151
|
Miller JB, Teal SB, Stockdale FE. Evolutionarily Conserved Sequences of Striated Muscle Myosin Heavy Chain Isoforms. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51604-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
152
|
Van Horn R, Crow MT. Fast myosin heavy chain expression during the early and late embryonic stages of chicken skeletal muscle development. Dev Biol 1989; 134:279-88. [PMID: 2472984 DOI: 10.1016/0012-1606(89)90100-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of embryonic skeletal muscles in the chick can be divided into two periods of fiber specialization--an early one during which the different muscles of the limb are formed and an initial round of fiber specialization occurs and a late or fetal period during which there is extensive growth of this previously established fiber pattern. This latter period of growth is dependent on the establishment and maintenance of functional neuromuscular contacts. As has been described for other developmental stages, we show here that there are different embryonic fast skeletal muscle myosin heavy chain (MHC) isoforms expressed during the different embryonic periods of muscle growth. The identification of these isoforms was based on differences in their reactivity with various fast MHC monoclonal antibodies and on their different peptide banding patterns. The in ovo accumulation of the late embryonic MHC isoform pattern was similar to the time course of the previously described changes in alpha-actin and troponin T isotype switching during embryogenesis. The appearances of the late embryonic isoforms were blocked by chronic treatment with the neuromuscular blocking agent, d-tubocurarine, and cell cultures of embryonic chicken skeletal muscle which differentiated in the absence of motorneurons expressed little of the late embryonic isoform, indicating that the expression of the late embryonic isoform was dependent on functional nerve-muscle interactions. These different embryonic fast MHC isoforms provide important markers for monitoring the progression of muscle through its embryonic stages and its interaction with motorneurons.
Collapse
Affiliation(s)
- R Van Horn
- Department of Pharmacology, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
153
|
George EL, Ober MB, Emerson CP. Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons. Mol Cell Biol 1989; 9:2957-74. [PMID: 2506434 PMCID: PMC362764 DOI: 10.1128/mcb.9.7.2957-2974.1989] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The single-copy Drosophila muscle myosin heavy-chain (MHC) gene, located at 36B(2L), has a complex exon structure that produces a diversity of larval and adult muscle MHC isoforms through regulated alternative RNA splicing. Genomic and cDNA sequence analyses revealed that this 21-kilobase MHC gene encodes these MHC isoforms in 19 exons. However, five sets of these exons, encoding portions of the S1 head and the hinge domains of the MHC protein, are tandemly repeated as two, three, four, or five divergent copies, which are individually spliced into RNA transcripts. RNA hybridization studies with exon-specific probes showed that at least 10 of the 480 possible MHC isoforms that could arise by alternative RNA splicing of these exons are expressed as MHC transcripts and that the expression of specific members of alternative exon sets is regulated, both in stage and in muscle-type specificity. This regulated expression of specific exons is of particular interest because the alternatively spliced exon sets encode discrete domains of the MHC protein that likely contribute to the specialized contractile activities of different Drosophila muscle types. The alternative exon structure of the Drosophila MHC gene and the single-copy nature of this gene in the Drosophila genome make possible transgenic experiments to test the physiological functions of specific MHC protein domains and genetic and molecular experiments to investigate the mechanisms that regulate alternative exon splicing of MHC and other muscle gene transcripts.
Collapse
Affiliation(s)
- E L George
- Biology Department, University of Virginia, Charlottesville 22901
| | | | | |
Collapse
|
154
|
Dhoot GK. Evidence for the presence of a distinct embryonic isoform of myosin heavy chain in chicken skeletal muscle. Differentiation 1989; 40:176-83. [PMID: 2673896 DOI: 10.1111/j.1432-0436.1989.tb00596.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immunochemical studies have identified a distinct myosin heavy chain (MHC) in the chicken embryonic skeletal muscle that was undetectable in this muscle in the posthatch period by both immunocytochemical and the immunoblotting procedures. This embryonic isoform, identified by antibody 96J, which also recognises the cardiac and SM1 myosin heavy chains, differs from the embryonic myosin heavy chain belonging to the fast class described previously. Although the fast embryonic isoform is a major species present in the leg and pectoral embryonic muscles, slow embryonic isoform was present in significant amounts during early embryonic development. Immunocytochemical studies using another monoclonal antibody designated 9812, which is specific for SM1 MHC, showed this isoform to be restricted to only presumptive slow muscle cells. From these studies and those reported on the changes in SM2 MHC, it is proposed that as is the case for the fast class, there also exists a slow class of myosin heavy chains composed of slow embryonic, SM1 and SM2 isoforms. The differentiation of a muscle cell involves transitions in a series of myosin isozymes in both presumptive fast and slow skeletal muscle cells.
