151
|
Beriashvili D, Taylor R, Kralt B, Abu Mazen N, Taylor SD, Palmer M. Mechanistic studies on the effect of membrane lipid acyl chain composition on daptomycin pore formation. Chem Phys Lipids 2018; 216:73-79. [PMID: 30278162 DOI: 10.1016/j.chemphyslip.2018.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/20/2023]
Abstract
Daptomycin is a lipopeptide antibiotic that binds and permeabilizes the cell membranes of Gram-positive bacteria. Membrane permeabilization requires both calcium and phosphatidylglycerol (PG) in the target membrane, and it correlates with the formation of an oligomer that likely comprises eight subunits, which are evenly distributed between the two membrane leaflets. In both bacterial cells and model membranes, changes in the fatty acyl composition of the membrane phospholipids can prevent permeabilization. We here used liposomes to study the effect of phospholipids containing oleoyl and other fatty acyl residues on daptomycin activity, and made the following observations: (1) Oleic acid residues inhibited permeabilization when part not only of PG, but also of other phospholipids (PC or cardiolipin). (2) When included in an otherwise daptomycin-susceptible lipid mixture, even 10% of dioleoyl lipid (DOPC) can strongly inhibit permeabilization. (3) The inhibitory effect of fatty acyl residues appears to correlate more with their chain length than with unsaturation. (4) Under all conditions tested, permeabilization coincided with octamer formation, whereas tetramers were observed on membranes that were not permeabilized. Overall, our findings further support the notion that the octamer is indeed the functional transmembrane pore, and that fatty acyl residues may prevent pore formation by preventing the alignment of tetramers across the two membrane leaflets.
Collapse
Affiliation(s)
- David Beriashvili
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Robert Taylor
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Braden Kralt
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Nooran Abu Mazen
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
152
|
Lee MY, Park SC, Jung M, Shin MK, Kang HL, Baik SC, Cheong GW, Jang MK, Lee WK. Cell-selectivity of tryptophan and tyrosine in amphiphilic α-helical antimicrobial peptides against drug-resistant bacteria. Biochem Biophys Res Commun 2018; 505:478-484. [PMID: 30268502 DOI: 10.1016/j.bbrc.2018.09.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
The increasing emergence of drug-resistant bacteria creates a requirement for new antibiotics and various types of antibiotic materials such as proteins, peptides, polymers, and chemical compounds. Among these, antimicrobial peptides (AMPs) are considered to be promising antibiotic candidates for clinical treatments. In this study, we have designed a novel series of peptides with repeated sequences of minimum membrane-active motif, 'XWZX' basic sequence (X: lysine or arginine, Z: leucine, tyrosine, valine, or glycine), and an α-helical secondary structure. Some peptides displayed a potent antibacterial activity via membranolytic action and high therapeutic index (toxic dose/minimum inhibitory concentration) in vitro. Furthermore, in vivo experiments using bacterial ear-skin infection models verified that these peptides have the potential to be powerful and safe antibiotics. The present study provides a lead sequence for designing peptide antibiotics against bacterial membranes and information for cell-selectivity of hydrophobic amino acids with aromatic side chains such as Trp and Tyr.
Collapse
Affiliation(s)
- Min-Young Lee
- Department of Microbiology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, 52727, South Korea
| | - Seong-Cheol Park
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, South Korea
| | - Myunghwan Jung
- Department of Microbiology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, 52727, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, 52727, South Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, 52727, South Korea
| | - Seung-Chul Baik
- Department of Microbiology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, 52727, South Korea
| | - Gang-Won Cheong
- Division of Applied Life Sciences and Research Institute of Natural Science, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, South Korea; The Research Institute for Sanitation and Environment of Coastal Areas, Sunchon National University, Suncheon, Jeonnam, 57922, South Korea.
| | - Woo-Kon Lee
- Department of Microbiology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, 52727, South Korea.
| |
Collapse
|
153
|
Figueira TN, Augusto MT, Rybkina K, Stelitano D, Noval MG, Harder OE, Veiga AS, Huey D, Alabi CA, Biswas S, Niewiesk S, Moscona A, Santos NC, Castanho MARB, Porotto M. Effective in Vivo Targeting of Influenza Virus through a Cell-Penetrating/Fusion Inhibitor Tandem Peptide Anchored to the Plasma Membrane. Bioconjug Chem 2018; 29:3362-3376. [PMID: 30169965 DOI: 10.1021/acs.bioconjchem.8b00527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of influenza virus infection is felt each year on a global scale when approximately 5-10% of adults and 20-30% of children globally are infected. While vaccination is the primary strategy for influenza prevention, there are a number of likely scenarios for which vaccination is inadequate, making the development of effective antiviral agents of utmost importance. Anti-influenza treatments with innovative mechanisms of action are critical in the face of emerging viral resistance to the existing drugs. These new antiviral agents are urgently needed to address future epidemic (or pandemic) influenza and are critical for the immune-compromised cohort who cannot be vaccinated. We have previously shown that lipid tagged peptides derived from the C-terminal region of influenza hemagglutinin (HA) were effective influenza fusion inhibitors. In this study, we modified the influenza fusion inhibitors by adding a cell penetrating peptide sequence to promote intracellular targeting. These fusion-inhibiting peptides self-assemble into ∼15-30 nm nanoparticles (NPs), target relevant infectious tissues in vivo, and reduce viral infectivity upon interaction with the cell membrane. Overall, our data show that the CPP and the lipid moiety are both required for efficient biodistribution, fusion inhibition, and efficacy in vivo.
Collapse
Affiliation(s)
- T N Figueira
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal.,Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - M T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal.,Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - K Rybkina
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - D Stelitano
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - M G Noval
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - O E Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - A S Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - D Huey
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - C A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - S Biswas
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - S Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - A Moscona
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Microbiology & Immunology , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Physiology & Cellular Biophysics , Columbia University Medical Center , New York , New York 10032 , United States
| | - N C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - M A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - M Porotto
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Experimental Medicine , University of Campania 'Luigi Vanvitelli' , 81100 Caserta , Caserta , Italy
| |
Collapse
|
154
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|
155
|
Boyd MA, Kamat NP. Visualizing Tension and Growth in Model Membranes Using Optical Dyes. Biophys J 2018; 115:1307-1315. [PMID: 30219285 DOI: 10.1016/j.bpj.2018.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Cells dynamically regulate their membrane surface area during a variety of processes critical to their survival. Recent studies with model membranes have pointed to a general mechanism for surface area regulation under tension in which cell membranes unfold or take up lipid to accommodate membrane strain. Yet we lack robust methods to simultaneously measure membrane tension and surface area changes in real time. Using lipid vesicles that contain two dyes isolated to spatially distinct parts of the membrane, we introduce, to our knowledge, a new method to monitor the processes of membrane stretching and lipid uptake in model membranes. Laurdan, located within the bilayer membrane, and Förster resonance energy transfer dyes, localized to the membrane exterior, act in concert to report changes in membrane tension and lipid uptake during osmotic stress. We use these dyes to show that membranes under tension take up lipid more quickly and in greater amounts compared to their nontensed counterparts. Finally, we show that this technique is compatible with microscopy, enabling real-time analysis of membrane dynamics on a single vesicle level. Ultimately, the combinatorial use of these probes offers a more complete picture of changing membrane morphology. Our optical method allows us to remotely track changes in membrane tension and surface area with model membranes, offering new opportunities to track morphological changes in artificial and biological membranes and providing new opportunities in fields ranging from mechanobiology to drug delivery.
Collapse
Affiliation(s)
- Margrethe A Boyd
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Center for Synthetic Biology, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.
| |
Collapse
|
156
|
Rondelli V, Del Favero E, Brocca P, Fragneto G, Trapp M, Mauri L, Ciampa M, Romani G, Braun C, Winterstein L, Schroeder I, Thiel G, Moroni A, Cantu' L. Directional K+ channel insertion in a single phospholipid bilayer: Neutron reflectometry and electrophysiology in the joint exploration of a model membrane functional platform. Biochim Biophys Acta Gen Subj 2018; 1862:1742-1750. [DOI: 10.1016/j.bbagen.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
|
157
|
Abstract
Spatial control of intracellular signaling relies on signaling proteins sensing their subcellular environment. In many cases, a large number of upstream signals are funneled to a master regulator of cellular behavior, but it remains unclear how individual proteins can rapidly integrate a complex array of signals within the appropriate spatial niche within the cell. As a model for how subcellular spatial information can control signaling activity, we have reconstituted the cell pole-specific control of the master regulator kinase/phosphatase CckA from the asymmetrically dividing bacterium Caulobacter crescentus CckA is active as a kinase only when it accumulates within a microdomain at the new cell pole, where it colocalizes with the pseudokinase DivL. Both proteins contain multiple PAS domains, a multifunctional class of sensory domains present across the kingdoms of life. Here, we show that CckA uses its PAS domains to integrate information from DivL and its own oligomerization state to control the balance of its kinase and phosphatase activities. We reconstituted the DivL-CckA complex on liposomes in vitro and found that DivL directly controls the CckA kinase/phosphatase switch, and that stimulation of either CckA catalytic activity depends on the second of its two PAS domains. We further show that CckA oligomerizes through a multidomain interaction that is critical for stimulation of kinase activity by DivL, while DivL stimulation of CckA phosphatase activity is independent of CckA homooligomerization. Our results broadly demonstrate how signaling factors can leverage information from their subcellular niche to drive spatiotemporal control of cell signaling.
