with radiation injury exhibited neither MRI hypointense areas nor presence of iron positive cells. Conclusion Our results indicate that T-cells can be effectively sensitized by in vitro methods and used as cellular probes to identify and differentiate glioma from radiation necrosis.
Collapse
Affiliation(s)
- Ali S Arbab
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Mathiasen AB, Haack-Sørensen M, Kastrup J. Mesenchymal stromal cells for cardiovascular repair: current status and future challenges. Future Cardiol 2010; 5:605-17. [PMID: 19886787 DOI: 10.2217/fca.09.42] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ischemic heart disease is the most common cause of death in most industrialized countries. Early treatment with stabilizing drugs and mechanical revascularization by percutaneous coronary intervention or coronary bypass surgery has reduced the mortality significantly. In spite of improved offers of treatments in patients with heart failure, the 1-year mortality is still approximately 20% after the diagnosis has been established. Treatment with stem cells with the potential to regenerate the damaged myocardium is a relatively new approach. Mesenchymal stromal cells are a promising source of stem cells for regenerative therapy. Clinical studies on stem cell therapy for cardiac regeneration have shown significant improvements in ventricular pump function, ventricular remodeling, myocardial perfusion, exercise potential and clinical symptoms compared with conventionally treated control groups. The results of most studies are promising, but there are still many unanswered questions. In this review, we explore present preclinical and clinical knowledge regarding the use of stem cells in cardiovascular regenerative medicine, with special focus on mesenchymal stromal cells. We take a closer look at sources of stem cells, delivery method and methods for tracking injected cells.
Collapse
Affiliation(s)
- Anders Bruun Mathiasen
- Cardiac Stem Cell laboratory & Cardiac Catheterization Laboratory 2014, The Heart Centre, Rigshospitalet, Copenhagen University Hospital & Faculty of Health Sciences, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
159
|
Liu J, Cheng ECH, Long RC, Yang SH, Wang L, Cheng PH, Yang J, Wu D, Mao H, Chan AWS. Noninvasive monitoring of embryonic stem cells in vivo with MRI transgene reporter. Tissue Eng Part C Methods 2010; 15:739-47. [PMID: 19290800 DOI: 10.1089/ten.tec.2008.0678] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reporter gene-based magnetic resonance imaging (MRI) offers unique insights into behavior of cells after transplantation, which could significantly benefit stem cell research and translation. Several candidate MRI reporter genes, including one that encodes for iron storage protein ferritin, have been reported, and their potential applications in embryonic stem (ES) cell research have yet to be explored. We have established transgenic mouse ES (mES) cell lines carrying human ferritin heavy chain (FTH) as a reporter gene and succeeded in monitoring the cell grafts in vivo using T(2)-weighted MRI sequences. FTH generated MRI contrast through compensatory upregulation of transferrin receptor (Tfrc) that led to increased cellular iron stored in ferritin-bound form. At a level sufficient for MRI contrast, expression of FTH posed no toxicity to mES cells and did not interfere with stem cell pluripotency as observed in neural differentiation and teratoma formation. The compatibility and functionality of ferritin as a reporter in mES cells opens up the possibility of using MRI for longitudinal noninvasive monitoring of ES cell-derived cell grafts at both molecular and cellular levels.
Collapse
Affiliation(s)
- Jun Liu
- Neuroscience Program, Graduate Division of Biological and Biomedical Sciences, Emory University , Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
van Buul GM, Farrell E, Kops N, van Tiel ST, Bos PK, Weinans H, Krestin GP, van Osch GJVM, Bernsen MR. Ferumoxides-protamine sulfate is more effective than ferucarbotran for cell labeling: implications for clinically applicable cell tracking using MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 4:230-6. [PMID: 19839030 DOI: 10.1002/cmmi.289] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of superparamagnetic iron oxide (SPIO) for labeling cells holds great promise for clinically applicable cell tracking using magnetic resonance imaging. For clinical application, an effectively and specifically labeled cell preparation is highly desired (i.e. a large amount of intracellular iron and a negligible amount of extracellular iron). In this study we performed a direct comparison of two SPIO labeling strategies that have both been reported as efficient and clinically translatable approaches. These approaches are cell labeling using ferumoxides-protamine complexes or ferucarabotran particles. Cell labeling was performed on primary human bone marrow stromal cells (hBMSCs) and chondrocytes. For both cell types ferumoxides-protamine resulted in a higher percentage of labeled cells, a higher total iron load, a larger amount of intracellular iron and a lower amount of extracellular iron aggregates, compared with ferucarbotran. Consequently, hBMSC and chondrocyte labeling with ferumoxides-protamine is more effective and results in more specific cell labeling than ferucarbotran.
Collapse
Affiliation(s)
- G M van Buul
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Ramaswamy S, Greco JB, Uluer MC, Zhang Z, Zhang Z, Fishbein KW, Spencer RG. Magnetic resonance imaging of chondrocytes labeled with superparamagnetic iron oxide nanoparticles in tissue-engineered cartilage. Tissue Eng Part A 2010; 15:3899-910. [PMID: 19788362 DOI: 10.1089/ten.tea.2008.0677] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The distribution of cells within tissue-engineered constructs is difficult to study through nondestructive means, such as would be required after implantation. However, cell labeling with iron-containing particles may prove to be a useful approach to this problem, because regions containing such labeled cells have been shown to be readily detectable using magnetic resonance imaging (MRI). In this study, we used the Food and Drug Administration-approved superparamagnetic iron oxide (SPIO) contrast agent Feridex in combination with transfection agents to label chondrocytes and visualize them with MRI in two different tissue-engineered cartilage constructs. Correspondence between labeled cell spatial location as determined using MRI and histology was established. The SPIO-labeling process was found not to affect the phenotype or viability of the chondrocytes or the production of major cartilage matrix constituents. We believe that this method of visualizing and tracking chondrocytes may be useful in the further development of tissue engineered cartilage therapeutics.
Collapse
Affiliation(s)
- Sharan Ramaswamy
- Magnetic Resonance Imaging and Spectroscopy Section, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Reddy AM, Kwak BK, Shim HJ, Ahn C, Lee HS, Suh YJ, Park ES. In vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated superparamagnetic iron oxide nanoparticles using 3.0T MRI. J Korean Med Sci 2010; 25:211-9. [PMID: 20119572 PMCID: PMC2811286 DOI: 10.3346/jkms.2010.25.2.211] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/16/2009] [Indexed: 11/24/2022] Open
Abstract
This study aimed to characterize and MRI track the mesenchymal stem cells labeled with chitosan-coated superparamagnetic iron oxide (Chitosan-SPIO). Chitosan-SPIO was synthesized from a mixture of FeCl(2) and FeCl(3). The human bone marrow derived mesenchymal stem cells (hBM-MSC) were labeled with 50 microg Fe/mL chitosan-SPIO and Resovist. The labeling efficiency was assessed by iron content, Prussian blue staining, electron microscopy and in vitro MR imaging. The labeled cells were also analyzed for cytotoxicity, phenotype and differentiation potential. Electron microscopic observations and Prussian blue staining revealed 100% of cells were labeled with iron particles. MR imaging was able to detect the labeled MSC successfully. Chitosan-SPIO did not show any cytotoxicity up to 200 microg Fe/mL concentration. The labeled stem cells did not exhibit any significant alterations in the surface markers expression or adipo/osteo/chondrogenic differentiation potential when compared to unlabeled control cells. After contralateral injection into rabbit ischemic brain, the iron labeled stem cells were tracked by periodical in vivo MR images. The migration of cells was also confirmed by histological studies. The novel chitosan-SPIO enables to label and track MSC for in vivo MRI without cellular alteration.
