151
|
Törjék O, Witucka-Wall H, Meyer RC, von Korff M, Kusterer B, Rautengarten C, Altmann T. Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1551-61. [PMID: 16988816 DOI: 10.1007/s00122-006-0402-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 08/18/2006] [Indexed: 05/11/2023]
Abstract
A new large set of reciprocal recombinant inbred lines (RILs) was created between the Arabidopsis accessions Col-0 and C24 for quantitative trait mapping approaches, consisting of 209 Col-0 x C24 and 214 C24 x Col-0 F(7 )RI lines. Genotyping was performed using 110 evenly distributed framework single nucleotide polymorphism markers, yielding a genetic map of 425.70 cM, with an average interval of 3.87 cM. Segregation distortion (SD) was observed in several genomic regions during the construction of the genetic map. Linkage disequilibrium analysis revealed an association between a distorted region at the bottom of chromosome V and a non-distorted region on chromosome IV. A detailed analysis of the RILs for these two regions showed that an SD occurred when homozygous Col-0 alleles on chromosome IV coincided with homozygous C24 alleles at the bottom of chromosome V. Using nearly isogenic lines segregating for the distorted region we confirmed that this genotypic composition leads to reduced fertility and fitness.
Collapse
Affiliation(s)
- Ottó Törjék
- Department of Genetics, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
152
|
Riaz S, Krivanek AF, Xu K, Walker MA. Refined mapping of the Pierce's disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V. arizonica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1317-29. [PMID: 16960717 DOI: 10.1007/s00122-006-0385-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 07/31/2006] [Indexed: 05/11/2023]
Abstract
A framework genetic map based on genomic DNA-derived SSR, EST-derived SSR, EST-STS and EST-RFLP markers was developed using 181 genotypes generated from D8909-15 (female) x F8909-17 (male), the '9621' population. Both parents are half siblings with a common female parent, Vitis rupestris 'A. de Serres', and different male parents (forms of V. arizonica). A total of 542 markers were tested, and 237 of them were polymorphic for the female and male parents. The female map was developed with 159 mapped markers covering 865.0 cM with an average marker distance of 5.4 cM in 18 linkage groups. The male map was constructed with 158 mapped molecular markers covering 1055.0 cM with an average distance of 6.7 cM in 19 linkage groups. The consensus '9621' map covered 1154.0 cM with 210 mapped molecular markers in 19 linkage groups, with average distance of 5.5 cM. Ninety-four of the 210 markers on the consensus map were new. The 'Sex' expression locus segregated as single major gene was mapped to linkage group 2 on the consensus and the male map. PdR1, a major gene for resistance to Pierce's disease, caused by the bacterium Xylella fastidiosa, was mapped to the linkage group 14 between markers VMCNg3h8 and VVIN64, located 4.3 and 2.7 cM away from PdR1, respectively. Differences in segregation distortion of markers were also compared between parents, and three clusters of skewed markers were observed on linkage groups 6, 7 and 14.
Collapse
Affiliation(s)
- S Riaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
153
|
Cristescu MEA, Colbourne JK, Radivojac J, Lynch M. A microsatellite-based genetic linkage map of the waterflea, Daphnia pulex: On the prospect of crustacean genomics. Genomics 2006; 88:415-30. [PMID: 16624519 DOI: 10.1016/j.ygeno.2006.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
We describe the first genetic linkage map for Daphnia pulex using 185 microsatellite markers, including 115 new markers reported in this study. Our approach was to study the segregation of polymorphisms in 129 F2 progeny of one F1 hybrid obtained by crossing two genetically divergent lineages of Daphnia isolated from two Oregon populations. The map spanned 1206 Kosambi cM and had an average intermarker distance of 7 cM. Linkage groups ranged in size from 7 to 185 cM and contained 4 to 27 markers. The map revealed 12 linkage groups corresponding to the expected number of chromosomes and covers approximately 87% of the genome. Tests for random segregation of alleles at individual loci revealed that 21% of the markers showed significant transmission ratio distortion (primarily homozygote deficiency) likely due to markers being linked to deleterious recessive alleles. This map will become the anchor for the physical map of the Daphnia genome and will serve as a starting point for mapping single and quantitative trait loci affecting ecologically important phenotypes. By mapping 342 tentative orthologous gene pairs (Daphnia/Drosophila) into the Daphnia linkage map, we facilitate future comparative projects.
Collapse
Affiliation(s)
- Melania E A Cristescu
- Department of Biology, Indiana University at Bloomington, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
154
|
Yu JK, Kantety RV, Graznak E, Benscher D, Tefera H, Sorrells ME. A genetic linkage map for tef [Eragrostis tef (Zucc.) Trotter]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1093-102. [PMID: 16900349 DOI: 10.1007/s00122-006-0369-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 07/07/2006] [Indexed: 05/07/2023]
Abstract
Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in Ethiopia. Tef is an allotetraploid with a base chromosome number of 10 (2n = 4x = 40) and a genome size of 730 Mbp. Ninety-four F(9) recombinant inbred lines (RIL) derived from the interspecific cross, Eragrostis tef cv. Kaye Murri x Eragrostis pilosa (accession 30-5), were mapped using restriction fragment length polymorphisms (RFLP), simple sequence repeats derived from expressed sequence tags (EST-SSR), single nucleotide polymorphism/insertion and deletion (SNP/INDEL), intron fragment length polymorphism (IFLP) and inter-simple sequence repeat amplification (ISSR). A total of 156 loci from 121 markers was grouped into 21 linkage groups at LOD 4, and the map covered 2,081.5 cM with a mean density of 12.3 cM per locus. Three putative homoeologous groups were identified based on multi-locus markers. Sixteen percent of the loci deviated from normal segregation with a predominance of E. tef alleles, and a majority of the distorted loci were clustered on three linkage groups. This map will be useful for further genetic studies in tef including mapping of loci controlling quantitative traits (QTL), and comparative analysis with other cereal crops.
Collapse
Affiliation(s)
- Ju-Kyung Yu
- Department of Plant Breeding and Genetics, Cornell University, 240 Emerson Hall, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
155
|
Brondani RPV, Williams ER, Brondani C, Grattapaglia D. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC PLANT BIOLOGY 2006; 6:20. [PMID: 16995939 PMCID: PMC1599733 DOI: 10.1186/1471-2229-6-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/22/2006] [Indexed: 05/11/2023]
Abstract
BACKGROUND Eucalypts are the most widely planted hardwood trees in the world occupying globally more than 18 million hectares as an important source of carbon neutral renewable energy and raw material for pulp, paper and solid wood. Quantitative Trait Loci (QTLs) in Eucalyptus have been localized on pedigree-specific RAPD or AFLP maps seriously limiting the value of such QTL mapping efforts for molecular breeding. The availability of a genus-wide genetic map with transferable microsatellite markers has become a must for the effective advancement of genomic undertakings. This report describes the development of a novel set of 230 EMBRA microsatellites, the construction of the first comprehensive microsatellite-based consensus linkage map for Eucalyptus and the consolidation of existing linkage information for other microsatellites and candidate genes mapped in other species of the genus. RESULTS The consensus map covers approximately 90% of the recombining genome of Eucalyptus, involves 234 mapped EMBRA loci on 11 linkage groups, an observed length of 1,568 cM and a mean distance between markers of 8.4 cM. A compilation of all microsatellite linkage information published in Eucalyptus allowed us to establish the homology among linkage groups between this consensus map and other maps published for E. globulus. Comparative mapping analyses also resulted in the linkage group assignment of other 41 microsatellites derived from other Eucalyptus species as well as candidate genes and QTLs for wood and flowering traits published in the literature. This report significantly increases the availability of microsatellite markers and mapping information for species of Eucalyptus and corroborates the high conservation of microsatellite flanking sequences and locus ordering between species of the genus. CONCLUSION This work represents an important step forward for Eucalyptus comparative genomics, opening stimulating perspectives for evolutionary studies and molecular breeding applications. The generalized use of an increasingly larger set of interspecific transferable markers and consensus mapping information, will allow faster and more detailed investigations of QTL synteny among species, validation of expression-QTL across variable genetic backgrounds and positioning of a growing number of candidate genes co-localized with QTLs, to be tested in association mapping experiments.
