151
|
Jafurulla M, Pucadyil TJ, Chattopadhyay A. Effect of sphingomyelinase treatment on ligand binding activity of human serotonin1A receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2022-5. [DOI: 10.1016/j.bbamem.2008.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 07/07/2008] [Accepted: 07/09/2008] [Indexed: 01/24/2023]
|
152
|
Effect of capsaicin on ligand binding activity of the hippocampal serotonin1A receptor. Glycoconj J 2008; 26:733-8. [DOI: 10.1007/s10719-008-9185-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/20/2008] [Accepted: 08/26/2008] [Indexed: 11/26/2022]
|
153
|
Saxena R, Shrivastava S, Chattopadhyay A. Exploring the Organization and Dynamics of Hippocampal Membranes Utilizing Pyrene Fluorescence. J Phys Chem B 2008; 112:12134-8. [DOI: 10.1021/jp804353m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roopali Saxena
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | - Sandeep Shrivastava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| |
Collapse
|
154
|
Cholesterol reduction attenuates 5-HT1A receptor-mediated signaling in human primary neuronal cultures. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:441-6. [DOI: 10.1007/s00210-008-0323-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/10/2008] [Indexed: 12/14/2022]
|
155
|
In vivo quantification of 5-HT1A–[18F]MPPF interactions in rats using the YAP-(S)PET scanner and a β-microprobe. Neuroimage 2008; 41:823-34. [DOI: 10.1016/j.neuroimage.2008.02.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/28/2008] [Accepted: 02/28/2008] [Indexed: 11/20/2022] Open
|
156
|
Paila YD, Murty MR, Vairamani M, Chattopadhyay A. Signaling by the human serotonin1A receptor is impaired in cellular model of Smith–Lemli–Opitz Syndrome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1508-16. [DOI: 10.1016/j.bbamem.2008.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/01/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
|
157
|
LeGreve TA, Clarkson JR, Zwier TS. Experimental Determination of Conformational Isomerization Energy Thresholds in Serotonin. J Phys Chem A 2008; 112:3911-20. [PMID: 18366201 DOI: 10.1021/jp800165q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tracy A. LeGreve
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084
| | - Jasper R. Clarkson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084
| | - Timothy S. Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084
| |
Collapse
|
158
|
Vinkers CH, van Bogaert MJV, Klanker M, Korte SM, Oosting R, Hanania T, Hopkins SC, Olivier B, Groenink L. Translational aspects of pharmacological research into anxiety disorders: the stress-induced hyperthermia (SIH) paradigm. Eur J Pharmacol 2008; 585:407-25. [PMID: 18420191 DOI: 10.1016/j.ejphar.2008.02.097] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 11/29/2022]
Abstract
In anxiety research, the search for models with sufficient clinical predictive validity to support the translation of animal studies on anxiolytic drugs to clinical research is often challenging. This review describes the stress-induced hyperthermia (SIH) paradigm, a model that studies the activation of the autonomic nervous system in response to stress by measuring body temperature. The reproducible and robust SIH response, combined with ease of testing, make the SIH paradigm very suitable for drug screening. We will review the current knowledge on the neurobiology of the SIH response, discuss the role of GABA(A) and serotonin (5-HT) pharmacology, as well as how the SIH response relates to infectious fever. Furthermore, we will present novel data on the SIH response variance across different mice and their sensitivity to anxiolytic drugs. The SIH response is an autonomic stress response that can be successfully studied at the level of its physiology, pharmacology, neurobiology and genetics and possesses excellent animal-to-human translational properties.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS) and Rudolf Magnus Institute of Neuroscience, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Actin cytoskeleton-dependent dynamics of the human serotonin1A receptor correlates with receptor signaling. Biophys J 2008; 95:451-63. [PMID: 18339759 DOI: 10.1529/biophysj.107.125732] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Analyzing the dynamics of membrane proteins in the context of cellular signaling represents a challenging problem in contemporary cell biology. Lateral diffusion of lipids and proteins in the cell membrane is known to be influenced by the cytoskeleton. In this work, we explored the role of the actin cytoskeleton on the mobility of the serotonin(1A) (5-HT(1A)) receptor, stably expressed in CHO cells, and its implications in signaling. FRAP analysis of 5-HT(1A)R-EYFP shows that destabilization of the actin cytoskeleton induced by either CD or elevation of cAMP levels mediated by forskolin results in an increase in the mobile fraction of the receptor. The increase in the mobile fraction is accompanied by a corresponding increase in the signaling efficiency of the receptor. Interestingly, with increasing concentrations of CD used, the increase in the mobile fraction exhibited a correlation of approximately 0.95 with the efficiency in ligand-mediated signaling of the receptor. Radioligand binding and G-protein coupling of the receptor were found to be unaffected upon treatment with CD. Our results suggest that signaling by the serotonin(1A) receptor is correlated with receptor mobility, implying thereby that the actin cytoskeleton could play a regulatory role in receptor signaling. These results may have potential significance in the context of signaling by GPCRs in general and in the understanding of GPCR-cytoskeleton interactions with respect to receptor signaling in particular.
Collapse
|
160
|
Lopez JJ, Lorch M. Location and Orientation of Serotonin Receptor 1a Agonists in Model and Complex Lipid Membranes. J Biol Chem 2008; 283:7813-22. [DOI: 10.1074/jbc.m707480200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
161
|
Lacivita E, Leopoldo M. N-[ω-[4-(2-Methoxyphenyl)-1-piperazinyl]alkyl]-2-quinolinamines as High-Affinity Fluorescent 5-HT1A Receptor Ligands. J Med Chem 2008; 51:1492-5. [DOI: 10.1021/jm7013919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Enza Lacivita
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari, via Orabona, 4, 70125 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari, via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
162
|
Lanctôt KL, Herrmann N, Ganjavi H, Black SE, Rusjan PM, Houle S, Wilson AA. Serotonin-1A receptors in frontotemporal dementia compared with controls. Psychiatry Res 2007; 156:247-50. [PMID: 17976961 DOI: 10.1016/j.pscychresns.2007.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/17/2007] [Indexed: 11/30/2022]
Abstract
Using PET neuroimaging, we demonstrated that four frontotemporal lobar dementia (FTLD) patients had significantly decreased serotonin 5-HT(1A) binding potential (BP) compared with controls in all 10 brain regions examined. These pilot data suggest that profound 5-HT(1A) BP losses may be present and contribute to symptomatology and treatment response in FTLD.
