151
|
Abstract
The cohesin complex, discovered through its role in sister chromatid cohesion, also plays roles in gene expression and development in organisms from yeast to human. This review highlights what has been learned about the gene control and developmental functions of cohesin and the Nipped-B (NIPBL/Scc2) cohesin loading factor in Drosophila. The Drosophila studies have provided unique insights into the aetiology of Cornelia de Lange syndrome (CdLS), which is caused by mutations affecting sister chromatid cohesion proteins in humans. In vivo experiments with Drosophila show that cohesin and Nipped-B have dosage-sensitive effects on the functions of many evolutionarily conserved genes and developmental pathways. Genome-wide studies with Drosophila cultured cells show that Nipped-B and cohesin co-localize on chromosomes, and bind preferentially, but not exclusively, to many actively transcribed genes and their regulatory sequences, including many of the proposed in vivo target genes. In contrast, the cohesion factors are largely excluded from genes silenced by Polycomb group (PcG) proteins. Combined, the in vivo genetic data and the binding patterns of cohesin and Nipped-B in cultured cells are consistent with the hypothesis that they control the action of gene regulatory sequences, including transcriptional enhancers and insulators, and suggest that they might also help define active chromatin domains and influence transcriptional elongation.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO 63104, USA.
| |
Collapse
|
152
|
Abstract
The cohesin complex is a major constituent of interphase and mitotic chromosomes. Apart from its role in mediating sister chromatid cohesion, it is also important for DNA double-strand-break repair and transcriptional control. The functions of cohesin are regulated by phosphorylation, acetylation, ATP hydrolysis, and site-specific proteolysis. Recent evidence suggests that cohesin acts as a novel topological device that traps chromosomal DNA within a large tripartite ring formed by its core subunits.
Collapse
Affiliation(s)
- Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | | |
Collapse
|
153
|
Henikoff S, Henikoff JG, Sakai A, Loeb GB, Ahmad K. Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res 2008; 19:460-9. [PMID: 19088306 DOI: 10.1101/gr.087619.108] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We applied genome-wide profiling to successive salt-extracted fractions of micrococcal nuclease-treated Drosophila chromatin. Chromatin fractions extracted with 80 mM or 150 mM NaCl after digestion contain predominantly mononucleosomes and represent classical "active" chromatin. Profiles of these low-salt soluble fractions display phased nucleosomes over transcriptionally active genes that are locally depleted of histone H3.3 and correspond closely to profiles of histone H2Av (H2A.Z) and RNA polymerase II. This correspondence suggests that transcription can result in loss of H3.3+H2Av nucleosomes and generate low-salt soluble nucleosomes. Nearly quantitative recovery of chromatin is obtained with 600 mM NaCl; however, the remaining insoluble chromatin is enriched in actively transcribed regions. Salt-insoluble chromatin likely represents oligonucleosomes that are attached to large protein complexes. Both low-salt extracted and insoluble chromatin are rich in sequences that correspond to epigenetic regulatory elements genome-wide. The presence of active chromatin at both extremes of salt solubility suggests that these salt fractions capture bound and unbound intermediates in active processes, thus providing a simple, powerful strategy for mapping epigenome dynamics.
Collapse
Affiliation(s)
- Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | | | |
Collapse
|
154
|
Zhang N, Kuznetsov SG, Sharan SK, Li K, Rao PH, Pati D. A handcuff model for the cohesin complex. J Cell Biol 2008; 183:1019-31. [PMID: 19075111 PMCID: PMC2600748 DOI: 10.1083/jcb.200801157] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 11/14/2008] [Indexed: 12/30/2022] Open
Abstract
The cohesin complex is responsible for the accurate separation of sister chromatids into two daughter cells. Several models for the cohesin complex have been proposed, but the one-ring embrace model currently predominates the field. However, the static configuration of the embrace model is not flexible enough for cohesins to perform their functions during DNA replication, transcription, and DNA repair. We used coimmunoprecipitation, a protein fragment complement assay, and a yeast two-hybrid assay to analyze the protein-protein interactions among cohesin subunits. The results show that three of the four human cohesin core subunits (Smc1, Smc3, and Rad21) interact with themselves in an Scc3 (SA1/SA2)-dependent manner. These data support a two-ring handcuff model for the cohesin complex, which is flexible enough to establish and maintain sister chromatid cohesion as well as ensure the fidelity of chromosome segregation in higher eukaryotes.