Collapse
|
158
|
Traceless synthesis of ceramides in living cells reveals saturation-dependent apoptotic effects. Proc Natl Acad Sci U S A 2018; 115:7485-7490. [PMID: 29967152 DOI: 10.1073/pnas.1804266115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian cells synthesize thousands of distinct lipids, yet the function of many of these lipid species is unknown. Ceramides, a class of sphingolipid, are implicated in several cell-signaling pathways but poor cell permeability and lack of selectivity in endogenous synthesis pathways have hampered direct study of their effects. Here we report a strategy that overcomes the inherent biological limitations of ceramide delivery by chemoselectively ligating lipid precursors in vivo to yield natural ceramides in a traceless manner. Using this method, we uncovered the apoptotic effects of several ceramide species and observed differences in their apoptotic activity based on acyl-chain saturation. Additionally, we demonstrate spatiotemporally controlled ceramide synthesis in live cells through photoinitiated lipid ligation. Our in situ lipid ligation approach addresses the long-standing problem of lipid-specific delivery and enables the direct study of unique ceramide species in live cells.
Collapse
|
159
|
Strandberg E, Grau-Campistany A, Wadhwani P, Bürck J, Rabanal F, Ulrich AS. Helix Fraying and Lipid-Dependent Structure of a Short Amphipathic Membrane-Bound Peptide Revealed by Solid-State NMR. J Phys Chem B 2018; 122:6236-6250. [DOI: 10.1021/acs.jpcb.8b02661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Ariadna Grau-Campistany
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Francesc Rabanal
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
- KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
160
|
Moghal MMR, Islam MZ, Sharmin S, Levadnyy V, Moniruzzaman M, Yamazaki M. Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles. Chem Phys Lipids 2018; 212:120-129. [DOI: 10.1016/j.chemphyslip.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 01/06/2023]
|
161
|
Niwa T, Kasuya Y, Suzuki Y, Ichikawa K, Yoshida H, Kurimoto A, Tanaka K, Morita K. Novel Immunoliposome Technology for Enhancing the Activity of the Agonistic Antibody against the Tumor Necrosis Factor Receptor Superfamily. Mol Pharm 2018; 15:3729-3740. [PMID: 29648839 DOI: 10.1021/acs.molpharmaceut.7b01167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have developed a technology for efficiently enhancing the anticancer apoptosis-inducing activity of agonistic antibodies against the tumor necrosis factor receptor (TNFR) superfamily by the formation of immunoliposomes. To induce apoptosis in cancer cells, agonistic antibodies to the TNFR superfamily normally need cross-linking by internal immune effector cells via the Fc region after binding to receptors on the cell membrane. To develop apoptosis-inducing antibodies that do not require the support of cross-linking by immune cells, we prepared immunoliposomes conjugated with TRA-8, an agonistic antibody against death receptor 5 (DR5), with various densities of antibody on the liposome surface, and evaluated their activities. The TRA-8 immunoliposomes exhibited apoptosis-inducing activity against various DR5-positive human carcinoma cells at a significantly lower concentration without cross-linking than that of the original TRA-8 and its natural ligand (TRAIL). The activity of the immunoliposomes was correlated with the density of antibodies on the surface. As the antibody component, not only the full-length antibody but also the Fab' fragment could be used, and the TRA-8 Fab' immunoliposomes also showed exceedingly high activity compared with the parental antibody, namely, TRA-8. Moreover, cytotoxicity of the TRA-8 full-length or Fab' immunoliposome against normal cells, such as human primary hepatocytes, was lower than that for TRAIL. Enhanced activity was also observed for immunoliposomes conjugated with other apoptosis-inducing antibodies against other receptors of the TNFR superfamily, such as death receptor 4 (DR4) and Fas. Thus, immunoliposomes are promising as a new modality that could exhibit significant activity at a low dose, for cost-effective application of an antibody fragment and with stable efficacy independent of the intratumoral environment of patients as a TNF superfamily agonistic therapy.
Collapse
Affiliation(s)
- Takako Niwa
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Yuji Kasuya
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Yukie Suzuki
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Kimihisa Ichikawa
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Hiroko Yoshida
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Akiko Kurimoto
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Kento Tanaka
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Koji Morita
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| |
Collapse
|
162
|
Chen Z, Moon JJ, Cheng W. Quantitation and Stability of Protein Conjugation on Liposomes for Controlled Density of Surface Epitopes. Bioconjug Chem 2018; 29:1251-1260. [PMID: 29528624 PMCID: PMC6918458 DOI: 10.1021/acs.bioconjchem.8b00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The number and spacing of B-cell epitopes on antigens have a profound impact on the activation of B cells and elicitation of antibody responses, the quantitative aspects of which may be utilized for rational design of vaccines. Ni-chelating liposomes have been widely used as protein carriers in experimental studies of vaccine delivery, owing to the convenience and versatility of this conjugation chemistry. However, the epitope number per particle as well as the stability of protein conjugation on liposomes remain far less characterized. Here we have developed quantitative methods to measure the average spatial density of proteins on liposomes using both ensemble and single-molecule techniques and demonstrated their utility using liposomes conjugated with native proteins of two different sizes. These studies revealed that the initial density of protein conjugation on Ni-chelating liposomes can be finely controlled, but the density can decrease over time upon dilution due to the noncovalent nature of Ni-chelation chemistry. These results indicate that an alternative method other than the Ni-chelation chemistry is needed for stable conjugation of epitopes onto liposomes and also suggest a general strategy that can be used to precisely regulate the epitope density on liposomes for B-cell antigen delivery.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, 2200 Bonisteel Boulevard, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Cheng
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
163
|
Refining Protein Penetration into the Lipid Bilayer Using Fluorescence Quenching and Molecular Dynamics Simulations: The Case of Diphtheria Toxin Translocation Domain. J Membr Biol 2018; 251:379-391. [PMID: 29550876 DOI: 10.1007/s00232-018-0030-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/11/2018] [Indexed: 12/23/2022]
Abstract
Dynamic disorder of the lipid bilayer presents a challenge for establishing structure-function relationships in membranous systems. The resulting structural heterogeneity is especially evident for peripheral and spontaneously inserting membrane proteins, which are not constrained by the well-defined transmembrane topology and exert their action in the context of intimate interaction with lipids. Here, we propose a concerted approach combining depth-dependent fluorescence quenching with Molecular Dynamics simulation to decipher dynamic interactions of membrane proteins with the lipid bilayers. We apply this approach to characterize membrane-mediated action of the diphtheria toxin translocation domain. First, we use a combination of the steady-state and time-resolved fluorescence spectroscopy to characterize bilayer penetration of the NBD probe selectively attached to different sites of the protein into membranes containing lipid-attached nitroxyl quenching groups. The constructed quenching profiles are analyzed with the Distribution Analysis methodology allowing for accurate determination of transverse distribution of the probe. The results obtained for 12 NBD-labeled single-Cys mutants are consistent with the so-called Open-Channel topology model. The experimentally determined quenching profiles for labeling sites corresponding to L350, N373, and P378 were used as initial constraints for positioning TH8-9 hairpin into the lipid bilayer for Molecular Dynamics simulation. Finally, we used alchemical free energy calculations to characterize protonation of E362 in soluble translocation domain and membrane-inserted conformation of its TH8-9 fragment. Our results indicate that membrane partitioning of the neutral E362 is more favorable energetically (by ~ 6 kcal/mol), but causes stronger perturbation of the bilayer, than the charged E362.
