151
|
Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett 2018; 365:5087731. [DOI: 10.1093/femsle/fny213] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Lu Chen
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81 310 Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
152
|
Boumaiza M, Colarusso A, Parrilli E, Garcia-Fruitós E, Casillo A, Arís A, Corsaro MM, Picone D, Leone S, Tutino ML. Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microb Cell Fact 2018; 17:126. [PMID: 30111331 PMCID: PMC6094915 DOI: 10.1186/s12934-018-0974-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background Recent biotechnological advancements have allowed for the adoption of Lactococcus lactis, a typical component of starter cultures used in food industry, as the host for the production of food-grade recombinant targets. Among several advantages, L. lactis has the important feature of growing on lactose, the main carbohydrate in milk and a majoritarian component of dairy wastes, such as cheese whey. Results We have used recombinant L. lactis NZ9000 carrying the nisin inducible pNZ8148 vector to produce MNEI, a small sweet protein derived from monellin, with potential for food industry applications as a high intensity sweetener. We have been able to sustain this production using a medium based on the cheese whey from the production of ricotta cheese, with minimal pre-treatment of the waste. As a proof of concept, we have also tested these conditions for the production of MMP-9, a protein that had been previously successfully obtained from L. lactis cultures in standard growth conditions. Conclusions Other than presenting a new system for the recombinant production of MNEI, more compliant with its potential applications in food industry, our results introduce a strategy to valorize dairy effluents through the synthesis of high added value recombinant proteins. Interestingly, the possibility of using this whey-derived medium relied greatly on the choice of the appropriate codon usage for the target gene. In fact, when a gene optimized for L. lactis was used, the production of MNEI proceeded with good yields. On the other hand, when an E. coli optimized gene was employed, protein synthesis was greatly reduced, to the point of being completely abated in the cheese whey-based medium. The production of MMP-9 was comparable to what observed in the reference conditions. Electronic supplementary material The online version of this article (10.1186/s12934-018-0974-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy.
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy.
| |
Collapse
|
153
|
Bron PA, Kleerebezem M. Lactic Acid Bacteria for Delivery of Endogenous or Engineered Therapeutic Molecules. Front Microbiol 2018; 9:1821. [PMID: 30123213 PMCID: PMC6085456 DOI: 10.3389/fmicb.2018.01821] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
Food-grade lactic acid bacteria (LAB) are considered suitable vehicles for the production and/or delivery of health promoting or therapeutic, bioactive molecules. The molecules considered for health-beneficial use include the endogenous effector molecules produced by probiotics (mostly lactobacilli), as well as heterologous bioactives that can be produced in LAB by genetic engineering (mostly using lactococci). Both strategies aim to deliver appropriate dosages of specific bioactive molecules to the site of action. This review uses specific examples of both strategies to illustrate the different avenues of research involved in these applications as well as their translation to human health-promoting applications. These examples pinpoint that despite the promising perspectives of these approaches, the evidence for their effective applications in human populations is lagging behind.
Collapse
Affiliation(s)
- Peter A Bron
- NIZO Food Research BV, Ede, Netherlands.,BE-Basic Foundation, Delft, Netherlands
| | - Michiel Kleerebezem
- BE-Basic Foundation, Delft, Netherlands.,Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
154
|
Mustopa AZ, Mariyah S, Fatimah, Budiarti S, Murtiyaningsih H, Alfisyahrin WN. Construction, heterologous expression, partial purification, and in vitro cytotoxicity of the recombinant plantaricin E produced by Lactococcus lactis against Enteropathogenic Escherichia coli K.1.1 and human cervical carcinoma (HeLa) cells. Mol Biol Rep 2018; 45:1235-1244. [PMID: 30066296 DOI: 10.1007/s11033-018-4277-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Lactobacillus plantarum produces bacteriocin called plantaricin that can kill or inhibit other bacteria. Plantaricin E (Pln E), a recombinant bacteriocin, has been successfully constructed and produced by a GRAS host, Lactococcus lactis. A polymerase chain reaction (PCR) overlapping technique has been used to construct a ligation of signal peptide gene, Pln A and bacteriocin encoding gene, Pln E. Furthermore, the fusion fragment were cloned into pNZ8148 vector and transformed into L. lactis NZ3900. Molecular expression study shows that recombinant L. lactis NZ3900 is able to express the mature pln E at transcription level with size of 168 bp. Plantaricin E is purified by ammonium sulphate precipitation followed by gel filtration chromatography. Purified fractions were proven to be active against Enteropathogenic Escherichia coli K.1.1. The other fractions of Pln E also have antibacterial activity against several Gram positive and Gram negative bacteria. Purified recombinant plantaricin E is 3.7 kDa in size. The cytotoxicity assay shows purified Pln E inhibits 46.949 ± 3.338% of HeLa cell lines on 10 ppm dose whilst the metabolite inhibits 53.487 ± 2.957% of HeLa cell line on 100 ppm dose. The IC50 calculation of Pln E metabolite is 107.453 ppm, while the purified protein is 11.613 ppm.
Collapse
Affiliation(s)
- Apon Zaenal Mustopa
- Research Center for Biotechnology, Indonesia Institute of Science (LIPI), Raya Bogor Street Km. 46, Cibinong, Bogor, West Java, 16911, Indonesia.
| | - Siti Mariyah
- School of Biotechnology, Bogor Agricultural University, Bogor, Indonesia
| | - Fatimah
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), Cimanggu, Bogor, Indonesia
| | - Sri Budiarti
- School of Biotechnology, Bogor Agricultural University, Bogor, Indonesia.,Research Center for Bioresources and Biotechnology, Bogor Agricultural University, Bogor, Indonesia
| | - Hidayah Murtiyaningsih
- Research Center for Biotechnology, Indonesia Institute of Science (LIPI), Raya Bogor Street Km. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Wida Nurul Alfisyahrin
- Research Center for Biotechnology, Indonesia Institute of Science (LIPI), Raya Bogor Street Km. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| |
Collapse
|
155
|
A Cell Surface Aggregation-Promoting Factor from Lactobacillus gasseri Contributes to Inhibition of Trichomonas vaginalis Adhesion to Human Vaginal Ectocervical Cells. Infect Immun 2018; 86:IAI.00907-17. [PMID: 29784856 DOI: 10.1128/iai.00907-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/12/2018] [Indexed: 01/08/2023] Open
Abstract
Trichomoniasis, a prevalent sexually transmitted infection, is commonly symptomatic in women. The causative agent is Trichomonas vaginalis, an extracellular protozoan parasite. The host-protective mechanisms and molecules of vaginal lactobacilli that counteract this pathogen are largely unknown. This study examines the inhibition promoted by Lactobacillus gasseri against the adhesion of T. vaginalis to host cells, a critical virulence aspect of this pathogen. We observed that the vaginal strain L. gasseri ATCC 9857 is highly inhibitory by various contact-dependent mechanisms and that surface proteins are largely responsible for this inhibitory phenotype. We found that the aggregation-promoting factor APF-2 from these bacteria significantly contributes to inhibition of the adhesion of T. vaginalis to human vaginal ectocervical cells. Understanding the molecules and mechanisms used by lactobacilli to protect the host against T. vaginalis might help in the development of novel and specific therapeutic strategies that take advantage of the natural microbiota.