Collapse
Affiliation(s)
- Alavala Matta Reddy
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Byung Kook Kwak
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyung Jin Shim
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Chiyoung Ahn
- Cell and Tissue Engineering Products Team, Korea Food and Drug Administration, Seoul, Korea
| | - Hyo Sook Lee
- Minerals & Materials Processing Division, Nano-Materials Group, Korea Institute of Geoscience, Daejeon, Korea
| | - Yong Jae Suh
- Minerals & Materials Processing Division, Nano-Materials Group, Korea Institute of Geoscience, Daejeon, Korea
| | - Eon Sub Park
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
163
|
Zhou B, Shan H, Li D, Jiang ZB, Qian JS, Zhu KS, Huang MS, Meng XC. MR tracking of magnetically labeled mesenchymal stem cells in rats with liver fibrosis. Magn Reson Imaging 2010; 28:394-9. [PMID: 20096523 DOI: 10.1016/j.mri.2009.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 09/07/2009] [Accepted: 12/06/2009] [Indexed: 12/23/2022]
Abstract
PURPOSE In vivo magnetic resonance (MR) tracking of magnetically labeled bone marrow mesenchymal stem cells (BMSCs) administered via the mesenteric vein to rats with liver fibrosis. MATERIALS AND METHODS Rat BMSCs were labeled with superparamagnetic iron oxide (SPIO) and the characteristics of the BMSCs after labeling were investigated. Eighteen rats with CCL4-induced liver fibrosis were randomized to three groups to receive SPIO-labeled BMSCs (BMSC-labeled group), cell-free SPIO (SPIO group), or unlabeled BMSCs (control group). MR imaging of the liver was performed at different time points, and signal-to-noise ratio (SNR) of the liver was measured. In vivo distribution of delivered BMSCs was assessed by histological analysis. RESULTS Labeling of BMSCs with SPIO did not significantly alter cell viability and proliferation activity. In BMSC-labeled group, the liver SNR immediately decreased from 8.56+/-0.26 to 3.53+/-0.41 at 1 h post injection and remained at a significantly lower level till 12 days (P<.05 versus the level before). By contrast, the liver SNR of the SPIO group almost recovered to the preinjection level (P=.125) at 3 days after a transient decrease. In control group, the liver SNR demonstrated no significant difference at the tested time points. Additionally, Prussian blue-positive cells were mainly distributed in the liver parenchyma, especially in injured areas. CONCLUSION The magnetically labeled BMSCs infused through the mesenteric vein can be detected in the fibrotic liver of rats using in vivo MR imaging up to 12 days after injection.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Lee ESM, Chan J, Shuter B, Tan LG, Chong MSK, Ramachandra DL, Dawe GS, Ding J, Teoh SH, Beuf O, Briguet A, Tam KC, Choolani M, Wang SC. Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging. Stem Cells 2010; 27:1921-31. [PMID: 19544438 DOI: 10.1002/stem.112] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cell transplantation for regenerative medicine has made significant progress in various injury models, with the development of modalities to track stem cell fate and migration post-transplantation being currently pursued rigorously. Magnetic resonance imaging (MRI) allows serial high-resolution in vivo detection of transplanted stem cells labeled with iron oxide particles, but has been hampered by low labeling efficiencies. Here, we describe the use of microgel iron oxide (MGIO) particles of diameters spanning 100-750 nm for labeling human fetal mesenchymal stem cells (hfMSCs) for MRI tracking. We found that MGIO particle uptake by hfMSCs was size dependent, with 600-nm MGIO (M600) particles demonstrating three- to sixfold higher iron loading than the clinical particle ferucarbotran (33-263 versus 9.6-42.0 pg iron/hfMSC; p < .001). Cell labeling with either M600 particles or ferucarbotran did not affect either cellular proliferation or tri-lineage differentiation into osteoblasts, adipocytes, and chondrocytes, despite differences in gene expression on a genome-wide microarray analysis. Cell tracking in a rat photothrombotic stroke model using a clinical 1.5-T MRI scanner demonstrated the migration of labeled hfMSCs from the contralateral cortex to the stroke injury, with M600 particles achieving a five- to sevenfold higher sensitivity for MRI detection than ferucarbotran (p < .05). However, model-related cellular necrosis and acute inflammation limited the survival of hfMSCs beyond 5-12 days. The use of M600 particles allowed high detection sensitivity with low cellular toxicity to be achieved through a simple incubation protocol, and may thus be useful for cellular tracking using standard clinical MRI scanners.
Collapse
Affiliation(s)
- Eddy S M Lee
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Stem cell therapy for repair of damaged cardiac tissue is an attractive option to improve the health of the growing number of heart failure patients. Mesenchymal stem cells (MSCs) possess unique properties that may make them a better option for cardiac repair than other cell types. Unlike other adult stem cells, they appear to escape allorecognition by the immune system and they have immune-modulating properties, thus making it possible to consider them for use as an allogeneic cell therapy product. There is a large and growing body of preclinical and early clinical experience with MSC therapy that shows great promise in realizing the potential of stem cell therapy to effect repair of damaged cardiac tissue. This review discusses the mechanism of action of MSC therapy and summarizes the current literature in the field.
Collapse
Affiliation(s)
- Andrew J Boyle
- Cardiology Division, Department of Medicine, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|
166
|
Robinson KM, Njus JM, Phillips DA, Proctor TM, Rooney WD, Jones RE. MR imaging of inflammation during myelin-specific T cell-mediated autoimmune attack in the EAE mouse spinal cord. Mol Imaging Biol 2009; 12:240-9. [PMID: 19949987 DOI: 10.1007/s11307-009-0272-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/13/2009] [Accepted: 07/09/2009] [Indexed: 01/13/2023]
Abstract
PURPOSE The purpose of this study is to detect myelin-specific T cells, key pathological mediators in early multiple sclerosis, and the corresponding animal model, experimental autoimmune encephalomyelitis (EAE), in the mouse spinal cord. PROCEDURES T cells were labeled with the iron-based, magnetic resonance (MR) contrast reagent, Feridex, and the transfection reagent, protamine sulfate, resulting in approximately 100% iron-labeling efficiency. Feridex-labeling did not alter the induction of EAE by T cells, and recipients were imaged by a 12-T MR instrument. RESULTS Focal hypointense lesions were resolvable to gray or white matter of the lumbar spinal cord in T(2)-weighted images of the recipients of Feridex-labeled T cells. Lesions corresponded to histological evidence of inflammatory lesions and iron-labeled cells in eight-of-eight mice. In contrast, hypointense lesions were not observed eight-of-eight recipients of unlabeled T cells. CONCLUSIONS These results demonstrate and provide methodologies for labeling, detecting, and extracting MRI-detectable foci of iron-labeled cells.
