151
|
Ramos Elbal E, Galera Miñarro AM, Llinares Riestra ME, Bermúdez Cortés M, Fuster Soler JL. Neuroblastoma: validation of the INRG classification system in a small series. Clin Transl Oncol 2019; 21:1776-1780. [DOI: 10.1007/s12094-019-02099-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/22/2019] [Indexed: 11/24/2022]
|
152
|
Nunes-Xavier CE, Zaldumbide L, Aurtenetxe O, López-Almaraz R, López JI, Pulido R. Dual-Specificity Phosphatases in Neuroblastoma Cell Growth and Differentiation. Int J Mol Sci 2019; 20:ijms20051170. [PMID: 30866462 PMCID: PMC6429076 DOI: 10.3390/ijms20051170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are important regulators of neuronal cell growth and differentiation by targeting proteins essential to neuronal survival in signaling pathways, among which the MAP kinases (MAPKs) stand out. DUSPs include the MAPK phosphatases (MKPs), a family of enzymes that directly dephosphorylate MAPKs, as well as the small-size atypical DUSPs, a group of low molecular-weight enzymes which display more heterogeneous substrate specificity. Neuroblastoma (NB) is a malignancy intimately associated with the course of neuronal and neuroendocrine cell differentiation, and constitutes the source of more common extracranial solid pediatric tumors. Here, we review the current knowledge on the involvement of MKPs and small-size atypical DUSPs in NB cell growth and differentiation, and discuss the potential of DUSPs as predictive biomarkers and therapeutic targets in human NB.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital HF Radiumhospitalet, Oslo 0424, Norway.
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Olaia Aurtenetxe
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
| | - Ricardo López-Almaraz
- Pediatric Oncology and Hematology, Cruces University Hospital, Barakaldo, Bizkaia 48903, Spain.
| | - José I López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain.
| |
Collapse
|
153
|
Li X, Xiao B, Guo Y, Xiao Y, Xiao S. Cucurbit[7]uril enhances photosensitization of porphyrins in Neuroblastoma cells. Photodiagnosis Photodyn Ther 2019; 25:364-368. [DOI: 10.1016/j.pdpdt.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 01/10/2023]
|
154
|
SYK Inhibition Potentiates the Effect of Chemotherapeutic Drugs on Neuroblastoma Cells in Vitro. Cancers (Basel) 2019; 11:cancers11020202. [PMID: 30744170 PMCID: PMC6406899 DOI: 10.3390/cancers11020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a malignancy arising from the developing sympathetic nervous system and the most common and deadly cancer of infancy. New therapies are needed to improve the prognosis for high-risk patients and to reduce toxicity and late effects. Spleen tyrosine kinase (SYK) has previously been identified as a promising drug target in various inflammatory diseases and cancers but has so far not been extensively studied as a potential therapeutic target in neuroblastoma. In this study, we observed elevated SYK gene expression in neuroblastoma compared to neural crest and benign neurofibroma. While SYK protein was detected in the majority of examined neuroblastoma tissues it was less frequently observed in neuroblastoma cell lines. Depletion of SYK by siRNA and the use of small molecule SYK inhibitors significantly reduced the cell viability of neuroblastoma cell lines expressing SYK protein. Moreover, SYK inhibition decreased ERK1/2 and Akt phosphorylation. The SYK inhibitor BAY 61-3606 enhanced the effect of different chemotherapeutic drugs. Transient expression of a constitutive active SYK variant increased the viability of neuroblastoma cells independent of endogenous SYK levels. Collectively, our findings suggest that targeting SYK in combination with conventional chemotherapy should be further evaluated as a treatment option in neuroblastoma.
Collapse
|
155
|
Exploring Cancer Cell Behavior In Vitro in Three-Dimensional Multicellular Bioprintable Collagen-Based Hydrogels. Cancers (Basel) 2019; 11:cancers11020180. [PMID: 30764492 PMCID: PMC6406373 DOI: 10.3390/cancers11020180] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
In vitro cancer 3D models are valuable tools to provide mechanistic insight into solid tumor growth, invasion, and drug delivery. The 3D spheroid model of solid tumors has been the most popular cancer model in use until now. However, previous studies have shown that these spheroid models lack sufficient morphological parameters, which may affect their response to chemicals. In this work, we proposed the fabrication of miniaturized 3D cancer models using collagen type I-based bioprintable bioinks. In the context of a mimicking model for advanced neuroblastoma studies, we showed that cancer cells contained in bioprintable bioinks formed Homer Wright-like rosettes, maintained their proliferative capacities and produced an equivalent Vimentin-rich matrix unlike that of non-bioprintable bioinks which made for poorer models. In addition, bioprintable bioinks were successfully bioprinted as compartmentalized 3D models in the centimeter scale, which was not feasible using non-bioprintable bioinks. In contrast to non-bioprintable hydrogels, we did not observe contraction in their bioprintable counterparts, which is an advantage for prospective 3D bioprinted models that should attain stable rheological and mechanical properties after bioprinting. By adopting this proposed system for the use of patient-derived primary tumor cells, the approach could be introduced as a first line strategy in precision medicine for testing the response of neuroblastoma cells to drugs, especially when disease progresses rapidly or patients do not respond to actual therapy regimens.