Collapse
Affiliation(s)
- Rosana PV Brondani
- EMBRAPA Recursos Genéticos e Biotecnologia, CP 02372, 70770-970 DF Brasilia, Brazil
- Department of Cell Biology, Universidade de Brasília UnB, DF, Brasília
- EMBRAPA Arroz e Feijão, CP 179, Goiânia GO 74001-970, Brazil
| | - Emlyn R Williams
- CSIRO Forestry and Forest Products, POBox E4008, Kingston ACT 2604, Australia
| | - Claudio Brondani
- EMBRAPA Recursos Genéticos e Biotecnologia, CP 02372, 70770-970 DF Brasilia, Brazil
- EMBRAPA Arroz e Feijão, CP 179, Goiânia GO 74001-970, Brazil
| | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, CP 02372, 70770-970 DF Brasilia, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Catolica de Brasília, 70790-160 DF Brasilia, Brazil
| |
Collapse
|
156
|
Lee JK, Park JY, Kim JH, Kwon SJ, Shin JH, Hong SK, Min HK, Kim NS. Genetic mapping of the Isaac-CACTA transposon in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:16-22. [PMID: 16783589 DOI: 10.1007/s00122-006-0263-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 03/06/2006] [Indexed: 05/10/2023]
Abstract
We constructed a genetic linkage map with Isaac-TD, SSR, and SNAP markers in a RIL population which had been derived from a cross of waxy corn (KW7) and dent corn (Mo17). A total of 368 markers, including 241 Isaac-TD, 121 SSR, and 6 SNAP markers, were assigned to 10 linkage groups, encompassing 1687.0 cM, with an average genetic distance of 4.6 cM between markers. SSR markers were utilized as chromosome anchors, in order to assign the Isaac-TD markers to the chromosomes, and the number of markers in each of the linkage groups ranged between 22 and 49. The majority of the Isaac-TD markers were determined to have been distributed throughout the ten maize chromosomes. In linkage analysis of the Isaac-TD markers with genes of agronomic interest, six genes related with maize kernel starch biosynthesis, ae1, bt2, sh1, sh2, su1, and wx1, were analyzed and shown that they were closely linked with either the Isaac-TD or SSR markers on chromosomes of 3, 4, 5, and 9. We observed and mapped segregation-distorted markers on chromosomes 1, 5, 6, 7, 8, and 10, where these markers were clustered. The Isaac-TD or SSR markers which were closely linked with starch synthesis genes may prove useful in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Ju-Kyong Lee
- Division of Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Zhong D, Menge DM, Temu EA, Chen H, Yan G. Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the yellow fever mosquito Aedes aegypti. Genetics 2006; 173:1337-45. [PMID: 16624910 PMCID: PMC1526673 DOI: 10.1534/genetics.105.055178] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti has been the subject of extensive genetic research due to its medical importance and the ease with which it can be manipulated in the laboratory. A molecular genetic linkage map was constructed using 148 amplified fragment length polymorphism (AFLP) and six single-strand conformation polymorphism (SSCP) markers. Eighteen AFLP primer combinations were used to genotype two reciprocal F2 segregating populations. Each primer combination generated an average of 8.2 AFLP markers eligible for linkage mapping. The length of the integrated map was 180.9 cM, giving an average marker resolution of 1.2 cM. Composite interval mapping revealed a total of six QTL significantly affecting Plasmodium susceptibility in the two reciprocal crosses of Ae. aegypti. Two common QTL on linkage group 2 were identified in both crosses that had similar effects on the phenotype, and four QTL were unique to each cross. In one cross, the four main QTL accounted for 64% of the total phenotypic variance, and digenic epistasis explained 11.8% of the variance. In the second cross, the four main QTL explained 66% of the variance, and digenic epistasis accounted for 16% of the variance. The actions of these QTL were either dominance or underdominance. Our results indicated that at least three new QTL were mapped on chromosomes 1 and 3. The polygenic nature of susceptibility to P. gallinaceum and epistasis are important factors for significant variation within or among mosquito strains. The new map provides additional information useful for further genetic investigation, such as identification of new genes and positional cloning.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
158
|
Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP, Jeong OY, Ahn SN. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1052-62. [PMID: 16432737 DOI: 10.1007/s00122-006-0207-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 01/04/2006] [Indexed: 05/06/2023]
Abstract
Introgression has been achieved from wild species Oryza grandiglumis (2n = 48, CCDD, Acc. No. 101154) into O. sativa subsp. japonica cv. Hwaseongbyeo as a recurrent parent. An advanced introgression (backcross) line, HG101, produced from a single plant from BC5F3 families resembled Hwaseongbyeo, but it showed differences from Hwaseongbyeo in several traits, including days to heading and culm length. To detect the introgressions, 450 microsatellite markers of known chromosomal position were used for the parental survey. Of the 450 markers, 51 (11.3%) detected O. grandiglumis segments in HG101. To characterize the effects of alien genes introgressed into HG101, an F(2:3) population (150 families) from the cross Hwaseongbyeo/HG101 was developed and evaluated for 13 agronomic traits. Several lines outperformed Hwaseongbyeo in several traits, including days to heading. Genotypes were determined for 150 F2 plants using simple sequence repeat markers. Qualitative trait locus (QTL) analysis was carried out to determine the relationship between marker genotype and the traits evaluated. A total of 39 QTL and 1 gene conferring resistance to blast isolate were identified using single-point analysis. Phenotypic variation associated with each QTL ranged from 4.2 to 30.5%. For 18 (46.2%) of the QTL identified in this study, the O. grandiglumis-derived alleles contributed a desirable agronomic effect despite the overall undesirable characteristics of the wild phenotype. Favorable wild alleles were detected for days to heading, spikelets per panicle, and grain shape traits. Grain shape QTL for grain weight, thickness, and width identified in the F(2:3) lines were further confirmed based on the F4 progeny test. The confirmed locus, tgw2 for grain weight is of particular interest because of its independence from undesirable height and maturity. Several QTL controlling amylose content and grain traits have not been detected in the previous QTL studies between Oryza cultivars, indicating potentially novel alleles from O. grandiglumis. The QTL detected in this study could be a rich source of natural genetic variation underlying the evolution and breeding of rice.
Collapse
Affiliation(s)
- D-B Yoon
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, 305-764 Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Falque M, Décousset L, Dervins D, Jacob AM, Joets J, Martinant JP, Raffoux X, Ribière N, Ridel C, Samson D, Charcosset A, Murigneux A. Linkage mapping of 1454 new maize candidate gene Loci. Genetics 2005; 170:1957-66. [PMID: 15937132 PMCID: PMC1449757 DOI: 10.1534/genetics.104.040204] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 04/24/2005] [Indexed: 11/18/2022] Open
Abstract
Bioinformatic analyses of maize EST sequences have highlighted large numbers of candidate genes putatively involved in agriculturally important traits. To contribute to ongoing efforts toward mapping of these genes, we used two populations of intermated recombinant inbred lines (IRILs), which allow a higher map resolution than nonintermated RILs. The first panel (IBM), derived from B73 x Mo17, is publicly available from the Maize Genetics Cooperation Stock Center. The second panel (LHRF) was developed from F2 x F252 to map loci monomorphic on IBM. We built framework maps of 237 loci from the IBM panel and 271 loci from the LHRF panel. Both maps were used to place 1454 loci (1056 on map IBM_Gnp2004 and 398 on map LHRF_Gnp2004) that corresponded to 954 cDNA probes previously unmapped. RFLP was mostly used, but PCR-based methods were also performed for some cDNAs to map SNPs. Unlike in usual IRIL-based maps published so far, corrected meiotic centimorgan distances were calculated, taking into account the number of intermating generations undergone by the IRILs. The corrected sizes of our framework maps were 1825 cM for IBM_Gnp2004 and 1862 cM for LHRF_Gnp2004. All loci mapped on LHRF_Gnp2004 were also projected on a consensus map IBMconsensus_Gnp2004. cDNA loci formed clusters near the centromeres except for chromosomes 1 and 8.