Collapse
|
164
|
Cardiolipin exposure on the outer mitochondrial membrane modulates α-synuclein. Nat Commun 2018; 9:817. [PMID: 29483518 PMCID: PMC5827019 DOI: 10.1038/s41467-018-03241-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/30/2018] [Indexed: 11/09/2022] Open
Abstract
Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function and impaired proteostasis. Identifying the mechanisms that link these pathologies is critical to furthering our understanding of PD pathogenesis. Using human pluripotent stem cells (hPSCs) that allow comparison of cells expressing mutant SNCA (encoding α-synuclein (α-syn)) with isogenic controls, or SNCA-transgenic mice, we show that SNCA-mutant neurons display fragmented mitochondria and accumulate α-syn deposits that cluster to mitochondrial membranes in response to exposure of cardiolipin on the mitochondrial surface. Whereas exposed cardiolipin specifically binds to and facilitates refolding of α-syn fibrils, prolonged cardiolipin exposure in SNCA-mutants initiates recruitment of LC3 to the mitochondria and mitophagy. Moreover, we find that co-culture of SNCA-mutant neurons with their isogenic controls results in transmission of α-syn pathology coincident with mitochondrial pathology in control neurons. Transmission of pathology is effectively blocked using an anti-α-syn monoclonal antibody (mAb), consistent with cell-to-cell seeding of α-syn.
Collapse
|
165
|
Understanding the antimicrobial properties/activity of an 11-residue Lys homopeptide by alanine and proline scan. Amino Acids 2018; 50:557-568. [DOI: 10.1007/s00726-018-2542-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/11/2018] [Indexed: 12/20/2022]
|
166
|
Sakagami K, Masuda T, Kawano K, Futaki S. Importance of Net Hydrophobicity in the Cellular Uptake of All-Hydrocarbon Stapled Peptides. Mol Pharm 2018; 15:1332-1340. [DOI: 10.1021/acs.molpharmaceut.7b01130] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Koki Sakagami
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshihiro Masuda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
167
|
Kim MK, Kang HK, Ko SJ, Hong MJ, Bang JK, Seo CH, Park Y. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Sci Rep 2018; 8:1763. [PMID: 29379033 PMCID: PMC5789083 DOI: 10.1038/s41598-018-19434-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/28/2017] [Indexed: 01/06/2023] Open
Abstract
Hp1404, identified from the venom of the scorpion Heterometrus petersii, displays antimicrobial activity with cytotoxicity. Several synthetic peptides were designed based on the parent peptide Hp1404 to reduce cytotoxicity and improve activity (deletion of glycine and phenylalanine, substitution with leucine and lysine). The analogue peptides generated comprised 12 amino acids and displayed amphipathic α-helical structures, with higher hydrophobic moments and net positive charge than those of the Hp1404. The analogues showed less hemolytic and toxic effects toward mammalian cells than the Hp1404, especially Hp1404-T1e, which exhibited particularly potent antibacterial and antibiofilm activities against multidrug-resistant Pseudomonas aeruginosa (MRPA) strains. The analogue peptide Hp1404-T1e was more stable against salt and trypsin than the Hp1404. Hp1404's mechanism of action involves binding to lipopolysaccharide (LPS), thereby killing bacteria through membrane disruption. Hp1404-T1e kills bacteria more rapidly than Hp1404 and not only seems to bind more strongly to LPS but may also be able to enter bacterial cells and interact with their DNA. Additionally, Hp1404-T1e can effectively kill bacteria in vivo. The results of this study indicate that Hp1404-T1e not only displays antimicrobial activity, but is also functional in physiological conditions, confirming its potential use as an effective therapeutic agent against MRPA.
Collapse
Affiliation(s)
- Min Kyung Kim
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Hee Kyoung Kang
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Su Jin Ko
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Min Ji Hong
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, 314-701, South Korea
| | - Yoonkyung Park
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea.
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea.
| |
Collapse
|
168
|
Use of nanoparticle concentration as a tool to understand the structural properties of colloids. Sci Rep 2018; 8:982. [PMID: 29343691 PMCID: PMC5772370 DOI: 10.1038/s41598-017-18573-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/14/2017] [Indexed: 11/08/2022] Open
Abstract
Elucidation of the structural properties of colloids is paramount for a successful formulation. However, the intrinsic dynamism of colloidal systems makes their characterization a difficult task and, in particular, there is a lack of physicochemical techniques that can be correlated to their biological performance. Nanoparticle tracking analysis (NTA) allows measurements of size distribution and nanoparticle concentration in real time. Its analysis over time also enables the early detection of physical instability in the systems not assessed by subtle changes in size distribution. Nanoparticle concentration is a parameter with the potential to bridge the gap between in vitro characterization and biological performance of colloids, and therefore should be monitored in stability studies of formulations. To demonstrate this, we have followed two systems: extruded liposomes exposed to increasing CHCl3 concentrations, and solid lipid nanoparticles prepared with decreasing amounts of poloxamer 188. NTA and dynamic light scattering (DLS) were used to monitor changes in nanoparticle number and size, and to estimate the number of lipid components per particle. The results revealed a strong negative correlation between particle size (determined by DLS) and concentration (assessed by NTA) in diluted samples, which should be adopted to monitor nanocolloidal stability, especially in drug delivery.
Collapse
|
169
|
Rideau E, Wurm FR, Landfester K. Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00992a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polybutadiene-block-poly(ethyl ethylene phosphate) can reproducibly self-assemble in large number into giant unilamellar vesicles (GUVs) by non-assisted film hydration, representing a stepping stone for better liposomes – substitutes towards the generation of artificial cells.
Collapse
Affiliation(s)
- Emeline Rideau
- Max-Planck-Institut für Polymerforschung
- 55128 Mainz
- Germany
| | | | | |
Collapse
|
170
|
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018; 47:8572-8610. [DOI: 10.1039/c8cs00162f] [Citation(s) in RCA: 521] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Minimal cells: we compare and contrast liposomes and polymersomes for a bettera priorichoice and design of vesicles and try to understand the advantages and shortcomings associated with using one or the other in many different aspects (properties, synthesis, self-assembly, applications).
Collapse
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Rumiana Dimova
- Max Planck Institute for Colloids and Interfaces
- Wissenschaftspark Potsdam-Golm
- 14476 Potsdam
- Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry
- 82152 Martinsried
- Germany
| | | | | |
Collapse
|
171
|
Kashima K, Fujisaki T, Serrano-Luginbühl S, Khaydarov A, Kissner R, Ležaić AJ, Bajuk-Bogdanović D, Ćirić-Marjanović G, Schuler LD, Walde P. How experimental details matter. The case of a laccase-catalysed oligomerisation reaction. RSC Adv 2018; 8:33229-33242. [PMID: 35548148 PMCID: PMC9086443 DOI: 10.1039/c8ra05731a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/17/2018] [Indexed: 01/29/2023] Open
Abstract
The Trametes versicolor laccase (TvL)-catalysed oligomerisation of the aniline dimer p-aminodiphenylamine (PADPA) was investigated in an aqueous medium of pH = 3.5, containing 80–100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid. If run under optimal conditions, the reaction yields oligomeric products which resemble the emeraldine salt form of polyaniline (PANI-ES) in its polaron state, known to be the only oxidation state of linear PANI which is electrically conductive. The vesicles serve as “templates” for obtaining products with the desired PANI-ES-like features. For this complex, heterogeneous, vesicle-assisted, and enzyme-mediated reaction, in which dissolved dioxygen also takes part as a re-oxidant for TvL, small changes in the composition of the reaction mixture can have significant effects. Initial conditions may not only affect the kinetics of the reaction, but also the outcome, i.e., the product distribution once the reaction reaches its equilibrium state. While a change in the reaction temperature from T ≈ 25 to 5 °C mainly influenced the rate of reaction, increase in enzyme concentration and the presence of millimolar concentrations of chloride ions were found to have significant undesired effects on the outcome of the reaction. Chloride ions, which may originate from the preparation of the pH = 3.5 solution, inhibit TvL, such that higher TvL concentrations are required than without chloride to yield the same product distribution for the same reaction runtime as in the absence of chloride. With TvL concentrations much higher than the elaborated value, the products obtained clearly were different and over-oxidised. Thus, a change in the activity of the enzyme was found to have influence not only on kinetics but also led to a change in the final product distribution, molecular structure and electrical properties, which was a surprising find. The complementary analytical methods which we used in this work were in situ UV/vis/NIR, EPR, and Raman spectroscopy measurements, in combination with a detailed ex situ HPLC analysis and molecular dynamics simulations. With the results obtained, we would like to recall the often neglected or ignored fact that it is important to describe and pay attention to the experimental details, since this matters for being able to perform experiments in a reproducible way. A laccase-catalysed oligomerisation of p-aminodiphenylamine was investigated in an aqueous medium containing 80–100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid.![]()
Collapse
Affiliation(s)
- Keita Kashima
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
- Department of Materials Chemistry and Bioengineering
| | - Tomoyuki Fujisaki
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
- Department of Materials Chemistry and Bioengineering
| | | | | | - Reinhard Kissner
- Laboratory of Inorganic Chemistry
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | | | | | | | | | - Peter Walde
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
| |
Collapse
|
172
|
Study of lipid peroxidation and ascorbic acid protective role in large unilamellar vesicles from a new electrochemical performance. Bioelectrochemistry 2017; 120:120-126. [PMID: 29247891 DOI: 10.1016/j.bioelechem.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 11/22/2022]
Abstract
In this contribution an electrochemical study is described for the first time of lipid peroxidation and the role of antioxidant on lipid protection using large unilamellar vesicles (LUVs). In order to simulate the cell membrane, LUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were used. A vesicle-modified electrode was constructed by immobilizing DOPC LUVs onto carbon paste electrodes (CPEs). Lipid peroxidation was studied electrochemically by incubating the vesicle-modified electrodes with hydroxyl (HO) radicals generated via the Fenton reaction. Oxidative damage induced by HO was verified by using square wave voltammetry (SWV) and was indirectly measured by the increase of electrochemical peak current to [Fe(CN)6]4- which was used as the electrochemical label. Ascorbic acid (AA) was used as the antioxidant model in order to study its efficacy on free radical scavenging. The decrease of the electrochemical signal confirms the protective key role promoted by AA in the prevention of lipid peroxidation in vesicles. Through microscopy, it was possible to observe morphologic modification on vesicle structures after lipid peroxidation in the presence or absence of AA.