Collapse
Affiliation(s)
- Nenggang Zhang
- Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
155
|
McNairn AJ, Gerton JL. Cohesinopathies: One ring, many obligations. Mutat Res 2008; 647:103-11. [PMID: 18786550 DOI: 10.1016/j.mrfmmm.2008.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 12/24/2022]
Abstract
Over 75 years ago, two human genetic disorders were initially described and named for their founding physicians: Cornelia de Lange (CdLS) and Roberts syndrome (RBS)/SC Phocomelia (SC). In the past 4 years, genetic studies of patients have revealed the primary genes involved in these disorders are the essential, evolutionarily conserved components of the cohesin pathway. This pathway serves to facilitate cohesion between replicated sister chromatids, thereby enabling proper chromosome segregation. As a result of these findings, these disorders now represent a novel class of human genetic disorders known as cohesinopathies. Over 60% of CdLS patients examined have de novo mutations in either: SCC2/NIPBL, SMC1, or SMC3, whereas the causative gene in Roberts syndrome and SC Phocomelia has been identified as ESCO2. Now modern genetic, biochemical, and cell biological approaches may be applied to determine the underlying mechanism of these genetic disorders.
Collapse
Affiliation(s)
- Adrian J McNairn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
156
|
Abstract
Cohesin is a chromosome-associated multisubunit protein complex that is highly conserved in eukaryotes and has close homologs in bacteria. Cohesin mediates cohesion between replicated sister chromatids and is therefore essential for chromosome segregation in dividing cells. Cohesin is also required for efficient repair of damaged DNA and has important functions in regulating gene expression in both proliferating and post-mitotic cells. Here we discuss how cohesin associates with DNA, how these interactions are controlled during the cell cycle; how binding of cohesin to DNA may mediate sister chromatid cohesion, DNA repair, and gene regulation; and how defects in these processes can lead to human disease.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria.
| | | | | |
Collapse
|
157
|
Takagi M, Bunai K, Yanagi KI, Imamoto N. Cloning of Xenopus orthologs of Ctf7/Eco1 acetyltransferase and initial characterization of XEco2. FEBS J 2008; 275:6109-22. [PMID: 19016859 DOI: 10.1111/j.1742-4658.2008.06736.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sister chromatid cohesion is important for the correct alignment and segregation of chromosomes during cell division. Although the cohesin complex has been shown to play a physical role in holding sister chromatids together, its loading onto chromatin is not sufficient for the establishment of sister chromatid cohesion. The activity of the cohesin complex must be turned on by Ctf7/Eco1 acetyltransferase at the replication forks as the result of a specific mechanism. To dissect this mechanism in the well established in vitro system based on the use of Xenopus egg extracts, we cloned two Xenopus orthologs of Ctf7/Eco1 acetyltransferase, XEco1 and XEco2. Both proteins share a domain structure with known members of Ctf7/Eco1 family proteins. Moreover, biochemical analysis showed that XEco2 exhibited acetyltransferase activity. We raised a specific antibody against XEco2 and used it to further characterize XEco2. In tissue culture cells, XEco2 gradually accumulated in nuclei through the S phase. In nuclei formed in egg extract, XEco2 was loaded into the chromatin at a constant level in a manner sensitive to geminin, an inhibitor of the pre-replication complex assembly, but insensitive to aphidicolin, an inhibitor of DNA polymerases. In both systems, no specific localization was observed during mitosis. In XEco2-depleted egg extracts, DNA replication occurred with normal kinetics and efficiency, and the condensation and sister chromatid cohesion of subsequently formed mitotic chromosomes was unaffected. These observations will serve as a platform for elucidating the molecular function of Ctf7/Eco1 acetyltransferase in the establishment of sister chromatid cohesion in future studies, in which XEco1 and XEco2 should be dissected in parallel.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN Advanced Science Institute, Saitama, Japan
| | | | | | | |
Collapse
|
158
|
Jahnke P, Xu W, Wülling M, Albrecht M, Gabriel H, Gillessen-Kaesbach G, Kaiser FJ. The Cohesin loading factor NIPBL recruits histone deacetylases to mediate local chromatin modifications. Nucleic Acids Res 2008; 36:6450-8. [PMID: 18854353 PMCID: PMC2582609 DOI: 10.1093/nar/gkn688] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a rare congenital malformation disorder. About half of the patients with CdLS carry mutations in the NIPBL gene encoding the NIPBL protein, a subunit of the Cohesin loading complex. Recent studies show association of Cohesin with chromatin-remodeling complexes, either by establishing cohesion or by recruiting Cohesin to specific chromosome locations. In yeast two-hybrid assays, we identified an interaction of NIPBL with the histone deacetylases -1 and -3. These interactions were confirmed in mammalian cells by coimmunoprecipitation and a critical region for interaction was defined to a stretch of 163 amino acids of a highly conserved region of NIPBL, which is mutated in patients with CdLS. Utilizing reporter gene assays, we could show that NIPBL fused to the GAL4-DNA-binding domain (GAL4-DBD) represses promoter activity via the recruitment of histone deacetylases. Interestingly, this effect is dramatically reduced by both NIPBL missense mutations identified in CdLS and by chemical inhibition of the histone deacetylases. Our data are the first to indicate a molecular and functional connection of NIPBL with chromatin-remodeling processes via the direct interaction with histone deacetylases.