Collapse
Affiliation(s)
- Krista L Lanctôt
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
163
|
Jafurulla M, Chattopadhyay A. Solubilization of human serotonin1A receptors expressed in neuronal cells. Chem Phys Lipids 2007; 150:244-9. [PMID: 17888419 DOI: 10.1016/j.chemphyslip.2007.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/24/2007] [Accepted: 08/14/2007] [Indexed: 01/26/2023]
Abstract
The serotonin 1A receptor is an important member of the G-protein coupled receptor family, and is involved in a variety of cognitive, behavioral, and developmental functions. None of the subtypes of G-protein coupled serotonin receptors have yet been purified to homogeneity from natural sources. We report here, for the first time, the solubilization of human serotonin(1A) receptors stably expressed in neuronal (HN2) cells. Importantly, ligand binding assay shows that the serotonin 1A receptor solubilized this way is functionally active. The effective solubilization of the serotonin 1A receptor from neuronal cells represents an important step toward the purification of the receptor in native-like membrane environment.
Collapse
Affiliation(s)
- Md Jafurulla
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
164
|
Kalipatnapu S, Chattopadhyay A. Membrane organization and function of the serotonin(1A) receptor. Cell Mol Neurobiol 2007; 27:1097-116. [PMID: 17710529 DOI: 10.1007/s10571-007-9189-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/27/2007] [Indexed: 01/02/2023]
Abstract
(1) The serotonin(1A) receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid-protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin(1A) receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin(1A) receptors, the ability to functionally solubilize the serotonin(1A) receptor, and the factors influencing the membrane organization of the serotonin(1A) receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin(1A) receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Divisionof Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | | |
Collapse
|
165
|
Lundberg J, Borg J, Halldin C, Farde L. A PET study on regional coexpression of 5-HT1A receptors and 5-HTT in the human brain. Psychopharmacology (Berl) 2007; 195:425-33. [PMID: 17874074 DOI: 10.1007/s00213-007-0928-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 08/15/2007] [Indexed: 12/20/2022]
Abstract
RATIONALE Several lines of evidence suggest inter-dependency between the serotonin transporter (5-HTT) and the 5HT1A receptor, two recognised targets for the treatment of anxiety and depression. OBJECTIVES to examine the correlation of regional expression levels for these two serotonergic markers in the human brain in vivo. METHODS Twelve male control subjects were examined with PET twice on the same day, using the radioligands [11C]WAY 100635 and [11C]MADAM for quantification of the 5-HT1A receptor and the 5-HTT, respectively. The binding potential (BP) was calculated for raphe nuclei, hippocampus and frontal cortex. RESULTS In all regions, the BP for both [11C]WAY 100635 (raphe nuclei 1.85-4.71, hippocampus 2.52-6.17, frontal cortex 2.03-3.79) and [11C]MADAM (2.70-7.65, 0.47-1.76, 0.18-0.51) varied several fold between subjects. In the raphe nuclei, where the two markers are situated on the same neurons, the ratio of [11C]WAY 100635 binding to [11C]MADAM BP binding varied considerably (0.43-1.05). There was a positive correlation between the two markers in the raphe nuclei (rxy=0.68, p<0.05) and in the hippocampus (rxy=0.97, p<0.001) but not in the frontal cortex (rxy=-0.25, p=0.44). CONCLUSIONS The results support a correlation between density levels of the 5-HT1A-receptor and the 5-HTT in the raphe nuclei and hippocampus but not in the frontal cortex. A suggested clinical implication is that the inter-individual variability in 5-HT1A-receptor and 5-HTT densities, as well as the ratio of these, is of particular interest in relation to individual responses to selective serotonin reuptake inhibitor treatment.
Collapse
Affiliation(s)
- Johan Lundberg
- Department of Clinical Neuroscience, Section of Psychiatry, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
166
|
Chattopadhyay A, Paila YD, Jafurulla M, Chaudhuri A, Singh P, Murty MRVS, Vairamani M. Differential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS. Biochem Biophys Res Commun 2007; 363:800-5. [PMID: 17904101 DOI: 10.1016/j.bbrc.2007.09.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 11/21/2022]
Abstract
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. Solubilization of the hippocampal serotonin1A receptor by 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity. Replenishment of cholesterol to solubilized membranes restores the cholesterol content of the membrane and significantly enhances specific agonist binding activity. In order to test the stringency of the requirement of cholesterol in this process, we solubilized native hippocampal membranes followed by replenishment with 7-dehydrocholesterol (7-DHC). 7-DHC is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in its sterol ring. Our results show, for the first time, that replenishment of solubilized hippocampal membranes with 7-DHC does not restore ligand binding activity of the serotonin1A receptor, in spite of recovery of the overall membrane order. This observation shows that the requirement for restoration of ligand binding activity is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane sterols with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.