Collapse
Affiliation(s)
- Matthieu Falque
- INRA-UPS-CNRS-INA.PG, UMR de Génétique Végétale, 91190 Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Tamari F, Khosravi D, Hilliker AJ, Shore JS. Inheritance of spontaneous mutant homostyles in Turnera subulata x krapovickasii and in autotetraploid T. scabra (Turneraceae). Heredity (Edinb) 2005; 94:207-16. [PMID: 15483653 DOI: 10.1038/sj.hdy.6800599] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To explore the genetic architecture of distyly in Turnera spp., we determined the inheritance and compatibility behaviour of two spontaneous homostyled mutants. A long-homostyled mutant shoot arose on an otherwise short-styled plant that was an artificial hybrid (Turnera subulata x T. krapovickasii) between two diploid distylous species. The mutation appears to be an allele, SH, of the distyly locus with the dominance relationships, S>SH>s, where S confers the short-styled phenotype, SH confers homostyly in SHSH and SHs genotypes, and ss genotypes are long-styled. Aberrant segregation ratios were observed among some crosses and might be the result of pollen competition. Compatibility relationships are consistent with the hypothesis that a gene complex determines distyly. Infrequently, revertant short-styled flowers have appeared on cuttings of the T. subulata x T. krapovickasii mutant and on occasion, short-styled progeny have appeared in crosses where none were expected. A second mutant homostyle was discovered in autotetraploid T. scabra. The mutation is inherited as above, however, tetrasomic inheritance occurs at the locus. This homostyled mutant carries two copies of the SH allele and has the duplex genotype SHSHss. Compatibility relationships were as observed above. The occurrence of homostyled mutants is consistent with the hypothesis that a linked gene complex underlies the inheritance of distyly in Turnera but we cannot discount the hypothesis that an allelic series is responsible.
Collapse
Affiliation(s)
- F Tamari
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
161
|
Hamwieh A, Udupa SM, Choumane W, Sarker A, Dreyer F, Jung C, Baum M. A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:669-77. [PMID: 15650814 DOI: 10.1007/s00122-004-1892-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/23/2004] [Indexed: 05/23/2023]
Abstract
Microsatellites have currently become the markers of choice for molecular mapping and marker-assisted selection for key traits such as disease resistance in many crop species. We report here on the mapping of microsatellites which had been identified from a genomic library of lentil (Lens culinaris Medik.). The majority of microsatellite-bearing clones contained imperfect di-nucleotide repeats. A total of 41 microsatellite and 45 amplified fragment length polymorphism (AFLP) markers were mapped on 86 recombinant inbred lines derived from the cross ILL 5588 x L 692-16-1(s), which had been previously used for the construction of a random amplified polymorphic DNA and AFLP linkage map. Since ILL 5588 was resistant to fusarium vascular wilt caused by the fungus Fusarium oxysporum Shlecht. Emend. Snyder & Hansen f.sp. lentis Vasud. & Srini., the recombinant inbreds were segregating for this character. The resulting map contained 283 markers covering about 751 cM, with an average marker distance of 2.6 cM. The fusarium vascular wilt resistance was localized on linkage group 6, and this resistance gene was flanked by microsatellite marker SSR59-2B and AFLP marker p17m30710 at distances of 8.0 cM and 3.5 cM, respectively. These markers are the most closely linked ones known to date for this agronomically important Fw gene. Using the information obtained in this investigation, the development and mapping of microsatellite markers in the existing map of lentil could be substantially increased, thereby providing the possibility for the future localization of various loci of agronomic interest.
Collapse
Affiliation(s)
- A Hamwieh
- Institut für Pflanzenbau und Pflanzenzüchtung, Universität Kiel, Olshausenstrasse 40, Kiel, 24098, Germany
| | | | | | | | | | | | | |
Collapse
|
162
|
Udall JA, Quijada PA, Osborn TC. Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics 2004; 169:967-79. [PMID: 15520255 PMCID: PMC1449096 DOI: 10.1534/genetics.104.033209] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genetic maps of Brassica napus were constructed from four segregating populations of doubled haploid lines. Each mapping population had the same male parent and used the same set of RFLP probes, facilitating the construction of a consensus map. Chromosomal rearrangements were identified in each population by molecular marker analysis and were classified as de novo homologous nonreciprocal transpositions (HNRTs), preexisting HNRTs, and homologous reciprocal transpositions (HRTs). Ninety-nine de novo HNRTs were identified by the presence of a few lines having duplication of a chromosomal region and loss of the corresponding homologous region. These de novo HNRTs were more prevalent in one population that had a resynthesized B. napus as a parent. Preexisting HNRTs were identified by fragment duplication or fragment loss in many DH lines due to the segregation of HNRTs preexisting in one of the parents. Nine preexisting HNRTs were identified in the three populations involving natural B. napus parents, which likely originated from previous homologous exchanges. The male parent had a previously described HRT between N7 and N16, which segregated in each population. These data suggest that chromosomal rearrangements caused by homologous recombination are widespread in B. napus. The effects of these rearrangements on allelic and phenotypic diversity are discussed.
Collapse
Affiliation(s)
- Joshua A Udall
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
163
|
Skiba B, Ford R, Pang ECK. Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:1726-35. [PMID: 15502913 DOI: 10.1007/s00122-004-1812-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 08/27/2004] [Indexed: 05/23/2023]
Abstract
A linkage map of the Lathyrus sativus genome was constructed using 92 backcross individuals derived from a cross between an accession resistant (ATC 80878) to ascochyta blight caused by Mycosphaerella pinodes and a susceptible accession (ATC 80407). A total of 64 markers were mapped on the backcross population, including 47 RAPD, seven sequence-tagged microsatellite site and 13 STS/CAPS markers. The map comprised nine linkage groups, covered a map distance of 803.1 cM, and the average spacing between markers was 15.8 cM. Quantitative trait loci (QTL) associated with ascochyta blight resistance were detected using single-point analysis and simple and composite interval mapping. The backcross population was evaluated for stem resistance in temperature-controlled growth room trials. One significant QTL, QTL1, was located on linkage group 1 and explained 12% of the phenotypic variation in the backcross population. A second suggestive QTL, QTL2, was detected on linkage group 2 and accounted for 9% of the trait variation. The L. sativus R-QTL regions detected may be targeted for future intergenus transfer of the trait into accessions of the closely related species Pisum sativum.
