151
|
Hur D, Say MG, Diltemiz SE, Duman F, Ersöz A, Say R. 3D Micropatterned All-Flexible Microfluidic Platform for Microwave-Assisted Flow Organic Synthesis. Chempluschem 2018; 83:42-46. [PMID: 31957319 DOI: 10.1002/cplu.201700440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/27/2017] [Indexed: 12/15/2022]
Abstract
A large-area, all-flexible, microwaveable polydimethoxysilane microfluidic reactor was fabricated by using a 3D printing system. The sacrificial microchannels were printed on polydimethoxysilane substrates by a direct ink writing method using water-soluble Pluronic F-127 ink and then encapsulated between polydimethoxysilane layers. The structure of micron-sized channels was analyzed by optical and electron microscopy techniques. The fabricated flexible microfluidic reactors were utilized for the acetylation of different amines under microwave irradiation to obtain acetamides in shorter reaction times and good yields by flow organic synthesis.
Collapse
Affiliation(s)
- Deniz Hur
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| | - Mehmet G Say
- Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey.,Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Sibel E Diltemiz
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| | - Fatma Duman
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey
| | - Arzu Ersöz
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| | - Rıdvan Say
- Science Faculty, Chemistry Department, Anadolu University, Yunus Emre Campus, 26470, Eskişehir, Turkey.,Bionkit Co. Ltd., Anadolu University Teknopark, 26470, Eskisehir, Turkey
| |
Collapse
|
152
|
Lim W, Hoang HH, You D, Han J, Lee JE, Kim S, Park S. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Analyst 2018; 143:5841-5848. [DOI: 10.1039/c8an01752b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe a method to generate several hundreds of spheroids using a microfluidic device with pillars.
Collapse
Affiliation(s)
- Wanyoung Lim
- Department of Biomedical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Hong-Hoa Hoang
- School of Mechanical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Daeun You
- Department of Health Sciences and Technology
- SAIHST
- Sungkyunkwan University
- Korea
| | - Jeonghun Han
- School of Mechanical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology
- SAIHST
- Sungkyunkwan University
- Korea
- Department of Breast Surgery
| | - Sangmin Kim
- Department of Breast Surgery
- Samsung Medical Center
- Seoul
- Korea
| | - Sungsu Park
- Department of Biomedical Engineering
- Sungkyunkwan University
- Suwon
- Korea
- School of Mechanical Engineering
| |
Collapse
|
153
|
Puza S, Gencturk E, Odabasi IE, Iseri E, Mutlu S, Ulgen KO. Fabrication of cyclo olefin polymer microfluidic devices for trapping and culturing of yeast cells. Biomed Microdevices 2017; 19:40. [PMID: 28466286 DOI: 10.1007/s10544-017-0182-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A microfluidic platform is designed and fabricated to investigate the role of uncharacterized YOR060C (Sld7) protein in aging in yeast cells for the first time. Saccharomyces cerevisiae yeast cells are trapped in the series of C-shaped regions (0.5 nL) of COP (cyclo olefin polymer), PMMA (poly methylmethacrylate), or PS (polystyrene) microbioreactors. The devices are fabricated using hot embossing and thermo-compression bonding methods. Photolithography and electrochemical etching are used to form the steel mold needed for hot embossing. The cell cycle processes are investigated by monitoring green fluorescent protein (GFP) tagged Sld7 expressions under normal as well as calorie restricted conditions. The cells are loaded at 1 μL/min flowrate and trapped successfully within each chamber. The medium is continuously fed at 0.1 μL/min throughout the experiments. Fluorescent signals of the low abundant Sld7 proteins could be distinguished only on COP devices. The background fluorescence of COP is found 1.22 and 7.24 times lower than that of PMMA, and PS, respectively. Hence, experiments are continued with COP, and lasted for more than 40 h without any contamination. The doubling time of the yeast cells are found as 72 min and 150 min, and the growth rates as 9.63 × 10-3 min-1 and 4.62 × 10-3 min-1, in 2% glucose containing YPD and YNB medium, respectively. The product concentration (Sld7p:GFP) increased in accordance with cell growth. The dual role of Sld7 protein in both cell cycle and chronological aging needs to be further investigated following the preliminary experimental results.
Collapse
Affiliation(s)
- Sevde Puza
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342, Istanbul, Turkey
| | - Elif Gencturk
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342, Istanbul, Turkey
| | - Irem E Odabasi
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342, Istanbul, Turkey
| | - Emre Iseri
- Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342, Istanbul, Turkey
| | - Senol Mutlu
- Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342, Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342, Istanbul, Turkey.
| |
Collapse
|
154
|
A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage. Sci Rep 2017; 7:16378. [PMID: 29180650 PMCID: PMC5704020 DOI: 10.1038/s41598-017-16762-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Abstract
Engineered Terahertz (THz) metamaterials presented an unique characteristics for biosensing application due to their accurately tunable resonance frequency, which is in accord with vibrational frequency of some important biomolecules such as cancer biomarker. However, water absorption in THz regime is an obstacle to extend application in trace biomolecules of cancer antibody or antigen. Here, to overcome water absorption and enhance the THz biosensing sensitivity, two kinds of THz metamaterials biosensor integrated with microfluidics were fabricated and used to detect the Alpha fetoprotein (AFP) and Glutamine transferase isozymes II (GGT-II) of liver cancer biomarker in early stage. There were about 19 GHz resonance shift (5 mu/ml) and 14.2 GHz resonance shift (0.02524 μg/ml) for GGT-II and AFP with a two-gap-metamaterial, respectively, which agreed with simulation results. Those results demonstrated the power and usefulness of metamaterial-assisted THz spectroscopy in trace cancer biomarker molecular detection for biological and chemical sensing. Moreover, for a particular cancer biomarker, the sensitivity could be further improved by optimizing the metamaterial structure and decreasing the permittivity of the substrate. This method might be powerful and potential for special recognition of cancer molecules in the early stage.