Collapse
|
167
|
Reissig CJ, Eckler JR, Rabin RA, Rice KC, Winter JC. The stimulus effects of 8-OH-DPAT: evidence for a 5-HT2A receptor-mediated component. Pharmacol Biochem Behav 2007; 88:312-7. [PMID: 17936346 DOI: 10.1016/j.pbb.2007.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/29/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
A previous investigation in our laboratory found that the stimulus effects of the 5-HT2A agonist, LSD, are potentiated by 5-HT1A receptor agonists including the prototypic agonist, 8-OH-DPAT. Also suggestive of behaviorally relevant interactions between 5-HT1A and 5-HT2A receptors are behavioral analyses of locomotor activity, head-twitch response, forepaw treading and production of the serotonin syndrome; in some instances effects are augmented, in other, diminished. These observations led us in the present investigation to test the hypothesis that stimulus control by 8-OH-DPAT [0.2 mg/kg; 15 min pretreatment time] is modulated by 5-HT2A ligands. Stimulus control was established with 8-OH-DPAT in a group of 10 rats. A two-lever, fixed ratio 10, positively reinforced task with saline controls was employed. As shown previously, stimulus control by 8-OH-DPAT and the generalization of 8-OH-DPAT to the 5-HT1A partial agonist, buspirone, was completely blocked by the selective 5-HT1A antagonist, WAY-100635. In contrast, antagonism by the selective 5-HT2A antagonist, M100907 [0.1 mg/kg; 30 min pretreatment time], of 8-OH-DPAT and of the generalization of 8-OH-DPAT to buspirone was statistically significant but less than complete. In light of our previous conclusions regarding the interactions of 5-HT1A agonists with LSD-induced stimulus control, the present data suggest that the interaction between 5-HT1A and 5-HT2A receptors is bidirectional in drug discrimination studies.
Collapse
Affiliation(s)
- C J Reissig
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-3000, USA
| | | | | | | | | |
Collapse
|
168
|
Mukherjee S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A. Dynamics and heterogeneity of bovine hippocampal membranes: role of cholesterol and proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2130-44. [PMID: 17618864 DOI: 10.1016/j.bbamem.2007.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 05/05/2007] [Accepted: 05/29/2007] [Indexed: 12/14/2022]
Abstract
The structural and dynamic consequence of alterations in membrane lipid composition (specifically cholesterol) in neuronal membranes is poorly understood. Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors. In this paper, we have explored the role of cholesterol and proteins in the dynamics and heterogeneity of bovine hippocampal membranes using fluorescence lifetime distribution analysis of the environment-sensitive fluorescent probe Nile Red incorporated into such membranes by the maximum entropy method (MEM), and time-resolved fluorescence anisotropy measurements. The peak position and the width of the lifetime distribution of Nile Red show a progressive reduction with increasing cholesterol depletion from native hippocampal membranes indicating that the extent of heterogeneity decreases with decrease in membrane cholesterol content. This is accompanied by a concomitant decrease of the fluorescence anisotropy and rotational correlation time. Our results point out that the microenvironment experienced by Nile Red is relatively insensitive to the presence of proteins in hippocampal membranes. Interestingly, Nile Red lifetime distribution in liposomes of lipid extracts is similar to that of native membranes indicating that proteins do not contribute significantly to the high level of heterogeneity observed in native membranes. These results could be relevant in understanding the neuronal diseases characterized by defective membrane lipid metabolism.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
169
|
Kalipatnapu S, Chattopadhyay A, Pucadyil T. Membrane Organization and Dynamics of the Serotonin 1A Receptor Monitored Using Fluorescence Microscopic Approaches. Front Neurosci 2007. [DOI: 10.1201/9781420005752.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
170
|
Singh P, Paila YD, Chattopadhyay A. Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin(1A) receptor: implications in SLOS. Biochem Biophys Res Commun 2007; 358:495-9. [PMID: 17493586 DOI: 10.1016/j.bbrc.2007.04.135] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/20/2007] [Indexed: 12/16/2022]
Abstract
The requirement of membrane cholesterol in maintaining ligand binding activity of the hippocampal serotonin(1A) receptor has previously been demonstrated. In order to test the stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with 7-dehydrocholesterol. The latter sterol is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in the sterol ring. Our results show, for the first time, that replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin(1A) receptor, in spite of recovery of the overall membrane order. The requirement for restoration of ligand binding activity therefore is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.
Collapse
|
171
|
Deng PY, Poudel SKS, Rojanathammanee L, Porter JE, Lei S. Serotonin Inhibits Neuronal Excitability by Activating Two-Pore Domain K+ Channels in the Entorhinal Cortex. Mol Pharmacol 2007; 72:208-18. [PMID: 17452494 DOI: 10.1124/mol.107.034389] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus; the superficial layers (layers I-III) of the EC convey the cortical input projections to the hippocampus, whereas deep layers of the EC relay hippocampal output projections back to the superficial layers of the EC or to other cortical regions. The superficial layers of the EC receive strong serotonergic projections from the raphe nuclei. However, the function of serotonin in the EC is still elusive. In the present study, we examined the molecular and cellular mechanisms underlying serotonin-mediated inhibition of the neuronal excitability in the superficial layers (layers II and III) of the EC. Application of serotonin inhibited the excitability of stellate and pyramidal neurons in the superficial layers of the EC by activating the TWIK-1 type of the two-pore domain K(+) channels. The effects of 5-HT were mediated via 5-HT(1A) receptors and required the function of Galpha(i3) subunit and protein kinase A. Serotonin-mediated inhibition of EC activity resulted in an inhibition of hippocampal function. Our study provides a cellular mechanism that might at least partially explain the roles of serotonin in many physiological functions and neurological diseases.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | |
Collapse
|
172
|
Marziniak M, Mössner R, Kienzler C, Riederer P, Lesch KP, Sommer C. Functional polymorphisms of the 5-HT1A and 5-HT1B receptor are associated with clinical symptoms in migraineurs. J Neural Transm (Vienna) 2007; 114:1227-32. [PMID: 17417740 DOI: 10.1007/s00702-007-0713-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 03/03/2007] [Indexed: 10/23/2022]
Abstract
Migraine is regarded as a polygenic disease and serotonergic pathways appear to play a major role in its pathogenesis. In the present study, the role of the 5-HT1A and 5-HT1B receptors in migraine was evaluated. The human 5-HT1A receptor gene transcription is modulated by a functional C-1019G promoter polymorphism. The 5-HT1B receptor is the main effector of vasoconstriction in meningeal and cerebral arteries and its functional G861C promoter polymorphism was investigated. We report a positive association of the GG genotype of the 5-HT1A promoter polymorphism with avoidance of physical activity during a migraine attack in comparison to the CC genotype (p = 0.008). Moreover, a positive association of the CC genotype of the G861C polymorphism of the 5-HT1B receptor with the reported intensity of the headache attack on the visual analogue scale was observed (CC 8.3 +/- 1.5 vs. GG 6.9 +/- 1.8; p < 0.05). An association of either polymorphism with migraine with or without aura could not be found. For the first time, our results indicate a role of allelic variation of the 5-HT1A receptor in motion related discomfort in migraineurs and a role of the 5-HT1B receptor polymorphism in headache intensity.