Collapse
Affiliation(s)
- B Skiba
- Department of Biotechnology and Environmental Biology, RMIT University, Plenty Road, Bundoora, VIC, 3083, Australia.
| | | | | |
Collapse
|
164
|
Matus I, Corey A, Filichkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R. Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome 2004; 46:1010-23. [PMID: 14663520 DOI: 10.1139/g03-080] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ancestor of barley (Hordeum vulgare subsp. spontaneum) may be a source of novel alleles for crop improvement. We developed a set of recombinant chromosome substitution lines (RCSLs) using an accession of H. vulgare subsp. spontaneum (Caesarea 26-24, from Israel) as the donor and Hordeum vulgare subsp. vulgare 'Harrington' (the North American malting quality standard) as the recurrent parent via two backcrosses to the recurrent parent, followed by six generations of selfing. Here we report (i) the genomic architecture of the RCSLs, as inferred by simple sequence repeat (SSR) markers, and (ii) the effects of H. vulgare subsp. spontaneum genome segment introgressions in terms of three classes of phenotypes: inflorescence yield components, malting quality traits, and domestication traits. Significant differences among the RCSLs were detected for all phenotypes measured. The phenotypic effects of the introgressions were assessed using association analysis, and these were referenced to quantitative trait loci (QTL) reported in the literature. Hordeum vulgare subsp. spontaneum, despite its overall inferior phenotype, contributed some favorable alleles for agronomic and malting quality traits. In most cases, the introgression of the ancestral genome resulted in a loss of desirable phenotypes in the cultivated parent. Although disappointing from a plant breeding perspective, this finding may prove to be a useful tool for gene discovery.
Collapse
Affiliation(s)
- I Matus
- Instituto de Investigaciones, Agropecuaria, INIA CRI-Quilamapu, Casilla, Chillán, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH. QTL mapping of grain quality traits from the interspecific cross Oryza sativa x O. glaberrima. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:630-9. [PMID: 15105992 DOI: 10.1007/s00122-004-1668-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 03/20/2004] [Indexed: 05/04/2023]
Abstract
International rice export markets are increasing demands for rapid improvements in grain quality characteristics. The African rice Oryza glaberrima is a new potential source of genes that will enhance the eating, cooking, and milling properties of the rice grain. The objective of this research was to identify and characterize quantitative trait loci (QTLs) among 312 doubled haploid lines derived from the BC3F1 of an interspecific cross of O. sativa x O. glaberrima. Genetic material was planted in replicated plots and evaluated for ten grain quality traits in 2001 in Colombia. A linkage map was constructed with 100 polymorphic microsatellite markers using the mapdisto software program to adjust for segregation distortion. Transgressive segregation was observed for all traits. Interval and composite interval analyses identified 27 QTLs for nine characters located on 11/12 chromosomes. The chromosomal positions of QTLs for percentage amylose, alkali-spreading score, and percentage protein were in agreement with data reported by others, whereas QTL markers for percentage head rice, percentage milled rice, percentage protein, and percentage brown rice were different in our mapping population. Five major QTLs were found to be associated with improved percentage rice bran, percentage amylose, and alkali-spreading score. Seven QTLs for improved percentage rice bran, percentage milled rice, alkali-spreading score, percentage protein, and grain length/width ratio were derived from the O. glaberrima accession. Three new QTLs for percentage rice bran are reported here for the first time. Results from this study suggest that the African rice might be a valuable new source for introgression and improvement of several traits that affect quality traits demanded by the different rice export markets.
Collapse
Affiliation(s)
- G Aluko
- Department of Agronomy, LSU AgCenter, Louisiana State University, 104 Sturgis Hall, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
166
|
Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:1235-42. [PMID: 12898031 DOI: 10.1007/s00122-003-1361-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 06/11/2003] [Indexed: 05/20/2023]
Abstract
We constructed a genetic linkage map based on a cross between two Swiss winter wheat ( Triticum aestivum L.) varieties, Arina and Forno. Two-hundred and forty F(5) single-seed descent (SSD)-derived lines were analysed with 112 restriction fragment length polymorphism (RFLP) anonymous probes, 18 wheat cDNA clones coding for putative stress or defence-related proteins and 179 simple-sequence repeat (SSR) primer-pairs. The 309 markers revealed 396 segregating loci. Linkage analysis defined 27 linkage groups that could all be assigned to chromosomes or chromosome arms. The resulting genetic map comprises 380 loci and spans 3,086 cM with 1,131 cM for the A genome, 920 cM for the B genome and 1,036 cM for the D genome. Seventeen percent of the loci showed a significant ( P < 0.05) deviation from a 1:1 ratio, most of them in favour of the Arina alleles. This map enabled the mapping of QTLs for resistance against several fungal diseases such as Stagonospora glume blotch, leaf rust and Fusarium head blight. It will also be very useful for wheat genetic mapping, as it combines RFLP and SSR markers that were previously located on separate maps.
Collapse
Affiliation(s)
- S Paillard
- Swiss Federal Research Station for Agroecology and Agriculture (FAL), Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, Matsumoto A, Yoshimura K, Yoshimaru H, Murai M, Nagasaka K, Tsumura Y. A Consensus Linkage Map for Sugi (Cryptomeria japonica) From Two Pedigrees, Based on Microsatellites and Expressed Sequence Tags. Genetics 2003; 165:1551-68. [PMID: 14668402 PMCID: PMC1462850 DOI: 10.1093/genetics/165.3.1551] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
A consensus map for sugi (Cryptomeria japonica) was constructed by integrating linkage data from two unrelated third-generation pedigrees, one derived from a full-sib cross and the other by self-pollination of F1 individuals. The progeny segregation data of the first pedigree were derived from cleaved amplified polymorphic sequences, microsatellites, restriction fragment length polymorphisms, and single nucleotide polymorphisms. The data of the second pedigree were derived from cleaved amplified polymorphic sequences, isozyme markers, morphological traits, random amplified polymorphic DNA markers, and restriction fragment length polymorphisms. Linkage analyses were done for the first pedigree with JoinMap 3.0, using its parameter set for progeny derived by cross-pollination, and for the second pedigree with the parameter set for progeny derived from selfing of F1 individuals. The 11 chromosomes of C. japonica are represented in the consensus map. A total of 438 markers were assigned to 11 large linkage groups, 1 small linkage group, and 1 nonintegrated linkage group from the second pedigree; their total length was 1372.2 cM. On average, the consensus map showed 1 marker every 3.0 cM. PCR-based codominant DNA markers such as cleaved amplified polymorphic sequences and microsatellite markers were distributed in all linkage groups and occupied about half of mapped loci. These markers are very useful for integration of different linkage maps, QTL mapping, and comparative mapping for evolutional study, especially for species with a large genome size such as conifers.
Collapse
Affiliation(s)
- Naoki Tani
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:1419-32. [PMID: 14513215 DOI: 10.1007/s00122-003-1373-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 07/15/2003] [Indexed: 05/21/2023]
Abstract
A BC(2)F(2) population developed from an interspecific cross between Oryza sativa (cv IR64) and O. rufipogon (IRGC 105491) was used in an advanced backcross QTL analysis to identify and introduce agronomically useful genes from this wild relative into the cultivated gene pool. The objectives of this study were: (1) to identify putative yield and yield component QTLs that can be useful to improve the elite cultivar IR64; (2) to compare the QTLs within this study with previously reported QTLs in rice as the basis for identifying QTLs that are stable across different environments and genetic backgrounds; and (3) to compare the identified QTLs with previously reported QTLs from maize to examine the degree of QTL conservation across the grass family. Two hundred eighty-five families were evaluated in two field environments in Indonesia, with two replications each, for 12 agronomic traits. A total of 165 markers consisting of 131 SSRs and 34 RFLPs were used to construct the genetic linkage map. By employing interval mapping and composite interval mapping, 42 QTLs were identified. Despite its inferior performance, 33% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield and yield components in the IR64 background. Twenty-two QTLs (53.4%) were located in similar regions as previously reported rice QTLs, suggesting the existence of stable QTLs across genetic backgrounds and environments. Twenty QTLs (47.6%) were exclusively detected in this study, uncovering potentially novel alleles from the wild, some of which might improve the performance of the tropical indica variety IR64. Additionally, several QTLs for plant height, grain weight, and flowering time detected in this study corresponded to homeologous regions in maize containing previously detected maize QTLs for these traits.
