151
|
Microparticles derived from obese adipose tissue elicit a pro-inflammatory phenotype of CD16 + , CCR5 + and TLR8 + monocytes. Biochim Biophys Acta Mol Basis Dis 2017; 1863:139-151. [DOI: 10.1016/j.bbadis.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
|
152
|
Zhang Y, Mei H, Chang X, Chen F, Zhu Y, Han X. Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR-155. J Mol Cell Biol 2016; 8:505-517. [PMID: 27671445 DOI: 10.1093/jmcb/mjw040] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/17/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022] Open
Abstract
The pro-inflammatory profile of M1 macrophage accumulation in adipose tissue is a central event leading to the metabolic complications of obesity. However, the mechanisms by which M1 macrophages are enriched in adipose tissue during weight gain remain incompletely understood. Here, we investigated the effects of adipocyte-derived microvesicles (ADM) on modulating macrophage phenotype in mice and explored the involved molecular signalling pathways. We found that, compared with ADM from lean mice (SD ADM), ADM from obese mice (HFD ADM) significantly enhanced M1 marker expression. The quantitative RT-PCR assay demonstrated that miR-155 was upregulated in both HFD ADM and HFD ADM-treated macrophages. By depleting miR-155 expression in HFD ADM and increasing miR-155 level in SD ADM, we further illustrated that miR-155 in ADM-induced M1 macrophage polarization. Functionally, in contrast to SD ADM, HFD ADM significantly decreased the protein level of SOCS1, a proven miR-155 target, leading to activation of STAT1, and suppression of STAT6 signalling; these effects were reversed by silencing miR-155 in HFD ADM. Furthermore, the supernatant of bone marrow-derived macrophages pre-stimulated with miR-155-bearing ADM interfered with insulin signalling and insulin-induced glucose uptake in adipocytes. Collectively, these results provide the first evidence that M1 macrophage polarization can be mediated by miR-155-bearing ADM, which reciprocally regulates insulin signalling and glucose uptake in adipocytes. Our study reveals a novel mechanism through which obesity induces an imbalance in the M1-to-M2 macrophage ratio in adipose tissue, thus causing chronic inflammation and local insulin resistance.
Collapse
Affiliation(s)
- Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Hongliang Mei
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| |
Collapse
|
153
|
Zhang Y, Yu M, Tian W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif 2016; 49:3-13. [PMID: 26776755 DOI: 10.1111/cpr.12233] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 02/05/2023] Open
Abstract
Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
154
|
Connolly KD, Guschina IA, Yeung V, Clayton A, Draman MS, Von Ruhland C, Ludgate M, James PE, Rees DA. Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis. J Extracell Vesicles 2015; 4:29159. [PMID: 26609807 PMCID: PMC4661001 DOI: 10.3402/jev.v4.29159] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/07/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are submicron vesicles released from many cell types, including adipocytes. EVs are implicated in the pathogenesis of obesity-driven cardiovascular disease, although the characteristics of adipocyte-derived EVs are not well described. We sought to define the characteristics of adipocyte-derived EVs before and after adipogenesis, hypothesising that adipogenesis would affect EV structure, molecular composition and function. Using 3T3-L1 cells, EVs were harvested at day 0 and day 15 of differentiation. EV and cell preparations were visualised by electron microscopy and EVs quantified by nanoparticle tracking analysis (NTA). EVs were then assessed for annexin V positivity using flow cytometry; lipid and phospholipid composition using 2D thin layer chromatography and gas chromatography; and vesicular protein content by an immuno-phenotyping assay. Pre-adipogenic cells are connected via a network of protrusions and EVs at both time points display classic EV morphology. EV concentration is elevated prior to adipogenesis, particularly in exosomes and small microvesicles. Parent cells contain higher proportions of phosphatidylserine (PS) and show higher annexin V binding. Both cells and EVs contain an increased proportion of arachidonic acid at day 0. PREF-1 was increased at day 0 whilst adiponectin was higher at day 15 indicating EV protein content reflects the stage of adipogenesis of the cell. Our data suggest that EV production is higher in cells before adipogenesis, particularly in vesicles <300 nm. Cells at this time point possess a greater proportion of PS (required for EV generation) whilst corresponding EVs are enriched in signalling fatty acids, such as arachidonic acid, and markers of adipogenesis, such as PREF-1 and PPARγ.
Collapse
Affiliation(s)
- Katherine D Connolly
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Irina A Guschina
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Vincent Yeung
- Institute of Cancer Genetics, School of Medicine, Velindre Cancer Centre, Cardiff University, Cardiff, United Kingdom
| | - Aled Clayton
- Institute of Cancer Genetics, School of Medicine, Velindre Cancer Centre, Cardiff University, Cardiff, United Kingdom
| | - Mohd Shazli Draman
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Christopher Von Ruhland
- Central Biotechnology Services, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Marian Ludgate
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Philip E James
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - D Aled Rees
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom;
| |
Collapse
|
155
|
Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int 2015; 2016:1073140. [PMID: 26649044 PMCID: PMC4663346 DOI: 10.1155/2016/1073140] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022] Open
Abstract
Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies.