Collapse
Affiliation(s)
- M Marziniak
- Department of Neurology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
173
|
LeGreve TA, Baquero EE, Zwier TS. Infrared and Ultraviolet Spectral Signatures and Conformational Preferences of Jet-Cooled Serotonin. J Am Chem Soc 2007; 129:4028-38. [PMID: 17355134 DOI: 10.1021/ja068881i] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ultraviolet and infrared spectroscopy of single conformations of neutral serotonin (5-hydroxytryptamine) have been studied in the gas phase using a combination of methods including laser-induced fluorescence, resonance-enhanced two-photon ionization, UV-UV hole-burning spectroscopy, and resonant ion-dip infrared spectroscopy. By comparison to its close analogue tryptamine, for which firm assignments to seven low-energy conformations have been made, UV and IR transitions due to eight conformations of serotonin are observed and assigned. The ultraviolet spectrum divides into two subsets of transitions separated from one another by approximately 230 cm-1 ascribable to syn and anti conformations of the 5-OH group. These two subsets are also distinguishable via their 5-OH stretch fundamentals, with the anti-OH subset shifted by approximately 4-5 cm-1 to lower frequency than those due to syn-OH conformers. The existing firm assignments for tryptamine play a decisive role in assignments in serotonin, where the alkyl CH stretch infrared spectrum is diagnostic of the conformation of the ethylamine side chain. Conformer A of serotonin (SERO(A)), with S1 <-- S0 origin transition at 32584 cm-1, is assigned to Gpy(out)/anti-OH, SERO(B) at 32548 cm-1 to Gpy(up)/anti, SERO(C) at 32545 cm-1 to Gph(out)/anti, SERO(D) at 32560 cm-1 to Anti(py)/anti, SERO(E) at 32537 cm-1 to Anti(up)/anti, SERO(F) at 32353 cm-1 to Gpy(out)/syn, SERO(G) at 32313 cm-1 to Gpy(up)/syn, and SERO(H) at 32282 cm-1 to Gph(out)/syn. The conformational preferences of serotonin differ from those of tryptamine most notably in the selective stabilization observed for the Gph(out)/anti-OH conformer SERO(C), which makes it the second-most intense transition in the ultraviolet spectrum, surpassed only by the Gpy(out)/anti-OH conformer SERO(A).
Collapse
Affiliation(s)
- Tracy A LeGreve
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | | | | |
Collapse
|
174
|
Kalipatnapu S, Chattopadhyay A. Membrane Organization of the Serotonin 1A Receptor Monitored by a Detergent-Free Approach. Cell Mol Neurobiol 2007; 27:463-74. [PMID: 17503188 DOI: 10.1007/s10571-007-9138-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 01/26/2007] [Indexed: 01/23/2023]
Abstract
: 1. Insolubility of membrane constituents in nonionic detergents such as Triton X-100 has been a widely used biochemical criterion to indicate their localization in membrane domains. However, concerns on the possibility of membrane perturbation in the presence of detergents have led to the development of detergent-free approaches.2. We have explored the organization of the serotonin(1A) receptor, an important G-protein coupled receptor, from bovine hippocampus and CHO cells using a detergent-free approach in order to address the points of agreement with our previous results using Triton X-100.3. A significant fraction of the serotonin(1A) receptor has been found to be localized in a heavy density fraction obtained using a detergent-free approach to isolate membrane domains. In addition, we have characterized the membrane fractions isolated in terms of their lipid composition and membrane physical properties.4. The results obtained on the membrane localization of the serotonin(1A) receptor from the present experiments using a detergent-free approach correlate well with our earlier findings obtained using a detergent-based method (Kalipatnapu, S., and Chattopadhyay, A., FEBS Lett. 576:455-460, 2004). These results provide important information on the membrane organization of the hippocampal serotonin(1A) receptor and are relevant in view of the concerns on the use of detergent in determination of membrane organization of constituent proteins and lipids.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
175
|
Dere E, Huston JP, De Souza Silva MA. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 2007; 31:673-704. [PMID: 17368764 DOI: 10.1016/j.neubiorev.2007.01.005] [Citation(s) in RCA: 530] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/08/2007] [Accepted: 01/18/2007] [Indexed: 01/31/2023]
Abstract
Rats and mice are attracted by novel objects. They readily approach novel objects and explore them with their vibrissae, nose and forepaws. It is assumed that such a single explorative episode leaves a lasting and complex memory trace, which includes information about the features of the object explored, as well as where and even when the object was encountered. Indeed, it has been shown that rodents are able to discriminate a novel from a familiar object (one-trial object recognition), can detect a mismatch between the past and present location of a familiar object (one-trial object-place recognition), and can discriminate different objects in terms of their relative recency (temporal order memory), i.e., which one of two objects has been encountered earlier. Since the novelty-preference paradigm is very versatile and has some advantages compared to several other memory tasks, such as the water maze, it has become a powerful tool in current neurophamacological, neuroanatomical and neurogenetical memory research using both rats and mice. This review is intended to provide a comprehensive summary on key findings delineating the brain structures, neurotransmitters, molecular mechanisms and genes involved in encoding, consolidation, storage and retrieval of different forms of one-trial object memory in rats and mice.