Collapse
Affiliation(s)
- Philipp Jahnke
- Institut für Humangenetik, Universität zu Lübeck, 23538 Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
159
|
Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole. Proc Natl Acad Sci U S A 2008; 105:15441-5. [PMID: 18832153 DOI: 10.1073/pnas.0807660105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accurate mitotic chromosome segregation depends on the formation of a microtubule-based bipolar spindle apparatus. We report that the cohesin subunit structural maintenance of chromosomes subunit 1 (SMC1) is recruited to microtubule-bound RNA export factor 1 (Rae1) at the mitotic spindle pole. We locate the Rae1-binding site to a 21-residue-long region, SMC1(947-967) and provide several lines of evidence that phosphorylation of Ser(957) and Ser(966) of SMC1 stimulates binding to Rae1. Imbalances in these assembly pathways caused formation of multipolar spindles. Our data suggest that cohesin's known bundling function for chromatids in mitotic and interphase cells extends to microtubules at the spindle pole.
Collapse
|
160
|
Abstract
Cohesin is a large ring-shaped protein complex that mediates cohesion between sister chromatids. New experiments show that the sister chromatids of a minichromosome are entrapped by monomeric cohesin rings, thus excluding the possibility that sister chromatid cohesion is mediated by nontopological interactions between cohesin complexes.
Collapse
|
161
|
Losada A. The regulation of sister chromatid cohesion. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1786:41-8. [PMID: 18474253 DOI: 10.1016/j.bbcan.2008.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/06/2008] [Accepted: 04/08/2008] [Indexed: 01/20/2023]
Abstract
Sister chromatid cohesion is a major feature of the eukaryotic chromosome. It entails the formation of a physical linkage between the two copies of a chromosome that result from the duplication process. This linkage must be maintained until chromosome segregation takes place in order to ensure the accurate distribution of the genomic information. Cohesin, a multiprotein complex conserved from yeast to humans, is largely responsible for sister chromatid cohesion. Other cohesion factors regulate the interaction of cohesin with chromatin as well as the establishment and dissolution of cohesion. In addition, the presence of cohesin throughout the genome appears to influence processes other than chromosome segregation, such as transcription and DNA repair. In this review I summarize recent advances in our understanding of cohesin function and regulation in mitosis, and discuss the consequences of impairing the cohesion process at the level of the whole organism.
Collapse
Affiliation(s)
- Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| |
Collapse
|
162
|
McKee BD. Does cohesin regulate developmental gene expression in Drosophila? Proc Natl Acad Sci U S A 2008; 105:12097-8. [PMID: 18715997 PMCID: PMC2527870 DOI: 10.1073/pnas.0805712105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bruce D McKee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences Building, Knoxville, TN 37996-0840, USA.
| |
Collapse
|
163
|
Hallson G, Syrzycka M, Beck SA, Kennison JA, Dorsett D, Page SL, Hunter SM, Keall R, Warren WD, Brock HW, Sinclair DAR, Honda BM. The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein. Proc Natl Acad Sci U S A 2008; 105:12405-10. [PMID: 18713858 PMCID: PMC2527924 DOI: 10.1073/pnas.0801698105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Indexed: 12/19/2022] Open
Abstract
The cohesin complex is a key player in regulating cell division. Cohesin proteins SMC1, SMC3, Rad21, and stromalin (SA), along with associated proteins Nipped-B, Pds5, and EcoI, maintain sister chromatid cohesion before segregation to daughter cells during anaphase. Recent chromatin immunoprecipitation (ChIP) data reveal extensive overlap of Nipped-B and cohesin components with RNA polymerase II binding at active genes in Drosophila. These and other data strongly suggest a role for cohesion in transcription; however, there is no clear evidence for any specific mechanisms by which cohesin and associated proteins regulate transcription. We report here a link between cohesin components and trithorax group (trxG) function, thus implicating these proteins in transcription activation and/or elongation. We show that the Drosophila Rad21 protein is encoded by verthandi (vtd), a member of the trxG gene family that is also involved in regulating the hedgehog (hh) gene. In addition, mutations in the associated protein Nipped-B show similar trxG activity i.e., like vtd, they act as dominant suppressors of Pc and hh(Mrt) without impairing cell division. Our results provide a framework to further investigate how cohesin and associated components might regulate transcription.