Collapse
|
155
|
Nikonenko VV, Mareev SA, Pis’menskaya ND, Uzdenova AM, Kovalenko AV, Urtenov MK, Pourcelly G. Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (Review). RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517090099] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
156
|
Rambach RW, Linder K, Heymann M, Franke T. Droplet trapping and fast acoustic release in a multi-height device with steady-state flow. LAB ON A CHIP 2017; 17:3422-3430. [PMID: 28792054 DOI: 10.1039/c7lc00378a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate a novel multilayer polydimethylsiloxane (PDMS) device for selective storage and release of single emulsion droplets. Drops are captured in a microchannel cavity and can be released on-demand through a triggered surface acoustic wave pulse. The surface acoustic wave (SAW) is excited by a tapered interdigital transducer (TIDT) deposited on a piezoelectric lithium niobate (LiNbO3) substrate and inverts the pressure difference across the cavity trap to push a drop out of the trap and back into the main flow channel. Droplet capture and release does not require a flow rate change, flow interruption, flow inversion or valve action and can be achieved in as fast as 20 ms. This allows both on-demand droplet capture for analysis and monitoring over arbitrary time scales, and continuous device operation with a high droplet rate of 620 drops per s. We hence decouple long-term droplet interrogation from other operations on the chip. This will ease integration with other microfluidic droplet operations and functional components.
Collapse
Affiliation(s)
- Richard W Rambach
- Soft Matter and Biological Physics Group, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | | | | | | |
Collapse
|
157
|
Comparison of Sensitivity and Quantitation between Microbead Dielectrophoresis-Based DNA Detection and Real-Time PCR. BIOSENSORS-BASEL 2017; 7:bios7040044. [PMID: 28974001 PMCID: PMC5746767 DOI: 10.3390/bios7040044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/05/2022]
Abstract
In this study, we describe a microbead-based method using dielectrophoresis (DEP) for the fast detection of DNA amplified by polymerase chain reaction (PCR). This electrical method measures the change in impedance caused by DEP-trapped microbeads to which biotinylated target DNA molecules are chemically attached. Using this method, measurements can be obtained within 20 min. Currently, real-time PCR is among the most sensitive methods available for the detection of target DNA, and is often used in the diagnosis of infectious diseases. We therefore compared the quantitation and sensitivity achieved by our method to those achieved with real-time PCR. We found that the microbead DEP-based method exhibited the same detection limit as real-time PCR, although its quantitative detection range was slightly narrower at 10–105 copies/reaction compared with 10–107 copies/reaction for real-time PCR. Whereas real-time PCR requires expensive and complex instruments, as well as expertise in primer design and experimental principles, our novel method is simple to use, inexpensive, and rapid. This method could potentially detect viral and other DNAs efficiently in combination with conventional PCR.
Collapse
|
158
|
Hu T, Zhang JL. Mass-spectrometry-based lipidomics. J Sep Sci 2017; 41:351-372. [PMID: 28859259 DOI: 10.1002/jssc.201700709] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Lipids, which have a core function in energy storage, signalling and biofilm structures, play important roles in a variety of cellular processes because of the great diversity of their structural and physiochemical properties. Lipidomics is the large-scale profiling and quantification of biogenic lipid molecules, the comprehensive study of their pathways and the interpretation of their physiological significance based on analytical chemistry and statistical analysis. Lipidomics will not only provide insight into the physiological functions of lipid molecules but will also provide an approach to discovering important biomarkers for diagnosis or treatment of human diseases. Mass-spectrometry-based analytical techniques are currently the most widely used and most effective tools for lipid profiling and quantification. In this review, the field of mass-spectrometry-based lipidomics was discussed. Recent progress in all essential steps in lipidomics was carefully discussed in this review, including lipid extraction strategies, separation techniques and mass-spectrometry-based analytical and quantitative methods in lipidomics. We also focused on novel resolution strategies for difficult problems in determining C=C bond positions in lipidomics. Finally, new technologies that were developed in recent years including single-cell lipidomics, flux-based lipidomics and multiomics technologies were also reviewed.
Collapse
Affiliation(s)
- Ting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
159
|
Qiu X, Westerhof TM, Karunaratne AA, Werner EM, Pourfard PP, Nelson EL, Hui EE, Haun JB. Microfluidic device for rapid digestion of tissues into cellular suspensions. LAB ON A CHIP 2017; 17:3300-3309. [PMID: 28850139 PMCID: PMC5614870 DOI: 10.1039/c7lc00575j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The ability to harvest single cells from tissues is currently a bottleneck for cell-based diagnostic technologies, and remains crucial in the fields of tissue engineering and regenerative medicine. Tissues are typically broken down using proteolytic digestion and various mechanical treatments, but success has been limited due to long processing times, low yield, and high manual labor burden. Here, we present a novel microfluidic device that utilizes precision fluid flows to improve the speed and efficiency of tissue digestion. The microfluidic channels were designed to apply hydrodynamic shear forces at discrete locations on tissue specimens up to 1 cm in length and 1 mm in diameter, thereby accelerating digestion through hydrodynamic shear forces and improved enzyme-tissue contact. We show using animal organs that our digestion device with hydro-mincing capabilities was superior to conventional scalpel mincing and digestion based on recovery of DNA and viable single cells. Thus, our microfluidic digestion device can eliminate or reduce the need to mince tissue samples with a scalpel, while reducing sample processing time and preserving cell viability. Another advantage is that downstream microfluidic operations could be integrated to enable advanced cell processing and analysis capabilities. We envision our novel device being used in research and clinical settings to promote single cell-based analysis technologies, as well as to isolate primary, progenitor, and stem cells for use in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiaolong Qiu
- Department of Biomedical Engineering, University of California Irvine, 3107 Natural Sciences II, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Gencturk E, Mutlu S, Ulgen KO. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. BIOMICROFLUIDICS 2017; 11:051502. [PMID: 29152025 PMCID: PMC5654984 DOI: 10.1063/1.4998604] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
Silicon and glass were the main fabrication materials of microfluidic devices, however, plastics are on the rise in the past few years. Thermoplastic materials have recently been used to fabricate microfluidic platforms to perform experiments on cellular studies or environmental monitoring, with low cost disposable devices. This review describes the present state of the development and applications of microfluidic systems used in cell biology and analyses since the year 2000. Cultivation, separation/isolation, detection and analysis, and reaction studies are extensively discussed, considering only microorganisms (bacteria, yeast, fungi, zebra fish, etc.) and mammalian cell related studies in the microfluidic platforms. The advantages/disadvantages, fabrication methods, dimensions, and the purpose of creating the desired system are explained in detail. An important conclusion of this review is that these microfluidic platforms are still open for research and development, and solutions need to be found for each case separately.