Collapse
Affiliation(s)
- Ekrem Dere
- Institute of Physiological Psychology, and Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
| | | | | |
Collapse
|
176
|
Chattopadhyay A, Paila YD. Lipid-protein interactions, regulation and dysfunction of brain cholesterol. Biochem Biophys Res Commun 2007; 354:627-33. [PMID: 17254551 DOI: 10.1016/j.bbrc.2007.01.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/08/2007] [Indexed: 12/14/2022]
Abstract
The biosynthesis and metabolism of cholesterol in the brain is spatiotemporally and developmentally regulated. Brain cholesterol plays an important role in maintaining the function of neuronal receptors, which are key components in neural signal transduction. This is illustrated by the requirement of membrane cholesterol for the function of the serotonin(1A) receptor, a transmembrane neurotransmitter receptor. A crucial determinant for the function of neuronal receptors could be the availability of brain cholesterol. The Smith-Lemli-Optiz Syndrome, a metabolic disorder characterized by severe neurodegeneration leading to mental retardation, represents a condition in which the availability of brain cholesterol is limited. A comprehensive molecular analysis of lipid-protein interactions in healthy and diseased states could be crucial for a better understanding of the pathogenesis of psychiatric disorders.
Collapse
|
177
|
Pucadyil TJ, Chattopadhyay A. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:655-68. [PMID: 17292852 DOI: 10.1016/j.bbamem.2007.01.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 12/27/2022]
Abstract
Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin(1A) receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin(1A) receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin(1A) receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
178
|
Rodríguez-Sosa L, Calderón-Rosete G, Flores G, Porras MG. Serotonin-caused phase shift of circadian rhythmicity in a photosensitive neuron. Synapse 2007; 61:801-8. [PMID: 17598151 DOI: 10.1002/syn.20425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the sixth abdominal ganglion (sixth AG) of the crayfish, two photosensitive neurons are located and have been identified as caudal photoreceptors (CPRs). We have expanded our investigation on the role of 5-Hydroxytryptamine (5-HT) as a modulator of the spontaneous and light-induced activity of the CPR. We located, by using immunocytochemistry, neurons in the sixth AG that contain the 5HT1A receptor. The expression of these receptors was examined by binding assays with [3H] 8-hydroxy-2 (di-n-propylamino) tetralin ([3H(8-OH-DPAT). We examined the exogenous action of both 5HT and its agonist 8-OH-DPAT on the phase of circadian rhythms of the spontaneous electrical activity and the photoresponse of the CPR in the isolated sixth AG by conventional extracellular recording methods. Experiments were made on the adult crayfish Procambarus clarkii and Cherax quadricarinatus. Thirteen immunopositive neurons were located, principally near the ventral and dorsal surface of the sixth AG, with the mean diameter of their somata 20+/-3 microm. The specific binding data showed the presence of 5-HT1A receptors with a mean level of 22.4+/-6.6 fmol/mg of wet tissue. Spontaneous and light-induced electrical activity of the CPR showed circadian variations with their activity more intense at night than in the day. Exogenous application of 5-HT or 8-OH-DPAT causes a circadian phase-shift in electrical activity of the CPR. Taken together, these results lead us to believe the 5-HT acts as a modulator of circadian electrical activity of the CPR in the isolated sixth AG of crayfish. Moreover, it suggests that the 5-HT1A receptor participates in this modulation.
Collapse
Affiliation(s)
- Leonardo Rodríguez-Sosa
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad Universitaria, 04510 Mexico.
| | | | | | | |
Collapse
|
179
|
Pucadyil TJ, Chattopadhyay A. The human serotonin1A receptor exhibits G-protein-dependent cell surface dynamics. Glycoconj J 2006; 24:25-31. [PMID: 17123166 DOI: 10.1007/s10719-006-9008-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Seven transmembrane domain G-protein-coupled receptors constitute the largest family of proteins in mammals. Signal transduction events mediated by such receptors are the primary means by which cells communicate with and respond to their external environment. The major paradigm in this signal transduction process is that stimulation of the receptor leads to the recruitment and activation of heterotrimeric GTP-binding proteins. These initial events, which are fundamental to all types of G-protein-coupled receptor signaling, occur at the plasma membrane via protein-protein interactions. As a result, the dynamics of the activated receptor on cell surfaces represents an important determinant in its encounter with G-proteins, and has significant impact on the overall efficiency of the signal transduction process. We have monitored the cell surface dynamics of the serotonin(1A) receptor, an important member of the G-protein-coupled receptor superfamily, in relation to its interaction with G-proteins. Fluorescence recovery after photobleaching experiments carried out with the receptor tagged to the enhanced yellow fluorescent protein indicate that G-protein activation alters the diffusion properties of the receptor in a manner suggesting the activation process leads to dissociation of G-proteins from the receptor. This result demonstrates that the cell surface dynamics of the serotonin(1A) receptor is modulated in a G-protein-dependent manner. Importantly, this result could provide the basis for a sensitive and powerful approach to assess receptor/G-protein interaction in an intact cellular environment.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
180
|
Janusonis S, Anderson GM, Shifrovich I, Rakic P. Ontogeny of brain and blood serotonin levels in 5-HT receptor knockout mice: potential relevance to the neurobiology of autism. J Neurochem 2006; 99:1019-31. [PMID: 16981893 DOI: 10.1111/j.1471-4159.2006.04150.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most consistent neurochemical finding in autism has been elevated group mean levels of blood platelet 5-hydroxytryptamine (5-HT, serotonin). The origin and significance of this platelet hyperserotonemia remain poorly understood. The 5-HT(1A) receptor plays important roles in the developing brain and is also expressed in the gut, the main source of platelet 5-HT. Post-natal tissue levels of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan were examined in the brain, duodenum and blood of 5-HT(1A) receptor-knockout and wild-type mice. At 3 days after birth, the knockout mice had lower mean brain 5-HT levels and normal mean platelet 5-HT levels. Also, at 3 days after birth, the mean tryptophan levels in the brain, duodenum and blood of the knockout mice were around 30% lower than those of the wild-type mice. By 2 weeks after birth, the mean brain 5-HT levels of the knockout mice normalized, but their mean platelet 5-HT levels became 24% higher than normal. The possible causes of these dynamic shifts were explored by examining correlations between central and peripheral levels of 5-HT, 5-HIAA and tryptophan. The results are discussed in relation to the possible role of 5-HT in the ontogeny of autism.