Collapse
Affiliation(s)
- G K Dhoot
- Department of Basic Sciences, Royal Veterinary College, University of London, UK
| |
Collapse
|
155
|
Radice GP, Malacinski GM. Expression of myosin heavy chain transcripts during Xenopus laevis development. Dev Biol 1989; 133:562-8. [PMID: 2731640 DOI: 10.1016/0012-1606(89)90058-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In amphibians, the composition and pattern of expression of the myosin heavy chain (myHC) gene family are mostly unknown. To understand better the regulation of this complex family, we screened cDNA libraries from swimming tadpole and adult leg muscle RNA and have isolated and partially sequenced clones for several myHCs. Two of these, E3 and E19, first appear in mesoderm at late gastrula stage and are coexpressed with muscle actin. They increase in abundance in trunk and tail myotome until metamorphosis, when they begin to decline. E3 and E19 are also both expressed in hind leg muscle at the beginning of metamorphosis, but decline to low levels in adult leg muscle. A new transcript, A7, first appears during early metamorphosis in both the tail and hind leg skeletal muscle. A7 transcripts then decline in degenerating tail but persist in hind leg through metamorphosis and in adults. Two other embryonic myHCs, E14 and E15, code for isoforms closely related to E19 and may be alleles or duplications. Although sequence comparisons with myHCs from other vertebrates could not correlate the transcripts with specific protein isoforms, from the pattern of expression E3 and E19 apparently code for embryonic fast skeletal myHC isoforms, whereas A7 codes for an adult skeletal isoform.
Collapse
Affiliation(s)
- G P Radice
- Department of Biology, Indiana University, Bloomington 47405
| | | |
Collapse
|
156
|
Sweeney LJ, Kennedy JM, Zak R, Kokjohn K, Kelley SW. Evidence for expression of a common myosin heavy chain phenotype in future fast and slow skeletal muscle during initial stages of avian embryogenesis. Dev Biol 1989; 133:361-74. [PMID: 2659404 DOI: 10.1016/0012-1606(89)90040-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have utilized a key biochemical determinant of muscle fiber type, myosin isoform expression, to investigate the initial developmental program of future fast and slow skeletal muscle fibers. We examined myosin heavy chain (HC) phenotype from the onset of myogenesis in the limb bud muscle masses of the chick embryo through the differentiation of individual fast and slow muscle masses, as well as in newly formed myotubes generated in adult muscle by weight overload. Myosin HC isoform expression was analyzed by immunofluorescence localization with a battery of anti-myosin antibodies and by electrophoretic separation with SDS-PAGE. Results showed that the initial myosin phenotype in all skeletal muscle cells formed during the embryonic period (until at least 8 days in ovo) consisted of expression of a myosin HC which shares antigenic and electrophoretic migratory properties with ventricular myosin and a distinct myosin HC which shares antigenic and electrophoretic migratory properties with fast skeletal isomyosin. Similar results were observed in newly formed myotubes in adult muscle. Future fast and slow muscle fibers could only be discriminated from each other in developing limb bud muscles by the onset of expression of slow skeletal myosin HC at 6 days in ovo. Slow skeletal myosin HC was expressed only in myotubes which became slow fibers. These findings suggest that the initial commitment of skeletal muscle progenitor cells is to a common skeletal muscle lineage and that commitment to a fiber-specific lineage may not occur until after localization of myogenic cells in appropriate premuscle masses. Thus, the process of localization, or events which occur soon thereafter, may be involved in determining fiber type.
Collapse
Affiliation(s)
- L J Sweeney
- Department of Anatomy, Loyola University Medical Center, Maywood, Illinois 60153
| | | | | | | | | |
Collapse
|
157
|
Chanoine C, Gallien CL. Myosin isoenzymes and their subunits in urodelan amphibian fast skeletal muscle. Coexistence of larval and adult heavy chains in neotenic individuals. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:125-8. [PMID: 2714273 DOI: 10.1111/j.1432-1033.1989.tb14702.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The distributions of native myosin isoforms were examined by electrophoresis under non-dissociating conditions, in the fast twitch dorsal skeletal muscle of young larvae, neotenic adults and metamorphosed adults of urodelan amphibians. Both heavy and light chains of myosin isoenzymes were analysed. In pyrophosphate acrylamide gel electrophoresis three isoenzymes were demonstrated in larval myosin; other isoforms of lower electrophoretic mobility were observed in metamorphosed adults myosin. Larval and adult isoenzymes were shown to coexist in myosin from neotenic adults. Analysis of heavy chains in denaturing conditions and proteolytic digestion revealed the sequential occurrence during development of two types of heavy chains, one larval and one adult, that coexist in the myosin of neotenic adults only. Analysis of light chain patterns under denaturing conditions revealed the existence of three fast light chains which displayed no modification during the course of development. The neotenic urodelan amphibian species model represents actually the only model in which the coexistence of larval (or neonatal) and adult heavy chains is maintained throughout life in adults.