Collapse
|
173
|
Kondela T, Gallová J, Hauß T, Ivankov O, Kučerka N, Balgavý P. Effect of alkan-1-ols on the structure of dopc model membrane. EUROPEAN PHARMACEUTICAL JOURNAL 2017. [DOI: 10.1515/afpuc-2017-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The effect of general anaesthetics alkan-1-ols (CnOH, where n = 10, 12, 14, 16 and 18 is the number of carbon atoms in the molecule) on the structure of dioleoylphosphatidylcholine (DOPC) model membrane was studied by small-angle neutron scattering (SANS) and small-angle neutron diffraction (SAND). Fluid bilayers were prepared at CnOH:DOPC = 0.3 molar ratio. The results of both the experiments show that bilayer thickness - a thickness parameter dg in the case of SANS and lamellar repeat distance D in the case of SAND - increases with increasing n. A coexistence of two lamellar phases with different D was detected by measuring the C18OH+DOPC oriented sample.
Collapse
Affiliation(s)
- T. Kondela
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Physical Chemistry, Bratislava , Slovak Republic
| | - J. Gallová
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Physical Chemistry, Bratislava , Slovakia
| | - T. Hauß
- Helmholtz Zentrum Berlin für Materialen und Energie, Berlin , Germany
| | - O. Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna , Russian Federation
- Moscow Institute of Physics and Technology, MIPT, Dolgoprudny , Russian Federation
- Institute for Safety Problems of Nuclear Power Plants, NAS Ukraine, Kiev , Ukraine
| | - N. Kučerka
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Physical Chemistry, Bratislava , Slovak Republic
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna , Russian Federation
| | - P. Balgavý
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Physical Chemistry, Bratislava , Slovakia
| |
Collapse
|
174
|
Ko SJ, Kim MK, Bang JK, Seo CH, Luchian T, Park Y. Macropis fulvipes Venom component Macropin Exerts its Antibacterial and Anti-Biofilm Properties by Damaging the Plasma Membranes of Drug Resistant Bacteria. Sci Rep 2017; 7:16580. [PMID: 29185466 PMCID: PMC5707368 DOI: 10.1038/s41598-017-16784-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023] Open
Abstract
The abuse of antibiotics for disease treatment has led to the emergence of multidrug resistant bacteria. Antimicrobial peptides, found naturally in various organisms, have received increasing interest as alternatives to conventional antibiotics because of their broad spectrum antimicrobial activity and low cytotoxicity. In a previous report, Macropin, isolated from bee venom, exhibited antimicrobial activity against both gram-positive and negative bacteria. In the present study, Macropin was synthesized and its antibacterial and anti-biofilm activities were tested against bacterial strains, including gram-positive and negative bacteria, and drug resistant bacteria. Moreover, Macropin did not exhibit hemolytic activity and cytotoxicity to keratinocytes, whereas Melittin, as a positive control, showed very high toxicity. Circular dichroism assays showed that Macropin has an α-helical structure in membrane mimic environments. Macropin binds to peptidoglycan and lipopolysaccharide and kills the bacteria by disrupting their membranes. Moreover, the fractional inhibitory concentration index indicated that Macropin has additive and partially synergistic effects with conventional antibiotics against drug resistant bacteria. Thus, our study suggested that Macropin has potential for use of an antimicrobial agent for infectious bacteria, including drug resistant bacteria.
Collapse
Affiliation(s)
- Su Jin Ko
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
| | - Min Kyung Kim
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, 314-701, South Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania.
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea. .,Research Center for Proteineous Materials, Chosun University, Gwangju, 61452, Korea.
| |
Collapse
|
175
|
Sendecki AM, Poyton MF, Baxter AJ, Yang T, Cremer PS. Supported Lipid Bilayers with Phosphatidylethanolamine as the Major Component. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13423-13429. [PMID: 29119796 DOI: 10.1021/acs.langmuir.7b02323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phosphatidylethanolamine (PE) is notoriously difficult to incorporate into model membrane systems, such as fluid supported lipid bilayers (SLBs), at high concentrations because of its intrinsic negative curvature. Using fluorescence-based techniques, we demonstrate that having fewer sites of unsaturation in the lipid tails leads to high-quality SLBs because these lipids help to minimize the curvature. Moreover, shorter saturated chains can help maintain the membranes in the fluid phase. Using these two guidelines, we find that up to 70 mol % PE can be incorporated into SLBs at room temperature and up to 90 mol % PE can be incorporated at 37 °C. Curiously, conditions under which three-dimensional tubules project outward from the planar surface as well as conditions under which domain formation occurs can be found. We have employed these model membrane systems to explore the ability of Ni2+ to bind to PE. It was found that this transition metal ion binds 1000-fold tighter to PE than to phosphatidylcholine lipids. In the future, this platform could be exploited to monitor the binding of other transition metal ions or the binding of antimicrobial peptides. It could also be employed to explore the physical properties of PE-containing membranes, such as phase domain behavior and intermolecular hydrogen bonding.
Collapse
Affiliation(s)
- Anne M Sendecki
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Matthew F Poyton
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexis J Baxter
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Tinglu Yang
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Paul S Cremer
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
176
|
Human ATG3 binding to lipid bilayers: role of lipid geometry, and electric charge. Sci Rep 2017; 7:15614. [PMID: 29142222 PMCID: PMC5688168 DOI: 10.1038/s41598-017-15057-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Specific protein-lipid interactions lead to a gradual recruitment of AuTophaGy-related (ATG) proteins to the nascent membrane during autophagosome (AP) formation. ATG3, a key protein in the movement of LC3 towards the isolation membrane, has been proposed to facilitate LC3/GABARAP lipidation in highly curved membranes. In this work we have performed a biophysical study of human ATG3 interaction with membranes containing phosphatidylethanolamine, phosphatidylcholine and anionic phospholipids. We have found that ATG3 interacts more strongly with negatively-charged phospholipid vesicles or nanotubes than with electrically neutral model membranes, cone-shaped anionic phospholipids (cardiolipin and phosphatidic acid) being particularly active in promoting binding. Moreover, an increase in membrane curvature facilitates ATG3 recruitment to membranes although addition of anionic lipid molecules makes the curvature factor relatively less important. The predicted N-terminus amphipathic α-helix of ATG3 would be responsible for membrane curvature detection, the positive residues Lys 9 and 11 being essential in the recognition of phospholipid negative moieties. We have also observed membrane aggregation induced by ATG3 in vitro, which could point to a more complex function of this protein in AP biogenesis. Moreover, in vitro GABARAP lipidation assays suggest that ATG3-membrane interaction could facilitate the lipidation of ATG8 homologues.
Collapse
|
177
|
Wang FC, Acevedo N, Marangoni AG. Encapsulation of phytosterols and phytosterol esters in liposomes made with soy phospholipids by high pressure homogenization. Food Funct 2017; 8:3964-3969. [PMID: 28972217 DOI: 10.1039/c7fo00905d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Phytosterols and phytosterol esters were encapsulated within large unilamellar liposomes prepared with soy phospholipids using a microfluidizer. The average particle diameter of these liposomal vesicles increased with increasing amounts of encapsulated phytosterols, especially with increasing free sterol content. The phytosterol content, liposomal particle size, and phytosterol encapsulation efficiency started to plateau when liposomes were prepared with MOPS buffer dispersions that contained 50 mg ml-1 soy phospholipid and more than 4% phytosterol blend, suggesting the saturation of phytosterol encapsulation. We proposed an encapsulation mechanism of free sterols and phytosterol esters in liposomes, where free sterols were mainly encapsulated within the lumen of these liposomes as crystals, and sterol esters and some free sterols were incorporated within the phospholipid bilayer of the liposomal membrane. The results from this work could provide the pharmaceutical and nutraceutical industries a practical method to produce loaded liposomes using inexpensive phospholipid mixtures for the delivery of bioactive ingredients.