Collapse
|
156
|
Modifying the Lantibiotic Mutacin 1140 for Increased Yield, Activity, and Stability. Appl Environ Microbiol 2018; 84:AEM.00830-18. [PMID: 29776930 DOI: 10.1128/aem.00830-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023] Open
Abstract
Mutacin 1140 belongs to the epidermin family of type AI lantibiotics. This family has a broad spectrum of activity against Gram-positive bacteria. The binding of mutacin 1140 to lipid II leads to the inhibition of cell wall synthesis. Pharmacokinetic experiments with type AI lantibiotics are generally discouraging for clinical applications due to the short half-life of these compounds. The unprotected dehydrated and protease-susceptible residues outside the lanthionine rings may play a role in the short half-life in physiological settings. Previous mutagenesis work on mutacin 1140 has been limited to the lanthionine-forming residues, the C-terminally decarboxylated residue, and single amino acid substitutions at residues Phe1, Trp4, Dha5, and Arg13. To study the importance of the dehydrated (Dha5 and Dhb14) and protease-susceptible (Lys2 and Arg13) residues within mutacin 1140 for stability and bioactivity, each of these residues was evaluated for its impact on production and inhibitory activity. More than 15 analogs were purified, enabling direct comparison of the activities against a select panel of Gram-positive bacteria. The efficiency of the posttranslational modification (PTM) machinery of mutacin 1140 is highly restricted on its substrate. Analogs in the various intermediate stages of PTMs were observed as minor products following single point mutations at the 2nd, 5th, 13th, and 14th positions. The combination of alanine substitutions at the Dha5 and Dhb14 positions abolished mutacin 1140 production, while the production was restored by substitution of a Gly residue at one of these positions. Analogs with improved activity, productivity, and proteolytic stability were identified.IMPORTANCE Our findings show that the efficiency of mutacin 1140 PTMs is highly dependent on the core peptide sequence. Analogs in various intermediate stages of PTMs can be transported by the bacterium, which indicates that PTMs and transport are finely tuned for the native mutacin 1140 core peptide. Only certain combinations of amino acid substitutions at the Dha5 and Dhb14 dehydrated residue positions were tolerated. Observation of glutamylated core peptide analogs shows that dehydrations occur in a glutamate-dependent manner. Interestingly, mutations at positions outside rings A and B, the lipid II binding domain, would interfere with lipid II binding. Purified mutacin 1140 analogs have various activities and selectivities against different genera of bacteria, supporting the effort to generate analogs with higher specificity against pathogenic bacteria. The discovery of analogs with improved inhibitory activity against pathogenic bacteria, increased stability in the presence of protease, and higher product yields may promote the clinical development of this unique antimicrobial compound.
Collapse
|
157
|
Mulder J, Wels M, Kuipers OP, Kleerebezem M, Bron PA. Induction of Natural Competence in Genetically-modified Lactococcus lactis. Bio Protoc 2018; 8:e2922. [PMID: 34395748 DOI: 10.21769/bioprotoc.2922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 11/02/2022] Open
Abstract
Natural competence can be activated in Lactoccocus lactis subsp lactis and cremoris upon overexpression of ComX, a master regulator of bacterial competence. Herein, we demonstrate a method to activate bacterial competence by regulating the expression of the comX gene by using a nisin-inducible promoter in an L. lactis strain harboring either a chromosomal or plasmid-encoded copy of nisRK. Addition of moderate concentrations of the inducer nisin resulted in concomitant moderate levels of ComX, which led to an optimal transformation rate (1.0 x 10-6 transformants/total cell number/g plasmid DNA). Here, a detailed description of the optimized protocol for competence induction is presented.
Collapse
Affiliation(s)
- Joyce Mulder
- NIZO B.V., Ede, The Netherlands.,Molecular Genetics, University of Groningen, Groningen, The Netherlands.,BE-Basic Foundation, Delft, The Netherlands
| | | | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Groningen, The Netherlands.,BE-Basic Foundation, Delft, The Netherlands
| | - Michiel Kleerebezem
- BE-Basic Foundation, Delft, The Netherlands.,Host-Microbe Interactomics Group, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Peter A Bron
- NIZO B.V., Ede, The Netherlands.,BE-Basic Foundation, Delft, The Netherlands
| |
Collapse
|
158
|
p19-Targeting ILP Protein Blockers of IL-23/Th-17 Pro-Inflammatory Axis Displayed on Engineered Bacteria of Food Origin. Int J Mol Sci 2018; 19:ijms19071933. [PMID: 29966384 PMCID: PMC6073689 DOI: 10.3390/ijms19071933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/23/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
IL-23-mediated Th-17 cell activation and stimulation of IL-17-driven pro-inflammatory axis has been associated with autoimmunity disorders such as Inflammatory Bowel Disease (IBD) or Crohn’s Disease (CD). Recently we developed a unique class of IL-23-specific protein blockers, called ILP binding proteins that inhibit binding of IL-23 to its cognate cell-surface receptor (IL-23R) and exhibit immunosuppressive effect on human primary blood leukocytes ex vivo. In this study, we aimed to generate a recombinant Lactococcus lactis strain which could serve as in vivo producer/secretor of IL-23 protein blockers into the gut. To achieve this goal, we introduced ILP030, ILP317 and ILP323 cDNA sequences into expression plasmid vector containing USP45 secretion signal, FLAG sequence consensus and LysM-containing cA surface anchor (AcmA) ensuring cell-surface peptidoglycan anchoring. We demonstrate that all ILP variants are expressed in L. lactis cells, efficiently transported and secreted from the cell and displayed on the bacterial surface. The binding function of AcmA-immobilized ILP proteins is documented by interaction with a recombinant p19 protein, alpha subunit of human IL-23, which was assembled in the form of a fusion with Thioredoxin A. ILP317 variant exhibits the best binding to the human IL-23 cytokine, as demonstrated for particular L.lactis-ILP recombinant variants by Enzyme-Linked ImmunoSorbent Assay (ELISA). We conclude that novel recombinant ILP-secreting L. lactis strains were developed that might be useful for further in vivo studies of IL-23-mediated inflammation on animal model of experimentally-induced colitis.
Collapse
|
159
|
Surface Display of Heterologous β-Galactosidase in Food-Grade Recombinant Lactococcus lactis. Curr Microbiol 2018; 75:1362-1371. [PMID: 29922971 DOI: 10.1007/s00284-018-1531-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
β-Galactosidase is an essential enzyme for the metabolism of lactose in human beings and has an important role in the treatment of lactose intolerance (LI). β-Galactosidase expressed by intestinal microflora, such as lactic acid bacteria (LAB), also alleviates LI. A promising approach to LI management is to exploit a food-grade LAB delivery system that can inhabit the human intestine and overproduce β-galactosidase. In this study, we constructed a food-grade β-galactosidase surface display delivery system and then integrated into the chromosome of Lactococcus lactis (L. lactis) NZ9000 using recombination. Western blot and immunofluorescence analyses confirmed that β-galactosidase was expressed on the cell surface of recombinant L. lactis stain NZ-SDL. The whole-cell biocatalyst exhibits Vmax and Km values of 121.38 ± 7.17 UONPG/g and 65.36 ± 5.54 mM, based on ONPG hydrolysis. The optimum temperature for enzyme activity is 37 °C and the optimum pH is 5.0. Activity of the whole-cell biocatalyst is promoted by Mg2+, Ca2+, and K+, but inhibited by Zn2+, Fe2+, and Fe3+. The system has a thermal stability similar to purified β-galactosidase but better pH stability, and is also more stable in artificial intestinal juice. Oral administration and intraperitoneal injections of NZ-SDL in mice cause no detectable health effects. In conclusion, we have successfully constructed a food-grade gene expression system in L. lactis that displays β-galactosidase on the cell surface. This system exhibits good enzyme activity and stability in vitro, and is safe in vivo. It is therefore a promising candidate for use in LI management.
Collapse
|
160
|
Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med 2018; 10:eaao2586. [PMID: 29899022 PMCID: PMC7821980 DOI: 10.1126/scitranslmed.aao2586] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Microbiota-modulating interventions are an emerging strategy to promote gastrointestinal homeostasis. Yet, their use in the detection, prevention, and treatment of acute infections remains underexplored. We report the basis of a probiotic-based strategy to promote colonization resistance and point-of-need diagnosis of cholera, an acute diarrheal disease caused by the pathogen Vibrio cholerae Oral administration of Lactococcus lactis, a common dietary fermentative bacterium, reduced intestinal V. cholerae burden and improved survival in infected infant mice through the production of lactic acid. Furthermore, we engineered an L. lactis strain that specifically detects quorum-sensing signals of V. cholerae in the gut and triggers expression of an enzymatic reporter that is readily detected in fecal samples. We postulate that preventive dietary interventions with fermented foods containing natural and engineered L. lactis strains may hinder cholera progression and improve disease surveillance in populations at risk of cholera outbreaks.