Collapse
Affiliation(s)
- C Chanoine
- Laboratoire de Biologie du Développement, Université René Descartes, Paris, France
| | | |
Collapse
|
158
|
Blondet B, Duxson MJ, Harris AJ, Melki J, Guénet JL, Pinçon-Raymond M, Rieger F. Nerve and muscle development in paralysé mutant mice. Dev Biol 1989; 132:153-66. [PMID: 2917690 DOI: 10.1016/0012-1606(89)90213-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nerve and muscle development was studied in paralysé mutant mice. The mutant phenotype is first recognizable 6-7 days after birth (PN 6-PN 7) as cessation of muscle growth and weakness and incoordination of movement. Mutant animals die between 2 and 3 weeks of age. Muscle fibers from paralysé mutants had a unimodal distribution of diameters and normal numbers and distributions of acetylcholine receptors. The only structural abnormality seen was a reduced extracellular space within muscle fascicles. Total muscle choline acetyltransferase activity was reduced compared with that of control muscles, indicating that synaptic terminal development was impaired. Light and electron microscopy showed that polyneuronal innervation was retained in mutant endplates, and the normal process of withdrawal of redundant innervation did not occur. The paralysé muscles reacted to experimental denervation with an increase in extrajunctional acetylcholine receptor numbers. Intramuscular axons failed to become myelinated in mutant animals, although sciatic nerve axons were myelinated with a normal myelin thickness/axon diameter ratio. Nodes of Ranvier were elongated and myelin lamellae in the paranodal regions were poorly fused. Sciatic nerves in mutant animals retained the neonatal unimodal distribution of axon diameters, whereas in control animals it became bimodal by 2 weeks of age. Our results are not consistent with a previous suggestion that paralysé mutant muscle endplates are progressively denervated. We conclude that the major expression of the paralysé mutant phenotype is an arrest in development of both nerve and muscle during the first week after birth. The paralysé mutant gene most likely is involved in the general support of development of many or all body tissues from 1 week of age. We found no regression of any aspect of differentiation, once achieved.
Collapse
Affiliation(s)
- B Blondet
- INSERM U. 153, Biologie et Pathologie Neuromuscularies, Paris, France
| | | | | | | | | | | | | |
Collapse
|
159
|
Soha JM, Callaway EM, Van Essen DC. Lack of fiber type selectivity during reinnervation of neonatal rabbit soleus muscle. Dev Biol 1989; 131:401-14. [PMID: 2536339 DOI: 10.1016/s0012-1606(89)80013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fast and slow contracting fibers in neonatal mammalian skeletal muscle are each innervated in a highly specific manner by motor neurons of the corresponding type, even at an age when polyinnervation is widespread. Chemospecific recognition is a possible mechanism by which this pattern of innervation could be established. We have investigated this possibility by studying the degree of specificity during reinnervation of rabbit soleus muscle following nerve crush on Postnatal Day 1 or 4. We assayed fiber type composition by measuring the twitch rise times of motor units within 2 days of the onset of functional reinnervation (5-6 days after nerve crush). In contrast to the broad, bimodal distribution of single motor unit twitch rise times seen in normal muscles, motor units in reinnervated muscles yielded a narrower, unimodal distribution of rise times. Rise times of reinnervated units were intermediate to those of normal fast and slow units, suggesting that reinnervated units were composed of a mixture of fast and slow contracting fibers. An alternative possibility, that specific reinnervation was masked by contractile dedifferentiation of muscle fibers, was examined by maintaining a transmission blockade induced by botulinum toxin poisoning for an equivalent interval. Twitch rise times of treated motor units exhibited the distinctly bimodal distribution characteristic of normal muscles, suggesting that muscle fibers can retain contractile diversity during a transient period of denervation. We carried out computer simulations to estimate the amount of rise time diversity induced by varying degrees of specificity during reinnervation. Based on this analysis, we conclude that there is little if any selective reinnervation of muscle fiber types at the ages studied.