Collapse
Affiliation(s)
- Kristine M Robinson
- V.A. Medical Center, VA R&D 23, Bldg 101, 3710 SW US Veteran's Hospital Rd, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
167
|
Henning TD, Sutton EJ, Kim A, Golovko D, Horvai A, Ackerman L, Sennino B, McDonald D, Lotz J, Daldrup-Link HE. The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. CONTRAST MEDIA & MOLECULAR IMAGING 2009; 4:165-73. [PMID: 19670250 DOI: 10.1002/cmmi.276] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For in vivo applications of magnetically labeled stem cells, biological effects of the labeling procedure have to be precluded. This study evaluates the effect of different ferucarbotran cell labeling protocols on chondrogenic differentiation of human mesenchymal stem cells (hMSC) as well as their implications for MR imaging. hMSC were labeled with ferucarbotran using various protocols: cells were labeled with 100 microg Fe/ml for 4 and 18 h and additional samples were cultured for 6 or 12 days after the 18 h labeling. Supplementary samples were labeled by transfection with protamine sulfate. Iron uptake was quantified by ICP-spectrometry and labeled cells were investigated by transmission electron microscopy and by immunostaining for ferucarbotran. The differentiation potential of labeled cells was compared with unlabeled controls by staining with Alcian blue and Hematoxylin and Eosin, then quantified by measurements of glucosaminoglycans (GAG). Contrast agent effect at 3 T was investigated on days 1 and 14 of chondrogenic differentiation by measuring signal-to-noise ratios on T(2)-SE and T(2)*-GE sequences. Iron uptake was significant for all labeling protocols (p < 0.05). The uptake was highest after transfection with protamine sulfate (25.65 +/- 3.96 pg/cell) and lowest at an incubation time of 4 h without transfection (3.21 +/- 0.21 pg/cell). While chondrogenic differentiation was decreased using all labeling protocols, the decrease in GAG synthesis was not significant after labeling for 4 h without transfection. After labeling by simple incubation, chondrogenesis was found to be dose-dependent. MR imaging showed markedly lower SNR values of all labeled cells compared with the unlabeled controls. This contrast agent effect persisted for 14 days and the duration of differentiation. Magnetic labeling of hMSC with ferucarbotran inhibits chondrogenesis in a dose-dependent manner when using simple incubation techniques. When decreasing the incubation time to 4 h, inhibition of chondrogenesis was not significant.
Collapse
Affiliation(s)
- Tobias D Henning
- Department of Radiology, UCSF Medical Center, University of California, San Francisco, CA 94143-0628, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Nahrendorf M, Sosnovik DE, French BA, Swirski FK, Bengel F, Sadeghi MM, Lindner JR, Wu JC, Kraitchman DL, Fayad ZA, Sinusas AJ. Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2009; 2:56-70. [PMID: 19808565 DOI: 10.1161/circimaging.108.839092] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matthias Nahrendorf
- Centers for Systems Biology and Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Henning TD, Wendland MF, Golovko D, Sutton EJ, Sennino B, Malek F, Bauer JS, McDonald DM, Daldrup-Link H. Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T: discrimination of viable from lysed cells. Magn Reson Med 2009; 62:325-32. [PMID: 19353670 DOI: 10.1002/mrm.22011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cells (hMSCs) were labeled with Ferucarbotran by simple incubation and cultured for up to 14 d. Iron content was determined by spectrometry and the intracellular localization of the contrast agent uptake was studied by electron and confocal microscopy. At various time points after labeling, ranging from 1 to 14 d, samples with viable or lysed labeled hMSCs, as well as nonlabeled controls, underwent MRI. Spin-echo (SE) and gradient-echo (GE) sequences with multiple TRs and TEs were used at 1.5T and 3T on a clinical scanner. Spectrometry showed an initial iron oxide uptake of 7.08 pg per cell. Microscopy studies revealed lysosomal compartmentalization. Contrast agent effects of hMSCs were persistent for up to 14 d after labeling. A marked difference in the T(2) effect of compartmentalized iron oxides compared to free iron oxides was found on T(2)-weighted sequences, but not on T(2)*-weighted sequences. The observed differences may be explained by the loss of compartmentalization of iron oxide particles, the uniformity of distribution, and the subsequent increase in dephasing of protons on SE images. These results show that viable cells with compartmentalized iron oxides may-in principle-be distinguished from lysed cells or released iron oxides.
Collapse
Affiliation(s)
- Tobias D Henning
- Department of Radiology, University of California, San Francisco (UCSF) Medical Center, UCSF, San Francisco, CA 94143-0628, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Liu ZY, Wang Y, Liang CH, Li XH, Wang GY, Liu HJ, Li Y. In Vitro Labeling of Mesenchymal Stem Cells with Superparamagnetic Iron Oxide by Means of Microbubble-enhanced US Exposure: Initial Experience. Radiology 2009; 253:153-9. [DOI: 10.1148/radiol.2531081974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
171
|
Cantillon-Murphy P, Wald LL, Zahn M, Adalsteinsson E. Measuring SPIO and Gd contrast agent magnetization using 3 T MRI. NMR IN BIOMEDICINE 2009; 22:891-7. [PMID: 19588450 PMCID: PMC3190601 DOI: 10.1002/nbm.1412] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Traditional methods of measuring magnetization in magnetic fluid samples, such as vibrating sample magnetometry (VSM), are typically limited to maximum field strengths of about 1 T. This work demonstrates the ability of MRI to measure the magnetization associated with two commercial MRI contrast agents at 3 T by comparing analytical solutions to experimental imaging results for the field pattern associated with agents in cylindrical vials. The results of the VSM and fitted MRI data match closely. The method represents an improvement over VSM measurements since results are attainable at imaging field strengths. The agents investigated are Feridex, a superparamagnetic iron oxide suspension used primarily for liver imaging, and Magnevist, a paramagnetic, gadolinium-based compound used for tumors, inflammation and vascular lesions. MR imaging of the agents took place in sealed cylindrical vials in the presence of a surrounding volume of deionized water where the effects of the contrast agents had a measurable effect on the water's magnetization in the vicinity of the compartment of contrast agent. A pair of phase images were used to reconstruct a B(0) fieldmap. The resultant B(0) maps in the water region, corrected for shimming and container edge effects, were used to predict the agent's magnetization at 3 T. The results were compared with the results from VSM measurements up to 1.2 T and close correlation was observed. The technique should be of interest to those seeking quantification of the magnetization associated with magnetic suspensions beyond the traditional scope of VSM. The magnetization needs to be sufficiently strong (M(s) >or= 50 Am(2)/kg Fe for Feridex and X(m) >or=5 x 10(-5) m(3)/kg Gd for Magnevist) for a measurable dipole field in the surrounding water. For this reason, the technique is mostly suitable for undiluted agents.