Collapse
Affiliation(s)
- Elif Gencturk
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Senol Mutlu
- Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
161
|
A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves. Nat Commun 2017; 8:174. [PMID: 28765535 PMCID: PMC5539253 DOI: 10.1038/s41467-017-00278-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/18/2017] [Indexed: 01/26/2023] Open
Abstract
Surface acoustic wave (SAW) devices are widely used for signal processing, sensing and increasingly for lab-on-a-chip applications. Phononic crystals can control the propagation of SAW, analogous to photonic crystals, enabling components such as waveguides and cavities. Here we present an approach for the realisation of robust, tailorable SAW phononic crystals, based on annular holes patterned in a SAW substrate. Using simulations and experiments, we show that this geometry supports local resonances which create highly attenuating phononic bandgaps at frequencies with negligible coupling of SAWs into other modes, even for relatively shallow features. The enormous bandgap attenuation is up to an order-of-magnitude larger than that achieved with a pillar phononic crystal of the same size, enabling effective phononic crystals to be made up of smaller numbers of elements. This work transforms the ability to exploit phononic crystals for developing novel SAW device concepts, mirroring contemporary progress in photonic crystals. The control and manipulation of propagating sound waves on a surface has applications in on-chip signal processing and sensing. Here, Ash et al. deviate from standard designs and fabricate frequency tailorable phononic crystals with an order-of-magnitude increase in attenuation.
Collapse
|
162
|
Jian Y, Li F, Liu Y, Chang L, Liu Q, Yang L. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel. Colloids Surf B Biointerfaces 2017; 156:405-413. [DOI: 10.1016/j.colsurfb.2017.05.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 12/11/2022]
|
163
|
Shen F, Li Y, Liu Z, Li X. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement. MICROFLUIDICS AND NANOFLUIDICS 2017; 21:66. [PMID: 28890680 PMCID: PMC5589143 DOI: 10.1007/s10404-017-1902-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Droplet merging and splitting are important droplet manipulations in droplet-based microfluidics. However, the fundamental flow behaviors of droplets were not systematically studied. Hence, we designed two different microstructures to achieve droplet merging and splitting respectively, and quantitatively compared different flow dynamics in different microstructures for droplet merging and splitting via micro-particle image velocimetry (micro-PIV) experiments. Some flow phenomena of droplets different from previous studies were observed during merging and splitting using a high-speed microscope. It was also found the obtained instantaneous velocity vector fields of droplets have significant influence on the droplets merging and splitting. For droplet merging, the probability of droplets coalescence (η) in a microgroove is higher (50% < η < 92%) than that in a T-junction microchannel (15% < η < 50%), and the highest coalescence efficiency (η = 92%) comes at the two-phase flow ratio e of 0.42 in the microgroove. Moreover, compared with a cylinder obstacle, Y-junction bifurcation can split droplets more effectively and the droplet flow during splitting is steadier. The results can provide better understanding of droplet behaviors and are useful for the design and applications of droplet-based microfluidics.
Collapse
Affiliation(s)
- Feng Shen
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Yi Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
164
|
Selenocystine against methyl mercury cytotoxicity in HepG2 cells. Sci Rep 2017; 7:147. [PMID: 28273949 PMCID: PMC5428050 DOI: 10.1038/s41598-017-00231-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
Methyl mercury (MeHg) is a highly toxic substance and the effect of selenium against MeHg toxicity is a hot topic. Until now, no related works have been reported from the view of the point of elemental speciation which is promising to study the mechanism at the molecular level. In this work, to reveal the effect of selenocystine (SeCys2) against MeHg cytotoxicity in HepG2 cells, a comprehensive analytical platform for speciation study of mercury and selenium in MeHg incubated or MeHg and SeCys2 co-incubated HepG2 cells was developed by integrating liquid chromatography (LC) - inductively coupled plasma mass spectrometry (ICP-MS) hyphenated techniques and chip-based pretreatment method. Interesting phenomenon was found that the co-incubation of MeHg with SeCys2 promoted the uptake of MeHg in HepG2 cells, but reduced the cytotoxicity of MeHg. Results obtained by ICP-MS based hyphenated techniques revealed a possible pathway for the incorporation and excretion of mercury species with the coexistence of SeCys2. The formation of MeHg and SeCys2 aggregation promotes the uptake of MeHg; majority of MeHg transforms into small molecular complexes (MeHg-glutathione (GSH) and MeHg-cysteine (Cys)) in HepG2 cells; and MeHg-GSH is the elimination species which results in reducing the cytotoxicity of MeHg.
Collapse
|
165
|
Li Y, Zou X, Ma F, Tang B, Zhang CY. Development of fluorescent methods for DNA methyltransferase assay. Methods Appl Fluoresc 2017; 5:012002. [DOI: 10.1088/2050-6120/aa6127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
166
|
Hernandez-Garcia A, Estrich NA, Werten MWT, Van Der Maarel JRC, LaBean TH, de Wolf FA, Cohen Stuart MA, de Vries R. Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain. ACS NANO 2017; 11:144-152. [PMID: 27936577 DOI: 10.1021/acsnano.6b05938] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Emerging DNA-based nanotechnologies would benefit from the ability to modulate the properties (e.g., solubility, melting temperature, chemical stability) of diverse DNA templates (single molecules or origami nanostructures) through controlled, self-assembling coatings. We here introduce a DNA coating agent, called C8-BSso7d, which binds to and coats with high specificity and affinity, individual DNA molecules as well as folded origami nanostructures. C8-BSso7d coats and protects without condensing, collapsing or destroying the spatial structure of the underlying DNA template. C8-BSso7d combines the specific nonelectrostatic DNA binding affinity of an archeal-derived DNA binding domain (Sso7d, 7 kDa) with a long hydrophilic random coil polypeptide (C8, 73 kDa), which provides colloidal stability (solubility) through formation of polymer brushes around the DNA templates. C8-BSso7d is produced recombinantly in yeast and has a precise (but engineerable) amino acid sequence of precise length. Using electrophoresis, AFM, and fluorescence microscopy we demonstrate protein coat formation with stiffening of one-dimensional templates (linear dsDNA, supercoiled dsDNA and circular ssDNA), as well as coat formation without any structural distortion or disruption of two-dimensional DNA origami template. Combining the programmability of DNA with the nonperturbing precise coating capability of the engineered protein C8-BSso7d holds promise for future applications such as the creation of DNA-protein hybrid networks, or the efficient transfection of individual DNA nanostructures into cells.