Collapse
Affiliation(s)
- E M Septiningsih
- Department of Plant Breeding, Cornell University, 240 Emerson Hall, Ithaca, NY 14853-1901, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Cai H, Zhang Y, Xu J, Zhu L, Cheng K, Wang X. Polymorphism at the esterase isozyme locus Est10 associated with phylogenetic differentiation in rice. Genes Genet Syst 2003; 78:285-90. [PMID: 14532707 DOI: 10.1266/ggs.78.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A new esterase isozyme locus, Est10, with 6 alleles including the null form, has been found in rice by using polyacrylamide gel electrophoresis. Thirty F(2) populations of all possible combinations between 5 different band morphs were studied. The segregation pattern indicated that bands 1, 2, 3, 4, and the null form (0) were allelic with each other. The alleles of Est10 were distributed at different frequencies among different varietal groups of rice and also between cultivated rice and its wild relatives (Oryza rufipogon Griff.). Alleles 1 and 2 were frequently found in Japonica and Indica types, respectively. Allele 3 showed a high frequency in Aus and Boro, both Indica types cultivated in South Asia. Allele 4 was frequent in wild rice O. rufipogon. Judging from the linkage between Est10 and RFLP marker RG220 and isozyme marker Est5, Est10 is located on chromosome 1. The importance of this locus in evolutionary studies of rice is discussed.
Collapse
Affiliation(s)
- Hongwei Cai
- Department of Plant Genetics and Breeding, College of Plant Science and Technology, China Agricultural University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
170
|
Myburg AA, Griffin AR, Sederoff RR, Whetten RW. Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. THEORETICAL AND APPLIED GENETICS 2003; 107:1028-42. [PMID: 12838392 DOI: 10.1007/s00122-003-1347-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 05/12/2003] [Indexed: 05/22/2023]
|
171
|
Li JZ, Sjakste TG, Röder MS, Ganal MW. Development and genetic mapping of 127 new microsatellite markers in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:1021-1027. [PMID: 12879255 DOI: 10.1007/s00122-003-1345-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 05/23/2003] [Indexed: 05/24/2023]
Abstract
To enhance the marker density of existing genetic maps of barley ( Hordeum vulgare L.), a new set of microsatellite markers containing dinucleotide motifs was developed from genomic clones. Out of 254 primer pairs tested, a total of 167 primer pairs were classifed as functional in a panel of six barley cultivars and three H. spontaneum accessions, and of those, 127 primer pairs resulting in 133 loci were either mapped or located onto chromosomes. The polymorphism information content (PIC) ranged from 0.05 to 0.94 with an average of 0.60. The number of alleles per locus varied from 1 to 9. On average, 3.9 alleles per primer pair were observed. The RFLP frameworks of two previously published linkage maps were used to locate a total of 115 new microsatellite loci on at least one mapping population. The chromosomal assignment of 48 mapped loci was corroborated on a set of wheat-barley chromosome addition lines; 18 additional loci which were not polymorphic in the mapping populations were assigned to chromosomes by this method. The microsatellites were located on all seven linkage groups with four significant clusters in the centromeric regions of 2H, 3H, 6H and 7H. These newly developed microsatellites improve the density of existing barley microsatellite maps and can be used in genetic studies and breeding research.
Collapse
Affiliation(s)
- J Z Li
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Correnstrasse 3, 06466 Gatersleben, Germany
| | | | | | | |
Collapse
|
172
|
Heuer S, Miézan KM. Assessing hybrid sterility in Oryza glaberrima x O. sativa hybrid progenies by PCR marker analysis and crossing with wide compatibility varieties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:902-9. [PMID: 12851767 DOI: 10.1007/s00122-003-1325-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Accepted: 01/02/2003] [Indexed: 05/23/2023]
Abstract
Interspecific crossing of the African indigenous rice Oryza glaberrima with Oryza sativa cultivars is hindered by crossing barriers causing 100% spikelet sterility in F(1) hybrids. Since hybrids are partially female fertile, fertility can be restored by back crossing (BC) to a recurrent male parent. Distinct genetic models on spikelet sterility have been developed predicting, e.g., the existence of a gamete eliminator and/or a pollen killer. Linkage of sterility to the waxy starch synthase gene and the chromogen gene C, both located on chromosome 6, have been demonstrated. We selected a segregating BC(2)F(3) population of semi-sterile O. glaberrima x O. sativa indica hybrid progenies for analyses with PCR markers located at the respective chromosome-6 region. These analyses revealed that semi-sterile plants were heterozygous for a marker (OSR25) located in the waxy promoter, whereas fertile progenies were homozygous for the O. glaberrima allele. Adjacent markers showed no linkage to spikelet sterility. Semi-sterility of hybrid progenies was maintained at least until the F(4) progeny generation, suggesting the existence of a pollen killer in this plant material. Monitoring of reproductive plant development showed that spikelet sterility was at least partially due to an arrest of pollen development at the microspore stage. In order to address the question whether genes responsible for F(1) sterility in intraspecific hybrids ( O. sativa indica x japonica) also cause spikelet sterility in interspecific hybrids, crossings with wide compatibility varieties (WCV) were performed. WCV accessions possess "neutral" S-loci ( S(n)) improving fertility in intraspecific hybrids. This experiment showed that the tested S(n)-loci had no fertility restoring effect in F(1) interspecific hybrids. Pollen development was completely arrested at the microspore stage and grains were never obtained after selfing. This suggests that distinct or additional S-loci are responsible for sterility of O. glaberrima x O. sativa hybrids.
Collapse
Affiliation(s)
- Sigrid Heuer
- West Africa Rice Development Association (WARDA), B.P. 96, St. Louis, Senegal.
| | | |
Collapse
|
173
|
Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. Genome 2003; 46:612-26. [PMID: 12897870 DOI: 10.1139/g03-050] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An interspecific Gossypium hirsutum x Gossypium barbadense backcross population of 75 BC1 plants was evaluated for 1014 markers. The map consists of 888 loci, including 465 AFLPs, 229 SSRs, 192 RFLPs, and 2 morphological markers, ordered in 37 linkage groups that represent most if not all of the 26 chromosomes, altogether spanning 4400 cM. Loci were not evenly distributed over linkage groups, and 18 of the 26 long groups had a single dense region. This paper proposes a partially revised list of the 13 pairs of homoeologous A/D chromosomes of the 2n = 4x = 52 tetraploid cotton genome. The major revisions, which involve the c3-c17, c4-c22, c5-D08, and c10-c20 homoeologous pairs, are based on the mapping of 68 SSR and RFLP loci with a known chromosome assignment, as well as on comparative alignments with previously published G. hirsutum x G. barbadense maps. The overall congruency in the locus orders and distances of common SSR and RFLP loci in these maps allows for an estimation of the consensus length that reaches a minimum of 5500 cM, and is encouraging for future efforts aimed at developing an integrated map of cultivated cotton. The present map also provides a firm framework for precision mapping of Mendelian components of quantitative traits in cotton
Collapse
Affiliation(s)
- J-M Lacape
- Centre International en Recherche Agronomique pour le Développement TA, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Collard BCY, Pang ECK, Ades PK, Taylor PWJ. Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:719-729. [PMID: 12768241 DOI: 10.1007/s00122-003-1297-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Accepted: 03/14/2003] [Indexed: 05/24/2023]
Abstract
Accessions from Cicer echinospermum, a wild relative of chickpea (Cicer arietinum L.), contain resistance to the fungal disease ascochyta blight, a devastating disease of chickpea. A linkage map was constructed based on an interspecific F(2) population, derived from a cross between a susceptible chickpea cultivar (Lasseter) and a resistant C. echinospermum accession (PI 527930). The linkage map incorporated 83 molecular markers, that included RAPD, ISSR, STMS and RGA markers; eight markers remained unlinked. The map comprised eight linkage groups and covered a map distance of 570 cM. Six out of the eight linkage groups were correlated to linkage groups from the integrated Cicer map using STMS markers. Quantitative trait loci (QTLs) associated with ascochyta blight resistance were detected using interval mapping and single-point analysis. The F(2) population was evaluated for seedling and stem resistance in glasshouse trials. At least two QTLs were identified for seedling resistance, both of which were located within linkage group 4. Five markers were associated with stem resistance, four of which were also associated with seedling resistance. QTLs from previous studies also mapped to LG 4, suggesting that this linkage group is an important region of the Cicer genome for resistance to ascochyta blight.