Collapse
Affiliation(s)
- J M Soha
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
160
|
Meinnel T, Libri D, Mouly V, Gros D, Fiszman MY, Lemonnier M. Tissue-specific transcriptional control of alpha- and beta-tropomyosins in chicken muscle development. Dev Biol 1989; 131:430-8. [PMID: 2912802 DOI: 10.1016/s0012-1606(89)80015-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During muscle maturation, isoform switching of contractile proteins to attain the adult phenotype involves both stage-specific and muscle-specific regulatory mechanisms. Chicken pectoralis major (PM) provides an interesting model to study the latter since a specific pattern of tropomyosin (TM) with repression of the beta TM isoform is displayed by the adult PM. The developmental pattern of alpha and beta fast skeletal muscle tropomyosins' (alpha f and beta TM) RNAs was investigated with 3' untranslated region specific probes. In PM, the beta TM messenger ceased to accumulate after hatching through a transcriptional control, as shown by run-on assays, so that, at Day 8 ex ovo, no beta TM mRNA was detected. In this same muscle, in parallel with the disappearance of the beta TM mRNA, there was a boost in the accumulation of the alpha f TM mRNA. In the leg muscles, following hatching, there was only a moderate increase in the level of the alpha f TM mRNA, together with a slight decrease in the accumulation of the beta TM mRNA. Taken together, these results show that chicken muscle maturation involves tissue-specific transcriptional control of tropomyosin genes and could suggest a possible coordinate regulation of the two genes.
Collapse
Affiliation(s)
- T Meinnel
- Department of Molecular Biology, Pasteur Institute, Paris, France
| | | | | | | | | | | |
Collapse
|
161
|
Kucera J, Walro JM. Postnatal expression of myosin heavy chains in muscle spindles of the rat. ANATOMY AND EMBRYOLOGY 1989; 179:369-76. [PMID: 2525352 DOI: 10.1007/bf00305063] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immunocytochemical expression of two myosin isoforms in intrafusal muscle fibers was examined in soleus muscles of neonatal (zero to six days postpartum) and adult rats. Monoclonal antibodies specific for myosin heavy chains of the slow-tonic anterior latissimus dorsi (ALD58) and fast-twitch pectoralis (MF30) muscles of the chicken were used. In adults ALD58 bound to the intracapsular regions of bag1 and bag2 fibers and MF30 bound to the intracapsular regions of bag2 and chain fibers. The extracapsular regions of intrafusal fibers and all extrafusal fibers did not react to ALD58 or MF30. Bag1 and bag2 fibers of neonatal rats expressed immature myosin patterns but chain fibers did not. The adult pattern of immunoreactivity of intrafusal fibers developed by the fourth postnatal day, when the patterns of motor but not sensory innervation in the spindle are still immature. Data suggest that the expression and maintenance of the specific anti-myosin immunoreactivity of intrafusal fibers during postnatal development of rat spindles is dependent upon sensory but not motor innervation. Moreover, afferents might regulate the gene expression responsible for synthesis of myosins isoforms specific to intrafusal fibers only in those myonuclei located within the capsule, but not in the myonuclei in extracapsular regions of intrafusal fibers.
Collapse
Affiliation(s)
- J Kucera
- Department of Neurology, School of Medicine, Boston University, MA 02118
| | | |
Collapse
|
162
|
Affiliation(s)
- M A Nathanson
- Department of Anatomy, New Jersey Medical School, Newark 07103
| |
Collapse
|
163
|
Ralphs JR, Dhoot GK, Tickle C. Differentiation of myogenic cells in micromass cultures of cells from chick facial primordia. Dev Biol 1989; 131:189-96. [PMID: 2642428 DOI: 10.1016/s0012-1606(89)80050-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antibodies to the myosin heavy chains of striated muscle were used to trace myogenic differentiation in the developing face and in cultures of cells from the facial primordia of chick embryos. In the intact face, myogenic cells differentiate first in the mandibular primordia and can be detected at stage 28. The early muscle blocks contain both fast and slow classes of myosin heavy chains. At stages 20 and 24, no myogenic cells are found in any of the facial primordia. However, when the cells are placed in micromass (high density) cultures, myogenic cells differentiate, revealing the presence of potentially myogenic cells in all the facial primordia. The number of myogenic cells bears no consistent relationship to the extent and pattern of chondrogenesis. Therefore the ability of the cell populations of the facial primordia to differentiate into cartilage when placed in culture is independent of the muscle cell lineage. The facial primordia represent a mixed cell population of neural crest and mesodermal cells from at least as early as stage 18.