Collapse
Affiliation(s)
- Armando Hernandez-Garcia
- Physical Chemistry and Soft Matter, Wageningen University and Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nicole A Estrich
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Marc W T Werten
- Wageningen UR Food and Biobased Research, Wageningen University and Research , Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | | | - Thomas H LaBean
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Frits A de Wolf
- Wageningen UR Food and Biobased Research, Wageningen University and Research , Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University and Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
167
|
Kwak HS, Kim JYH, Na SC, Jeon NL, Sim SJ. Multiplex microfluidic system integrating sequential operations of microalgal lipid production. Analyst 2017; 141:1218-25. [PMID: 26783562 DOI: 10.1039/c5an02409a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The unit cost for the production of algal biofuel needs to be reduced in order to be a substitute for fossil fuel. To achieve this goal, the development of a novel system is needed for a rapid screening of numerous microalgal species to isolate superior strains with the highest lipid productivity. Here, we developed a PDMS-based multiplex microfluidic system with eight chambers and micropillar arrays to expedite multiple steps for lipid sample preparation from different microalgal strains. We could rapidly and efficiently perform sequential operations from cell culture to lipid extraction of eight different microalgal strains simultaneously on a single device without harvesting and purification steps, which are labor- and energy-intensive, by the simple injection of medium and solvent into the central inlet due to the integrated micropillar arrays connecting the chambers and central inlet. The lipid extraction efficiency using this system was comparable (94.5-102.6%) to the conventional Bligh-Dyer method. We investigated the cell growth and lipid productivity of different strains using the microfluidic device. We observed that each strain has a different lipid accumulation pattern according to stress conditions. These results demonstrate that our multiplex microfluidic approach can provide an efficient analytical tool for the rapid analysis of strain performances (e.g. cell growth and lipid productivities) and the determination of the optimal lipid induction condition for each strain.
Collapse
Affiliation(s)
- Ho Seok Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, South Korea.
| | - Jaoon Young Hwan Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, South Korea.
| | - Sang Cheol Na
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, South Korea. and Green School, Korea University, Seoul 136-713, South Korea
| |
Collapse
|
168
|
Avril A, Hornung CH, Urban A, Fraser D, Horne M, Veder JP, Tsanaktsidis J, Rodopoulos T, Henry C, Gunasegaram DR. Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor. REACT CHEM ENG 2017. [DOI: 10.1039/c6re00188b] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continuous flow reactor for the hydrogenation of organic substrates using novel catalytic static mixers.
Collapse
Affiliation(s)
- A. Avril
- CSIRO Manufacturing
- Clayton South
- Australia
| | | | - A. Urban
- CSIRO Manufacturing
- Clayton South
- Australia
| | - D. Fraser
- CSIRO Manufacturing
- Clayton South
- Australia
| | - M. Horne
- CSIRO Manufacturing
- Clayton South
- Australia
| | | | | | | | - C. Henry
- CSIRO Manufacturing
- Clayton South
- Australia
| | | |
Collapse
|
169
|
Hsu KC, Hsu PF, Hung CC, Chiang CH, Jiang SJ, Lin CC, Huang YL. Microfluidic desorption-free magnetic solid phase extraction of Hg2+ from biological samples using cysteine-coated gold-magnetite core-shell nanoparticles prior to its quantitation by ICP-MS. Talanta 2017; 162:523-529. [DOI: 10.1016/j.talanta.2016.10.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023]
|
170
|
Kwak HS, Kim JYH, Woo HM, Jin E, Min BK, Sim SJ. Synergistic effect of multiple stress conditions for improving microalgal lipid production. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
171
|
Barani A, Paktinat H, Janmaleki M, Mohammadi A, Mosaddegh P, Fadaei-Tehrani A, Sanati-Nezhad A. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Biosens Bioelectron 2016; 85:714-725. [DOI: 10.1016/j.bios.2016.05.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022]
|
172
|
Arun RK, Priyadarshini N, Chaudhury K, Chanda N, Biswas G, Chakraborty S. Paper-PDMS hybrid microchannel: a platform for rapid fluid-transport and mixing. JOURNAL OF MICROMECHANICS AND MICROENGINEERING 2016; 26:105008. [DOI: 10.1088/0960-1317/26/10/105008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
173
|
Chen Y, Wu M, Ren L, Liu J, Whitley PH, Wang L, Huang TJ. High-throughput acoustic separation of platelets from whole blood. LAB ON A CHIP 2016; 16:3466-72. [PMID: 27477388 PMCID: PMC5010861 DOI: 10.1039/c6lc00682e] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Platelets contain growth factors which are important in biomedical and clinical applications. In this work, we present an acoustic separation device for high-throughput, non-invasive platelet isolation. In particular, we separated platelets from whole blood at a 10 mL min(-1) throughput, which is three orders of magnitude greater than that of existing acoustic-based platelet separation techniques. Without sample dilution, we observed more than 80% RBC/WBC removal and platelet recovery. High throughput, high separation efficiency, and biocompatibility make this device useful for many clinical applications.
Collapse
Affiliation(s)
- Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mengxi Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Liqiang Ren
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jiayang Liu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pamela H. Whitley
- American Red Cross, Mid-Atlantic Blood Services Region, 400 Gresham Dr., Suite 100, Norfolk, VA 23507, USA
| | - Lin Wang
- Ascent Bio-Nano Technologies Inc., Durham, NC 27708, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
174
|
Ding Z, Zhang D, Wang G, Tang M, Dong Y, Zhang Y, Ho HP, Zhang X. An in-line spectrophotometer on a centrifugal microfluidic platform for real-time protein determination and calibration. LAB ON A CHIP 2016; 16:3604-3614. [PMID: 27531134 DOI: 10.1039/c6lc00542j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, an in-line, low-cost, miniature and portable spectrophotometric detection system is presented and used for fast protein determination and calibration in centrifugal microfluidics. Our portable detection system is configured with paired emitter and detector diodes (PEDD), where the light beam between both LEDs is collimated with enhanced system tolerance. It is the first time that a physical model of PEDD is clearly presented, which could be modelled as a photosensitive RC oscillator. A portable centrifugal microfluidic system that contains a wireless port in real-time communication with a smartphone has been built to show that PEDD is an effective strategy for conducting rapid protein bioassays with detection performance comparable to that of a UV-vis spectrophotometer. The choice of centrifugal microfluidics offers the unique benefits of highly parallel fluidic actuation at high accuracy while there is no need for a pump, as inertial forces are present within the entire spinning disc and accurately controlled by varying the spinning speed. As a demonstration experiment, we have conducted the Bradford assay for bovine serum albumin (BSA) concentration calibration from 0 to 2 mg mL(-1). Moreover, a novel centrifugal disc with a spiral microchannel is proposed for automatic distribution and metering of the sample to all the parallel reactions at one time. The reported lab-on-a-disc scheme with PEDD detection may offer a solution for high-throughput assays, such as protein density calibration, drug screening and drug solubility measurement that require the handling of a large number of reactions in parallel.