Collapse
Affiliation(s)
- Fan C Wang
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G2 W1.
| | | | | |
Collapse
|
178
|
Vasquez-Montes V, Gerhart J, King KE, Thévenin D, Ladokhin AS. Comparison of lipid-dependent bilayer insertion of pHLIP and its P20G variant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:534-543. [PMID: 29138065 DOI: 10.1016/j.bbamem.2017.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/18/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
The ability of the pH-Low Insertion Peptide (pHLIP) to insert into lipid membranes in a transbilayer conformation makes it an important tool for targeting acidic diseased tissues. pHLIP can also serve as a model template for thermodynamic studies of membrane insertion. We use intrinsic fluorescence and circular dichroism spectroscopy to examine the effect of replacing pHLIP's central proline on the pH-triggered lipid-dependent conformational switching of the peptide. We find that the P20G variant (pHLIP-P20G) has a higher helical propensity than the native pHLIP (pHLIP-WT), in both water:organic solvent mixtures and in the presence of lipid bilayers. Spectral shifts of tryptophan fluorescence reveal that with both pHLIP-WT and pHLIP-P20G, the deeply penetrating interfacial form (traditionally called State II) is populated only in pure phosphocholine bilayers. The presence of either anionic lipids or phosphatidylethanolamine leads to a much shallower penetration of the peptide (referred to here as State IIS, for "shallow"). This novel state can be differentiated from soluble state by a reduction in accessibility of tryptophans to acrylamide and by FRET to vesicles doped with Dansyl-PE, but not by a spectral shift in fluorescence emission. FRET experiments indicate free energies for interfacial partitioning range from 6.2 to 6.8kcal/mol and are marginally more favorable for pHLIP-P20G. The effective pKa for the insertion of both peptides depends on the lipid composition, but is always higher for pHLIP-P20G than for pHLIP-WT by approximately one pH unit, which corresponds to a difference of 1.3kcal/mol in free energy of protonation favoring insertion of pHLIP-P20G.
Collapse
Affiliation(s)
- Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, United States
| | - Janessa Gerhart
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, United States
| | - Kelly E King
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, United States
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, United States.
| |
Collapse
|
179
|
Rationally designed peptide nanosponges for cell-based cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2555-2564. [DOI: 10.1016/j.nano.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022]
|
180
|
Cellular Entry of the Diphtheria Toxin Does Not Require the Formation of the Open-Channel State by Its Translocation Domain. Toxins (Basel) 2017; 9:toxins9100299. [PMID: 28937631 PMCID: PMC5666346 DOI: 10.3390/toxins9100299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular entry of diphtheria toxin is a multistage process involving receptor targeting, endocytosis, and translocation of the catalytic domain across the endosomal membrane into the cytosol. The latter is ensured by the translocation (T) domain of the toxin, capable of undergoing conformational refolding and membrane insertion in response to the acidification of the endosomal environment. While numerous now classical studies have demonstrated the formation of an ion-conducting conformation-the Open-Channel State (OCS)-as the final step of the refolding pathway, it remains unclear whether this channel constitutes an in vivo translocation pathway or is a byproduct of the translocation. To address this question, we measure functional activity of known OCS-blocking mutants with H-to-Q replacements of C-terminal histidines of the T-domain. We also test the ability of these mutants to translocate their own N-terminus across lipid bilayers of model vesicles. The results of both experiments indicate that translocation activity does not correlate with previously published OCS activity. Finally, we determined the topology of TH5 helix in membrane-inserted T-domain using W281 fluorescence and its depth-dependent quenching by brominated lipids. Our results indicate that while TH5 becomes a transbilayer helix in a wild-type protein, it fails to insert in the case of the OCS-blocking mutant H322Q. We conclude that the formation of the OCS is not necessary for the functional translocation by the T-domain, at least in the histidine-replacement mutants, suggesting that the OCS is unlikely to constitute a translocation pathway for the cellular entry of diphtheria toxin in vivo.
Collapse
|
181
|
Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci Rep 2017; 7:12045. [PMID: 28935923 PMCID: PMC5608873 DOI: 10.1038/s41598-017-11533-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
Liposomes are lipid based bilayer vesicles that can encapsulate, deliver and release low-soluble drugs and small molecules to a specific target site in the body. They are currently exploited in several nanomedicine formulations. However, their development and application is still limited by expensive and time-consuming process development and production methods. Therefore, to exploit these systems more effectively and support the rapid translation of new liposomal nanomedicines from bench to bedside, new cost-effective and scalable production methods are needed. We present a continuous process flow system for the preparation, modification and purification of liposomes which offers lab-on-chip scale production. The system was evaluated for a range of small vesicles (below 300 nm) varying in lipid composition, size and charge; it offers effective and rapid nanomedicine purification with high lipid recovery (> 98%) combined with effective removal of non-entrapped drug (propofol >95% reduction of non-entrapped drug present) or protein (ovalbumin >90% reduction of OVA present) and organic solvent (ethanol >95% reduction) in less than 4 minutes. The key advantages of using this bench-top, rapid, process development tool are the flexible operating conditions, interchangeable membranes and scalable high-throughput yields, thereby offering simultaneous manufacturing and purification of nanoparticles with tailored surface attributes.
Collapse
|
182
|
Zhang Q, Morgan SP, Mather ML. Nanoscale Ultrasound-Switchable FRET-Based Liposomes for Near-Infrared Fluorescence Imaging in Optically Turbid Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602895. [PMID: 28692762 DOI: 10.1002/smll.201602895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/21/2017] [Indexed: 06/07/2023]
Abstract
A new approach for fluorescence imaging in optically turbid media centered on the use of nanoscale ultrasound-switchable FRET-based liposome contrast agents is reported. Liposomes containing lipophilic carbocyanine dyes as FRET pairs with emission wavelengths located in the near-infrared window are prepared. The efficacy of FRET and self-quenching for liposomes with a range of fluorophore concentrations is first calculated from measurement of the liposome emission spectra. Exposure of the liposomes to ultrasound results in changes in the detected fluorescent signal, the nature of which depends on the fluorophores used, detection wavelength, and the fluorophore concentration. Line scanning of a tube containing the contrast agents with 1 mm inner diameter buried at a depth of 1 cm in a heavily scattering tissue phantom demonstrates an improvement in image spatial resolution by a factor of 6.3 as compared with images obtained in the absence of ultrasound. Improvements are also seen in image contrast with the highest obtained being 9% for a liposome system containing FRET pairs. Overall the results obtained provide evidence of the potential the nanoscale ultrasound-switchable FRET-based liposomes studied here have for in vivo fluorescence imaging.
Collapse
Affiliation(s)
- Qimei Zhang
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephen P Morgan
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Melissa L Mather
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK
| |
Collapse
|
183
|
Fuselier T, Wimley WC. Spontaneous Membrane Translocating Peptides: The Role of Leucine-Arginine Consensus Motifs. Biophys J 2017; 113:835-846. [PMID: 28834720 PMCID: PMC5567601 DOI: 10.1016/j.bpj.2017.06.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/14/2017] [Accepted: 06/02/2017] [Indexed: 12/30/2022] Open
Abstract
We previously used an orthogonal high-throughput screen to select peptides that spontaneously cross synthetic lipid bilayers without bilayer disruption. Many of the 12-residue spontaneous membrane translocating peptides (SMTPs) selected from the library contained a 5-residue consensus motif, LRLLR in positions 5-9. We hypothesized that the conserved motif could be a necessary and sufficient minimal motif for translocation. To test this and to explore the mechanism of spontaneous membrane translocation, we synthesized seven arginine placement variants of LRLLRWC and compared their membrane partitioning, translocation, and perturbation to one of the parent SMTPs, called "TP2". Several motif variant peptides translocate into synthetic vesicles with rates that are similar to TP2. However, the peptide containing the selected motif, LRLLRWC, was not the fastest; sequence context is also important for translocation efficiency. Although none of these peptides permeabilize bilayers, the motif peptides translocate faster at higher peptide to lipid ratios, suggesting that bilayer perturbation and/or cooperative interactions are important for their translocation. On the other hand, TP2 translocates slower as its concentration is increased, suggesting that TP2 translocates as a monomer and is inhibited by lateral interactions in the membrane. TP2 and the LRLLR motif peptide induce lipid translocation, suggesting that lipids chaperone them across the bilayer. The other motif peptides do not induce lipid flip-flop, suggesting an alternate mechanism. Concatenated motifs translocate slower than the motifs alone. Variants of TP2 with shorter and longer arginine side-chain analogs translocate slower than TP2. In summary, these results suggest that multiple patterns of leucine and arginine can support spontaneous membrane translocation, and that sequence context is important for the contribution of the motifs. Because motifs do not make simple, additive contributions to spontaneous translocation, rational engineering of novel SMTPs will remain difficult, providing even more reason to pursue SMTP discovery with synthetic molecular evolution.