Collapse
Affiliation(s)
- B C Y Collard
- BioMarka, Joint Centre for Crop Innovation, Institute of Land and Food Resources, University of Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
175
|
Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:479-93. [PMID: 12736777 DOI: 10.1007/s00122-003-1270-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Accepted: 11/28/2002] [Indexed: 05/20/2023]
Abstract
An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.
Collapse
Affiliation(s)
- M J Thomson
- Department of Plant Breeding, 240 Emerson Hall, Cornell University, Ithaca, NY 14853-1901, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Wu X, Larson SR, Hu Z, Palazzo AJ, Jones TA, Wang RRC, Jensen KB, Chatterton NJ. Molecular genetic linkage maps for allotetraploid Leymus wildryes (Gramineae: Triticeae). Genome 2003; 46:627-46. [PMID: 12897871 DOI: 10.1139/g03-048] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular genetic maps were constructed for two full-sib populations, TTC1 and TTC2, derived from two Leymus triticoides x Leymus cinereus hybrids and one common Leymus triticoides tester. Informative DNA markers were detected using 21 EcoRI-MseI and 17 PstI-MseI AFLP primer combinations, 36 anchored SSR or STS primer pairs, and 9 anchored RFLP probes. The 164-sib TTC1 map includes 1069 AFLP markers and 38 anchor loci in 14 linkage groups spanning 2001 cM. The 170-sib TTC2 map contains 1002 AFLP markers and 36 anchor loci in 14 linkage groups spanning 2066 cM. Some 488 homologous AFLP loci and 24 anchor markers detected in both populations showed similar map order. Thus, 1583 AFLP markers and 50 anchor loci were mapped into 14 linkage groups, which evidently correspond to the 14 chromosomes of allotetraploid Leymus (2n = 4x = 28). Synteny of two or more anchor markers from each of the seven homoeologous wheat and barley chromosomes was detected for 12 of the 14 Leymus linkage groups. Moreover, two distinct sets of genome-specific STS markers were identified in these allotetraploid Leymus species. These Leymus genetic maps and populations will provide a useful system to evaluate the inheritance of functionally important traits of two divergent perennial grass species.
Collapse
Affiliation(s)
- Xiaolei Wu
- United States Department of Agriculture, Agruiculture Research Service, Fage and Range Research Laboratory, Utah State University, UT 84322-6300, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Albar L, Ndjiondjop MN, Esshak Z, Berger A, Pinel A, Jones M, Fargette D, Ghesquière A. Fine genetic mapping of a gene required for Rice yellow mottle virus cell-to-cell movement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:371-378. [PMID: 12679871 DOI: 10.1007/s00122-003-1258-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 11/25/2002] [Indexed: 05/24/2023]
Abstract
The very high resistance to Rice yellow mottle virus observed in the two rice varieties Gigante ( Oryza sativa) and Tog 5681 ( O. glaberrima) is monogenic and recessive. Bulked segregant analysis was carried out to identify AFLP markers linked to the resistance gene. Mapping of PCR-specific markers, CAPS and microsatellite markers on 429 individuals of an IR64 x Gigante F(2) population pinpointed this resistance gene on the long arm of chromosome 4 in a 3.7-cM interval spanned by PCR markers. These markers also flanked the resistance gene of the O. glaberrima accession Tog 5681 and confirmed previous allelism tests. The rarity of this recessive natural resistance was in line with a resistance mechanism model based on point mutations of a host component required for cell-to-cell movement of the virus. Preliminary data on the genetic divergence between the two cultivated rice species in the vicinity of the resistance locus suggested that two different resistance alleles are present in Gigante and Tog 5681. A large set of recombinants is now available to envisage physical mapping and cloning of the gene.
Collapse
Affiliation(s)
- L Albar
- IRD, BP64501, 34394 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ. An intraspecific linkage map of the chickpea ( Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1447-1456. [PMID: 12750788 DOI: 10.1007/s00122-003-1199-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Accepted: 11/11/2002] [Indexed: 05/24/2023]
Abstract
An intraspecific linkage map of the chickpea genome based on STMS as anchor markers, was established using an F(2) population of chickpea cultivars with contrasting disease reactions to Ascochyta rabiei (Pass.) Lab. At a LOD-score of 2.0 and a maximum recombination distance of 20 cM, 51 out of 54 chickpea-STMS markers (94.4%), three ISSR markers (100%) and 12 RGA markers (57.1%) were mapped into eight linkage groups. The chickpea-derived STMS markers were distributed throughout the genome, while the RGA markers clustered with the ISSR markers on linkage groups LG I, II and III. The intraspecific linkage map spanned 534.5 cM with an average interval of 8.1 cM between markers. Sixteen markers (19.5%) were unlinked, while l1 chickpea-STMS markers (20.4%) deviated significantly ( P < 0.05) from the expected Mendelian segregation ratio and segregated in favor of the maternal alleles. However, ten of the distorted chickpea-STMS markers were mapped and clustered mostly on LG VII, suggesting the association of these loci in the preferential transmission of the maternal germ line. Preliminary comparative mapping revealed that chickpea may have evolved from Cicer reticulatum, possibly via inversion of DNA sequences and minor chromosomal translocation. At least three linkage groups that spanned a total of approximately 79.2 cM were conserved in the speciation process.
Collapse
Affiliation(s)
- H Flandez-Galvez
- BioMarka, Joint Centre for Crop Innovation, School of Agriculture and Food Systems, The University of Melbourne, VIC 3010, Australia.
| | | | | | | |
Collapse
|
179
|
Tansengco ML, Hayashi M, Kawaguchi M, Imaizumi-Anraku H, Murooka Y. crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus. PLANT PHYSIOLOGY 2003; 131:1054-63. [PMID: 12644658 PMCID: PMC166871 DOI: 10.1104/pp.102.017020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Revised: 11/24/2002] [Accepted: 01/08/2003] [Indexed: 05/18/2023]
Abstract
To elucidate the mechanisms involved in Rhizobium-legume symbiosis, we examined a novel symbiotic mutant, crinkle (Ljsym79), from the model legume Lotus japonicus. On nitrogen-starved medium, crinkle mutants inoculated with the symbiont bacterium Mesorhizobium loti MAFF 303099 showed severe nitrogen deficiency symptoms. This mutant was characterized by the production of many bumps and small, white, uninfected nodule-like structures. Few nodules were pale-pink and irregularly shaped with nitrogen-fixing bacteroids and expressing leghemoglobin mRNA. Morphological analysis of infected roots showed that nodulation in crinkle mutants is blocked at the stage of the infection process. Confocal microscopy and histological examination of crinkle nodules revealed that infection threads were arrested upon penetrating the epidermal cells. Starch accumulation in uninfected cells and undeveloped vascular bundles were also noted in crinkle nodules. Results suggest that the Crinkle gene controls the infection process that is crucial during the early stage of nodule organogenesis. Aside from the symbiotic phenotypes, crinkle mutants also developed morphological alterations, such as crinkly or wavy trichomes, short seedpods with aborted embryos, and swollen root hairs. crinkle is therefore required for symbiotic nodule development and for other aspects of plant development.