Collapse
Affiliation(s)
- Graham Hallson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Monika Syrzycka
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Samantha A. Beck
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - James A. Kennison
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2785
| | - Dale Dorsett
- Department of Biochemistry and Molecular Biology, School of Medicine, St. Louis University, St. Louis, MO 63104; and
| | - Scott L. Page
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Sally M. Hunter
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Rebecca Keall
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - William D. Warren
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Hugh W. Brock
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Donald A. R. Sinclair
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Barry M. Honda
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
164
|
McNairn AJ, Gerton JL. The chromosome glue gets a little stickier. Trends Genet 2008; 24:382-9. [PMID: 18602182 DOI: 10.1016/j.tig.2008.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 12/25/2022]
Abstract
Since their discovery, the cohesin proteins have been intensely studied in multiple model systems to determine the mechanism of chromosome cohesion. Recent studies have demonstrated that cohesin is much more than a molecular glue that holds chromosomes together in mitosis. Indeed, cohesin performs critical roles in gene regulation, possibly through the formation of higher-order chromatin structure. Moreover, this newly appreciated role is necessary for proper development in metazoan species, with mutations in the cohesin pathway resulting in human developmental disorders.
Collapse
Affiliation(s)
- Adrian J McNairn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
165
|
Abstract
The cohesin complex is best known for its role in sister chromatid cohesion. Over the past few years, it has become apparent that cohesin also regulates gene expression, but the mechanisms by which it does so are unknown. Recently, three groups mapped numerous cohesin-binding sites in mammalian chromosomes and found substantial overlap with the CCCTC-binding factor (CTCF).1-3 CTCF is an insulator protein that blocks enhancer-promoter interactions, and the investigators found that cohesin also contributes to this activity. Thus, these studies demonstrate at least one mechanism by which cohesin can control gene expression.
Collapse
Affiliation(s)
- Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Missouri 63104, USA.
| | | | | |
Collapse
|
166
|
Takahashi TS, Basu A, Bermudez V, Hurwitz J, Walter JC. Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev 2008; 22:1894-905. [PMID: 18628396 PMCID: PMC2492736 DOI: 10.1101/gad.1683308] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/23/2008] [Indexed: 12/23/2022]
Abstract
To establish functional cohesion between replicated sister chromatids, cohesin is recruited to chromatin before S phase. Cohesin is loaded onto chromosomes in the G1 phase by the Scc2-Scc4 complex, but little is known about how Scc2-Scc4 itself is recruited to chromatin. Using Xenopus egg extracts as a vertebrate model system, we showed previously that the chromatin association of Scc2 and cohesin is dependent on the prior establishment of prereplication complexes (pre-RCs) at origins of replication. Here, we report that Scc2-Scc4 exists in a stable complex with the Cdc7-Drf1 protein kinase (DDK), which is known to bind pre-RCs and activate them for DNA replication. Immunodepletion of DDK from Xenopus egg extracts impairs chromatin association of Scc2-Scc4, a defect that is reversed by wild-type, but not catalytically inactive DDK. A complex of Scc4 and the N terminus of Scc2 is sufficient for chromatin loading of Scc2-Scc4, but not for cohesin recruitment. These results show that DDK is required to tether Scc2-Scc4 to pre-RCs, and they underscore the intimate link between early steps in DNA replication and cohesion.
Collapse
Affiliation(s)
- Tatsuro S. Takahashi
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Abhijit Basu
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Vladimir Bermudez
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jerard Hurwitz
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Johannes C. Walter
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
167
|
Göndör A, Ohlsson R. Chromatin insulators and cohesins. EMBO Rep 2008; 9:327-9. [PMID: 18379583 PMCID: PMC2288768 DOI: 10.1038/embor.2008.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/27/2008] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anita Göndör
- Anita Göndör & Rolf Ohlsson are at the Department of Development & Genetics, Uppsala University, Evolution Biology Centre, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | - Rolf Ohlsson
- Anita Göndör & Rolf Ohlsson are at the Department of Development & Genetics, Uppsala University, Evolution Biology Centre, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| |
Collapse
|
168
|
Cohesin branches out. Nat Rev Mol Cell Biol 2008. [DOI: 10.1038/nrm2371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
169
|
Abstract
During cell division the cohesin complex mediates the pairing of sister chromatids. Emerging evidence shows that cohesin also has roles in interphase cells. New studies, including that of Gullerova and Proudfoot (2008) in this issue, reveal how cohesin is targeted to specific sites on chromosomes and implicate cohesin in the regulation of gene expression.