Collapse
Affiliation(s)
- Taylor Fuselier
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
184
|
Davis BM, Brenton J, Davis S, Shamsher E, Sisa C, Grgic L, Cordeiro MF. Assessing anesthetic activity through modulation of the membrane dipole potential. J Lipid Res 2017; 58:1962-1976. [PMID: 28818873 PMCID: PMC5625120 DOI: 10.1194/jlr.m073932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
There is great individual variation in response to general anesthetics (GAs) leading to difficulties in optimal dosing and sometimes even accidental awareness during general anesthesia (AAGA). AAGA is a rare, but potentially devastating, complication affecting between 0.1% and 2% of patients undergoing surgery. The development of novel personalized screening techniques to accurately predict a patient’s response to GAs and the risk of AAGA remains an unmet clinical need. In the present study, we demonstrate the principle of using a fluorescent reporter of the membrane dipole potential, di-8-ANEPPs, as a novel method to monitor anesthetic activity using a well-described inducer/noninducer pair. The membrane dipole potential has previously been suggested to contribute a novel mechanism of anesthetic action. We show that the fluorescence ratio of di-8-ANEPPs changed in response to physiological concentrations of the anesthetic, 1-chloro-1,2,2-trifluorocyclobutane (F3), but not the structurally similar noninducer, 1,2-dichlorohexafluorocyclobutane (F6), to artificial membranes and in vitro retinal cell systems. Modulation of the membrane dipole provides an explanation to overcome the limitations associated with the alternative membrane-mediated mechanisms of GA action. Furthermore, by combining this technique with noninvasive retinal imaging technologies, we propose that this technique could provide a novel and noninvasive technique to monitor GA susceptibility and identify patients at risk of AAGA.
Collapse
Affiliation(s)
| | - Jonathan Brenton
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Sterenn Davis
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Ehtesham Shamsher
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Claudia Sisa
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Ljuban Grgic
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - M Francesca Cordeiro
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom .,Western Eye Hospital, Imperial College Healthcare National Health Service Trust, and Imperial College Ophthalmic Research Group, Imperial College London, London NW1 5QH, United Kingdom
| |
Collapse
|
185
|
Kuhlmann JW, Junius M, Diederichsen U, Steinem C. SNARE-Mediated Single-Vesicle Fusion Events with Supported and Freestanding Lipid Membranes. Biophys J 2017; 112:2348-2356. [PMID: 28591607 DOI: 10.1016/j.bpj.2017.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022] Open
Abstract
In vitro single-vesicle fusion assays are important tools to analyze the details of SNARE-mediated fusion processes. In this study, we employed planar pore-spanning membranes (PSMs) prepared on porous silicon substrates with large pore diameters of 5 μm, allowing us to compare the process of vesicle docking and fusion on the supported parts of the PSMs (s-PSMs) with that on the freestanding membrane parts (f-PSM) under the exact same experimental conditions. The PSMs harbor the t-SNARE ΔN49-complex to investigate the dynamics and fusogenicity of single large unilamellar vesicles doped with the v-SNARE synaptobrevin 2 by means of spinning-disc confocal microscopy with a time resolution of 10 ms. Our results demonstrate that vesicles docked to the s-PSM were fully immobile, whereas those docked to the f-PSM were mobile with a mean diffusion coefficient of 0.42 μm2/s. Despite the different dynamics of the vesicles on the two membrane types, similar fusion kinetics were observed, giving rise to a common fusion mechanism. Further investigations of individual lipid mixing events on the s-PSMs revealed semi-stable post-fusion structures.
Collapse
Affiliation(s)
- Jan W Kuhlmann
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Meike Junius
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
186
|
Popov J, Gilabert-Oriol R, Bally MB. Unique therapeutic properties and preparation methodology of multivalent rituximab-lipid nanoparticles. Eur J Pharm Biopharm 2017; 117:256-269. [DOI: 10.1016/j.ejpb.2017.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/20/2023]
|
187
|
Batista Napotnik T, Bello G, Sinner EK, Miklavčič D. The Effect of Nanosecond, High-Voltage Electric Pulses on the Shape and Permeability of Polymersome GUVs. J Membr Biol 2017; 250:441-453. [PMID: 28735341 DOI: 10.1007/s00232-017-9968-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/06/2017] [Indexed: 11/27/2022]
Abstract
Polymersomes, vesicles composed of block copolymers, are promising candidates as membrane alternatives and functional containers, e.g., as potential carriers for functional molecules because of their stability and tunable membrane properties. In the scope of possible use for membrane protein delivery to cells by electrofusion, we investigated the cytotoxicity of such polymersomes as well as the effects of nanosecond electric pulses with variable repetition rate on the shape and permeability of polymersomes in buffers with different conductivities. The polymersomes did not show cytotoxic effects to CHO and B16-F1 cells in vitro in concentrations up to 250 µg/mL (for 48 h) or 1.35 mg/mL (for 60 min), which renders them suitable for interacting with living cells. We observed a significant effect of the pulse repetition rate on electrodeformation of the polymersomes. The electrodeformation was most pronounced in low conductivity buffer, which is favorable for performing electrofusion with cells. However, despite more pronounced deformation at higher pulse repetition rate, the electroporation performance of polymersomes was unaffected and remained in similar ranges both at 10 Hz and 10 kHz. This phenomenon is possibly due to the higher stability and rigidity of polymer vesicles, compared to liposomes, and can serve as an advantage (or disadvantage) depending on the aim in employing polymersomes such as stable membrane alternative architectures or drug vehicles.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Gianluca Bello
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11, 1190, Vienna, Austria
| | - Eva-Kathrin Sinner
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11, 1190, Vienna, Austria
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
188
|
Taabache S, Bertin A. Vesicles from Amphiphilic Dumbbells and Janus Dendrimers: Bioinspired Self-Assembled Structures for Biomedical Applications. Polymers (Basel) 2017; 9:E280. [PMID: 30970958 PMCID: PMC6432481 DOI: 10.3390/polym9070280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The current review focuses on vesicles obtained from the self-assembly of two types of dendritic macromolecules, namely amphiphilic Janus dendrimers (forming dendrimersomes) and amphiphilic dumbbells. In the first part, we will present some synthetic strategies and the various building blocks that can be used to obtain dendritic-based macromolecules, thereby showing their structural versatility. We put our focus on amphiphilic Janus dendrimers and amphiphilic dumbbells that form vesicles in water but we also encompass vesicles formed thereof in organic solvents. The second part of this review deals with the production methods of these vesicles at the nanoscale but also at the microscale. Furthermore, the influence of various parameters (intrinsic to the amphiphilic JD and extrinsic-from the environment) on the type of vesicle formed will be discussed. In the third part, we will review the numerous biomedical applications of these vesicles of nano- or micron-size.
Collapse
Affiliation(s)
- Soraya Taabache
- Federal Institute for Materials Research and Testing (BAM), Department 6.0, D-12205 Berlin, Germany.
- Fraunhofer ICT-IMM, D-55129 Mainz, Germany.
| | - Annabelle Bertin
- Federal Institute for Materials Research and Testing (BAM), Department 6.0, D-12205 Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
189
|
Zhang T, Taylor SD, Palmer M, Duhamel J. Membrane Binding and Oligomerization of the Lipopeptide A54145 Studied by Pyrene Fluorescence. Biophys J 2017; 111:1267-1277. [PMID: 27653485 DOI: 10.1016/j.bpj.2016.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 11/30/2022] Open
Abstract
A54145 is a lipopeptide antibiotic related to daptomycin that permeabilizes bacterial cell membranes. Its action requires both calcium and phosphatidylglycerol in the target membrane, and it is accompanied by the formation of membrane-associated oligomers. We here probed the interaction of A54145 with model membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol, using the steady-state and time-resolved fluorescence of a pyrene-labeled derivative (Py-A54145). In solution, the labeled peptide was found to exist as a monomer. Its membrane interaction occurred in two stages that could be clearly distinguished by varying the calcium concentration. In the first stage, which was observed between 0.15 and 1 mM calcium, Py-A54145 bound to the membrane, as indicated by a strong increase in pyrene monomer emission. At the same calcium concentration, excimer emission increased also, suggesting that Py-A54145 had oligomerized. A global analysis of the time-resolved pyrene monomer and excimer fluorescence confirmed that Py-A54145 forms oligomers quantitatively and concomitantly with membrane binding. When calcium was raised beyond 1 mM, a distinct second transition was observed that may correspond to a doubling of the number of oligomer subunits. The collective findings confirm and extend our understanding of the action mode of A54145 and daptomycin.