Collapse
Affiliation(s)
- Ning Mao
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Andres Cubillos-Ruiz
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - D. Ewen Cameron
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
161
|
Zhang R, Qiao D, Peng X, Duan G, Shi Q, Zhang L, Wang C, Liang W, Chen S, Fan Q. A novel food‐grade lactococcal expression system and its use for secretion and delivery of an oral vaccine antigen. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2018; 93:1655-1660. [DOI: 10.1002/jctb.5536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/25/2017] [Indexed: 07/03/2024]
Abstract
AbstractBACKGROUNDFood‐grade bacterial expression systems are relatively rare, and increasing evidence indicates that subcellular location of antigens in bacterial vector vaccines may markedly affect the immune efficacy.RESULTSThis study developed a novel food‐grade secretory expression system for heterologous protein production and oral vaccine delivery. Furthermore, by using the expression system, an engineered L. lactis strain secreting H. pylori UreB was constructed, and used to vaccinate SPF BALB/c mice. As results, the UreB expressed in L. lactis was detected in both cell lysates and culture supernatant of the engineered strain, constituting roughly 50% of the culture supernatant proteins, and recognized by mouse anti‐H. pylori sera. Oral vaccination with the engineered L. lactis produced a significantly elevated anti‐UreB serum antibody level in mice (P < 0.05).CONCLUSIONThese data show a novel food‐grade L. lactis secretory expression system, which may have distinct potential impact on edible and medicinal protein production and oral vaccine development. Moreover, this is the first report on secretory expression of a H. pylori antigen via using a food‐grade lactococcal expression system, and the engineered strain secreting UreB can be a hopeful H. pylori vaccine candidate. © 2017 Society of Chemical Industry
Collapse
Affiliation(s)
- Rongguang Zhang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Dan Qiao
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Xiaoyan Peng
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Guangcai Duan
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Qingfeng Shi
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Linghan Zhang
- Department of Clinical Medicine Zhengzhou University Zhengzhou China
| | - Chen Wang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Wenjuan Liang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Shuaiyin Chen
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Qingtang Fan
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| |
Collapse
|
162
|
Production and delivery of Helicobacter pylori NapA in Lactococcus lactis and its protective efficacy and immune modulatory activity. Sci Rep 2018; 8:6435. [PMID: 29691472 PMCID: PMC5915382 DOI: 10.1038/s41598-018-24879-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/10/2018] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori neutrophil-activating protein A subunit (NapA) has been identified as a virulence factor, a protective antigen and a potent immunomodulator. NapA shows unique application potentials for anti-H. pylori vaccines and treatment strategies of certain allergic diseases and carcinomas. However, appropriate production and utilization modes of NapA still remain uncertain to date. This work has established a novel efficient production and utilization mode of NapA by using L. lactis as an expression host and delivery vector, and demonstrated immune protective efficacy and immune modulatory activity of the engineered L. lactis by oral vaccination of mice. It was observed for the first time that H. pylori NapA promotes both polarized Th17 and Th1 responses, which may greatly affect the clinical application of NapA. This report offers a promising anti-H. pylori oral vaccine candidate and a potent mucosal immune modulatory agent. Meanwhile, it uncovers a way to produce and deliver the oral vaccine and immunomodulator by fermentation of food like milk, which might have striking effects on control of H. pylori infection, gastrointestinal cancers, and Th2 bias allergic diseases, including many food allergies.
Collapse
|
163
|
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The Evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 2018; 41:S220-S243. [PMID: 28830093 DOI: 10.1093/femsre/fux028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden.
Collapse
Affiliation(s)
- Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Lieke A van Gijtenbeek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sjoerd B van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
164
|
Bifidobacterium breve UCC2003 Employs Multiple Transcriptional Regulators To Control Metabolism of Particular Human Milk Oligosaccharides. Appl Environ Microbiol 2018; 84:AEM.02774-17. [PMID: 29500268 DOI: 10.1128/aem.02774-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/23/2018] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterial carbohydrate metabolism has been studied in considerable detail for a variety of both plant- and human-derived glycans, particularly involving the bifidobacterial prototype strain Bifidobacterium breve UCC2003. We recently elucidated the metabolic pathways by which the human milk oligosaccharide (HMO) constituents lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT) and lacto-N-biose (LNB) are utilized by B. breve UCC2003. However, to date, no work has been carried out on the regulatory mechanisms that control the expression of the genetic loci involved in these HMO metabolic pathways. In this study, we describe the characterization of three transcriptional regulators and the corresponding operator and associated (inducible) promoter sequences, with the latter governing the transcription of the genetic elements involved in LN(n)T/LNB metabolism. The activity of these regulators is dependent on the release of specific monosaccharides, which are believed to act as allosteric effectors and which are derived from the corresponding HMOs targeted by the particular locus.IMPORTANCE Human milk oligosaccharides (HMOs) are a key factor in the development of the breastfed-infant microbiota. They function as prebiotics, selecting for a specific range of microbes, including a number of infant-associated species of bifidobacteria, which are thought to provide a range of health benefits to the infant host. While much research has been carried out on elucidating the mechanisms of HMO metabolism in infant-associated bifidobacteria, to date there is very little understanding of the transcriptional regulation of these pathways. This study reveals a multicomponent transcriptional regulation system that controls the recently identified pathways of HMO metabolism in the infant-associated Bifidobacterium breve prototype strain UCC2003. This not only provides insight into the regulatory mechanisms present in other infant-associated bifidobacteria but also provides an example of a network of sequential steps regulating microbial carbohydrate metabolism.
Collapse
|
165
|
van der Els S, James JK, Kleerebezem M, Bron PA. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis. Appl Environ Microbiol 2018; 84:e02752-17. [PMID: 29453254 PMCID: PMC5881059 DOI: 10.1128/aem.02752-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/08/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas9 technology has been exploited for the removal or replacement of genetic elements in a wide range of prokaryotes and eukaryotes. Here, we describe the extension of the Cas9 application toolbox to the industrially important dairy species Lactococcus lactis The Cas9 expression vector pLABTarget, encoding the Streptocccus pyogenes Cas9 under the control of a constitutive promoter, was constructed, allowing plug and play introduction of short guide RNA (sgRNA) sequences to target specific genetic loci. Introduction of a pepN-targeting derivative of pLABTarget into L. lactis strain MG1363 led to a strong reduction in the number of transformants obtained, which did not occur in a pepN deletion derivative of the same strain, demonstrating the specificity and lethality of the Cas9-mediated double-strand breaks in the lactococcal chromosome. Moreover, the same pLABTarget derivative allowed the selection of a pepN deletion subpopulation from its corresponding single-crossover plasmid integrant precursor, accelerating the construction and selection of gene-specific deletion derivatives in L. lactis Finally, pLABTarget, which contained sgRNAs designed to target mobile genetic elements, allowed the effective curing of plasmids, prophages, and integrative conjugative elements (ICEs). These results establish that pLABTarget enables the effective exploitation of Cas9 targeting in L. lactis, while the broad-host-range vector used suggests that this toolbox could readily be expanded to other Gram-positive bacteria.IMPORTANCE Mobile genetic elements in Lactococcus lactis and other lactic acid bacteria (LAB) play an important role in dairy fermentation, having both positive and detrimental effects during the production of fermented dairy products. The pLABTarget vector offers an efficient cloning platform for Cas9 application in lactic acid bacteria. Targeting Cas9 toward mobile genetic elements enabled their effective curing, which is of particular interest in the context of potentially problematic prophages present in a strain. Moreover, Cas9 targeting of other mobile genetic elements enables the deciphering of their contribution to dairy fermentation processes and further establishment of their importance for product characteristics.