Collapse
|
156
|
Lakhter AJ, Sims EK. Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders. Mol Endocrinol 2015; 29:1535-48. [PMID: 26393296 PMCID: PMC4627606 DOI: 10.1210/me.2015-1206] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs), membrane-contained vesicles released by most cell types, have attracted a large amount of research interest over the past decade. Because of their ability to transfer cargo via regulated processes, causing functional impacts on recipient cells, these structures may play important roles in cell-cell communication and have implications in the physiology of numerous organ systems. In addition, EVs have been described in most human biofluids and have wide potential as relatively noninvasive biomarkers of various pathologic conditions. Specifically, EVs produced by the pancreatic β-cell have been demonstrated to regulate physiologic and pathologic responses to β-cell stress, including β-cell proliferation and apoptosis. β-Cell EVs are also capable of interacting with immune cells and may contribute to the activation of autoimmune processes that trigger or propagate β-cell inflammation and destruction during the development of diabetes. EVs from adipose tissue have been shown to contribute to the development of the chronic inflammation and insulin resistance associated with obesity and metabolic syndrome via interactions with other adipose, liver, and muscle cells. Circulating EVs may also serve as biomarkers for metabolic derangements and complications associated with diabetes. This minireview describes the properties of EVs in general, followed by a more focused review of the literature describing EVs affecting the β-cell, β-cell autoimmunity, and the development of insulin resistance, which all have the potential to affect development of type 1 or type 2 diabetes.
Collapse
Affiliation(s)
- Alexander J Lakhter
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| | - Emily K Sims
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| |
Collapse
|
157
|
Zhang Y, Shi L, Mei H, Zhang J, Zhu Y, Han X, Zhu D. Inflamed macrophage microvesicles induce insulin resistance in human adipocytes. Nutr Metab (Lond) 2015; 12:21. [PMID: 26064180 PMCID: PMC4462080 DOI: 10.1186/s12986-015-0016-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cytokines secreted by adipose tissue macrophages (ATMs) significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. However, little relevant information is available regarding the role of microvesicles (MVs) derived from ATMs in macrophage-adipocyte crosstalk. METHODS MVs were generated by stimulation of M1 or M2 phenotype THP-1 macrophages and incubated with human primary mature adipocytes and differentiated adipocytes. Subsequently, insulin-stimulated phosphorylation of Akt (pAkt) and glucose uptake were determined. Glucose transporter 4 (GLUT4) translocation and nuclear translocation of nuclear factor (NF)-kappa B were also analyzed in treated adipocytes. RESULTS M1 macrophage-derived MVs (M1 MVs) significantly reduced protein abundance of insulin-induced Akt phosphorylation in human primary mature adipocytes and differentiated adipocytes, when compared with the same concentration of M2 macrophage-derived MVs (M2 MVs). In contrast to M2 MVs, which enhanced the insulin-induced glucose uptake measured by 2-NBDG, M1 MVs decreased this effect in treated adipocytes. M1 MVs treatment also brought about a significant increase in the nuclear translocation of nuclear factor (NF)-kappa B, coupled with a decrease in pAkt level and GLUT4 translocation compared with M2 MVs-treated adipocytes. These effects were reversed by BAY 11-7085, a NF- kappa B specific inhibitor. CONCLUSIONS MVs derived from proinflammatory (M1) macrophages may, at least in part, contribute to the pathogenesis of obesity-induced insulin resistance, reducing insulin signal transduction and decreasing glucose uptake in human adipocytes, through NF-kappa B activation. Therefore, these MVs may be potential therapy candidates for the management of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yaqin Zhang
- The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 21008 China.,Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Li Shi
- The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 21008 China.,Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Hongliang Mei
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Jiexin Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Yunxia Zhu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Xiao Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Dalong Zhu
- The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 21008 China
| |
Collapse
|
158
|
Sárvári AK, Doan-Xuan QM, Bacsó Z, Csomós I, Balajthy Z, Fésüs L. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion. Cell Death Dis 2015; 6:e1613. [PMID: 25611388 PMCID: PMC4669775 DOI: 10.1038/cddis.2014.579] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/07/2014] [Accepted: 11/27/2014] [Indexed: 02/06/2023]
Abstract
Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and human adipocytes differentiated from either mesenchymal stem cells or a preadipocyte cell line. As observed by time-lapse microscopy, flow, and laser-scanning cytometry, macrophages phagocytosed bites of adipocytes (trogocytosis), which led to their de novo, phagocytosis and NF-κB-dependent synthesis, then release of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1. IL-6 secretion was not accompanied by secretion of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-8, except MCP-1. LPS-induced release of TNF-α, IL-8 and MCP-1 was decreased in the presence of the differentiated adipocytes but the IL-6 level did not subside suggesting that phagocytosis-dependent IL-6 secretion may have significant regulatory function in the inflamed adipose tissue.