Collapse
Affiliation(s)
- TianHua Zhang
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.
| | - Jean Duhamel
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
190
|
|
191
|
Rodnin MV, Li J, Gross ML, Ladokhin AS. The pH-Dependent Trigger in Diphtheria Toxin T Domain Comes with a Safety Latch. Biophys J 2017; 111:1946-1953. [PMID: 27806276 DOI: 10.1016/j.bpj.2016.09.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023] Open
Abstract
Protein-side-chain protonation, coupled to conformational rearrangements, is one way of regulating physiological function caused by changes in protein environment. Specifically, protonation of histidine residues has been implicated in pH-dependent conformational switching in several systems, including the diphtheria toxin translocation (T) domain, which is responsible for the toxin's cellular entry via the endosomal pathway. Our previous studies a) identified protonation of H257 as a major component of the T domain's conformational switch and b) suggested the possibility of a neighboring H223 acting as a modulator, affecting the protonation of H257 and preventing premature conformational changes outside the endosome. To verify this "safety-latch" hypothesis, we report here the pH-dependent folding and membrane interactions of the T domain of the wild-type and that of the H223Q mutant, which lacks the latch. Thermal unfolding of the T domain, measured by circular dichroism, revealed that the reduction in the transition temperature for helical unfolding for an H223Q mutant starts at less acidic conditions (pH <7.5) relative to the wild-type protein (pH <6.5). Hydrogen-deuterium-exchange mass spectrometry demonstrates that the H223Q replacement results in a loss of stability of the amphipathic helices TH1-3 and the hydrophobic core helix TH8 at pH 6.5. That this destabilization occurs in solution correlates well with the pH-range shift for the onset of the membrane permeabilization and translocation activity of the T domain, confirming our initial hypothesis that H223 protonation guards against early refolding. Taken together, these results demonstrate that histidine protonation can fine-tune pH-dependent switching in physiologically relevant systems.
Collapse
Affiliation(s)
- Mykola V Rodnin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jing Li
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
192
|
Mountain RD, Hatch HW, Shen VK. Molecular Dynamics Simulation of Trimer Self-Assembly Under Shear. FLUID PHASE EQUILIBRIA 2017; 440:87-94. [PMID: 28736479 PMCID: PMC5514611 DOI: 10.1016/j.fluid.2017.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly of patchy trimer particles consisting of one attractive site and two repulsive sites is investigated with nonequilibrium molecular dynamics simulations in the presence of a velocity gradient, as would be produced by the application of a shear stress on the system. As shear is increased, globular-shaped micellar clusters increase in size and become more elongated. The globular clusters are also more stable at higher temperatures in the presence of shear than at equilibrium. These results help to increase our understanding of the effect of shear on self-assembly for a variety of applications.
Collapse
Affiliation(s)
- Raymond D Mountain
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Harold W Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Vincent K Shen
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| |
Collapse
|
193
|
Mechanisms of Vesicular Stomatitis Virus Inactivation by Protoporphyrin IX, Zinc-Protoporphyrin IX, and Mesoporphyrin IX. Antimicrob Agents Chemother 2017; 61:AAC.00053-17. [PMID: 28348154 DOI: 10.1128/aac.00053-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Virus resistance to antiviral therapies is an increasing concern that makes the development of broad-spectrum antiviral drugs urgent. Targeting of the viral envelope, a component shared by a large number of viruses, emerges as a promising strategy to overcome this problem. Natural and synthetic porphyrins are good candidates for antiviral development due to their relative hydrophobicity and pro-oxidant character. In the present work, we characterized the antiviral activities of protoprophyrin IX (PPIX), Zn-protoporphyrin IX (ZnPPIX), and mesoporphyrin IX (MPIX) against vesicular stomatitis virus (VSV) and evaluated the mechanisms involved in this activity. Treatment of VSV with PPIX, ZnPPIX, and MPIX promoted dose-dependent virus inactivation, which was potentiated by porphyrin photoactivation. All three porphyrins inserted into lipid vesicles and disturbed the viral membrane organization. In addition, the porphyrins also affected viral proteins, inducing VSV glycoprotein cross-linking, which was enhanced by porphyrin photoactivation. Virus incubation with sodium azide and α-tocopherol partially protected VSV from inactivation by porphyrins, suggesting that singlet oxygen (1O2) was the main reactive oxygen species produced by photoactivation of these molecules. Furthermore, 1O2 was detected by 9,10-dimethylanthracene oxidation in photoactivated porphyrin samples, reinforcing this hypothesis. These results reveal the potential therapeutic application of PPIX, ZnPPIX, and MPIX as good models for broad antiviral drug design.
Collapse
|
194
|
Process optimization by use of design of experiments: Application for liposomalization of FK506. Eur J Pharm Sci 2017; 102:196-202. [DOI: 10.1016/j.ejps.2017.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 11/21/2022]
|
195
|
Hilsch M, Haralampiev I, Müller P, Huster D, Scheidt HA. Membrane properties of hydroxycholesterols related to the brain cholesterol metabolism. Beilstein J Org Chem 2017; 13:720-727. [PMID: 28503207 PMCID: PMC5405690 DOI: 10.3762/bjoc.13.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022] Open
Abstract
Compared to cholesterol, hydroxycholesterols contain an additional hydroxy group in the alkyl chain and are able to efficiently cross the brain-blood barrier. Therefore, they are responsible for the sterol transfer between brain and circulation. The current study compares the membrane properties of several hydroxycholesterols with those of cholesterol using 2H NMR spectroscopy, a membrane permeability assay, and fluorescence microscopy experiments. It is shown that hydroxycholesterols do not exert the unique impact on membrane properties characteristic for cholesterol with regard to the influence on lipid chain order, membrane permeability and formation of lateral domains.
Collapse
Affiliation(s)
- Malte Hilsch
- Department of Biology, Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Ivan Haralampiev
- Department of Biology, Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16–18, D-04107 Leipzig, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16–18, D-04107 Leipzig, Germany
| |
Collapse
|
196
|
Acosta-Andrade C, Artetxe I, Lete MG, Monasterio BG, Ruiz-Mirazo K, Goñi FM, Sánchez-Jiménez F. Polyamine-RNA-membrane interactions: From the past to the future in biology. Colloids Surf B Biointerfaces 2017; 155:173-181. [PMID: 28456048 DOI: 10.1016/j.colsurfb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 01/06/2023]
Abstract
Biogenic polyamines (PAs), spermine, spermidine and putrescine are widely spread amino acid derivatives, present in living cells throughout the whole evolutionary scale. Their amino groups confer them a marked basic character at the cellular pH. We have tested the interaction of PAs with negatively-charged phospholipids in the absence and presence of nucleic acids (tRNA was mainly used for practical reasons). PAs induced aggregation of lipid vesicles containing acidic phospholipids. Aggregation was detected using both spectroscopic and fluorescence microscopy methods (the latter with giant unilamellar vesicles). PA-liposome complexes were partially disaggregated when nucleic acids were added to the mixture, indicating a competition between lipids and nucleic acids for PAs in a multiple equilibrium phenomenon. Equivalent observations could be made when vesicles composed of oleic acid and 1-decanol (1:1mol ratio) were used instead of phospholipid liposomes. The data could evoke putative primitive processes of proto-biotic evolution. At the other end of the time scale, this system may be at the basis of an interesting tool in the development of nanoscale drug delivery.