Collapse
Affiliation(s)
- Skirmantas Janusonis
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
181
|
Pucadyil TJ, Chattopadhyay A. Effect of cholesterol on lateral diffusion of fluorescent lipid probes in native hippocampal membranes. Chem Phys Lipids 2006; 143:11-21. [PMID: 16797513 DOI: 10.1016/j.chemphyslip.2006.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/17/2006] [Accepted: 04/26/2006] [Indexed: 01/11/2023]
Abstract
Cholesterol is an abundant lipid of mammalian membranes and plays a crucial role in membrane organization, dynamics, function and sorting. The role of cholesterol in membrane organization has been a subject of intense investigation that has largely been carried out in model membrane systems. An extension of these studies in natural membranes, more importantly in neuronal membranes, is important to establish a relationship between disease states and changes in membrane physical properties resulting from an alteration in lipid composition. We have monitored the lateral diffusion of lipid probes, DiIC(18)(3) and FAST DiI which are similar in their intrinsic fluorescence properties but differ in their structure, in native and cholesterol-depleted hippocampal membranes using the fluorescence recovery after photobleaching (FRAP) approach. Our results show that the mobility of these probes is in general higher in hippocampal membranes depleted of cholesterol. Interestingly, the increase in mobility of these probes does not linearly correlate with the extent of cholesterol depletion. These results assume significance in the light of recent reports on the requirement of cholesterol to support the function of the G-protein coupled serotonin(1A) receptor present endogenously in hippocampal membranes.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
182
|
Paila YD, Chattopadhyay A. The Human Serotonin
1A
Receptor Expressed in Neuronal Cells: Toward a Native Environment for Neuronal Receptors. Cell Mol Neurobiol 2006. [DOI: 10.1007/pl00021779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
183
|
Chattopadhyay A, Jafurulla M, Pucadyil TJ. Ligand Binding and G-protein Coupling of the Serotonin1A Receptor in Cholesterol-enriched Hippocampal Membranes. Biosci Rep 2006; 26:79-87. [PMID: 16763764 DOI: 10.1007/s10540-006-9009-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The serotonin1A receptor is the most extensively studied member of the family of seven transmembrane domain G-protein coupled serotonin receptors. Since a large portion of such transmembrane receptors remains in contact with the membrane lipid environment, lipid–protein interactions assume importance in the structure-function analysis of such receptors. We have earlier reported the requirement of cholesterol for serotonin1A receptor function in native hippocampal membranes by specific depletion of cholesterol using methyl- β-cyclodextrin. In this paper, we monitored the serotonin1A receptor function in membranes that are enriched in cholesterol using a complex prepared from cholesterol and methyl-β-cyclodextrin. Our results indicate that ligand binding and receptor/G-protein interaction of the serotonin1A receptor do not exhibit significant difference in native and cholesterol-enriched hippocampal membranes indicating that further enrichment of cholesterol has little functional consequence on the serotonin1A receptor function. These results therefore provide new information on the effect of cholesterol enrichment on the hippocampal serotonin1A receptor function.
Collapse
|
184
|
Pucadyil TJ, Jafurulla M, Chattopadhyay A. Prolonged treatment with ligands affects ligand binding to the human serotonin(1A) receptor in Chinese hamster ovary cells. Cell Mol Neurobiol 2006; 26:247-57. [PMID: 16767512 DOI: 10.1007/s10571-006-9002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
1. The serotonin(1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to G-proteins, and appear to be involved in several behavioral and cognitive functions. 2. We monitored the effect of prolonged treatment of the human serotonin(1A) receptor expressed in Chinese hamster ovary (CHO) cells with pharmacologically well-characterized ligands on its binding to the agonist 8-hydroxy-2(di-N-propylamino)tetralin (8-OH-DPAT) and antagonist 4-(2'-methoxy)-phenyl-1-[2'-(N-2''-pyridinyl)-p-fluorodobenzamido]ethyl-piperazine (p-MPPF). 3. Our results indicate that prolonged treatment with the specific agonist (8-OH-DPAT) differentially affects subsequent binding of the agonist and antagonist to the receptor in a manner independent of receptor-G-protein coupling. Importantly, our results show that prolonged treatment with the commonly used antagonist p-MPPF, and its iodinated analogue 4-(2'-methoxy)-phenyl-1-[2'-(N-2''-pyridinyl)-p-iodobenzamido]ethyl-piperazine (p-MPPI), which have earlier been reported to display similar binding properties to serotonin(1A) receptors, induces significantly different effects on the ligand binding function of serotonin(1A) receptors.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | | | | |
Collapse
|
185
|
Aznavour N, Rbah L, Léger L, Buda C, Sastre JP, Imhof A, Charnay Y, Zimmer L. A comparison of in vivo and in vitro neuroimaging of 5-HT1A receptor binding sites in the cat brain. J Chem Neuroanat 2006; 31:226-32. [PMID: 16517120 DOI: 10.1016/j.jchemneu.2006.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/30/2006] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
To validate the cat as a suitable model for positron emission tomography imaging (PET) and to gain further knowledge on the anatomical distribution of the serotonin-1A receptor (5-HT 1A) in the feline brain, we used PET with [18F]MPPF and in vitro autoradiography with [3H]MPPF, [3H]8-OH-DPAT and [3H]paroxetine. PET radioactivity curves with [18F]MPPF were very reproducible in anaesthetized cats, with the highest radioactivity uptakes recorded in the hippocampus, cingulate cortex, septum, infralimbic cortex and raphe nucleus, whereas the lowest were found in the cerebellum. [3H]8-OH-DPAT binding displayed a comparable, albeit lower, regional distribution than with [3H]MPPF. Autoradiography also revealed the presence of 5-HT 1A receptor binding sites in the cortex and in the interpeduncular nucleus, due to its greater sensitivity and spatial resolution compared with PET imaging. The cat constitutes an interesting experimental model for PET imaging, as many physiological concepts have been well established with this animal. Our study also shows the advantages of combining complementary neuroimaging techniques such as in vivo PET imaging and in vitro autoradiography to visualize the distribution of the 5-HT 1A receptors.