Collapse
Affiliation(s)
- Simon van der Els
- Host-Microbe Interactomics Group, Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
- NIZO B.V., Ede, The Netherlands
- BE-Basic Foundation, Delft, The Netherlands
| | | | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
- BE-Basic Foundation, Delft, The Netherlands
| | - Peter A Bron
- NIZO B.V., Ede, The Netherlands
- BE-Basic Foundation, Delft, The Netherlands
| |
Collapse
|
166
|
Bober JR, Beisel CL, Nair NU. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications. Annu Rev Biomed Eng 2018. [PMID: 29528686 DOI: 10.1146/annurev-bioeng-062117-121019] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
167
|
Montalbán-López M, Deng J, van Heel AJ, Kuipers OP. Specificity and Application of the Lantibiotic Protease NisP. Front Microbiol 2018; 9:160. [PMID: 29479343 PMCID: PMC5812297 DOI: 10.3389/fmicb.2018.00160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
Lantibiotics are ribosomally produced and posttranslationally modified peptides containing several lanthionine residues. They exhibit substantial antimicrobial activity against Gram-positive bacteria, including relevant pathogens. The production of the model lantibiotic nisin minimally requires the expression of the modification and export machinery. The last step during nisin maturation is the cleavage of the leader peptide. This liberates the active compound and is catalyzed by the cell wall-anchored protease NisP. Here, we report the production and purification of a soluble variant of NisP. This has enabled us to study its specificity and test its suitability for biotechnological applications. The ability of soluble NisP to cleave leaders from various substrates was tested with two sets of nisin variants. The first set was designed to investigate the influence of amino acid variations in the leader peptide or variations around the cleavage site. The second set was designed to study the influence of the lanthionine ring topology on the proteolytic efficiency. We show that the substrate promiscuity is higher than has previously been suggested. Our results demonstrate the importance of the arginine residue at the end of the leader peptide and the importance of lanthionine rings in the substrate for specific cleavage. Collectively, these data indicate that NisP is a suitable protease for the activation of diverse heterologously expressed lantibiotics, which is required to release active antimicrobial compounds.
Collapse
Affiliation(s)
| | - Jingjing Deng
- Department Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Auke J van Heel
- Department Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
168
|
Berlec A, Škrlec K, Kocjan J, Olenic M, Štrukelj B. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis. Sci Rep 2018; 8:1009. [PMID: 29343791 PMCID: PMC5772564 DOI: 10.1038/s41598-018-19402-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022] Open
Abstract
Lactococcus lactis is a food-grade lactic acid bacterium that is used in the dairy industry as a cell factory and as a host for recombinant protein expression. The nisin-controlled inducible expression (NICE) system is frequently applied in L. lactis; however new tools for its genetic modification are highly desirable. In this work NICE was adapted for dual protein expression. Plasmid pNZDual, that contains two nisin promoters and multiple cloning sites (MCSs), and pNZPolycist, that contains a single nisin promoter and two MCSs separated by the ribosome binding site, were constructed. Genes for the infrared fluorescent protein and for the human IgG-binding DARPin were cloned in all possible combinations to assess the protein yield. The dual promoter plasmid pNZDual enabled balanced expression of the two model proteins. It was exploited for the development of a single-plasmid inducible CRISPR-Cas9 system (pNZCRISPR) by using a nisin promoter, first to drive Cas9 expression and, secondly, to drive single guide RNA transcription. sgRNAs against htrA and ermR directed Cas9 against genomic or plasmid DNA and caused changes in bacterial growth and survival. Replacing Cas9 by dCas9 enabled CRISPR interference-mediated silencing of the upp gene. The present study introduces a new series of plasmids for advanced genetic modification of lactic acid bacterium L. lactis.
Collapse
Affiliation(s)
- Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | - Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Janja Kocjan
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Maria Olenic
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Faculty of Pharmacy, Charles University in Prague, 500 05, Hradec Králové, Czech Republic
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
169
|
Majd H, King MS, Smith AC, Kunji ERS. Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:1-7. [PMID: 29031613 DOI: 10.1016/j.bbabio.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022]
Abstract
Missense mutations of the human mitochondrial citrate carrier, encoded by the SLC25A1 gene, lead to an autosomal recessive neurometabolic disorder characterised by neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development, often resulting in early death. Here, we have measured the effect of all twelve known pathogenic mutations on the transport activity. The results show that nine mutations abolish transport of citrate completely, whereas the other three reduce the transport rate by >70%, indicating that impaired citrate transport is the most likely primary cause of the disease. Some mutations may be detrimental to the structure of the carrier, whereas others may impair key functional elements, such as the substrate binding site and the salt bridge network on the matrix side of the carrier. To understand the consequences of impaired citrate transport on metabolism, the substrate specificity was also determined, showing that the human citrate carrier predominantly transports citrate, isocitrate, cis-aconitate, phosphoenolpyruvate and malate. Although D-2- and L-2 hydroxyglutaric aciduria is a metabolic hallmark of the disease, it is unlikely that the citrate carrier plays a significant role in the removal of hydroxyglutarate from the cytosol for oxidation to oxoglutarate in the mitochondrial matrix. In contrast, computer simulations of central metabolism predict that the export of citrate from the mitochondrion cannot be fully compensated by other pathways, restricting the cytosolic production of acetyl-CoA that is required for the synthesis of lipids, sterols, dolichols and ubiquinone, which in turn explains the severe disease phenotypes.
Collapse
Affiliation(s)
- Homa Majd
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Anthony C Smith
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
170
|
Yano A, Takahashi K, Mori Y, Watanabe S, Hanamura Y, Sugiyama T, Inoue N. Peyer’s Patches as a Portal for DNA Delivery by Lactococcus lactis in Vivo. Biol Pharm Bull 2018; 41:190-197. [DOI: 10.1248/bpb.b17-00657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ayumu Yano
- Microbiology and Immunology, Gifu Pharmaceutical University
| | | | - Yusuke Mori
- Microbiology and Immunology, Gifu Pharmaceutical University
| | | | - Yuki Hanamura
- Microbiology and Immunology, Gifu Pharmaceutical University
| | | | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University
| |
Collapse
|
171
|
Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant Endolysins as Potential Therapeutics against Antibiotic-Resistant Staphylococcus aureus: Current Status of Research and Novel Delivery Strategies. Clin Microbiol Rev 2018; 31:e00071-17. [PMID: 29187396 PMCID: PMC5740972 DOI: 10.1128/cmr.00071-17] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is one of the most common pathogens of humans and animals, where it frequently colonizes skin and mucosal membranes. It is of major clinical importance as a nosocomial pathogen and causative agent of a wide array of diseases. Multidrug-resistant strains have become increasingly prevalent and represent a leading cause of morbidity and mortality. For this reason, novel strategies to combat multidrug-resistant pathogens are urgently needed. Bacteriophage-derived enzymes, so-called endolysins, and other peptidoglycan hydrolases with the ability to disrupt cell walls represent possible alternatives to conventional antibiotics. These lytic enzymes confer a high degree of host specificity and could potentially replace or be utilized in combination with antibiotics, with the aim to specifically treat infections caused by Gram-positive drug-resistant bacterial pathogens such as methicillin-resistant S. aureus. LysK is one of the best-characterized endolysins with activity against multiple staphylococcal species. Various approaches to further enhance the antibacterial efficacy and applicability of endolysins have been demonstrated. These approaches include the construction of recombinant endolysin derivatives and the development of novel delivery strategies for various applications, such as the production of endolysins in lactic acid bacteria and their conjugation to nanoparticles. These novel strategies are a major focus of this review.
Collapse
Affiliation(s)
- Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Immunology and Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
172
|
Abstract
Characterization of PTS-IIC, an endogenous constitutive promoter from L. lactis.. Cellobiose enhances activity from PTS-IIC promoter. PTS-IIC promoter mediates protein expression in B. subtilis and E coli Nissle 1917.
Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.