Collapse
Affiliation(s)
- A K Sárvári
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Q-M Doan-Xuan
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Z Bacsó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - I Csomós
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Z Balajthy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - L Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
159
|
Ertunc ME, Sikkeland J, Fenaroli F, Griffiths G, Daniels MP, Cao H, Saatcioglu F, Hotamisligil GS. Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity. J Lipid Res 2014; 56:423-34. [PMID: 25535287 DOI: 10.1194/jlr.m055798] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipocyte fatty acid binding protein 4, aP2, contributes to the pathogenesis of several common diseases including type 2 diabetes, atherosclerosis, fatty liver disease, asthma, and cancer. Although the biological functions of aP2 have classically been attributed to its intracellular action, recent studies demonstrated that aP2 acts as an adipokine to regulate systemic metabolism. However, the mechanism and regulation of aP2 secretion remain unknown. Here, we demonstrate a specific role for lipase activity in aP2 secretion from adipocytes in vitro and ex vivo. Our results show that chemical inhibition of lipase activity, genetic deficiency of adipose triglyceride lipase and, to a lesser extent, hormone-sensitive lipase blocked aP2 secretion from adipocytes. Increased lipolysis and lipid availability also contributed to aP2 release as determined in perilipin1-deficient adipose tissue explants ex vivo and upon treatment with lipids in vivo and in vitro. In addition, we identify a nonclassical route for aP2 secretion in exosome-like vesicles and show that aP2 is recruited to this pathway upon stimulation of lipolysis. Given the effect of circulating aP2 on glucose metabolism, these data support that targeting aP2 or the lipolysis-dependent secretory pathway may present novel mechanistic and translational opportunities in metabolic disease.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Department of Genetics and Complex Diseases Harvard School of Public Health, Boston, MA Sabri Ülker Center, Harvard School of Public Health, Boston, MA
| | - Jørgen Sikkeland
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Federico Fenaroli
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Gareth Griffiths
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Mathew P Daniels
- University of Oslo, Oslo, Norway; and National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Haiming Cao
- University of Oslo, Oslo, Norway; and National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Fahri Saatcioglu
- Department of Biosciences, National Institutes of Health, Bethesda, MD
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases Harvard School of Public Health, Boston, MA Sabri Ülker Center, Harvard School of Public Health, Boston, MA
| |
Collapse
|
160
|
Masoodi M, Kuda O, Rossmeisl M, Flachs P, Kopecky J. Lipid signaling in adipose tissue: Connecting inflammation & metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:503-18. [PMID: 25311170 DOI: 10.1016/j.bbalip.2014.09.023] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 02/08/2023]
Abstract
Obesity-associated low-grade inflammation of white adipose tissue (WAT) contributes to development of insulin resistance and other disorders. Accumulation of immune cells, especially macrophages, and macrophage polarization from M2 to M1 state, affect intrinsic WAT signaling, namely anti-inflammatory and proinflammatory cytokines, fatty acids (FA), and lipid mediators derived from both n-6 and n-3 long-chain PUFA such as (i) arachidonic acid (AA)-derived eicosanoids and endocannabinoids, and (ii) specialized pro-resolving lipid mediators including resolvins derived from both eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), lipoxins (AA metabolites), protectins and maresins (DHA metabolites). In this respect, potential differences in modulating adipocyte metabolism by various lipid mediators formed by inflammatory M1 macrophages typical of obese state, and non-inflammatory M2 macrophages typical of lean state remain to be established. Studies in mice suggest that (i) transient accumulation of M2 macrophages could be essential for the control of tissue FA levels during activation of lipolysis, (ii) currently unidentified M2 macrophage-borne signaling molecule(s) could inhibit lipolysis and re-esterification of lipolyzed FA back to triacylglycerols (TAG/FA cycle), and (iii) the egress of M2 macrophages from rebuilt WAT and removal of the negative feedback regulation could allow for a full unmasking of metabolic activities of adipocytes. Thus, M2 macrophages could support remodeling of WAT to a tissue containing metabolically flexible adipocytes endowed with a high capacity of both TAG/FA cycling and oxidative phosphorylation. This situation could be exemplified by a combined intervention using mild calorie restriction and dietary supplementation with EPA/DHA, which enhances the formation of "healthy" adipocytes. This article is part of a Special Issue entitled Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Mojgan Masoodi
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment H, 1015 Lausanne, Switzerland.