Collapse
Affiliation(s)
- Zhaoxiong Ding
- Institute of Optical Communication Engineering, Nanjing University, Nanjing, 210093, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Ang KM, Yeo LY, Hung YM, Tan MK. Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing. BIOMICROFLUIDICS 2016; 10:054106. [PMID: 27703592 PMCID: PMC5035302 DOI: 10.1063/1.4963103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 05/17/2023]
Abstract
The ability to drive microcentrifugation for efficient micromixing and particle concentration and separation on a microfluidic platform is critical for a wide range of lab-on-a-chip applications. In this work, we investigate the use of amplitude modulation to enhance the efficiency of the microcentrifugal recirculation flows in surface acoustic wave microfluidic systems, thus concomitantly reducing the power consumption in these devices for a given performance requirement-a crucial step in the development of miniaturized, integrated circuits for true portable functionality. In particular, we show that it is possible to obtain an increase of up to 60% in the acoustic streaming velocity in a microdroplet with kHz order modulation frequencies due to the intensification in Eckart streaming; the streaming velocity is increasing as the modulation index is increased. Additionally, we show that it is possible to exploit this streaming enhancement to effect improvements in the speed of particle concentration by up to 70% and the efficiency of micromixing by 50%, together with a modest decrease in the droplet temperature.
Collapse
Affiliation(s)
- Kar M Ang
- School of Engineering, Monash University Malaysia , 47500 Bandar Sunway, Selangor, Malaysia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, RMIT University , Melbourne, VIC 3001, Australia
| | - Yew M Hung
- School of Engineering, Monash University Malaysia , 47500 Bandar Sunway, Selangor, Malaysia
| | - Ming K Tan
- School of Engineering, Monash University Malaysia , 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
176
|
Liang L, Lan F, Li L, Ge S, Yu J, Ren N, Liu H, Yan M. Paper analytical devices for dynamic evaluation of cell surface N-glycan expression via a bimodal biosensor based on multibranched hybridization chain reaction amplification. Biosens Bioelectron 2016; 86:756-763. [PMID: 27476057 DOI: 10.1016/j.bios.2016.07.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/10/2016] [Accepted: 07/22/2016] [Indexed: 11/17/2022]
Abstract
A novel colorimetric/fluorescence bimodal lab-on-paper cyto-device was fabricated based on concanavalin A (Con A)-integrating multibranched hybridization chain reaction (mHCR). The product of mHCR was modified PtCu nanochains (colorimetric signal label) and graphene quantum dot (fluorescence signal label) for in situ and dynamically evaluating cell surface N-glycan expression. In this strategy, preliminary detection was carried out through colorimetric method, if needed, then the fluorescence method was applied for a precise determination. Au-Ag-paper devices increased the surface areas and active sites for immobilizing larger amount of aptamers, and then specifically and efficiently captured more cancer cells. Moreover, it could effectively reduce the paper background fluorescence. Due to the specific recognition of Con A with mannose and the effective signal amplification of mHCR, the proposed strategy exhibited excellent high sensitivity for the cytosensing of MCF-7 cells ranging from 100 to 1.0×10(7) and 80-5.0×10(7) cellsmL(-1) with the detection limit of 33 and 26 cellsmL(-1) for colorimetric and fluorescence, respectively. More importantly, this strategy was successfully applied to dynamically monitor cell-surface multi-glycans expression on living cells under external stimuli of inhibitors as well as for N-glycan expression inhibitor screening. These results implied that this biosensor has potential in studying complex native glycan-related biological processes and elucidating the N-glycan-related diseases in biological and physiological processes.
Collapse
Affiliation(s)
- Linlin Liang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| | - Feifei Lan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| | - Shenguang Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China; Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan,, Jinan, 250022 China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| | - Na Ren
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Haiyun Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| |
Collapse
|
177
|
Alhasan L, Qi A, Al-Abboodi A, Rezk A, Chan PP, Iliescu C, Yeo LY. Rapid Enhancement of Cellular Spheroid Assembly by Acoustically Driven Microcentrifugation. ACS Biomater Sci Eng 2016; 2:1013-1022. [DOI: 10.1021/acsbiomaterials.6b00144] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Layla Alhasan
- Biotechnology & Biological Sciences, School of Applied Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aisha Qi
- Micro/Nanophysics
Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aswan Al-Abboodi
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Amgad Rezk
- Micro/Nanophysics
Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
| | - Peggy P.Y. Chan
- Micro/Nanophysics
Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
- Department
of Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Ciprian Iliescu
- Institute
of Bioengineering and Nanotechnology, A*STAR, Singapore 138669, Singapore
| | - Leslie Y. Yeo
- Micro/Nanophysics
Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
178
|
Boken J, Soni SK, Kumar D. Microfluidic Synthesis of Nanoparticles and their Biosensing Applications. Crit Rev Anal Chem 2016; 46:538-61. [DOI: 10.1080/10408347.2016.1169912] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
179
|
Kokkinis G, Plochberger B, Cardoso S, Keplinger F, Giouroudi I. A microfluidic, dual-purpose sensor for in vitro detection of Enterobacteriaceae and biotinylated antibodies. LAB ON A CHIP 2016; 16:1261-1271. [PMID: 26939996 DOI: 10.1039/c6lc00008h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we present a versatile, dual-purpose sensor for in vitro detection of Enterobacteriaceae (e.g. Escherichia coli) and biotinylated antibodies (e.g. IgG rabbit polyclonal antibodies), based on different detection principles for each bioanalyte. These bioanalytes are tagged individually with functionalized magnetic microparticles, suspended into a static fluid and injected into a microfluidic channel. Without the need for bulk or complicated pumping systems, the functionalized microparticles are set in motion by a magnetic force exerted on them by integrated microconductors. The fundamental detection principle is the decrease in the velocity of the microparticles that are loaded with the respective bioanalyte, due to factors inhibiting their motion. The velocity of the unloaded, bare microparticles is used as a reference. We discovered a novel mechanism on which the constrained particle motion is based; in the case of E. coli, the inhibiting factor is the enhanced Stokes' drag force due to the greater volume and altered hydrodynamic shape, whereas in the case of biotinylated antibodies, it is the increased friction force at the interface between the modified microparticle and the biosensor's surface. Friction force is for the first time employed in a scheme for resolving biomolecules. Integrated magnetic microsensors are used for the velocity measurements by detecting the microparticles' stray field. Moreover, we developed a biocompatible, easy to implement and reliable surface modification that practically diminishes the problem of bioadhesion on the sensor's surface.