Collapse
Key Words
- ELISA, enzyme-linked immunosorbent assay
- GFP, green fluorescent protein
- Heterologous protein expression
- LAB, lactic acid bacteria
- LB, Luria-Bertani media
- Lactococcus lactis
- OD600, optical density at 600 nm
- PBS, phosphate buffered saline
- Probiotics
- Promoter
- RFU, relative fluorescence unit
- ccpA, catabolite control protein A
- celA, cellobiose-specific phosphor-β-glucosidase
- cre, catabolite-responsive element
- noxE, NADH oxidase promoter
- nt, nucleotide
- ptcC, cellobiose-specific PTS IIC component
Collapse
|
173
|
Lim PY, Tan LL, Ow DSW, Wong FT. A propeptide toolbox for secretion optimization of Flavobacterium meningosepticum endopeptidase in Lactococcus lactis. Microb Cell Fact 2017; 16:221. [PMID: 29207979 PMCID: PMC5715515 DOI: 10.1186/s12934-017-0836-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Background Lactic acid bacteria are a family of “generally regarded as safe” organisms traditionally used for food fermentation. In recent years, they have started to emerge as potential chassis for heterologous protein production. And more recently, due to their beneficial properties in the gut, they have been examined as potential candidates for mucosal delivery vectors, especially for acid-sensitive enzymes. One such application would be the delivery of gluten-digesting endopeptidases for the treatment of celiac disease. To facilitate these applications, an efficient recombinant protein expression toolbox is required, especially for recombinant protein secretion. While current tools for enhancing protein secretion consist mainly of signal peptides, secretion propeptides have also been observed to play a crucial role for protein secretion and improved yields. Results To expand the propeptide library for secretion optimization, we have mined and characterized three naturally occurring propeptides from the sequenced genomes of 109 Lactococcus species. These newly-mined propeptides were introduced after the N-terminal USP45 secretion signal to characterize and compare their effects on the secretion of Escherichia coli thioredoxin (TRX) and Flavobacterium meningosepticum prolyl endopeptidase (Fm PEP) in Lactococcus lactis NZ9000. All three propeptides, along with the positive control LEISSTCDA, improved volumetric secretion yields by 1.4–2.3-folds. However, enhancement of secretion yield is dependent on protein of interest. For TRX, the optimal combination of USP45 signal peptide and LEISSTCDA produced a 2.3-fold increase in secretion yields. Whilst for Fm PEP, propeptide 1 with USP45 signal peptide improved volumetric secretion yields by 2.2-fold compared to a 1.4-fold increase by LEISSTCDA. Similar trends in Fm PEP activity and protein yield also demonstrated minimal effect of the negative charged propeptides on PEP activity and thus folding. Conclusions Overall, we have characterized three new propeptides for use in L. lactis secretion optimization. From success of these propeptides for improvement of secretion yields, we anticipate this collection to be valuable to heterologous protein secretion optimisation in lactic acid bacteria. We have also demonstrated for the first time, secretion of Fm PEP in L. lactis for potential use as a therapy agent in celiac disease. Electronic supplementary material The online version of this article (10.1186/s12934-017-0836-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei Yu Lim
- Microbial Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Lee Ling Tan
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| | - Fong T Wong
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
174
|
Geng M, Smith L. Improving the attrition rate of Lanthipeptide discovery for commercial applications. Expert Opin Drug Discov 2017; 13:155-167. [PMID: 29195488 DOI: 10.1080/17460441.2018.1410137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Lanthipeptides are a class of ribosomally synthesized and post-translationally modified peptides. Lanthipeptides with antimicrobial activity are referred to as lantibiotics. Lantibiotics are generally active against Gram-positive bacteria. However, some modifications have expanded their activity toward Gram-negative bacteria. Furthermore, additional functions aside from antibacterial activities have been reported for lanthipeptides. Areas covered: This review provides a synopsis of current anthipeptide research for potential therapeutics. The review highlights the current tools used for identifying lanthipeptides from genomic sequencing data. It also describes the current approaches that have been used to overcome the limitations in the purification and isolation of lanthipeptides. The status of lanthipeptides in terms of potential applications and approaches that are currently being done to promote the development of lanthipeptides as novel therapeutics are also discussed. Expert opinion: Significant improvements have been made to promote the discovery of new lanthipeptides, while, simultaneously, tools have been developed to promote their production and isolation. Lanthipeptides are showing significant promise for treating bacterial infections, as well as for new applications as anticancer and antiviral agents, or as a novel treatment for pain management. At the current rate of lanthipeptide discovery and isolation of the products, it is likely several new applications will be discovered.
Collapse
Affiliation(s)
- Mengxin Geng
- a Department of Biological Sciences , Texas A&M University, College Station , College Station , TX , USA
| | - Leif Smith
- a Department of Biological Sciences , Texas A&M University, College Station , College Station , TX , USA
| |
Collapse
|
175
|
Nisin-induced expression of recombinant T cell epitopes of major Japanese cedar pollen allergens in Lactococcus lactis. Appl Microbiol Biotechnol 2017; 102:261-268. [DOI: 10.1007/s00253-017-8579-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 11/28/2022]
|
176
|
A Lactococcus lactis expression vector set with multiple affinity tags to facilitate isolation and direct labeling of heterologous secreted proteins. Appl Microbiol Biotechnol 2017; 101:8139-8149. [PMID: 28971274 PMCID: PMC5656699 DOI: 10.1007/s00253-017-8524-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/27/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
Abstract
The gram-positive bacterium Lactococcus lactis is a useful host for extracellular protein production. A main advantage of L. lactis over other bacterial expression systems is that lactococcal cells display low levels of autolysis and proteolysis. Previously, we developed a set of vectors for nisin-inducible extracellular production of N- or C-terminally hexa-histidine (His6)-tagged proteins. The present study was aimed at expanding our portfolio of L. lactis expression vectors for protein purification and site-specific labeling. Specifically, we present two new groups of vectors allowing N- or C-terminal provision of proteins with a Strep-tag II or AVI-tag. Vectors for AVI-tagging encode an additional His6-tag for protein purification. Another set of vectors allows removal of N-terminal Strep- or His6-tags from expressed proteins with the tobacco etch virus protease. Two possible applications of the developed vectors are presented. First, we show that Strep-tagged LytM of Staphylococcus aureus in the growth medium of L. lactis can be directly bound to microtiter plates coated with an affinity reagent and used for enzyme-linked immunosorbent assays. Second, we show that the AVI-tagged Sle1 protein from S. aureus produced in L. lactis can be directly biotinylated and fluorescently labeled. The fluorescently labeled Sle1 was successfully applied for S. aureus re-binding studies, allowing subcellular localization by fluorescence microscopy. In conclusion, we have developed a set of expression vectors that enhances the versatility of L. lactis as a system for production of proteins with tags that can be used for affinity purification and site-specific protein labeling.
Collapse
|
177
|
Landry BP, Tabor JJ. Engineering Diagnostic and Therapeutic Gut Bacteria. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0020-2017. [PMID: 29052539 PMCID: PMC11687543 DOI: 10.1128/microbiolspec.bad-0020-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Genetically engineered bacteria have the potential to diagnose and treat a wide range of diseases linked to the gastrointestinal tract, or gut. Such engineered microbes will be less expensive and invasive than current diagnostics and more effective and safe than current therapeutics. Recent advances in synthetic biology have dramatically improved the reliability with which bacteria can be engineered with the sensors, genetic circuits, and output (actuator) genes necessary for diagnostic and therapeutic functions. However, to deploy such bacteria in vivo, researchers must identify appropriate gut-adapted strains and consider performance metrics such as sensor detection thresholds, circuit computation speed, growth rate effects, and the evolutionary stability of engineered genetic systems. Other recent reviews have focused on engineering bacteria to target cancer or genetically modifying the endogenous gut microbiota in situ. Here, we develop a standard approach for engineering "smart probiotics," which both diagnose and treat disease, as well as "diagnostic gut bacteria" and "drug factory probiotics," which perform only the former and latter function, respectively. We focus on the use of cutting-edge synthetic biology tools, gut-specific design considerations, and current and future engineering challenges.