Collapse
|
156
|
Huber K, Janoueix-Lerosey I, Kummer W, Rohrer H, Tischler AS. The sympathetic nervous system: malignancy, disease, and novel functions. Cell Tissue Res 2019; 372:163-170. [PMID: 29623426 DOI: 10.1007/s00441-018-2831-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Katrin Huber
- Department of Medicine, University of Fribourg, Route-Albert-Gockel 1, 1700, Fribourg, Switzerland.
| | - Isabelle Janoueix-Lerosey
- SIREDO Oncology Center (Care, Innovation and research for children and AYA with cancer), Inserm U830, PSL Research University, Equipe labellisée Ligue Nationale contre le cancer, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus Liebig University Giessen, Aulweg 123, 35385, Giessen, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M, Germany
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
157
|
Ma X, Yang Y, Wang Z, Sun W, Zhang D, Wu B, Wu H, Lu Z, Cui P. Surgical removal of adult recurrent neuroblastoma located in the posterior mediastinum and retroperitoneum: A case report. Medicine (Baltimore) 2018; 97:e13642. [PMID: 30558057 PMCID: PMC6320002 DOI: 10.1097/md.0000000000013642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Adult recurrent neuroblastoma is extremely rare, especially in the posterior mediastinum and retroperitoneal cavity. The surgical treatment of this special part of the tumor is also a clinical difficulty. PATIENT CONCERNS This study reports a case of a 24-year-old man with a history of treated posterior mediastinal neuroblastoma. Enhanced computed tomography found a heterogeneously enhancing mass occupying the retroperitoneal and posterior mediastinum, and the initial impression was recurrent neuroblastoma. DIAGNOSES The patient was diagnosed with recurrent neuroblastoma based on his medical history and histopathological results. INTERVENTIONS The young adult underwent radical resection of recurrent neuroblastoma in posterior mediastinum and retroperitoneum through thoracoabdominal incision. OUTCOMES The young patient recovered to normal within 10 days after surgery and had no relapse for following-up 12 months. LESSONS Despite the difficulty of surgery, it is feasible to remove the tumor in the posterior mediastinum and retroperitoneal cavity safely.
Collapse
|
158
|
Pelizzo G, Veschi V, Mantelli M, Croce S, Di Benedetto V, D'Angelo P, Maltese A, Catenacci L, Apuzzo T, Scavo E, Moretta A, Todaro M, Stassi G, Avanzini MA, Calcaterra V. Microenvironment in neuroblastoma: isolation and characterization of tumor-derived mesenchymal stromal cells. BMC Cancer 2018; 18:1176. [PMID: 30482160 PMCID: PMC6260687 DOI: 10.1186/s12885-018-5082-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches. Electronic supplementary material The online version of this article (10.1186/s12885-018-5082-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Via dei Benedettini n.1, 90134, Palermo, Italy.
| | - Veronica Veschi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Vincenzo Di Benedetto
- Pediatric Surgery Unit and NICU Policlinico-Vittorio Emanuele Hospital, Catania, Italy
| | - Paolo D'Angelo
- Pediatric Hematology Oncology Unit, Children's Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| | - Alice Maltese
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Laura Catenacci
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Tiziana Apuzzo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Scavo
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Antonia Moretta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Matilde Todaro
- Department of DIBIMIS, University of Palermo, 90127, Palermo, Italy
| | - Giorgio Stassi
- Cellular and Molecular Pathophysiology Laboratory, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
159
|
Luo YB, Cui XC, Yang L, Zhang D, Wang JX. Advances in the Surgical Treatment of Neuroblastoma. Chin Med J (Engl) 2018; 131:2332-2337. [PMID: 30246719 PMCID: PMC6166470 DOI: 10.4103/0366-6999.241803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE This study was to review the efficacy of surgical resections in different clinical situations for a better understanding of the meaning of surgery in the treatment of neuroblastoma (NB). DATA SOURCES The online database ScienceDirect (201-2018) was utilized. The search was conducted using the keywords "neuroblastoma," "neuroblastoma resection," "neuroblastoma surgery," and "high-risk neuroblastoma." STUDY SELECTION We retrospectively analyzed of patients who underwent surgical resections in different clinical situations. The article included findings from selected relevant randomized controlled trials, systematic reviews, and meta-analyses or good-quality observational studies. Abstracts only, letters, and editorial notes were excluded. Full-text articles and abstracts were extracted and reviewed to identify key articles discussing surgery management of NB, which were then selected for critical analysis. RESULTS A total of 7800 English language articles were found containing references to NB (201-2018). The 163 articles were searched which were related to the surgical treatment of NB (201-2018). Through the analysis of these important articles, we found that the treatments of NB at low- and intermediate-risk groups were basically the same. High-risk patients remained controversial. CONCLUSIONS NB prognosis varies tremendously based on the stage and biologic features of the tumor. After reviewing the relevant literature, patients with low-risk disease are often managed with surgical resection or observation alone with tumors likely to spontaneously regress that are not causing symptoms. Intermediate patients are treated with chemotherapy with the number of cycles depending on their response as well as surgical resection of the primary tumor. High-risk patients remain controversial. Multidisciplinary intensive treatment is essential, especially for patients who received subtotal tumor resection. Minimally invasive surgery for the treatment of NBs without image-defined risk factors in low- to high-risk patients is safe and feasible and does not compromise the treatment outcome. We conclude that ≥90% resection of the primary tumor is both feasible and safe in most patients with high-risk NB. New targeted therapies are crucial to improve survival.