Collapse
Affiliation(s)
- G Kokkinis
- Institute of Sensors and Actuators Systems, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Vienna, Austria.
| | - B Plochberger
- Institute of Applied Physics, Biophysics Group, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - S Cardoso
- INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
| | - F Keplinger
- Institute of Sensors and Actuators Systems, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Vienna, Austria.
| | - I Giouroudi
- Institute of Sensors and Actuators Systems, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Vienna, Austria. and Institute for Biophysics, Department of Nanobiotechnology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria
| |
Collapse
|
180
|
Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1841-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
181
|
ZHUANG QC, NING RZ, MA Y, LIN JM. Recent Developments in Microfluidic Chip for in vitro Cell-based Research. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60919-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
182
|
Yeo JC, Yu J, Shang M, Loh KP, Lim CT. Highly Flexible Graphene Oxide Nanosuspension Liquid-Based Microfluidic Tactile Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1593-1604. [PMID: 26837066 DOI: 10.1002/smll.201502911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Indexed: 06/05/2023]
Abstract
A novel graphene oxide (GO) nanosuspension liquid-based microfluidic tactile sensor is developed. It comprises a UV ozone-bonded Ecoflex-polydimethylsiloxane microfluidic assembly filled with GO nanosuspension, which serves as the working fluid of the tactile sensor. This device is highly flexible and able to withstand numerous modes of deformation as well as distinguish various user-applied mechanical forces it is subjected to, including pressing, stretching, and bending. This tactile sensor is also highly deformable and wearable, and capable of recognizing and differentiating distinct hand muscle-induced motions, such as finger flexing and fist clenching. Moreover, subtle differences in the handgrip strength derived from the first clenching gesture can be identified based on the electrical response of our device. This work highlights the potential application of the GO nanosuspension liquid-based flexible microfluidic tactile sensing platform as a wearable diagnostic and prognostic device for real-time health monitoring. Also importantly, this work can further facilitate the exploration and potential realization of a functional liquid-state device technology with superior mechanical flexibility and conformability.
Collapse
Affiliation(s)
- Joo Chuan Yeo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117575, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Jiahao Yu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Menglin Shang
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Kian Ping Loh
- Center for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117575, Singapore
- Center for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| |
Collapse
|
183
|
Mishra A, Maltais TR, Walter TM, Wei A, Williams SJ, Wereley ST. Trapping and viability of swimming bacteria in an optoelectric trap. LAB ON A CHIP 2016; 16:1039-1046. [PMID: 26891971 PMCID: PMC5562368 DOI: 10.1039/c5lc01559f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Non-contact manipulation methods capable of trapping and transporting swimming bacteria can significantly aid in chemotaxis studies. However, high swimming speed makes the trapping of these organisms an inherently challenging task. We demonstrate that an optoelectric technique, rapid electrokinetic patterning (REP), can effectively trap and manipulate Enterobacter aerogenes bacteria swimming at velocities greater than 20 μm s(-1). REP uses electro-orientation, laser-induced AC electrothermal flow, and particle-electrode interactions for capturing these cells. In contrast to trapping non-swimming bacteria and inert microspheres, we observe that electro-orientation is critical to the trapping of the swimming cells, since unaligned bacteria can swim faster than the radially inward electrothermal flow and escape the trap. By assessing the cell membrane integrity, we study the effect of REP trapping conditions, including optical radiation, laser-induced heating, and the electric field on cell viability. When applied individually, the optical radiation and laser-induced heating have negligible effect on cells. At the standard REP trapping conditions fewer than 2% of cells have a compromised membrane after four minutes. To our knowledge this is the first study detailing the effect of REP trapping on cell viability. The presented results provide a clear guideline on selecting suitable REP parameters for trapping living bacteria.
Collapse
Affiliation(s)
- A Mishra
- Department of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, 47907, USA.
| | | | | | | | | | | |
Collapse
|
184
|
Soffe R, Baratchi S, Tang SY, Mitchell A, McIntyre P, Khoshmanesh K. Concurrent shear stress and chemical stimulation of mechano-sensitive cells by discontinuous dielectrophoresis. BIOMICROFLUIDICS 2016; 10:024117. [PMID: 27099646 PMCID: PMC4826375 DOI: 10.1063/1.4945309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 05/02/2023]
Abstract
Microfluidic platforms enable a variety of physical or chemical stimulation of single or multiple cells to be examined and monitored in real-time. To date, intracellular calcium signalling research is, however, predominantly focused on observing the response of cells to a single mode of stimulation; consequently, the sensitising/desensitising of cell responses under concurrent stimuli is not well studied. In this paper, we provide an extended Discontinuous Dielectrophoresis procedure to investigate the sensitising of chemical stimulation, over an extensive range of shear stress, up to 63 dyn/cm(2), which encompasses shear stresses experienced in the arterial and venus systems (10 to 60 dyn/cm(2)). Furthermore, the TRPV4-selective agonist GSK1016790A, a form of chemical stimulation, did not influence the ability of the cells' to remain immobilised under high levels of shear stress; thus, enabling us to investigate shear stress stimulation on agonism. Our experiments revealed that shear stress sensitises GSK1016790A-evoked intracellular calcium signalling of cells in a shear-stimulus dependent manner, as observed through a reduction in the cellular response time and an increase in the pharmacological efficacy. Consequently, suggesting that the role of TRPV4 may be underestimated in endothelial cells-which experience high levels of shear stress. This study highlights the importance of conducting studies at high levels of shear stress. Additionally, our approach will be valuable for examining the effect of high levels of shear on different cell types under different conditions, as presented here for agonist activation.