Collapse
|
186
|
Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 2006; 45:295-333. [PMID: 16616960 DOI: 10.1016/j.plipres.2006.02.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The modulatory role of cholesterol in the function of a number of membrane proteins is well established. This effect has been proposed to occur either due to a specific molecular interaction between cholesterol and membrane proteins or due to alterations in the membrane physical properties induced by the presence of cholesterol. The contemporary view regarding heterogeneity in cholesterol distribution in membrane domains that sequester certain types of membrane proteins while excluding others has further contributed to its significance in membrane protein function. The seven transmembrane domain G-protein coupled receptors (GPCRs) are among the largest protein families in mammals and represent approximately 2% of the total proteins coded by the human genome. Signal transduction events mediated by this class of proteins are the primary means by which cells communicate with and respond to their external environment. GPCRs therefore represent major targets for the development of novel drug candidates in all clinical areas. In view of their importance in cellular signaling, the interaction of cholesterol with such receptors represents an important determinant in functional studies of such receptors. This review focuses on the effect of cholesterol on the membrane organization and function of GPCRs from a variety of sources, with an emphasis on the more contemporary role of cholesterol in maintaining a domain-like organization of such receptors on the cell surface. Importantly, the recently reported role of cholesterol in the function and organization of the neuronal serotonin(1A) receptor, a representative of the GPCR family which is present endogenously in the hippocampal region of the brain, will be highlighted.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
187
|
Funchal C, Schuck PF, Santos AQD, Jacques-Silva MC, Gottfried C, Pessoa-Pureur R, Wajner M. Creatine and antioxidant treatment prevent the inhibition of creatine kinase activity and the morphological alterations of C6 glioma cells induced by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Cell Mol Neurobiol 2006; 26:67-79. [PMID: 16633902 DOI: 10.1007/s10571-006-9098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 10/14/2005] [Indexed: 11/28/2022]
Abstract
Accumulation of the branched-chain alpha-keto acids (BCKA), alpha-ketoisocaproic acid (KIC), alpha-keto-beta-methylvaleric acid (KMV), and alpha-ketoisovaleric acid (KIV) and their respective branched-chain alpha-amino acids (BCAA) in tissues and biological fluids is the biochemical hallmark of patients affected by the neurometabolic disorder known as maple syrup urine disease (MSUD). Considering that brain energy metabolism is possibly altered in MSUD, the objective of this study was to determine creatine kinase (CK) activity, a key enzyme of energy homeostasis, in C6 glioma cells exposed to BCKA. The cells were incubated with 1, 5, or 10 mM BCKA for 3 h and the CK activity measured afterwards. The results indicated that the BCKA significantly inhibited CK activity at all tested concentrations. Furthermore, the inhibition caused by the BCKA on CK activity was totally prevented by preincubation with the energetic substrate creatine and by coincubation with the N-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, indicating that deficit of energy and nitric oxide (NO) are involved in these effects. In contrast, other antioxidants such as glutathione (GSH) and trolox (soluble Vitamin E) were not able to prevent CK inhibition. In addition, we observed that the C6 cells changed their usual rounded morphology when exposed for 3 h to 10 mM BCKA and that creatine and L-NAME prevented these morphological alterations. Considering the importance of CK for brain metabolism homeostasis, it is conceivable that inhibition of this enzyme by increased levels of BCKA may contribute to the neurodegeneration of MSUD patients.
Collapse
Affiliation(s)
- Cláudia Funchal
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
188
|
Pucadyil TJ, Kalipatnapu S, Chattopadhyay A. Membrane Organization and Dynamics of the G-Protein-Coupled Serotonin1A Receptor Monitored Using Fluorescence-Based Approaches. J Fluoresc 2005; 15:785-96. [PMID: 16341798 DOI: 10.1007/s10895-005-2988-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
The G-protein-coupled receptor (GPCR) superfamily represents one of the largest classes of molecules involved in signal transduction across the plasma membrane. Fluorescence-based approaches have provided valuable insights into GPCR functions such as receptor-receptor and receptor-ligand interactions, real-time assessment of signal transduction, receptor dynamics on the plasma membrane, and intracellular trafficking of receptors. This has largely been possible with the use of fluorescent probes such as the green fluorescent protein (GFP) from the jellyfish Aequoria victoria and its variants. We discuss the potential of fluorescence-based approaches in providing novel information on the membrane organization and dynamics of the G-protein-coupled serotonin1A receptor tagged to the enhanced yellow fluorescent protein (EYFP).