Collapse
Affiliation(s)
- Yan-Bing Luo
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xi-Chun Cui
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lin Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jia-Xiang Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
160
|
Zhou K, Li XL, Pan J, Xu JZ, Wang J. Analysis of the risk factor for the poor prognosis of localized neuroblastoma after the surgical. Medicine (Baltimore) 2018; 97:e12718. [PMID: 30290678 PMCID: PMC6200457 DOI: 10.1097/md.0000000000012718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Neuroblastoma is a unique malignancy in infants often presenting with either localized or metastatic disease. The study was carried out to explore the risk stratification of the poor prognosis for patients underwent surgical treatment.60 patients diagnosed with neuroblastoma were primarily enrolled in the study from April 2008 to April 2016. All the patients underwent surgical treatment and received 5-year follow-up. Clinical variables, including age, International Neuroblastoma Staging System (INSS) stage, tumor size and site, histology, and MYCN status were retrospectively analyzed, and EFS was chosen as the endpoint.The median age of patients was 8.2 months and average follow-up period was 40.2 ± 8.6 months. Among 60 patients, complete remission was achieved in 35 patients and partial remission in 14 subjects. Poor prognosis including patient death and tumor progression were overserved in 11 patients. Cox multifactor regression analysis revealed that age, histology and MYCN status had significant prognostic effect on event-free survival (EFS) rate for neuroblastoma patients underwent surgical treatment.In our study, we identified a series of prognostic factors including age, histology, and MYCN status predicting the prognosis of neuroblastoma patients after surgical treatment.
Collapse
Affiliation(s)
- Kai Zhou
- Department of General Surgery, Children's Hospital of Soochow University, Suzhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao-lu Li
- Department of General Surgery, Children's Hospital of Soochow University, Suzhou
| | - Jian Pan
- Department of General Surgery, Children's Hospital of Soochow University, Suzhou
| | - Jian-zhong Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jian Wang
- Department of General Surgery, Children's Hospital of Soochow University, Suzhou
| |
Collapse
|
161
|
Ruiz-Moreno C, Velez-Pardo C, Jimenez-Del-Rio M. Vitamin E d-α-Tocopheryl Polyethylene Glycol Succinate (TPGS) Provokes Cell Death in Human Neuroblastoma SK-N-SH Cells via a Pro-Oxidant Signaling Mechanism. Chem Res Toxicol 2018; 31:945-953. [PMID: 30092128 DOI: 10.1021/acs.chemrestox.8b00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuroblastoma (NB) is the most common neoplasm during infancy. Unfortunately, NB is still a lethal cancer. Therefore, innovative curative therapies are immediately required. In this study, we showed the prodeath activity of TPGS in human NB SK-N-SH cancer cells. NB cells were exposed to TPGS (10-80 μM). We report for the first time that TPGS induces cell death by apoptosis in NB cells via a pro-oxidant-mediated signaling pathway. Certainly, H2O2 directly oxidizes DJ-1 cysteine106-thiolate into DJ-1 cysteine106-sulfonate, indirectly activates the transcription factors NF-kappaB, p53, and c-JUN, induces the upregulation of mitochondria regulator proteins BAX/PUMA, and provokes the loss of mitochondrial membrane potential (ΔΨm) and the activation of caspase-3/AIF, leading to nuclear disintegration, demonstrated by cellular and biochemical techniques such as fluorescence microscopy, flow cytometry, and Western blot analysis. Since TPGS is a U.S. Food and Drug Administration (FDA)-approved pharmaceutical excipient, this molecule might be used in clinical trials for NB treatment.
Collapse
Affiliation(s)
- Cristian Ruiz-Moreno
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine , University of Antioquia (UdeA) , Calle 70 No. 52-21 and Calle 62 No. 52-59, Building 1, Room 412 , SIU Medellin 500001 , Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine , University of Antioquia (UdeA) , Calle 70 No. 52-21 and Calle 62 No. 52-59, Building 1, Room 412 , SIU Medellin 500001 , Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine , University of Antioquia (UdeA) , Calle 70 No. 52-21 and Calle 62 No. 52-59, Building 1, Room 412 , SIU Medellin 500001 , Colombia
| |
Collapse
|