Collapse
Affiliation(s)
- Rebecca Soffe
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Sara Baratchi
- School of Medical and Biomedical Science, RMIT University , Victoria 3083, Australia
| | - Shi-Yang Tang
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Peter McIntyre
- School of Medical and Biomedical Science, RMIT University , Victoria 3083, Australia
| | | |
Collapse
|
185
|
Pal N, Sharma S, Gupta S. Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique. Biosens Bioelectron 2016; 77:270-6. [DOI: 10.1016/j.bios.2015.09.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
|
186
|
Monkkonen L, Edgar JS, Winters D, Heron SR, Mackay CL, Masselon CD, Stokes AA, Langridge-Smith PR, Goodlett DR. Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements. J Chromatogr A 2016; 1439:161-166. [DOI: 10.1016/j.chroma.2015.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/16/2015] [Accepted: 12/17/2015] [Indexed: 01/15/2023]
|
187
|
Rambach RW, Taiber J, Scheck CML, Meyer C, Reboud J, Cooper JM, Franke T. Visualization of Surface Acoustic Waves in Thin Liquid Films. Sci Rep 2016; 6:21980. [PMID: 26917490 PMCID: PMC4768107 DOI: 10.1038/srep21980] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/03/2016] [Indexed: 11/09/2022] Open
Abstract
We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect.
Collapse
Affiliation(s)
- R W Rambach
- Soft Matter Group, Lehrstuhl für Experimentalphysik I, Universität Augsburg, Universitätsstr, 1, D-86159 Augsburg, Germany
| | - J Taiber
- Soft Matter Group, Lehrstuhl für Experimentalphysik I, Universität Augsburg, Universitätsstr, 1, D-86159 Augsburg, Germany
| | - C M L Scheck
- Soft Matter Group, Lehrstuhl für Experimentalphysik I, Universität Augsburg, Universitätsstr, 1, D-86159 Augsburg, Germany
| | - C Meyer
- Soft Matter Group, Lehrstuhl für Experimentalphysik I, Universität Augsburg, Universitätsstr, 1, D-86159 Augsburg, Germany
| | - J Reboud
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT Glasgow, UK
| | - J M Cooper
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT Glasgow, UK
| | - T Franke
- Soft Matter Group, Lehrstuhl für Experimentalphysik I, Universität Augsburg, Universitätsstr, 1, D-86159 Augsburg, Germany.,Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT Glasgow, UK
| |
Collapse
|
188
|
Krone KM, Warias R, Ritter C, Li A, Acevedo-Rocha CG, Reetz MT, Belder D. Analysis of Enantioselective Biotransformations Using a Few Hundred Cells on an Integrated Microfluidic Chip. J Am Chem Soc 2016; 138:2102-5. [DOI: 10.1021/jacs.5b12443] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karin M. Krone
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Rico Warias
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Cornelia Ritter
- Faculty
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Aitao Li
- Faculty
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
| | - Carlos G. Acevedo-Rocha
- Faculty
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
| | - Manfred T. Reetz
- Faculty
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
| | - Detlev Belder
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| |
Collapse
|
189
|
Povero D, Feldstein AE. Novel Molecular Mechanisms in the Development of Non-Alcoholic Steatohepatitis. Diabetes Metab J 2016; 40:1-11. [PMID: 26912150 PMCID: PMC4768045 DOI: 10.4093/dmj.2016.40.1.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/24/2015] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease in adults and children worldwide. NAFLD has become a severe health issue and it can progress towards a more severe form of the disease, the non-alcoholic steatohepatitis (NASH). A combination of environmental factors, host genetics, and gut microbiota leads to excessive accumulation of lipids in the liver (steatosis), which may result in lipotoxicity and trigger hepatocyte cell death, liver inflammation, fibrosis, and pathological angiogenesis. NASH can further progress towards liver cirrhosis and cancer. Over the last few years, cell-derived extracellular vesicles (EVs) have been identified as effective cell-to-cell messengers that transfer several bioactive molecules in target cells, modulating the pathogenesis and progression of NASH. In this review, we focused on recently highlighted aspects of molecular pathogenesis of NASH, mediated by EVs via their bioactive components. The studies included in this review summarize the state of art regarding the role of EVs during the progression of NASH and bring novel insight about the potential use of EVs for diagnosis and therapeutic strategies for patients with this disease.
Collapse
Affiliation(s)
- Davide Povero
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Rady's Children Hospital, University of California San Diego, San Diego, CA, USA
| | - Ariel E Feldstein
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Rady's Children Hospital, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
190
|
Lv C, Xia H, Guan W, Sun YL, Tian ZN, Jiang T, Wang YS, Zhang YL, Chen QD, Ariga K, Yu YD, Sun HB. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. Sci Rep 2016; 6:19801. [PMID: 26823292 PMCID: PMC4731762 DOI: 10.1038/srep19801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/07/2015] [Indexed: 01/23/2023] Open
Abstract
Optofluidics, which integrates microfluidics and micro-optical components, is crucial for optical sensing, fluorescence analysis, and cell detection. However, the realization of an integrated system from optofluidic manipulation and a microfluidic channel is often hampered by the lack of a universal substrate for achieving monolithic integration. In this study, we report on an integrated optofluidic-microfluidic twin channels chip fabricated by one-time exposure photolithography, in which the twin microchannels on both surfaces of the substrate were exactly aligned in the vertical direction. The twin microchannels can be controlled independently, meaning that fluids could flow through both microchannels simultaneously without interfering with each other. As representative examples, a tunable hydrogel microlens was integrated into the optofluidic channel by femtosecond laser direct writing, which responds to the salt solution concentration and could be used to detect the microstructure at different depths. The integration of such optofluidic and microfluidic channels provides an opportunity to apply optofluidic detection practically and may lead to great promise for the integration and miniaturization of Lab-on-a-Chip systems.
Collapse
Affiliation(s)
- Chao Lv
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Wei Guan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Yun-Lu Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Zhen-Nan Tian
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Tong Jiang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Ying-Shuai Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Yong-Lai Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Qi-Dai Chen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Japan
| | - Yu-De Yu
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Hong-Bo Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
- College of Physics, Jilin University, 119 Jiefang Road, Changchun, 130023, People’s Republic of China
| |
Collapse
|
191
|
Hamad EM, Bilatto SER, Adly NY, Correa DS, Wolfrum B, Schöning MJ, Offenhäusser A, Yakushenko A. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices. LAB ON A CHIP 2016; 16:70-4. [PMID: 26627046 DOI: 10.1039/c5lc01195g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing.