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Pavel Flachs
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
161
|
Kranendonk MEG, Visseren FLJ, van Herwaarden JA, Nolte-'t Hoen ENM, de Jager W, Wauben MHM, Kalkhoven E. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity (Silver Spring) 2014; 22:2216-23. [PMID: 25045057 DOI: 10.1002/oby.20847] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Insulin resistance (IR) is a key mechanism in obesity-induced cardiovascular disease. To unravel mechanisms whereby human adipose tissue (AT) contributes to systemic IR, the effect of human AT-extracellular vesicles (EVs) on insulin signaling in liver and muscle cells was determined. METHODS EVs released from human subcutaneous (SAT) and omental AT (OAT)-explants ex vivo were used for stimulation of hepatocytes and myotubes in vitro. Subsequently, insulin-induced Akt phosphorylation and expression of gluconeogenic genes (G6P, PEPCK) was determined. AT-EV adipokine levels were measured by multiplex immunoassay, and AT-EVs were quantified by high-resolution flow cytometry. RESULTS In hepatocytes, AT-EVs from the majority of patients inhibited insulin-induced Akt phosphorylation, while EVs from some patients stimulated insulin-induced Akt phosphorylation. In myotubes AT-EVs exerted an ambiguous effect on insulin signaling. Hepatic Akt phosphorylation related negatively to G6P-expression by both SAT-EVs (r = -0.60, P = 0.01) and OAT-EVs (r = -0.74, P = 0.001). MCP-1, IL-6, and MIF concentrations were higher in OAT-EVs compared to SAT-EVs and differently related to lower Akt phosphorylation in hepatocytes. Finally, the number of OAT-EVs correlated positively with liver enzymes indicative for liver dysfunction. CONCLUSIONS Human AT-EVs can stimulate or inhibit insulin signaling in hepatocytes- possibly depending on their adipokine content- and may thereby contribute to systemic IR.
Collapse
Affiliation(s)
- Mariëtte E G Kranendonk
- Department of Vascular Medicine, University Medical Center Utrecht (UMC Utrecht), Utrecht, The Netherlands; Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
162
|
Kranendonk MEG, de Kleijn DPV, Kalkhoven E, Kanhai DA, Uiterwaal CSPM, van der Graaf Y, Pasterkamp G, Visseren FLJ. Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol 2014; 13:37. [PMID: 24498934 PMCID: PMC3918107 DOI: 10.1186/1475-2840-13-37] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/18/2014] [Indexed: 12/12/2022] Open
Abstract
Background Alterations in extracellular vesicles (EVs), including exosomes and microparticles, contribute to cardiovascular disease. We hypothesized that obesity could favour enhanced release of EVs from adipose tissue, and thereby contribute to cardiovascular risk via obesity-induced metabolic complications. The objectives of this study were: 1) to investigate the relation between the quantity, distribution and (dys) function of adipose tissue and plasma concentrations of atherothrombotic EV-markers; 2) to determine the relation between these EV-markers and the prevalence of the metabolic syndrome; and 3) to assess the contribution of EV markers to the risk of incident type 2 diabetes. Methods In 1012 patients with clinically manifest vascular disease, subcutaneous and visceral fat thickness was measured ultrasonographically. Plasma EVs were isolated and levels of cystatin C, serpin G1, serpin F2 and CD14 were measured, as well as fasting metabolic parameters, hsCRP and adiponectin. The association between adiposity, EV-markers, and metabolic syndrome was tested by multivariable linear and logistic regression analyses. As sex influences body fat distribution, sex-stratified analyses between adipose tissue distribution and EV-markers were performed. The relation between EV-markers and type 2 diabetes was assessed with Cox regression analyses. Results Higher levels of hsCRP (β 5.59; 95% CI 3.00–8.18) and lower HDL-cholesterol levels (β-11.26; 95% CI −18.39 – -4.13) were related to increased EV-cystatin C levels, and EV-cystatin C levels were associated with a 57% higher odds of having the metabolic syndrome (OR 1.57; 95% CI 1.19–2.27). HDL-cholesterol levels were positively related to EV-CD14 levels (β 5.04; 95% CI 0.07–10.0), and EV-CD14 levels were associated with a relative risk reduction of 16% for development of type 2 diabetes (HR 0.84, 95% CI 0.75–0.94), during a median follow up of 6.5 years in which 42 patients developed type 2 diabetes. Conclusions In patients with clinically manifest vascular disease, EV-cystatin C levels were positively related, and EV-CD14 levels were negatively related to metabolic complications of obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Centre Utrecht (UMCU), F02,126, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.
| | | |
Collapse
|