Collapse
|
172
|
Thu MS, Najbauer J, Kendall SE, Harutyunyan I, Sangalang N, Gutova M, Metz MZ, Garcia E, Frank RT, Kim SU, Moats RA, Aboody KS. Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS One 2009; 4:e7218. [PMID: 19787043 PMCID: PMC2746284 DOI: 10.1371/journal.pone.0007218] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/05/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs) to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA) approval. METHODOLOGY For human use, the characteristics of therapeutic Neural Stem Cells must be clearly defined with any pertubation to the cell including iron labeling requiring reanalysis of cellular physiology. Here, we studied the effect of iron-loading of the therapeutic NSCs, with ferumoxide-protamine sulfate complex (FE-Pro) on viability, proliferation, migratory properties and transgene expression, when compared to non-labeled cells. FE-Pro labeled NSCs were imaged by MRI at tumor sites, after intracranial administration into the hemisphere contralateral to the tumor, in an orthotopic human glioma xenograft mouse model. CONCLUSION FE-Pro labeled NSCs retain their proliferative status, tumor tropism, and maintain stem cell character, while allowing in vivo cellular MRI tracking at 7 Tesla, to monitor their real-time migration and distribution at brain tumor sites. Of significance, this work directly supports the use of FE-Pro-labeled NSCs for real-time tracking in the clinical trial under development: "A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically modified Neural Stem Cells Expressing Escherichia coli Cytosine Deaminase for Treatment of Recurrent High-Grade Gliomas".
Collapse
Affiliation(s)
- Mya S. Thu
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail: (MYT); (KSA)
| | - Joseph Najbauer
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Stephen E. Kendall
- Division of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Ira Harutyunyan
- Radiology MS 81, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Nicole Sangalang
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Margarita Gutova
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Marianne Z. Metz
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Elizabeth Garcia
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Richard T. Frank
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Regenerative Medicine, Gachon University Gil Hospital, Inchon, Korea
| | - Rex A. Moats
- Radiology MS 81, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Karen S. Aboody
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Division of Neuroscience, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail: (MYT); (KSA)
| |
Collapse
|
173
|
Reddy AM, Kwak BK, Shim HJ, Ahn C, Cho SH, Kim BJ, Jeong SY, Hwang SJ, Yuk SH. Functional characterization of mesenchymal stem cells labeled with a novel PVP-coated superparamagnetic iron oxide. CONTRAST MEDIA & MOLECULAR IMAGING 2009; 4:118-26. [PMID: 19308999 DOI: 10.1002/cmmi.271] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Magnetic resonance imaging of cells labeled with superparamagnetic iron oxide (SPIO) could be a valuable tool for tracking transplanted cells in living organisms. Human bone marrow-derived mesenchymal stem cells (hBMMSC) were labeled with a novel polyvinyl pyrrolidone (PVP)-coated SPIO. Prussian blue staining and electron microscopy revealed that almost all of the cells were efficiently labeled with PVP-SPIO nanoparticles. There were no signs of cytotoxicity, even at concentrations of up to 1600 microg Fe/ml of the nanoparticles, and the labeled cells were successfully visualized by in vitro cellular MRI. In addition, there was no significant alteration of the phenotype or the adipo/osteo/chondrogenic differentiation potential of the cells. This was in contrast to Feridex IV labeling that led to the inhibition of hBMMSC chondrogenesis. Following intramuscular injection in a rabbit hind limb ischemia model, the intercellular migration of the labeled cells toward the ablated site was clearly tracked through in vivo MRI. The localization of the transplanted cells observed by MRI correlated well with postmortem histological studies. These results demonstrate that the novel PVP-SPIO nanoparticles appear to be efficient MR contrast agents and may enable non-invasive in vivo tracking of stem cells in experimental and clinical settings during cell therapy.
Collapse
Affiliation(s)
- Alavala Matta Reddy
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Bernsen MR, Moelker AD, Wielopolski PA, van Tiel ST, Krestin GP. Labelling of mammalian cells for visualisation by MRI. Eur Radiol 2009; 20:255-74. [DOI: 10.1007/s00330-009-1540-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/11/2009] [Accepted: 06/23/2009] [Indexed: 12/21/2022]
|
175
|
Beyond blood brain barrier breakdown - in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI. J Neuroinflammation 2009; 6:20. [PMID: 19660125 PMCID: PMC2731086 DOI: 10.1186/1742-2094-6-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 08/06/2009] [Indexed: 12/18/2022] Open
Abstract
Background Gadopentate dimeglumine (Gd-DTPA) enhanced magnetic resonance imaging (MRI) is widely applied for the visualization of blood brain barrier (BBB) breakdown in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the potential of magnetic nanoparticles to detect macrophage infiltration by MRI was demonstrated. We here investigated a new class of very small superparamagnetic iron oxide particles (VSOP) as novel contrast medium in murine adoptive-transfer EAE. Methods EAE was induced in 17 mice via transfer of proteolipid protein specific T cells. MR images were obtained before and after application of Gd-DTPA and VSOP on a 7 Tesla rodent MR scanner. The enhancement pattern of the two contrast agents was compared, and correlated to histology, including Prussian Blue staining for VSOP detection and immunofluorescent staining against IBA-1 to identify macrophages/microglia. Results Both contrast media depicted BBB breakdown in 42 lesions, although differing in plaques appearances and shapes. Furthermore, 13 lesions could be exclusively visualized by VSOP. In the subsequent histological analysis, VSOP was localized to microglia/macrophages, and also diffusely dispersed within the extracellular matrix. Conclusion VSOP showed a higher sensitivity in detecting BBB alterations compared to Gd-DTPA enhanced MRI, providing complementary information of macrophage/microglia activity in inflammatory plaques that has not been visualized by conventional means.