Collapse
Affiliation(s)
- E M Hamad
- Biomedical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, Jordan
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Zhu F, Wigh A, Friedrich T, Devaux A, Bony S, Nugegoda D, Kaslin J, Wlodkowic D. Automated Lab-on-a-Chip Technology for Fish Embryo Toxicity Tests Performed under Continuous Microperfusion (μFET). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14570-8. [PMID: 26506399 DOI: 10.1021/acs.est.5b03838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The fish embryo toxicity (FET) biotest has gained popularity as one of the alternative approaches to acute fish toxicity tests in chemical hazard and risk assessment. Despite the importance and common acceptance of FET, it is still performed in multiwell plates and requires laborious and time-consuming manual manipulation of specimens and solutions. This work describes the design and validation of a microfluidic Lab-on-a-Chip technology for automation of the zebrafish embryo toxicity test common in aquatic ecotoxicology. The innovative device supports rapid loading and immobilization of large numbers of zebrafish embryos suspended in a continuous microfluidic perfusion as a means of toxicant delivery. Furthermore, we also present development of a customized mechatronic automation interface that includes a high-resolution USB microscope, LED cold light illumination, and miniaturized 3D printed pumping manifolds that were integrated to enable time-resolved in situ analysis of developing fish embryos. To investigate the applicability of the microfluidic FET (μFET) in toxicity testing, copper sulfate, phenol, ethanol, caffeine, nicotine, and dimethyl sulfoxide were tested as model chemical stressors. Results obtained on a chip-based system were compared with static protocols performed in microtiter plates. This work provides evidence that FET analysis performed under microperfusion opens a brand new alternative for inexpensive automation in aquatic ecotoxicology.
Collapse
Affiliation(s)
| | - Adriana Wigh
- Université de Lyon, UMR LEHNA 5023, USC INRA, ENTPE, rue Maurice Audin, Vaulx-en-Velin F-69518, France
| | - Timo Friedrich
- ARMI, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - Alain Devaux
- Université de Lyon, UMR LEHNA 5023, USC INRA, ENTPE, rue Maurice Audin, Vaulx-en-Velin F-69518, France
| | - Sylvie Bony
- Université de Lyon, UMR LEHNA 5023, USC INRA, ENTPE, rue Maurice Audin, Vaulx-en-Velin F-69518, France
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Applied Sciences, RMIT University , Bowen Street, Melbourne, VIC 3001, Australia
| | - Jan Kaslin
- ARMI, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- Centre for Additive Manufacturing, RMIT University , 58 Cardigan Street, Melbourne, VIC 3053, Australia
| |
Collapse
|
193
|
Onoshima D, Yukawa H, Baba Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 2015; 95:2-14. [PMID: 26344675 DOI: 10.1016/j.addr.2015.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/31/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022]
Abstract
A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine.
Collapse
|
194
|
Brandão D, Liébana S, Campoy S, Cortés M, Alegret S, Pividori M. Simultaneous electrochemical magneto genosensing of foodborne bacteria based on triple-tagging multiplex amplification. Biosens Bioelectron 2015. [DOI: 10.1016/j.bios.2015.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
195
|
Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JH. Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol 2015; 33:692-705. [DOI: 10.1016/j.tibtech.2015.09.001] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
|
196
|
Yang L, Okamura Y, Kimura H. Surface modification on polydimethylsiloxane-based microchannels with fragmented poly(l-lactic acid) nanosheets. BIOMICROFLUIDICS 2015; 9:064108. [PMID: 26634016 PMCID: PMC4654732 DOI: 10.1063/1.4936350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/11/2015] [Indexed: 05/08/2023]
Abstract
Surface modification is a critical issue in various applications of polydimethylsiloxane (PDMS)-based microfluidic devices. Here, we describe a novel method through which PDMS-based microchannels were successfully modified with fragmented poly(l-lactic acid) (PLLA) nanosheets through a simple patchwork technique that exploited the high level of adhesiveness of PLLA nanosheets. Compared with other surface modification methods, our method required neither complicated chemical modifications nor the use of organic solvents that tend to cause PDMS swelling. The experimental results indicated that the modified PDMS exhibited excellent capacity for preventing the adhesion and activation of platelets. This simple yet efficient method can be used to fabricate the special PDMS microfluidic devices for biological, medical, and even hematological purposes.
Collapse
Affiliation(s)
- Lu Yang
- Micro/Nano Technology Center, Tokai University , 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | |
Collapse
|
197
|
Choi D, Lee D, Kim DS. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification. Sci Rep 2015; 5:15172. [PMID: 26462437 PMCID: PMC4604473 DOI: 10.1038/srep15172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 11/14/2022] Open
Abstract
In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| | - Donghyeon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| |
Collapse
|
198
|
Zuchowska A, Kwiatkowski P, Jastrzebska E, Chudy M, Dybko A, Brzozka Z. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis 2015; 37:536-44. [PMID: 26311334 DOI: 10.1002/elps.201500250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/15/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023]
Abstract
PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer).
Collapse
Affiliation(s)
- Agnieszka Zuchowska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Kwiatkowski
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Elzbieta Jastrzebska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Michal Chudy
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Artur Dybko
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Zbigniew Brzozka
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
199
|
Lee HY, Barber C, Minerick AR. Platinum electrode modification: Unique surface carbonization approach to improve performance and sensitivity. Electrophoresis 2015; 36:1666-73. [DOI: 10.1002/elps.201500227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Hwi Yong Lee
- Department of Chemical Engineering; Michigan Technological University; Houghton MI USA
| | - Cedrick Barber
- Department of Chemical Engineering; Michigan Technological University; Houghton MI USA
| | - Adrienne R. Minerick
- Department of Chemical Engineering; Michigan Technological University; Houghton MI USA
| |
Collapse
|
200
|
Tseng WC, Hsu KC, Shiea CS, Huang YL. Recent trends in nanomaterial-based microanalytical systems for the speciation of trace elements: A critical review. Anal Chim Acta 2015; 884:1-18. [DOI: 10.1016/j.aca.2015.02.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 01/05/2023]
|