Collapse
Affiliation(s)
- Myra L Tansengco
- Osaka University, Graduate School of Engineering, Department of Biotechnology, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
180
|
Ayyadevara S, Ayyadevara R, Vertino A, Galecki A, Thaden JJ, Shmookler Reis RJ. Genetic loci modulating fitness and life span in Caenorhabditis elegans: categorical trait interval mapping in CL2a x Bergerac-BO recombinant-inbred worms. Genetics 2003; 163:557-70. [PMID: 12618395 PMCID: PMC1462449 DOI: 10.1093/genetics/163.2.557] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Quantitative trait loci (QTL) can implicate an unbiased sampling of genes underlying a complex, polygenic phenotype. QTL affecting longevity in Caenorhabditis elegans were mapped using a CL2a x Bergerac-BO recombinant-inbred population. Genotypes were compared at 30 transposon-specific markers for two paired sample sets totaling 171 young controls and 172 longevity-selected worms (the last-surviving 1%) from a synchronously aged population. A third sample set, totaling 161 worms from an independent culture, was analyzed for confirmation of loci. At least six highly significant QTL affecting life span were detected both by single-marker (chi(2)) analysis and by two interval-mapping procedures--one intended for nonparametric traits and another developed specifically for mapping of categorical traits. These life-span QTL were located on chromosomes I (near the hP4 locus), III (near stP127), IV (near stP44), V (a cluster of three peaks, near stP192, stP23, and stP6), and X (two distinct peaks, near stP129 and stP2). Epistatic effects on longevity were also analyzed by Fisher's exact test, which indicated a significant life-span interaction between markers on chromosomes V (stP128) and III (stP127). Several further interactions were significant in the initial unselected population; two of these, between distal loci on chromosome V, were completely eliminated in the long-lived subset. Allelic longevity effects for two QTL, on chromosomes IV and V, were confirmed in backcrossed congenic lines and were highly significant in two very different environments-growth on solid agar medium and in liquid suspension culture.
Collapse
Affiliation(s)
- Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | |
Collapse
|
181
|
Knox MR, Ellis THN. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations. Genetics 2002; 162:861-73. [PMID: 12399396 PMCID: PMC1462271 DOI: 10.1093/genetics/162.2.861] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several plant genetic maps presented in the literature are longer than expected from cytogenetic data. Here we compare F(2) and RI maps derived from a cross between the same two parental lines and show that excess heterozygosity contributes to map inflation. These maps have been constructed using a common set of dominant markers. Although not generally regarded as informative for F(2) mapping, these allowed rapid map construction, and the resulting data analysis has provided information not otherwise obvious when examining a population from only one generation. Segregation distortion, a common feature of most populations and marker systems, found in the F(2) but not the RI, has identified excess heterozygosity. A few markers with a deficiency of heterozygotes were found to map to linkage group V (chromosome 3), which is known to form rod bivalents in this cross. Although the final map length was longer for the F(2) population, the mapped order of markers was generally the same in the F(2) and RI maps. The data presented in this analysis reconcile much of the inconsistency between map length estimates from chiasma counts and genetic data.
Collapse
Affiliation(s)
- M R Knox
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, United Kingdom.
| | | |
Collapse
|
182
|
Zenger KR, McKenzie LM, Cooper DW. The First Comprehensive Genetic Linkage Map of a Marsupial: The Tammar Wallaby (Macropus eugenii). Genetics 2002; 162:321-30. [PMID: 12242243 PMCID: PMC1462270 DOI: 10.1093/genetics/162.1.321] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractThe production of a marsupial genetic linkage map is perhaps one of the most important objectives in marsupial research. This study used a total of 353 informative meioses and 64 genetic markers to construct a framework genetic linkage map for the tammar wallaby (Macropus eugenii). Nearly all markers (93.8%) formed a significant linkage (LOD > 3.0) with at least one other marker, indicating that the majority of the genome had been mapped. In fact, when compared with chiasmata data, >70% (828 cM) of the genome has been covered. Nine linkage groups were identified, with all but one (LG7; X-linked) allocated to the autosomes. These groups ranged in size from 15.7 to 176.5 cM and have an average distance of 16.2 cM between adjacent markers. Of the autosomal linkage groups (LGs), LG2 and LG3 were assigned to chromosome 1 and LG4 localized to chromosome 3 on the basis of physical localization of genes. Significant sex-specific distortions toward reduced female recombination rates were revealed in 22% of comparisons. When comparing the X chromosome data to closely related species it is apparent that they are conserved in both synteny and gene order.
Collapse
Affiliation(s)
- Kyall R Zenger
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | | | | |
Collapse
|
183
|
Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 2002; 45:520-9. [PMID: 12033621 DOI: 10.1139/g02-011] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic linkage map of Prunus constructed earlier and based on an interspecific F2 population resulting from a cross between almond (Prunus dulcis D.A. Webb) and peach (Prunus persica L. Batsch) was extended to include 8 isozyme loci, 102 peach mesocarp cDNAs, 11 plum genomic clones, 19 almond genomic clones, 7 resistance gene analogs (RGAs), 1 RGA-related sequence marker, 4 morphological trait loci, 3 genes with known function, 4 simple sequence repeat (SSR) loci, 1 RAPD, and 1 cleaved amplified polymorphic sequence (CAP) marker. This map contains 161 markers placed in eight linkage groups that correspond to the basic chromosome number of the genus (x = n = 8) with a map distance of 1144 centimorgans (cM) and an average marker density of 6.8 cM. Four more trait loci (Y, Pcp, D, and SK) and one isozyme locus (Mdh1) were assigned to linkage groups based on known associations with linked markers. The linkage group identification numbers correspond to those for maps published by the Arús group in Spain and the Dirlewanger group in France. Forty-five percent of the loci showed segregation distortion most likely owing to the interspecific nature of the cross and mating system differences between almond (obligate outcrosser) and peach (selfer). The Cat1 locus, known to be linked to the D locus controlling fruit acidity, was mapped to linkage group 5. A gene or genes controlling polycarpel fruit development was placed on linkage group 3, and control of senesced leaf color (in late fall season) (LFCLR) was mapped to linkage group 1 at a putative location similar to where the Y locus has also been placed.
Collapse
Affiliation(s)
- F A Bliss
- Department of Pomology, University of California, Davis 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Chani E, Ashkenazi V, Hillel J, Veilleux RE. Microsatellite marker analysis of an anther-derived potato family: skewed segregation and gene-centromere mapping. Genome 2002; 45:236-42. [PMID: 11962620 DOI: 10.1139/g01-140] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Segregation patterns of polymorphic simple sequence repeat (SSR) primer pairs were investigated in monoploid potato families derived from anther culture. A total of 14 primers developed from the sequences in the database, as well as from a genomic library of potato, was used. Distorted segregation was observed for seven (50%) polymorphic loci among monoploids derived from an interspecific hybrid. Similar distortion was observed for only one of five loci that could be contrasted between the two monoploid families. Segregation distortion was less common in the sexually derived backcross population between the interspecific hybrid and either of its parents. One locus could be putatively linked to a lethal allele because it showed distorted segregation in both monoploid families, a group of 70 heterozygous diploids derived from unreduced gametes through anther culture, and a backcross population. These diploids were used to map the polymorphic SSR markers with respect to the centromeres using half-tetrad analysis. The majority of the SSR loci mapped more than 33 cM from the centromere, suggesting the occurrence of a single crossover per chromosome arm.