Collapse
|
176
|
Farrell E, Wielopolski P, Pavljasevic P, Kops N, Weinans H, Bernsen MR, van Osch GJVM. Cell labelling with superparamagnetic iron oxide has no effect on chondrocyte behaviour. Osteoarthritis Cartilage 2009; 17:961-7. [PMID: 19147376 DOI: 10.1016/j.joca.2008.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/28/2008] [Indexed: 02/02/2023]
Abstract
BACKGROUND Tissue engineering and regenerative medicine are two rapidly advancing fields of research offering potential for effective treatment of cartilage lesions. Today, chondrocytes are the cell type of choice for use in cartilage repair approaches such as autologous chondrocyte implantation. To verify the safety and efficacy of such approaches it is necessary to determine the fate of these transplanted cells. One way of doing this is prelabelling cells before implantation and tracking them using imaging techniques. The use of superparamagnetic iron oxide (SPIO) for tracking of cells with magnetic resonance imaging (MRI) is ideal for this purpose. It is non-radioactive, does not require viral transfection and is already approved for clinical use as a contrast agent. OBJECTIVE The purpose of this study was to assess the effect of SPIO labelling on adult human chondrocyte behaviour. METHODS Cells were culture expanded and dedifferentiated for two passages and then labelled with SPIO. Effect on cell proliferation was tested. Furthermore, cells were cultured for 21 days in alginate beads in redifferentiation medium. Following this period, cells were analysed for expression of cartilage-related genes, proteoglycan production and collagen protein expression. RESULTS SPIO labelling did not significantly affect any of these parameters relative to unlabelled controls. We also demonstrated SPIO retention within the cells for the full duration of the experiment. CONCLUSIONS This paper demonstrates for the first time the effects of SPIO labelling on chondrocyte behaviour, illustrating its potential for in vivo tracking of implanted chondrocytes.
Collapse
Affiliation(s)
- E Farrell
- Department of Orthopaedics, Erasmus University Medical Centre, Rotterdam, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
177
|
Janic B, Rad AM, Jordan EK, Iskander ASM, Ali MM, Varma NRS, Frank JA, Arbab AS. Optimization and validation of FePro cell labeling method. PLoS One 2009; 4:e5873. [PMID: 19517015 PMCID: PMC2690694 DOI: 10.1371/journal.pone.0005873] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/11/2009] [Indexed: 02/06/2023] Open
Abstract
Current method to magnetically label cells using ferumoxides (Fe)-protamine (Pro) sulfate (FePro) is based on generating FePro complexes in a serum free media that are then incubated overnight with cells for the efficient labeling. However, this labeling technique requires long (>12-16 hours) incubation time and uses relatively high dose of Pro (5-6 microg/ml) that makes large extracellular FePro complexes. These complexes can be difficult to clean with simple cell washes and may create low signal intensity on T2* weighted MRI that is not desirable. The purpose of this study was to revise the current labeling method by using low dose of Pro and adding Fe and Pro directly to the cells before generating any FePro complexes. Human tumor glioma (U251) and human monocytic leukemia cell (THP-1) lines were used as model systems for attached and suspension cell types, respectively and dose dependent (Fe 25 to 100 microg/ml and Pro 0.75 to 3 microg/ml) and time dependent (2 to 48 h) labeling experiments were performed. Labeling efficiency and cell viability of these cells were assessed. Prussian blue staining revealed that more than 95% of cells were labeled. Intracellular iron concentration in U251 cells reached approximately 30-35 pg-iron/cell at 24 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. However, comparable labeling was observed after 4 h across the described FePro concentrations. Similarly, THP-1 cells achieved approximately 10 pg-iron/cell at 48 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. Again, comparable labeling was observed after 4 h for the described FePro concentrations. FePro labeling did not significantly affect cell viability. There was almost no extracellular FePro complexes observed after simple cell washes. To validate and to determine the effectiveness of the revised technique, human T-cells, human hematopoietic stem cells (hHSC), human bone marrow stromal cells (hMSC) and mouse neuronal stem cells (mNSC C17.2) were labeled. Labeling for 4 hours using 100 microg/ml of Fe and 3 microg/ml of Pro resulted in very efficient labeling of these cells, without impairing their viability and functional capability. The new technique with short incubation time using 100 microg/ml of Fe and 3 microg/ml of Pro is effective in labeling cells for cellular MRI.
Collapse
Affiliation(s)
- Branislava Janic
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 2009; 48:112-24. [PMID: 19362150 DOI: 10.1016/j.ymeth.2009.03.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/28/2009] [Indexed: 01/05/2023] Open
Abstract
Magnetic Resonance Imaging (MRI), as one of the most powerful methods in clinical diagnosis, has emerged as an additional method in the field of molecular and cellular imaging. Compared to established molecular imaging methods, MRI provides in vivo images with high resolution. In particularly in the field of cell-based therapy, non-invasively acquired information on temporal changes of cell location linked to high-resolution anatomical information is of great interest. Relatively new approaches like responsive contrast agents or MR imaging reporter gene expression are MRI applications beyond temporal and spatial information on labeled cells towards investigations on functional changes of cells in vivo. MRI-based cell monitoring and tracking studies require prior labeling of the cells under investigation for excellent contrast against the background of host tissue. Here, an overview is provided on contrast generation strategies for MRI of cells. This includes MR contrast agents, various approaches of cell labeling and MRI as well as MR spectroscopic methods used for cell tracking in vivo. Advantages and disadvantages of the particular labeling approaches and methods are discussed. In addition to description of the methods, the emphasis is on the potential but also challenges and shortcomings of this imaging technique for applications that aim to visualize cellular processes in vivo.
Collapse
|
179
|
Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS, Hsu SC, Tai LA, Cheng HY, Wang SW, Yang CS, Chen YC. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 2009; 30:3645-51. [PMID: 19359036 DOI: 10.1016/j.biomaterials.2009.03.032] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 03/18/2009] [Indexed: 01/10/2023]
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles are very useful in cell imaging; meanwhile, however, biosafety concerns associated with their use, especially on therapeutic stem cells, have arisen. Most studies of biosafety issues focus on whether the nanoparticles have deleterious effects. Here, we report that Ferucarbotran, an ionic SPIO, is not toxic to human mesenchymal stem cells (hMSCs) under the conditions of these experiments but instead increases cell growth. Ferucarbotran-promoted cell growth is due to its ability to diminish intracellular H2O2 through intrinsic peroxidase-like activity. Also, Ferucarbotran can accelerate cell cycle progression, which may be mediated by the free iron (Fe) released from lysosomal degradation and involves the alteration of Fe on the expression of the protein regulators of the cell cycle.