Collapse
Affiliation(s)
- Brian P Landry
- Department of Bioengineering, Rice University, Houston, TX 77030
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Biosciences, Rice University, Houston, TX 77030
| |
Collapse
|
178
|
Ding WL, Miao D, Hou YN, Jiang SP, Zhao BQ, Zhou M, Scheer H, Zhao KH. Small monomeric and highly stable near-infrared fluorescent markers derived from the thermophilic phycobiliprotein, ApcF2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1877-1886. [DOI: 10.1016/j.bbamcr.2017.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
|
179
|
Unleashing Natural Competence in Lactococcus lactis by Induction of the Competence Regulator ComX. Appl Environ Microbiol 2017; 83:AEM.01320-17. [PMID: 28778888 DOI: 10.1128/aem.01320-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies.IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially relevant organism can accelerate research aiming to understand industrially relevant traits of these bacteria and can facilitate engineering strategies to harness the natural biodiversity of the species in optimized starter strains.
Collapse
|
180
|
Lu Y, Yan H, Deng J, Huang Z, Jin X, Yu Y, Hu Q, Hu F, Wang J. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis. Microb Cell Fact 2017; 16:154. [PMID: 28923077 PMCID: PMC5604289 DOI: 10.1186/s12934-017-0770-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background Lactococcus lactis is a food grade probiotics and widely used to express heterologous proteins. Generally, target genes are knocked into the L. lactis genome through double-crossover recombination to express heterologous proteins stably. However, creating marker-less heterologous genes knocked-in clones is laborious. In this study, an efficient heterologous gene knock-in reporter system was developed in L. lactis NZ9000. Results Our knock-in reporter system consists of a temperature-sensitive plasmid pJW and a recombinant L. lactis strain named NZB. The pJW contains homologous arms, and was constructed to knock-in heterologous genes at a fixed locus of NZ9000 genome. lacZ (β-galactosidase) gene was knocked into the chromosome of NZ9000 as a counter-selective marker through the plasmid pJW to generate NZB. The engineered NZB strain formed blue colonies on X-Gal plate. The desired double-crossover mutants formed white colonies distinctive from the predominantly blue colonies (parental and plasmid-integrated clones) when the embedded lacZ was replaced with the target heterologous genes carried by pJW in NZB. Conclusions By using the system, the heterologous gene knocked-in clones are screened by colony phenotype change rather than by checking colonies individually. Our new knock-in reporter system provides an efficient method to create heterologous genes knocked-in clones. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0770-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Hongxiang Yan
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Jiezhong Deng
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Zhigang Huang
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Xurui Jin
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Yanlan Yu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Qiwen Hu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
181
|
Recombinant Mouse Osteocalcin Secreted by Lactococcus lactis Promotes Glucagon-Like Peptide-1 Induction in STC-1 Cells. Curr Microbiol 2017; 75:92-98. [DOI: 10.1007/s00284-017-1354-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
|
182
|
Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of Lactococcus lactis. mBio 2017; 8:mBio.01303-17. [PMID: 28900021 PMCID: PMC5596347 DOI: 10.1128/mbio.01303-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polysaccharides are ubiquitous components of the Gram-positive bacterial cell wall. In Lactococcus lactis, a polysaccharide pellicle (PSP) forms a layer at the cell surface. The PSP structure varies among lactococcal strains; in L. lactis MG1363, the PSP is composed of repeating hexasaccharide phosphate units. Here, we report the presence of an additional neutral polysaccharide in L. lactis MG1363 that is a rhamnan composed of α-l-Rha trisaccharide repeating units. This rhamnan is still present in mutants devoid of the PSP, indicating that its synthesis can occur independently of PSP synthesis. High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) analysis of whole bacterial cells identified a PSP at the surface of wild-type cells. In contrast, rhamnan was detected only at the surface of PSP-negative mutant cells, indicating that rhamnan is located underneath the surface-exposed PSP and is trapped inside peptidoglycan. The genetic determinants of rhamnan biosynthesis appear to be within the same genetic locus that encodes the PSP biosynthetic machinery, except the gene tagO encoding the initiating glycosyltransferase. We present a model of rhamnan biosynthesis based on an ABC transporter-dependent pathway. Conditional mutants producing reduced amounts of rhamnan exhibit strong morphological defects and impaired division, indicating that rhamnan is essential for normal growth and division. Finally, a mutation leading to reduced expression of lcpA, encoding a protein of the LytR-CpsA-Psr (LCP) family, was shown to severely affect cell wall structure. In lcpA mutant cells, in contrast to wild-type cells, rhamnan was detected by HR-MAS NMR, suggesting that LcpA participates in the attachment of rhamnan to peptidoglycan.IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including polysaccharides, the roles of which are not fully elucidated. In the ovococcus Lactococcus lactis, a polysaccharide with a different structure between strains forms a layer at the bacterial surface and acts as the receptor for various bacteriophages that typically exhibit a narrow host range. The present report describes the identification of a novel polysaccharide in the L. lactis cell wall, a rhamnan that is trapped inside the peptidoglycan and covalently bound to it. We propose a model of rhamnan synthesis based on an ABC transporter-dependent pathway. Rhamnan appears as a conserved component of the lactococcal cell wall playing an essential role in growth and division, thus highlighting the importance of polysaccharides in the cell wall integrity of Gram-positive ovococci.
Collapse
|
183
|
Tarazanova M, Huppertz T, Beerthuyzen M, van Schalkwijk S, Janssen P, Wels M, Kok J, Bachmann H. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates. Front Microbiol 2017; 8:1691. [PMID: 28936202 PMCID: PMC5594101 DOI: 10.3389/fmicb.2017.01691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
- Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Thom Huppertz
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | | | | | - Patrick Janssen
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | - Michiel Wels
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | - Jan Kok
- TI Food and NutritionWageningen, Netherlands
- Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Herwig Bachmann
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| |
Collapse
|
184
|
Ortiz-Velez L, Britton R. Genetic Tools for the Enhancement of Probiotic Properties. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0018-2016. [PMID: 28936946 PMCID: PMC11687542 DOI: 10.1128/microbiolspec.bad-0018-2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 12/29/2022] Open
Abstract
The Lactobacillus genus is a diverse group of microorganisms, many of which are of industrial and medical relevance. Several Lactobacillus species have been used as probiotics, organisms that when present in sufficient quantities confer a health benefit to the host. A significant limitation to the mechanistic understanding of how these microbes provide health benefits to their hosts and how they can be used as therapeutic delivery systems has been the lack of genetic strategies to efficiently manipulate their genomes. This article will review the development and employment of traditional genetic tools in lactobacilli and highlight the latest methodologies that are allowing for precision genome engineering of these probiotic organisms. The application of these tools will be key in providing mechanistic insights into probiotics as well as maximizing the value of lactobacilli as either a traditional probiotic or as a platform for the delivery of therapeutic proteins. Finally, we will discuss concepts that we consider relevant for the delivery of engineered therapeutics to the human gut.
Collapse
Affiliation(s)
- Laura Ortiz-Velez
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Robert Britton
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
185
|
Zhou J, Wei K, Wang C, Dong W, Ma N, Zhu L, Hu LP, Huang H, Zhu R. Oral immunisation with Taishan Pinus massoniana pollen polysaccharide adjuvant with recombinant Lactococcus lactis-expressing Proteus mirabilis ompA confers optimal protection in mice. Allergol Immunopathol (Madr) 2017. [PMID: 28629671 DOI: 10.1016/j.aller.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Proteus mirabilis poses a critical burden on the breeding industry, but no efficient vaccine is available for animals. METHOD A recombinant Lactococcus lactis expressing the ompA of P. mirabilis was used to develop a vaccine. The mucosal and systemic immune responses of the recombinant vaccine were evaluated in mice after oral immunisation. The inhibition on P. mirabilis colonisation of vaccines was also determined. Moreover, Taishan Pinus massoniana pollen polysaccharides (TPPPS) were used as adjuvants to examine the immunomodulatory effects. RESULTS The pure recombinant L. lactis vaccine significantly induced the production of specific IgA and IgG, IL-2, IL-4, IFN-γ, and T lymphocyte proliferation, and the immunised mice exhibited significant resistance to P. mirabilis colonisation. Notably, the TPPPS adjuvant vaccines induced higher levels of immune responses than the pure L. lactis. CONCLUSIONS The L. lactis as a vaccine vehicle combined with TPPPS adjuvant provides a feasible method for preventing P. mirabilis infection.