Collapse
Affiliation(s)
- Carlos Acosta-Andrade
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Ibai Artetxe
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Marta G Lete
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Bingen G Monasterio
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain; Department of Logic and Philosophy of Science, University of the Basque Country, Donostia, Spain
| | - Félix M Goñi
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Francisca Sánchez-Jiménez
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain.
| |
Collapse
|
197
|
Spectroscopic and AFM characterization of polypeptide-surface interactions: Controls and lipid quantitative analyses. Data Brief 2017; 12:113-122. [PMID: 28413816 PMCID: PMC5384297 DOI: 10.1016/j.dib.2017.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
This article is related to http://dx.doi.org/10.1016/j.bbamem.2017.01.005 (Ø. Strømland, Ø.S. Handegård, M.L. Govasli, H. Wen, Ø. Halskau, 2017) [1]. In protein and polypeptide-membrane interaction studies, negatively charged lipids are often used as they are a known driver for membrane interaction. When using fluorescence spectroscopy and CD as indicators of polypeptide binding and conformational change, respectively, the effect of zwitterionic lipids only should be documented. The present data documents several aspects of how two engineered polypeptides (A-Cage-C and A-Lnk-C) derived from the membrane associating protein alpha-Lactalbumin affects and are affected by the presence of zwitterionic bilayers in the form of vesicles. We here document the behavior or the Cage and Lnk segments with respect to membrane interaction and their residual fold, using intrinsic tryptophan fluorescence assays. This data description also documents the coverage of solid-supported bilayers prepared by spin-coating mica using binary lipid mixes, a necessary step to ensure that AFM is performed on areas that are covered by lipid bilayers when performing experiments. Uncovered patches are detectable by both force curve measurements and height measurements. We tested naked mica׳s ability to cause aggregation as seen by AFM, and found this to be low compared to preparations containing negatively charged lipids. Work with lipids also carries the risk of chemical degradation taking place during vesicles preparation or other handling of the lipids. We therefor use 31P NMR to quantify the head-group content of commonly used commercial extracts before and after a standard protocol for vesicle production is applied.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- ANTS, 8-Aminonaphthalene-1,3,6-Trisulfonic Acid Disodium Salt
- CD, Circular Dichroism
- CUBO solvent, Culeddu-Bosco solvent
- Chemical degradation
- Circular dichroism
- DLS, Dynamic Light Scattering
- DPX, p-Xylene-Bis-Pyridinium Bromide
- EYPC, egg yolk phosphatidylcholine
- FRET, Förster Resonance Energy Transfer
- Fluorescence
- LUV, Large Unilamellar Vesicles
- Lipid bilayers
- NMR, Nuclear Magnetic Resonance
- PA, Phosphatidic Acid
- PBPS, porcine brain phosphatidylserine
- PC, Phosphatidylcholine
- PC-plas, Phosphatidylcholine plasmalogen
- PS, Phosphatidylserine
- PS-plas, Phosphatidylserine plasmalogen
- Polypeptide aggregation
- Quantitiative 31P NMR
- SLB, Solid-supported Lipid Bilayers.
- Solid-supported bilayers
- Spin-coating
Collapse
|
198
|
Gagnon MC, Strandberg E, Grau-Campistany A, Wadhwani P, Reichert J, Bürck J, Rabanal F, Auger M, Paquin JF, Ulrich AS. Influence of the Length and Charge on the Activity of α-Helical Amphipathic Antimicrobial Peptides. Biochemistry 2017; 56:1680-1695. [PMID: 28282123 DOI: 10.1021/acs.biochem.6b01071] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrophobic mismatch is important for pore-forming amphipathic antimicrobial peptides, as demonstrated recently [Grau-Campistany, A., et al. (2015) Sci. Rep. 5, 9388]. A series of different length peptides have been generated with the heptameric repeat sequence KIAGKIA, called KIA peptides, and it was found that only those helices sufficiently long to span the hydrophobic thickness of the membrane could induce leakage in lipid vesicles; there was also a clear length dependence of the antimicrobial and hemolytic activities. For the original KIA sequences, the cationic charge increased with peptide length. The goal of this work is to examine whether the charge also has an effect on activity; hence, we constructed two further series of peptides with a sequence similar to those of the KIA peptides, but with a constant charge of +7 for all lengths from 14 to 28 amino acids. For both of these new series, a clear length dependence similar to that of KIA peptides was observed, indicating that charge has only a minor influence. Both series also showed a distinct threshold length for peptides to be active, which correlates directly with the thickness of the membrane. Among the longer peptides, the new series showed activities only slightly lower than those of the original KIA peptides of the same length that had a higher charge. Shorter peptides, in which Gly was replaced with Lys, showed activities similar to those of KIA peptides of the same length, but peptides in which Ile was replaced with Lys lost their helicity and were less active.
Collapse
Affiliation(s)
- Marie-Claude Gagnon
- Department of Chemistry, PROTEO, CGCC, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6.,Department of Chemistry, PROTEO, CERMA, CQMF, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6
| | - Erik Strandberg
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Ariadna Grau-Campistany
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona , Barcelona, Spain
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Johannes Reichert
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Francesc Rabanal
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona , Barcelona, Spain
| | - Michèle Auger
- Department of Chemistry, PROTEO, CERMA, CQMF, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6
| | - Jean-François Paquin
- Department of Chemistry, PROTEO, CGCC, Université Laval , 1045 avenue de la Médecine, Québec, Canada G1V 0A6
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT) , Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany.,KIT , Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
199
|
Mathieu C, Augusto MT, Niewiesk S, Horvat B, Palermo LM, Sanna G, Madeddu S, Huey D, Castanho MARB, Porotto M, Santos NC, Moscona A. Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides. Sci Rep 2017; 7:43610. [PMID: 28344321 PMCID: PMC5361215 DOI: 10.1038/srep43610] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Human paramyxoviruses include global causes of lower respiratory disease like the parainfluenza viruses, as well as agents of lethal encephalitis like Nipah virus. Infection is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. Paramyxovirus viral fusion proteins (F) insert into the target cell membrane, and form a transient intermediate that pulls the viral and cell membranes together as two heptad-repeat regions refold to form a six-helix bundle structure that can be specifically targeted by fusion-inhibitory peptides. Antiviral potency can be improved by sequence modification and lipid conjugation, and by adding linkers between the protein and lipid components. We exploit the uniquely broad spectrum antiviral activity of a parainfluenza F-derived peptide sequence that inhibits both parainfluenza and Nipah viruses, to investigate the influence of peptide orientation and intervening linker length on the peptides' interaction with transitional states of F, solubility, membrane insertion kinetics, and protease sensitivity. We assessed the impact of these features on biodistribution and antiviral efficacy in vitro and in vivo. The engineering approach based on biophysical parameters resulted in a peptide that is a highly effective inhibitor of both paramyxoviruses and a set of criteria to be used for engineering broad spectrum antivirals for emerging paramyxoviruses.
Collapse
Affiliation(s)
- Cyrille Mathieu
- CIRI, International Center for Infectiology Research, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France.,INSERM U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marcelo T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, USA
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France.,INSERM U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Laura M Palermo
- Department of Pediatrics, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA.,Center for Host-Pathogen Interaction, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA
| | - Giuseppina Sanna
- Department of Pediatrics, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA.,Center for Host-Pathogen Interaction, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA.,Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Silvia Madeddu
- Department of Pediatrics, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA.,Center for Host-Pathogen Interaction, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA.,Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Devra Huey
- Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, USA
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA.,Center for Host-Pathogen Interaction, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA.,Center for Host-Pathogen Interaction, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA.,Department of Microbiology &Immunology, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA.,Department of Physiology &Biophysics, Columbia University Medical Center, 701 W. 168th St., New York, NY, USA
| |
Collapse
|
200
|
Wiedman G, Kim SY, Zapata-Mercado E, Wimley WC, Hristova K. pH-Triggered, Macromolecule-Sized Poration of Lipid Bilayers by Synthetically Evolved Peptides. J Am Chem Soc 2017; 139:937-945. [PMID: 28001058 PMCID: PMC5521809 DOI: 10.1021/jacs.6b11447] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
pH-triggered membrane-permeabilizing peptides could be exploited in a variety of applications, such as to enable cargo release from endosomes for cellular delivery, or as cancer therapeutics that selectively permeabilize the plasma membranes of malignant cells. Such peptides would be especially useful if they could enable the movement of macromolecules across membranes, a rare property in membrane-permeabilizing peptides. Here we approach this goal by using an orthogonal high-throughput screen of an iterative peptide library to identify peptide sequences that have the following two properties: (i) little synthetic lipid membrane permeabilization at physiological pH 7 at high peptide concentration and (ii) efficient formation of macromolecule-sized defects in synthetic lipid membranes at acidic pH 5 and low peptide concentration. The peptides we selected are remarkably potent macromolecular sized pore-formers at pH 5, while having little or no activity at pH 7, as intended. The action of these peptides likely relies on tight coupling between membrane partitioning, α-helix formation, and electrostatic repulsions between acidic side chains, which collectively drive a sharp pH-triggered transition between inactive and active configurations with apparent pKa values of 5.5-5.8. This work opens new doors to developing applications that utilize peptides with membrane-permeabilizing activities that are triggered by physiologically relevant decreases in pH.
Collapse
Affiliation(s)
- Gregory Wiedman
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Sarah Y. Kim
- Graduate Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Elmer Zapata-Mercado
- Graduate Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - William C. Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
- Graduate Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|