Collapse
Affiliation(s)
- Dong-Ming Huang
- Center for Nanomedicine Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 350, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Magnetic resonance assessment of stem cells. CURRENT CARDIOVASCULAR IMAGING REPORTS 2009. [DOI: 10.1007/s12410-009-0018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
181
|
Rad AM, Iskander ASM, Janic B, Knight RA, Arbab AS, Soltanian-Zadeh H. AC133+ progenitor cells as gene delivery vehicle and cellular probe in subcutaneous tumor models: a preliminary study. BMC Biotechnol 2009; 9:28. [PMID: 19327159 PMCID: PMC2669076 DOI: 10.1186/1472-6750-9-28] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 03/27/2009] [Indexed: 02/06/2023] Open
Abstract
Background Despite enormous progress in gene therapy for breast cancer, an optimal systemic vehicle for delivering gene products to the target tissue is still lacking. The purpose of this study was to determine whether AC133+ progenitor cells (APC) can be used as both gene delivery vehicles and cellular probes for magnetic resonance imaging (MRI). In this study, we used superparamagentic iron oxide (SPIO)-labeled APCs to carry the human sodium iodide symporter (hNIS) gene to the sites of implanted breast cancer in mouse model. In vivo real time tracking of these cells was performed by MRI and expression of hNIS was determined by Tc-99m pertechnetate (Tc-99m) scan. Results Three million human breast cancer (MDA-MB-231) cells were subcutaneously implanted in the right flank of nude mice. APCs, isolated from fresh human cord blood, were genetically transformed to carry the hNIS gene using adenoviral vectors and magnetically labeled with ferumoxides-protamine sulfate (FePro) complexes. Magnetically labeled genetically transformed cells were administered intravenously in tumor bearing mice when tumors reached 0.5 cm in the largest dimension. MRI and single photon emission computed tomography (SPECT) images were acquired 3 and 7 days after cell injection, with a 7 Tesla animal MRI system and a custom built micro-SPECT using Tc-99m, respectively. Expression of hNIS in accumulated cells was determined by staining with anti-hNIS antibody. APCs were efficiently labeled with ferumoxide-protamine sulfate (FePro) complexes and transduced with hNIS gene. Our study showed not only the accumulation of intravenously administered genetically transformed, magnetically labeled APCs in the implanted breast cancer, but also the expression of hNIS gene at the tumor site. Tc-99m activity ratio (tumor/non-tumor) was significantly different between animals that received non-transduced and transduced cells (P < 0.001). Conclusion This study indicates that genetically transformed, magnetically labeled APCs can be used both as delivery vehicles and cellular probes for detecting in vivo migration and homing of cells. Furthermore, they can potentially be used as a gene carrier system for the treatment of tumor or other diseases.
Collapse
Affiliation(s)
- Ali M Rad
- Department of Radiology, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
182
|
Arbab AS, Janic B, Haller J, Pawelczyk E, Liu W, Frank JA. In Vivo Cellular Imaging for Translational Medical Research. Curr Med Imaging 2009; 5:19-38. [PMID: 19768136 DOI: 10.2174/157340509787354697] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Personalized treatment using stem, modified or genetically engineered, cells is becoming a reality in the field of medicine, in which allogenic or autologous cells can be used for treatment and possibly for early diagnosis of diseases. Hematopoietic, stromal and organ specific stem cells are under evaluation for cell-based therapies for cardiac, neurological, autoimmune and other disorders. Cytotoxic or genetically altered T-cells are under clinical trial for the treatment of hematopoietic or other malignant diseases. Before using stem cells in clinical trials, translational research in experimental animal models are essential, with a critical emphasis on developing noninvasive methods for tracking the temporal and spatial homing of these cells to target tissues. Moreover, it is necessary to determine the transplanted cell's engraftment efficiency and functional capability. Various in vivo imaging modalities are in use to track the movement and incorporation of administered cells. Tagging cells with reporter genes, fluorescent dyes or different contrast agents transforms them into cellular probes or imaging agents. Recent reports have shown that magnetically labeled cells can be used as cellular magnetic resonance imaging (MRI) probes, demonstrating the cell trafficking to target tissues. In this review, we will discuss the methods to transform cells into probes for in vivo imaging, along with their advantages and disadvantages as well as the future clinical applicability of cellular imaging method and corresponding imaging modality.
Collapse
Affiliation(s)
- Ali S Arbab
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, MI
| | | | | | | | | | | |
Collapse
|
183
|
Sadek H, Latif S, Collins R, Garry MG, Garry DJ. Use of ferumoxides for stem cell labeling. Regen Med 2009; 3:807-16. [PMID: 18947305 DOI: 10.2217/17460751.3.6.807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM Although numerous clinical trials have shown promising results with regards to the cardiac regenerative capacity of different types of stem cells, there remains virtually no evidence of the fate of stem cells in these human studies, primarily owing to safety concerns associated with the use of cell-labeling strategies. METHODS In this study, we utilized two cell types that are used extensively in cardiac regeneration studies, namely bone marrow-derived human mononuclear cells and C2C12 skeletal myoblasts. The US FDA-approved compounds feridex (ferumoxide) and protamine sulfate (as a transfection agent) were used in combination for cellular labeling. We assessed the effect of this cell labeling strategy on cellular viability, proliferation and differentiation both in vitro and in vivo. RESULTS The ferumoxide-protamine sulfate combination had no effect on cellular viability, proliferation or differentiation. We show that the labeled human mononuclear cells were easily identified within the rat myocardium 1 month following injection into the myocardium. These human cells expressed human-specific cardiac troponin I, whereas the neighboring rat myocardium did not. Furthermore, we demonstrated that this labeling strategy can be used with high accuracy for magnetic separation of the labeled cells based on the intracellular ferumoxide particles. CONCLUSIONS The ferumoxide-protamine sulfate combination can be used safely and effectively to enhance the detection and isolation of cardiogenic stem cell populations.
Collapse
Affiliation(s)
- Hesham Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, TX, USA
| | | | | | | | | |
Collapse
|
184
|
Abstract
Transplantation of stem cells or immune cells has shown promise for the treatment of several diseases. Monitoring magnetically labeled cells with MRI has furthered our understanding of cellular migration and the pathophysiology of diseases in experimental models. These studies should pave the way for guiding clinical trials using cell-based therapies. This review briefly describes the various methods used to label and track cells with MRI and the potential for such methods to translate to human applications.
Collapse
Affiliation(s)
- Matthew D Budde
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
185
|
Ke YQ, Hu CC, Jiang XD, Yang ZJ, Zhang HW, Ji HM, Zhou LY, Cai YQ, Qin LS, Xu RX. In vivo magnetic resonance tracking of Feridex-labeled bone marrow-derived neural stem cells after autologous transplantation in rhesus monkey. J Neurosci Methods 2009; 179:45-50. [PMID: 19428510 DOI: 10.1016/j.jneumeth.2009.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 01/09/2009] [Accepted: 01/10/2009] [Indexed: 01/28/2023]
Abstract
Bone marrow stroma cells-derived neural stem cells (BMSCs-D-NSCs) transplantation is a promising strategy for the treatment of nervous system disorders. The development of a non-invasive method to follow the fate of BMSCs-D-NSCs in vivo is very important for the future application of this treatment. In this paper, we show for the first time, that BMSCs-D-NSCs from rhesus monkeys can be labeled in vitro with the superparamagnetic iron oxide (SPIO) contrast agent Feridex and Poly-L-lysine (PLL) without affecting morphology, cell cycle, telomerase activity, proliferation and differentiation ability of the labeled cells. Furthermore, when autografted into the striatum, these cells survived, differentiated and were incorporated into the brain, and could be reliably tracked using MRI, as confirmed by histological examination of the grafting sites with PKH(67) fluorescence. These results suggest that Feridex labeling of BMSCs-D-NSCs is feasible, efficient and safe for MRI tracing following autografting into the rhesus monkey nervous system.