Collapse
Affiliation(s)
- J Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - K Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - C Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - W Dong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - N Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - L Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China
| | - L P Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province, Shandong Jinan 250022, PR China
| | - H Huang
- Shandong New Hope Liuhe Co., Ltd, New Hope Group, Shandong Qingdao, 266061, PR China
| | - R Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Shandong Taian 271018, PR China.
| |
Collapse
|
186
|
Hatziioanou D, Gherghisan-Filip C, Saalbach G, Horn N, Wegmann U, Duncan SH, Flint HJ, Mayer MJ, Narbad A. Discovery of a novel lantibiotic nisin O from Blautia obeum A2-162, isolated from the human gastrointestinal tract. MICROBIOLOGY-SGM 2017; 163:1292-1305. [PMID: 28857034 DOI: 10.1099/mic.0.000515] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel lanC-like sequence was identified from the dominant human gut bacterium Blautia obeum strain A2-162. This sequence was extended to reveal a putative lantibiotic operon with biosynthetic and transport genes, two sets of regulatory genes, immunity genes, three identical copies of a nisin-like lanA gene with an unusual leader peptide, and a fourth putative lanA gene. Comparison with other nisin clusters showed that the closest relationship was to nisin U. B. obeum A2-162 demonstrated antimicrobial activity against Clostridium perfringens when grown on solid medium in the presence of trypsin. Fusions of predicted nsoA structural sequences with the nisin A leader were expressed in Lactococcus lactis containing the nisin A operon without nisA. Expression of the nisA leader sequence fused to the predicted structural nsoA1 produced a growth defect in L. lactis that was dependent upon the presence of biosynthetic genes, but failed to produce antimicrobial activity. Insertion of the nso cluster into L. lactis MG1614 gave an increased immunity to nisin A, but this was not replicated by the expression of nsoI. Nisin A induction of L. lactis containing the nso cluster and nisRK genes allowed detection of the NsoA1 pre-peptide by Western hybridization. When this heterologous producer was grown with nisin induction on solid medium, antimicrobial activity was demonstrated in the presence of trypsin against C. perfringens, Clostridium difficile and L. lactis. This research adds to evidence that lantibiotic production may be an important trait of gut bacteria and could lead to the development of novel treatments for intestinal diseases.
Collapse
Affiliation(s)
- Diane Hatziioanou
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Cristina Gherghisan-Filip
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | | | - Nikki Horn
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Udo Wegmann
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Sylvia H Duncan
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Harry J Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Melinda J Mayer
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Arjan Narbad
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| |
Collapse
|
187
|
Lyu Y, LaPointe G, Zhong L, Lu J, Zhang C, Lu Z. Heterologous Expression of Aldehyde Dehydrogenase in Lactococcus lactis for Acetaldehyde Detoxification at Low pH. Appl Biochem Biotechnol 2017; 184:570-581. [DOI: 10.1007/s12010-017-2573-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2017] [Indexed: 11/28/2022]
|
188
|
Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology. Curr Top Microbiol Immunol 2017; 404:267-308. [PMID: 27885530 DOI: 10.1007/82_2016_49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.
Collapse
|
189
|
Mohseni AH, Razavilar V, Keyvani H, Razavi MR, Khavari-Nejad RA. Efficient production and optimization of E7 oncoprotein from Iranian human papillomavirus type 16 in Lactococcus lactis using nisin-controlled gene expression (NICE) system. Microb Pathog 2017; 110:554-560. [PMID: 28754267 DOI: 10.1016/j.micpath.2017.07.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
Abstract
The present work was aimed at investigating the expression and optimization of a human papillomavirus (HPV) type 16 gene encoding oncoprotein E7 in Lactococcus lactis. We genetically engineered Lactococcus lactis using nisin-controlled gene expression (NICE) system pNZ8148 to express the native and codon optimized E7 oncogenes isolated from Iranian HPV-16. The results of optimizing fermentation showed, the concentration of produced protein was expressively improved by 10 ng/mL nisin after 3.5, and 4 h induction for NZ9000 harboring the codon-optimized, and native E7 respectively. Furthermore the recombinant NZ9000 strains expressed rE7 by maximum value of 4.7 (Codon-optimized), and 1.82 μg/mL (Native) in static flask experiments at initial glucose concentrations of 50 and 75 g/L respectively. The rE7 yield was further enriched in batch fermenter experiments using controlled pH. Thus, the overall production of rE7 under optimized conditions accumulated in the cytoplasm to nearly 33.25 μg/mL by L. lactis NZ9000 containing codon-optimized E7, which was over ∼2.7-fold higher compared to the NZ9000 having native E7 strain (12.01 μg/mL). Accordingly, the maximum biomass production was calculated 4.87, and 1.51 g/L respectively.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Vadood Razavilar
- Department of Food Hygiene, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Reza Razavi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Ramazan Ali Khavari-Nejad
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| |
Collapse
|
190
|
Škrlec K, Pucer Janež A, Rogelj B, Štrukelj B, Berlec A. Evasin-displaying lactic acid bacteria bind different chemokines and neutralize CXCL8 production in Caco-2 cells. Microb Biotechnol 2017; 10:1732-1743. [PMID: 28736998 PMCID: PMC5658612 DOI: 10.1111/1751-7915.12781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 01/26/2023] Open
Abstract
Chemokines are key signals in the immune system and play an important role as proinflammatory mediators in the pathology of inflammatory bowel disease and colorectal cancer, making them an important target for therapy. Recombinant lactic acid bacteria (LAB) were engineered to bind CC and CXC chemokines by displaying chemokine‐binding proteins evasin‐1, evasin‐3 and evasin‐4 on their surface. Evasin genes were cloned into lactococcal surface display vector and overexpressed in L. lactis NZ9000 and NZ9000ΔhtrA in fusion with secretion signal and surface anchor. Evasin‐displaying bacteria removed from 15% to 90% of 11 different chemokines from the solution as determined with ELISA and Luminex multiplexing assays, whereby L. lactis NZ9000ΔhtrA proved more efficient. Lactobacillus salivarius ATCC 11741 was coated with L. . lactis‐expressed evasin fusion protein, and its ability to bind chemokines was also confirmed. Evasin‐3‐displaying L. lactis removed 76.0% of IL‐1β‐induced CXCL8 from the supernatant of Caco‐2 epithelial cells. It also prevented secretion of CXCL8 from Caco‐2 cells in a time‐dependent manner when added before induction with IL‐1β. Evasin‐displaying LAB have the ability to bind multiple chemokines simultaneously and exert synergistic activity. This innovative treatment approach therefore has the potential for mucosal therapy of inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
- Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Biomedical Research Institute (BRIS), Puhova 10, SI-1000, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
191
|
Costas Malvido M, Alonso González E, Outeiriño D, Fajardo Bernárdez P, Pérez Guerra N. Combination of food wastes for an efficient production of nisin in realkalized fed-batch cultures. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
192
|
Promoting acid resistance and nisin yield of Lactococcus lactis F44 by genetically increasing D-Asp amidation level inside cell wall. Appl Microbiol Biotechnol 2017. [PMID: 28643181 DOI: 10.1007/s00253-017-8365-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nisin fermentation by Lactococcus lactis requires a low pH to maintain a relatively higher nisin activity. However, the acidic environment will result in cell arrest, and eventually decrease the relative nisin production. Hence, constructing an acid-resistant L. lactis is crucial for nisin harvest in acidic nisin fermentation. In this paper, the first discovery of the relationship between D-Asp amidation-associated gene (asnH) and acid resistance was reported. Overexpression of asnH in L. lactis F44 (F44A) resulted in a sevenfold increase in survival capacity during acid shift (pH 3) and enhanced nisin desorption capacity compared to F44 (wild type), which subsequently contributed to higher nisin production, reaching 5346 IU/mL, 57.0% more than that of F44 in the fed-batch fermentation. Furthermore, the engineered F44A showed a moderate increase in D-Asp amidation level (from 82 to 92%) compared to F44. The concomitant decrease of the negative charge inside the cell wall was detected by a newly developed method based on the nisin adsorption amount onto cell surface. Meanwhile, peptidoglycan cross-linkage increased from 36.8% (F44) to 41.9% (F44A), and intracellular pH can be better maintained by blocking extracellular H+ due to the maintenance of peptidoglycan integrity, which probably resulted from the action of inhibiting hydrolases activity. The inference was further supported by the acmC-overexpression strain F44C, which was characterized by uncontrolled peptidoglycan hydrolase activity. Our results provided a novel strategy for enhancing nisin yield through cell wall remodeling, which contributed to both continuous nisin synthesis and less nisin adsorption in acidic fermentation (dual enhancement).