Collapse
Affiliation(s)
- Eduard Chani
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | | | |
Collapse
|
185
|
Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillaspie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ. An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome 2002; 45:175-88. [PMID: 11908660 DOI: 10.1139/g01-102] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An improved genetic linkage map has been constructed for cowpea (Vigna unguiculata L. Walp.) based on the segregation of various molecular markers and biological resistance traits in a population of 94 recombinant inbred lines (RILs) derived from the cross between 'IT84S-2049' and '524B'. A set of 242 molecular markers, mostly amplified fragment length polymorphism (AFLP), linked to 17 biological resistance traits, resistance genes, and resistance gene analogs (RGAs) were scored for segregation within the parental and recombinant inbred lines. These data were used in conjunction with the 181 random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), AFLP, and biochemical markers previously mapped to construct an integrated linkage map for cowpea. The new genetic map of cowpea consists of 11 linkage groups (LGs) spanning a total of 2670 cM, with an average distance of 6.43 cM between markers. Astonishingly, a large, contiguous portion of LG1 that had been undetected in previous mapping work was discovered. This region, spanning about 580 cM, is composed entirely of AFLP markers (54 in total). In addition to the construction of a new map, molecular markers associated with various biological resistance and (or) tolerance traits, resistance genes, and RGAs were also placed on the map, including markers for resistance to Striga gesnerioides races 1 and 3, CPMV, CPSMV, B1CMV, SBMV, Fusarium wilt, and root-knot nematodes. These markers will be useful for the development of tools for marker-assisted selection in cowpea breeding, as well as for subsequent map-based cloning of the various resistance genes.
Collapse
Affiliation(s)
- J T Ouédraogo
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N. A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics 2001; 159:883-92. [PMID: 11606560 PMCID: PMC1461833 DOI: 10.1093/genetics/159.2.883] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic study of the reproductive barriers between related species plays an essential role in understanding the process of speciation. We developed a new method for mapping all possible factors causing deviations from expected Mendelian segregation ratios in F(2) progeny, which substantially contribute to reproductive isolation. A multiresponse nonlinear regression analysis of the allele frequencies of the markers covering an entire genome in the F(2) population was performed to estimate the map position and intensity of the reproductive barriers on each chromosome. In F(2) plants from a cross between a Japonica variety of rice, Nipponbare, and an Indica variety, Kasalath, the deviations of allele frequencies were well explained by 33 reproductive barriers. Of these, 15 reproductive barriers affected the allele transmission rate through the gametophyte and in 9 of these 15 cases, an Indica allele was transmitted at a higher frequency than a Japonica allele. The other 18 reproductive barriers altered the viability of the zygote via its genotype. Two zygotic reproductive barriers showed overdominance and 5 showed underdominance. The most pronounced reproductive barrier, mapped at 62.3 +/- 0.4 cM on chromosome 3, transmitted the Indica allele by 94% through the male gametophyte. The accuracy of the barrier position in the regression analysis was confirmed by progeny analysis. The regression analysis proved to be a powerful tool for detecting and characterizing every reproductive barrier, irrespective of whether it acted on the male or female gametophyte or the zygote.
Collapse
Affiliation(s)
- Y Harushima
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | | | |
Collapse
|
187
|
Portyanko VA, Hoffman DL, Lee M, Holland JB. A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. Genome 2001. [DOI: 10.1139/g01-003] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cultivated oat linkage map was developed using a recombinant inbred population of 136 F6:7 lines from the cross 'Ogle' × 'TAM O-301'. A total of 441 marker loci, including 355 restriction fragment length polymorphism (RFLP) markers, 40 amplified fragment length polymorphisms (AFLPs), 22 random amplified polymorphic DNAs (RAPDs), 7 sequence-tagged sites (STSs), 1 simple sequence repeat (SSR), 12 isozyme loci, and 4 discrete morphological traits, was mapped. Fifteen loci remained unlinked, and 426 loci produced 34 linkage groups (with 243 loci each) spanning 2049 cM of the oat genome (from 4.2 to 174.0 cM per group). Comparisons with other Avena maps revealed 35 genome regions syntenic between hexaploid maps and 1634 regions conserved between diploid and hexaploid maps. Those portions of hexaploid oat maps that could be compared were completely conserved. Considerable conservation of diploid genome regions on the hexaploid map also was observed (8995%); however, at the whole-chromosome level, colinearity was much lower. Comparisons among linkage groups, both within and among Avena mapping populations, revealed several putative homoeologous linkage group sets as well as some linkage groups composed of segments from different homoeologous groups. The relationships between many Avena linkage groups remain uncertain, however, due to incomplete coverage by comparative markers and to complications introduced by genomic duplications and rearrangements.Key words: Avena, linkage map, comparative mapping, homoeology.
Collapse
|
188
|
Ayyadevara S, Ayyadevara R, Hou S, Thaden JJ, Shmookler Reis RJ. Genetic mapping of quantitative trait loci governing longevity of Caenorhabditis elegans in recombinant-inbred progeny of a Bergerac-BO x RC301 interstrain cross. Genetics 2001; 157:655-66. [PMID: 11156986 PMCID: PMC1461506 DOI: 10.1093/genetics/157.2.655] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant-inbred populations, generated from a cross between Caenorhabditis elegans strains Bergerac-BO and RC301, were used to identify quantitative trait loci (QTL) affecting nematode longevity. Genotypes of young controls and longevity-selected worms (the last-surviving 1% from a synchronously aged population) were assessed at dimorphic transposon-specific markers by multiplex polymerase chain reaction. The power of genetic mapping was enhanced, in a novel experimental design, through map expansion by accrual of recombinations over several generations, internally controlled longevity selection from a genetically heterogeneous, homozygous population, and selective genotyping of extremely long-lived worms. Analysis of individual markers indicated seven life-span QTL, situated near markers on chromosomes I (tcbn2), III (stP127), IV (stP13), V (stP6, stP23, and stP128), and X (stP41). These loci were corroborated, and mapped with increased precision, by nonparametric interval mapping-which supported all loci implicated by single-marker analysis. In addition, a life-span QTL on chromosome II (stP100-stP196), was significant only by interval mapping. Congenic lines were constructed for the longevity QTL on chromosomes III and X, by backcrossing the Bergerac-BO QTL allele into an RC301 background with selection for flanking markers. Survival data for these lines demonstrated consistent and significant effects of each QTL on life span.
Collapse
Affiliation(s)
- S Ayyadevara
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
189
|
Virk PS, Ford-lloyd BV, Newbury HJ. Mapping AFLP markers associated with subspecific differentiation of Oryza sativa (rice) and an investigation of segregation distortion. Heredity (Edinb) 1998. [DOI: 10.1046/j.1365-2540.1998.00441.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
190
|
Väinölä R. A sex-linked locus (Mpi) in the opossum shrimp Mysis relicta: implications for early postglacial colonization history. Heredity (Edinb) 1998. [DOI: 10.1046/j.1365-2540.1998.00442.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
191
|
Faris JD, Laddomada B, Gill BS. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 1998; 149:319-27. [PMID: 9584106 PMCID: PMC1460138 DOI: 10.1093/genetics/149.1.319] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Distorted segregation ratios of genetic markers are often observed in progeny of inter- and intraspecific hybrids and may result from competition among gametes or from abortion of the gamete or zygote. In this study, 194 markers mapped in an Aegilops tauschii F2 population were surveyed for distorted segregation ratios. Region(s) with skewed segregation ratios were detected on chromosomes 1D, 3D, 4D, and 7D. These distorter loci are designated as QSd.ksu-1D, QSd. ksu-3D, QSd.ksu-4D, and QSd.ksu-7D. Three regions of segregation distortion identified on chromosome 5D were analyzed in two sets of reciprocal backcross populations to analyze the effect of sex and cytoplasm on segregation distortion. Extreme distortion of marker segregation ratios was observed in populations in which the F1 was used as the male parent, and ratios were skewed in favor of TA1691 alleles. There was some evidence of differential transmission caused by nucleo-cytoplasmic interactions. Our results agree with other studies stating that loci affecting gametophyte competition in male gametes are located on 5DL. The distorter loci on 5DL are designated as QSd.ksu-5D.1, QSd.ksu-5D.2, and QSd.ksu-5D.3.
Collapse
Affiliation(s)
- J D Faris
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|