Collapse
Affiliation(s)
- Yi-quan Ke
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
The administration of exogenous stem cells offers promise to regenerate many damaged organs. However, failures of these cellular therapies could be related to many issues, such as the type of stem cell, the dose of cellular therapeutic, dosing regime, and mode of delivery. The recent ability to directly label stem cells with magnetic resonance (MR) contrast agents provides a simple, straight-forward manner to monitor accurate cell delivery and track stem cells non-invasively in a serial manner. Provided here is an overview of the currently available MR-labeling methods, including direct non-specific labeling with contrast agents, indirect specific labeling with contrast agents, labeling with MRI reporter genes, and fluorine hot spot labeling. Several of these approaches have now been applied successfully in preclinical animal models of cardiovascular disease. Once properly implemented, future clinical trials may benefit greatly from imaging stem cells with MRI.
Collapse
Affiliation(s)
- Dara L Kraitchman
- Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
187
|
Reply to the comments from Yixiang Wang on the original article “In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection”. Joint Bone Spine 2009. [DOI: 10.1016/j.jbspin.2008.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
188
|
Lim EK, Yang J, Suh JS, Huh YM, Haam S. Self-labeled magneto nanoprobes using tri-aminated polysorbate 80 for detection of human mesenchymal stem cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b912149h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
189
|
Schäfer R, Kehlbach R, Müller M, Bantleon R, Kluba T, Ayturan M, Siegel G, Wolburg H, Northoff H, Dietz K, Claussen CD, Wiskirchen J. Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability. Cytotherapy 2009; 11:68-78. [DOI: 10.1080/14653240802666043] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
190
|
Wang L, Deng J, Wang J, Xiang B, Yang T, Gruwel M, Kashour T, Tomanek B, Summer R, Freed D, Jassal DS, Dai G, Glogowski M, Deslauriers R, Arora RC, Tian G. Superparamagnetic iron oxide does not affect the viability and function of adipose-derived stem cells, and superparamagnetic iron oxide–enhanced magnetic resonance imaging identifies viable cells. Magn Reson Imaging 2009; 27:108-19. [DOI: 10.1016/j.mri.2008.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 11/26/2022]
|
191
|
Delcroix GJR, Jacquart M, Lemaire L, Sindji L, Franconi F, Le Jeune JJ, Montero-Menei CN. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain Res 2008; 1255:18-31. [PMID: 19103182 DOI: 10.1016/j.brainres.2008.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/21/2008] [Accepted: 12/01/2008] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSC) may transdifferentiate into neural cells in vitro under the influence of matrix molecules and growth factors present in neurogenic niches. However, further experiments on the behavior of such stem cells remain to be done in vivo. In this study, rat MSC (rMSC) have been grafted in a neurogenic environment of the rat brain, the subventricular zone (SVZ), in order to detect and follow their migration using superparamagnetic iron oxide (SPIO) nanoparticles. We sought to characterize the potential effect of iron loading on the behavior of rMSC as well as to address the potential of rMSC to migrate when exposed to the adequate brain microenvironment. 1-hydroxyethylidene-1.1-bisphosphonic acid (HEDP)-coated SPIO nanoparticles efficiently labeled rMSC without significant adverse effects on cell viability and on the in vitro differentiation potential. In opposition to iron-labeled rat neural stem cells (rNSC), used as a positive control, iron-labeled rMSC did not respond to the SVZ microenvironment in vivo and did not migrate, unless a mechanical lesion of the olfactory bulb was performed. This confirmed the known potential of iron-labeled rMSC to migrate toward lesions and, as far as we know, this is the first study describing such a long distance migration from the SVZ toward the olfactory bulb through the rostral migratory stream (RMS).
Collapse
|
192
|
Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G, Fayad ZA. Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 2008; 60:73-81. [PMID: 18581415 DOI: 10.1002/mrm.21642] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myocardial regeneration with stem-cell transplantation is a possible treatment option to reverse deleterious effects that occur after myocardial infarction. Since little is known about stem cell survival after transplantation, developing techniques for "tracking" cells would be desirable. Iron-oxide-labeled stem cells have been used for in vivo tracking using MRI but produce negative contrast images that are difficult to interpret. The aim of the current study was to test a positive contrast MR technique using reduced z-gradient rephasing (GRASP) to aid in dynamically tracking stem cells in an in vivo model of mouse myocardial infraction. Ferumoxides and protamine sulfate were complexed and used to magnetically label embryonic stem cell-derived cardiac-precursor-cells (ES-CPCs). A total of 500,000 ES-CPCs were injected in the border zone of infarcted mice and MR imaging was performed on a 9.4T scanner using T(2)*-GRE sequences (negative contrast) and positive contrast GRASP technique before, 24 hours, and 1 week after ES-CPC implantation. Following imaging, mice were sacrificed for histology and Perl's staining was used to confirm iron within myocardium. Good correlation was observed between signal loss seen on conventional T(2)* images, bright areas on GRASP, and the presence of iron on histology. This demonstrated the feasibility of in vivo stem cell imaging with positive contrast MRI.
Collapse
Affiliation(s)
- Venkatesh Mani
- Imaging Science Laboratories, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Magnetic resonance imaging detects differences in migration between primary and immortalized neural stem cells. Acad Radiol 2008; 15:1269-81. [PMID: 18790399 DOI: 10.1016/j.acra.2008.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 12/30/2022]
Abstract
RATIONALE AND OBJECTIVES The study was performed to evaluate the effect of magnetic resonance imaging (MRI) contrast agent (super paramagnetic iron oxide [SPIO]) on differentiation and migration of primary murine neural stem cells (NSCs) in comparison to a neural stem cell line (C17.2). Because detection of labeled cells depends on the concentration of SPIO particles per imaging voxel, the study was performed at various concentrations of SPIO particles to determine the concentration that could be used for in vivo detection of small clusters of grafted cells. MATERIALS AND METHODS Murine primary NSCs or C17.2 cells were labeled with different concentrations of SPIO particles (0, 25, 100, and 250 microg Fe/mL) and in vitro assays were performed to assess cell differentiation. In vivo MRI was performed 7 weeks after neonatal transplantation of labeled cells to evaluate the difference in migration capability of the two cell populations. RESULTS Both the primary NSCs and the C17.2 cells differentiated to similar number of neurons (Map2ab-positive cells). Similar patterns of engraftment of C17.2 cells were seen in transplanted mice regardless of the SPIO concentration used. In vivo MRI detection of grafted primary and C17.2 cells was only possible when cells were incubated with 100 microg/mL or higher concentration of SPIO. Extensive migration of C17.2 cells throughout the brain was observed, whereas the migration of the primary NSCs was more restricted. CONCLUSIONS Engraftment of primary NSCs can be detected noninvasively by in vivo MRI, and the presence of SPIO particles do not affect the viability, differentiation, or engraftment pattern of the donor cells.