Collapse
|
193
|
Yue J, Fu G, Zhang D, Wen J. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis. Biotechnol Lett 2017; 39:1237-1244. [PMID: 28527120 DOI: 10.1007/s10529-017-2357-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/11/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. RESULTS An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. CONCLUSIONS A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.
Collapse
Affiliation(s)
- Jie Yue
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratories of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Gang Fu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratories of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Dawei Zhang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- Key Laboratories of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Jianping Wen
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
194
|
Carvalho RDDO, do Carmo FLR, de Oliveira Junior A, Langella P, Chatel JM, Bermúdez-Humarán LG, Azevedo V, de Azevedo MS. Use of Wild Type or Recombinant Lactic Acid Bacteria as an Alternative Treatment for Gastrointestinal Inflammatory Diseases: A Focus on Inflammatory Bowel Diseases and Mucositis. Front Microbiol 2017; 8:800. [PMID: 28536562 PMCID: PMC5422521 DOI: 10.3389/fmicb.2017.00800] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
The human gastrointestinal tract (GIT) is highly colonized by bacterial communities, which live in a symbiotic relationship with the host in normal conditions. It has been shown that a dysfunctional interaction between the intestinal microbiota and the host immune system, known as dysbiosis, is a very important factor responsible for the development of different inflammatory conditions of the GIT, such as the idiopathic inflammatory bowel diseases (IBD), a complex and multifactorial disorder of the GIT. Dysbiosis has also been implicated in the pathogenesis of other GIT inflammatory diseases such as mucositis usually caused as an adverse effect of chemotherapy. As both diseases have become a great clinical problem, many research groups have been focusing on developing new strategies for the treatment of IBD and mucositis. In this review, we show that lactic acid bacteria (LAB) have been capable in preventing and treating both disorders in animal models, suggesting they may be ready for clinical trials. In addition, we present the most current studies on the use of wild type or genetically engineered LAB strains designed to express anti-inflammatory proteins as a promising strategy in the treatment of IBD and mucositis.
Collapse
Affiliation(s)
| | - Fillipe L R do Carmo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | | | - Philippe Langella
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Jean-Marc Chatel
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Vasco Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | - Marcela S de Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| |
Collapse
|
195
|
Bosma EF, Forster J, Nielsen AT. Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools. Biotechnol Adv 2017; 35:419-442. [PMID: 28396124 DOI: 10.1016/j.biotechadv.2017.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.
Collapse
Affiliation(s)
- Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
196
|
Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact 2017; 16:55. [PMID: 28376880 PMCID: PMC5379754 DOI: 10.1186/s12934-017-0669-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/28/2017] [Indexed: 02/08/2023] Open
Abstract
Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Saccharomyces [corrected] cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lionel L A In
- Functional Food Research Group, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Block B and D, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
197
|
|
198
|
Martinez-Jaramillo E, Garza-Morales R, Loera-Arias MJ, Saucedo-Cardenas O, Montes-de-Oca-Luna R, McNally LR, Gomez-Gutierrez JG. Development of Lactococcus lactis encoding fluorescent proteins, GFP, mCherry and iRFP regulated by the nisin-controlled gene expression system. Biotech Histochem 2017; 92:167-174. [PMID: 28318334 PMCID: PMC5638124 DOI: 10.1080/10520295.2017.1289554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Fluorescent proteins are useful reporter molecules for a variety of biological systems. We present an alternative strategy for cloning reporter genes that are regulated by the nisin-controlled gene expression (NICE) system. Lactoccocus lactis was genetically engineered to express green fluorescent protein (GFP), mCherry or near-infrared fluorescent protein (iRFP). The reporter gene sequences were optimized to be expressed by L. lactis using inducible promoter pNis within the pNZ8048 vector. Expression of constructions that carry mCherry or GFP was observed by fluorescence microscopy 2 h after induction with nisin. Expression of iRFP was evaluated at 700 nm using an infrared scanner; cultures induced for 6 h showed greater iRFP expression than non-induced cultures or those expressing GFP. We demonstrated that L. lactis can express efficiently GFP, mCherry and iRFP fluorescent proteins using an inducible expression system. These strains will be useful for live cell imaging studies in vitro or for imaging studies in vivo in the case of iRFP.
Collapse
Affiliation(s)
- E Martinez-Jaramillo
- The Hiram C Polk Jr., MD, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - R Garza-Morales
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - MJ Loera-Arias
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - O Saucedo-Cardenas
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - R Montes-de-Oca-Luna
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - LR McNally
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - JG Gomez-Gutierrez
- The Hiram C Polk Jr., MD, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
199
|
Recombinant Lactococcus lactis Expressing Haemagglutinin from a Polish Avian H5N1 Isolate and Its Immunological Effect in Preliminary Animal Trials. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6747482. [PMID: 28321412 PMCID: PMC5340954 DOI: 10.1155/2017/6747482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/18/2022]
Abstract
Lactic acid bacteria (LAB) are Gram-positive, nonpathogenic microorganisms that are gaining much interest as antigen producers for development of live vaccine vectors. Heterologous proteins of different origin have been successfully expressed in various LAB species, including Lactococcus lactis. Recombinant L. lactis strains have been shown to induce specific local and systemic immune responses against various antigens. Our study aimed at constructing a L. lactis strain expressing haemagglutinin of a Polish avian H5H1 influenza isolate and examining its effect on animals. Expression of the cloned H5 gene was achieved using the nisin-controlled gene expression system. Detection of the intracellular H5 antigen produced in L. lactis was performed by Western blot analysis and confirmed using mass spectrometry. The potential of L. lactis recombinant cells to induce an immune response was examined by setting up preliminary immunization trials on chickens and mice. Obtained sera were tested for specific antibodies by ELISA assays. The results of these studies are a promising step toward developing a vaccine against the bird flu using Lactococcus lactis cells as bioreactors for efficient antigen production and delivery to the mucosal surface.
Collapse
|
200
|
Monedero V, Revilla-Guarinos A, Zúñiga M. Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:1-51. [PMID: 28438266 DOI: 10.1016/bs.aambs.2016.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two-component systems (TCSs) are widespread signal transduction pathways mainly found in bacteria where they play a major role in adaptation to changing environmental conditions. TCSs generally consist of sensor histidine kinases that autophosphorylate in response to a specific stimulus and subsequently transfer the phosphate group to their cognate response regulators thus modulating their activity, usually as transcriptional regulators. In this review we present the current knowledge on the physiological role of TCSs in species of the families Lactobacillaceae and Leuconostocaceae of the group of lactic acid bacteria (LAB). LAB are microorganisms of great relevance for health and food production as the group spans from starter organisms to pathogens. Whereas the role of TCSs in pathogenic LAB (most of them belonging to the family Streptococcaceae) has focused the attention, the roles of TCSs in commensal LAB, such as most species of Lactobacillaceae and Leuconostocaceae, have been somewhat neglected. However, evidence available indicates that TCSs are key players in the regulation of the physiology of these bacteria. The first studies in food-associated LAB showed the involvement of some TCSs in quorum sensing and production of bacteriocins, but subsequent studies have shown that TCSs participate in other physiological processes, such as stress response, regulation of nitrogen metabolism, regulation of malate metabolism, and resistance to antimicrobial peptides, among others.
Collapse
Affiliation(s)
- Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| | | | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| |
Collapse
|