Collapse
Affiliation(s)
- Daniel Peric-Hupkes
- Division of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | |
Collapse
|
170
|
|
171
|
Abstract
The cohesin protein complex holds sister chromatids together to ensure proper chromosome segregation at mitosis in dividing cells. New experiments by two laboratories (reviewed in this issue of Developmental Cell) using different techniques reveal that cohesin also plays critical roles in morphogenesis of nondividing neurons. Other recent studies argue that these roles involve regulation of gene transcription.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO 63104, USA.
| |
Collapse
|
172
|
Pauli A, Althoff F, Oliveira RA, Heidmann S, Schuldiner O, Lehner CF, Dickson BJ, Nasmyth K. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 2008; 14:239-51. [PMID: 18267092 PMCID: PMC2258333 DOI: 10.1016/j.devcel.2007.12.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 12/22/2022]
Abstract
Cohesin is a highly conserved multisubunit complex that holds sister chromatids together in mitotic cells. At the metaphase to anaphase transition, proteolytic cleavage of the alpha kleisin subunit (Rad21) by separase causes cohesin's dissociation from chromosomes and triggers sister-chromatid disjunction. To investigate cohesin's function in postmitotic cells, where it is widely expressed, we have created fruit flies whose Rad21 can be cleaved by TEV protease. Cleavage causes precocious separation of sister chromatids and massive chromosome missegregation in proliferating cells, but not disaggregation of polytene chromosomes in salivary glands. Crucially, cleavage in postmitotic neurons is lethal. In mushroom-body neurons, it causes defects in axon pruning, whereas in cholinergic neurons it causes highly abnormal larval locomotion. These data demonstrate essential roles for cohesin in nondividing cells and also introduce a powerful tool by which to investigate protein function in metazoa.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | - Stefan Heidmann
- Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | - Oren Schuldiner
- Stanford University, Department of Biological Sciences, Stanford, CA 94305, USA
| | | | | | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
173
|
Schuldiner O, Berdnik D, Levy JM, Wu JS, Luginbuhl D, Gontang AC, Luo L. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 2008; 14:227-38. [PMID: 18267091 PMCID: PMC2268086 DOI: 10.1016/j.devcel.2007.11.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/24/2007] [Accepted: 11/02/2007] [Indexed: 12/25/2022]
Abstract
Developmental axon pruning is widely used to refine neural circuits. We performed a mosaic screen to identify mutations affecting axon pruning of Drosophila mushroom body gamma neurons. We constructed a modified piggyBac vector with improved mutagenicity and generated insertions in >2000 genes. We identified two cohesin subunits (SMC1 and SA) as being essential for axon pruning. The cohesin complex maintains sister-chromatid cohesion during cell division in eukaryotes. However, we show that the pruning phenotype in SMC1(-/-) clones is rescued by expressing SMC1 in neurons, revealing a postmitotic function. SMC1(-/-) clones exhibit reduced levels of the ecdysone receptor EcR-B1, a key regulator of axon pruning. The pruning phenotype is significantly suppressed by overexpressing EcR-B1 and is enhanced by a reduced dose of EcR, supporting a causal relationship. We also demonstrate a postmitotic role for SMC1 in dendrite targeting of olfactory projection neurons. We suggest that cohesin regulates diverse aspects of neuronal morphogenesis.
Collapse
Affiliation(s)
- Oren Schuldiner
- Howard Hughes Medical Institute, Department of Biological Sciences and Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Cornelia de Lange syndrome (CdLS) is a dominant multisystem disorder caused by a disruption of cohesin function. The cohesin ring complex is composed of four protein subunits and more than 25 additional proteins involved in its regulation. The discovery that this complex also has a fundamental role in long-range regulation of transcription in Drosophila has shed light on the mechanism likely responsible for its role in development. In addition to the three cohesin proteins involved in CdLS, a second multisystem, recessively inherited, developmental disorder, Roberts-SC phocomelia, is caused by mutations in another regulator of the cohesin complex, ESCO2. Here we review the phenotypes of these disorders, collectively termed cohesinopathies, as well as the mechanism by which cohesin disruption likely causes these diseases.
Collapse
Affiliation(s)
- Jinglan Liu
- Division of Human Genetics, The Children’s Hospital of Philadelphia
| | - Ian D. Krantz
- Division of Human Genetics, The Children’s Hospital of Philadelphia
- The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|