Collapse
|
189
|
Mukherjee S, Chattopadhyay A. Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:43-55. [PMID: 16042963 DOI: 10.1016/j.bbamem.2005.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/23/2005] [Accepted: 06/23/2005] [Indexed: 11/18/2022]
Abstract
Organization and dynamics of cellular membranes in the nervous system are crucial for the function of neuronal membrane receptors. The lipid composition of neuronal cells is unique and has been correlated with the increased complexity in the organization of the nervous system during evolution. Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors such as the G-protein coupled serotonin1A receptor. In this paper, we have explored the organization and dynamics of bovine hippocampal membranes using the amphiphilic environment-sensitive fluorescent probe Laurdan. Our results show that the emission spectra of Laurdan display an additional red shifted peak as a function of increasing temperature in native as well as cholesterol-depleted membranes and liposomes made from lipid extracts of the native membrane. Interestingly, wavelength dependence of Laurdan generalized polarization (GP) in native membranes indicates the presence of an ordered gel-like phase at low temperatures, whereas characteristics of the liquid-ordered phase are observed at high temperatures. Similar experiments performed using cholesterol-depleted membranes show fluidization of the membrane with increasing cholesterol depletion. In addition, results from fluorescence polarization of DPH indicate that the hippocampal membrane is fairly ordered even at physiological temperature. The temperature dependence of Laurdan excitation GP provides a measure of the apparent thermal transition temperature and extent of cooperativity in these membranes. Analysis of time-resolved fluorescence measurements of Laurdan shows reduction in mean fluorescence lifetime with increasing temperature due to change in environmental polarity. These results constitute novel information on the dynamics of hippocampal membranes and its modulation by cholesterol depletion monitored using Laurdan fluorescence.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
190
|
Pucadyil TJ, Chattopadhyay A. Cholesterol modulates the antagonist-binding function of hippocampal serotonin1A receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:35-42. [PMID: 16005846 DOI: 10.1016/j.bbamem.2005.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 06/15/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
The serotonin1A receptor is the most extensively studied member of the family of seven transmembrane domain G-protein coupled serotonin receptors. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, addiction, locomotion, sexual activity, depression, anxiety, alcohol abuse, aggression and learning. Since a significant portion of the protein lies embedded in the membrane and the ligand-binding pocket is defined by the transmembrane stretches in such receptors, membrane composition and organization represent a crucial parameter in the structure-function analysis of G-protein coupled receptors. In this paper, we have monitored the role of membrane cholesterol in the ligand-binding function of the hippocampal serotonin1A receptor. Our results demonstrate that the reduction of membrane cholesterol significantly attenuates the antagonist-binding function of the serotonin1A receptor. Based on prior pharmacological knowledge regarding the requirements for the antagonist to bind the receptor, our results indicate that membrane cholesterol modulates receptor function independently of its ability to interact with G-proteins. These effects on ligand-binding function of the receptor are predominantly reversed upon cholesterol-replenishment of cholesterol-depleted membranes. When viewed in the light of our earlier results on the effect of cholesterol depletion on the serotonin1A receptor/G-protein interaction, these results comprehensively demonstrate the importance of cholesterol in the serotonin1A receptor function and form the basis for understanding lipid-protein interactions involving this important neuronal receptor.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
191
|
Kalipatnapu S, Chattopadhyay A. Membrane Protein Solubilization: Recent Advances and Challenges in Solubilization of Serotonin1A Receptors. IUBMB Life 2005; 57:505-12. [PMID: 16081372 DOI: 10.1080/15216540500167237] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Solubilization of integral membrane proteins is a process in which the proteins and lipids that are held together in native membranes are suitably dissociated in a buffered detergent solution. The controlled dissociation of the membrane results in formation of small protein and lipid clusters that remain dissolved in the aqueous solution. Effective solubilization and purification of membrane proteins, especially heterologously-expressed proteins in mammalian cells in culture, in functionally active forms represent important steps in understanding structure-function relationship of membrane proteins. In this review, critical factors determining functional solubilization of membrane proteins are highlighted with the solubilization of the serotonin 1A receptor taken as a specific example.
Collapse
|
192
|
Pucadyil TJ, Shrivastava S, Chattopadhyay A. Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin1A receptors. Biochem Biophys Res Commun 2005; 331:422-7. [PMID: 15850776 DOI: 10.1016/j.bbrc.2005.03.178] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Indexed: 10/25/2022]
Abstract
We have monitored the ligand binding function of the bovine hippocampal 5-HT(1A) receptor following treatment of native membranes with cholesterol oxidase. Cholesterol oxidase is a water soluble enzyme that acts on the membrane interface to catalyze the conversion of cholesterol to cholestenone. Oxidation of membrane cholesterol significantly inhibits the specific binding of the agonist and antagonist to 5-HT(1A) receptors. Fluorescence polarization measurements of membrane probes incorporated at different locations in the membrane revealed no appreciable effect on membrane order due to the oxidation of cholesterol to cholestenone. These results therefore suggest that the ligand binding function of the 5-HT(1A) receptor is a cholesterol-dependent phenomenon that is not related to the ability of cholesterol to modulate membrane order. Importantly, these results represent the first report on the effect of a cholesterol-modifying agent on the ligand binding function of this important neurotransmitter receptor.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | |
Collapse
|
193
|
Chattopadhyay A, Jafurulla M, Kalipatnapu S, Pucadyil TJ, Harikumar KG. Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochem Biophys Res Commun 2005; 327:1036-41. [PMID: 15652500 DOI: 10.1016/j.bbrc.2004.12.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Indexed: 10/26/2022]
Abstract
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We report here that solubilization of the hippocampal 5-HT(1A) receptor by the zwitterionic detergent CHAPS is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity and extent of G-protein coupling. Importantly, replenishment of cholesterol to solubilized membranes using MbetaCD-cholesterol complex restores the cholesterol content of the membrane and significantly enhances the specific agonist binding activity and G-protein coupling. These novel results provide useful information on the role of cholesterol in solubilization of G-protein-coupled receptors, an important step for molecular characterization of these receptors.
Collapse
|