Collapse
|
194
|
Hsiao JK, Chu HH, Wang YH, Lai CW, Chou PT, Hsieh ST, Wang JL, Liu HM. Macrophage physiological function after superparamagnetic iron oxide labeling. NMR IN BIOMEDICINE 2008; 21:820-9. [PMID: 18470957 DOI: 10.1002/nbm.1260] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our goal was to analyze the changes in morphology and physiological function (phagocytosis, migratory capabilities, humoral and cellular response, and nitric oxide secretion) of murine macrophages after labeling with a clinically used superparamagnetic iron oxide (SPIO), ferucarbotran. In SPIO-treated macrophages, nanoparticles were taken up in the cytoplasm and accumulated in a membrane-bound organelle. Macrophage proliferation and viability were not modified after SPIO labeling. Phagocytic function decreased after labeling with only 10 microg Fe/mL SPIO, whereas other functions including migration and production of tumor necrosis factor-alpha and nitric oxide increased at the highest SPIO concentration (100 microg Fe/mL).
Collapse
Affiliation(s)
- Jong-Kai Hsiao
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Hematopoietic, stromal and organ-specific stem cells are under evaluation for therapeutic efficacy in cell-based therapies of cardiac, neurological and other disorders. It is critically important to track the location of directly transplanted or infused cells that can serve as gene carrier/delivery vehicles for the treatment of disease processes and be able to noninvasively monitor the temporal and spatial homing of these cells to target tissues. Moreover, it is also necessary to determine their engraftment efficiency and functional capability following transplantation. There are various in vivo imaging modalities used to track the movement and incorporation of administered cells. Tagging stem cells with different contrast agents can make these cells probes for different imaging modalities. Recent reports have shown that stem cells labeled with iron oxides can be used as cellular MRI probes demonstrating the cell trafficking to target tissues. In this review, we will discuss the status and future prospect of stem cell tracking by cellular MRI for cell-based therapy.
Collapse
Affiliation(s)
- Ali S Arbab
- Henry Ford Hospital, Cellular & Molecular Imaging Laboratory,Department of Radiology, 1 Ford Place, 2F Detroit, MI 48202, USA.
| | | |
Collapse
|
196
|
Winkler T, von Roth P, Schumann MR, Sieland K, Stoltenburg-Didinger G, Taupitz M, Perka C, Duda GN, Matziolis G. In Vivo Visualization of Locally Transplanted Mesenchymal Stem Cells in the Severely Injured Muscle in Rats. Tissue Eng Part A 2008; 14:1149-60. [DOI: 10.1089/ten.tea.2007.0179] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Tobias Winkler
- Departments of Orthopaedics and of Trauma and Reconstructive Surgery, Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp von Roth
- Departments of Orthopaedics and of Trauma and Reconstructive Surgery, Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Rose Schumann
- Departments of Orthopaedics and of Trauma and Reconstructive Surgery, Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Sieland
- Clinic for Radiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | | | - Matthias Taupitz
- Clinic for Radiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Perka
- Departments of Orthopaedics and of Trauma and Reconstructive Surgery, Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Departments of Orthopaedics and of Trauma and Reconstructive Surgery, Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Matziolis
- Departments of Orthopaedics and of Trauma and Reconstructive Surgery, Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
197
|
Jing XH, Yang L, Duan XJ, Xie B, Chen W, Li Z, Tan HB. In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 2008; 75:432-8. [DOI: 10.1016/j.jbspin.2007.09.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
|
198
|
Janic B, Iskander ASM, Rad AM, Soltanian-Zadeh H, Arbab AS. Effects of ferumoxides-protamine sulfate labeling on immunomodulatory characteristics of macrophage-like THP-1 cells. PLoS One 2008; 3:e2499. [PMID: 18575575 PMCID: PMC2423478 DOI: 10.1371/journal.pone.0002499] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 05/22/2008] [Indexed: 11/18/2022] Open
Abstract
Superparamagnetic Iron Oxide (SPIO) complexed with cationic transfection agent is used to label various mammalian cells. Labeled cells can then be utilized as an in vivo magnetic resonance imaging (MRI) probes. However, certain number of in vivo administered labeled cells may be cleared from tissues by the host's macrophages. For successful translation to routine clinical application of SPIO labeling method it is important that this mode of in vivo clearance of iron does not elicit any diverse immunological effects. The purpose of this study was to demonstrate that SPIO agent ferumoxides-protamine sulfate (FePro) incorporation into macrophages does not alter immunological properties of these cells with regard to differentiation, chemotaxis, and ability to respond to the activation stimuli and to modulate T cell response. We used THP-1 cell line as a model for studying macrophage cell type. THP-1 cells were magnetically labeled with FePro, differentiated with 100 nM of phorbol ester, 12-Myristate-13-acetate (TPA) and stimulated with 100 ng/ml of LPS. The results showed 1) FePro labeling had no effect on the changes in morphology and expression of cell surface proteins associated with TPA induced differentiation; 2) FePro labeled cells responded to LPS with slightly higher levels of NFkappaB pathway activation, as shown by immunobloting; TNF-alpha secretion and cell surface expression levels of CD54 and CD83 activation markers, under these conditions, were still comparable to the levels observed in non-labeled cells; 3) FePro labeling exhibited differential, chemokine dependent, effect on THP-1 chemotaxis with a decrease in cell directional migration to MCP-1; 4) FePro labeling did not affect the ability of THP-1 cells to down-regulate T cell expression of CD4 and CD8 and to induce T cell proliferation. Our study demonstrated that intracellular incorporation of FePro complexes does not alter overall immunological properties of THP-1 cells. The described experiments provide the model for studying the effects of in vivo clearance of iron particles via incorporation into the host's macrophages that may follow after in vivo application of any type of magnetically labeled mammalian cells. To better mimic the complex in vivo scenario, this model may be further exploited by introducing additional cellular and biological, immunologically relevant, components.
Collapse
Affiliation(s)
- Branislava Janic
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America.
| | | | | | | | | |
Collapse
|
199
|
Abstract
In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized.
Collapse
Affiliation(s)
- Uwe Himmelreich
- In-vivo-NMR-Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
200
|
Küstermann E, Himmelreich U, Kandal K, Geelen T, Ketkar A, Wiedermann D, Strecker C, Esser J, Arnhold S, Hoehn M. Efficient stem cell labeling for MRI studies. CONTRAST MEDIA & MOLECULAR IMAGING 2008; 3:27-37. [PMID: 18335477 DOI: 10.1002/cmmi.229] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Iron oxide particles are especially suited for cell tracking experiments due to their extraordinarily molar relaxivity as compared with other paramagnetic nuclei. We have compared different iron oxide particles (Sinerem, Endorem and magnetic microspheres) for their suitability to label embryonic stem cells (D3 cell line). In addition to detectability thresholds, particular attention has been paid to the evaluation of long-term stability of the labelling procedure (up to 4 weeks) as well as to toxic and other adverse effects on cell viability. Comparative studies were performed using neural progenitor cells (C17.2) and dendritic cells. The present study indicates strong dependence of the label efficiency and stability on the iron oxide particles and cell lines in use.
Collapse
Affiliation(s)
- E Küstermann
- Max-Planck-Insitute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max-Planck-Society and the Faculty of Medicine of the University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|