Collapse
Affiliation(s)
- J R Ralphs
- Department of Anatomy and Developmental Biology, University College and Middlesex School of Medicine, London, England
| | | | | |
Collapse
|
164
|
Pedrosa F, Butler-Browne GS, Dhoot GK, Fischman DA, Thornell LE. Diversity in expression of myosin heavy chain isoforms and M-band proteins in rat muscle spindles. HISTOCHEMISTRY 1989; 92:185-94. [PMID: 2476423 DOI: 10.1007/bf00500917] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations. Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with anti-neonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested. Taken together, the data show that in adult rat soleus, slow tonic and neonatal myosin heavy chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.
Collapse
Affiliation(s)
- F Pedrosa
- Department of Anatomy, University of Umeå, Sweden
| | | | | | | | | |
Collapse
|
165
|
Merrifield PA, Sutherland WM, Litvin J, Konigsberg IR. Temporal and tissue-specific expression of myosin heavy chain isoforms in developing and adult avian muscle. DEVELOPMENTAL GENETICS 1989; 10:372-85. [PMID: 2480861 DOI: 10.1002/dvg.1020100505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have raised monoclonal antibodies (Mabs) to myosin heavy chain isoforms (MHCs) that have specific patterns of temporal expression during the development of quail pectoral muscle and that are expressed in very restricted, tissue-specific patterns in adult birds. We find that an early embryonic, a perinatal, and an adult-specific, fast myosin heavy chain are co-expressed at different levels in the pectoral muscle of 8-12 day quail embryos. The early embryonic MHC disappears from the pectoral muscle at approximately 14 days in ovo, whereas the perinatal MHC persists until 26 days post-hatching. The adult-specific MHC accumulates preferentially and eventually completely replaces the other isoforms. These Mabs cross-react with the homologous isoforms of the chick and detect a similar pattern of MHC expression in the pectoral muscle of developing chicks. Although the early embryonic and perinatal MHC isoforms recognized by our Mabs are expressed in the pectoral muscle only during distinct developmental stages, our Mabs also recognize MHC isoforms present in the heart and extraocular muscle of adult quail. Immunofingerprinting using Staphylococcus aureus protease V8 suggests that the early embryonic and perinatal MHC isoforms that we see are strongly homologous with the adult ventricular and extraocular muscle isoforms, respectively. These observations suggest that at least three distinct MHC isoforms, which are normally expressed in adult muscles, are co-expressed during the early development of the pectoral muscle in birds. In this respect, the pattern of expression of the MHCs recognized by our Mabs in developing, fast muscle is very similar to the patterns described for other muscle contractile proteins.
Collapse
Affiliation(s)
- P A Merrifield
- Department of Biology, University of Virginia, Charlottesville
| | | | | | | |
Collapse
|
166
|
Ridge RM. Motor unit organization in developing muscle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1989; 93:115-23. [PMID: 2568214 DOI: 10.1016/0300-9629(89)90198-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- R M Ridge
- Department of Physiology, University of Bristol Medical School, UK
| |
Collapse
|
167
|
Vivarelli E, Brown WE, Whalen RG, Cossu G. The expression of slow myosin during mammalian somitogenesis and limb bud differentiation. J Cell Biol 1988; 107:2191-7. [PMID: 3058719 PMCID: PMC2115679 DOI: 10.1083/jcb.107.6.2191] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The developmental pattern of slow myosin expression has been studied in mouse embryos from the somitic stage to the period of secondary fiber formation and in myogenic cells, cultured from the same developmental stages. The results obtained, using a combination of different polyclonal and monoclonal antibodies, indicate that slow myosin is coexpressed in virtually all the cells that express embryonic (fast) myosin in somites and limb buds in vivo as well as in culture. On the contrary fetal or late myoblasts (from 15-d-old embryos) express in culture only embryonic (fast) myosin. At this stage, muscle cells in vivo, as already shown (Crow, M.T., and F.A. Stockdale. 1986. Dev. Biol. 113:238-254; Dhoot, G.K. 1986. Muscle & Nerve. 9:155-164; Draeger, A., A.G. Weeds, and R.B. Fitzsimons. 1987. J. Neurol. Sci. 81:19-43; Miller, J.B., and F.A. Stockdale. 1986. J. Cell Biol. 103:2197-2208), consist of primary myotubes, which express both myosins, and secondary myotubes, which express preferentially embryonic (fast) myosin. Under no circumstance neonatal or adult fast myosins were detected. Western blot analysis confirmed the immunocytochemical data. These results suggest that embryonic myoblasts in mammals are all committed to the mixed embryonic-(fast) slow lineage and, accordingly, all primary fibers express both myosins, whereas fetal myoblasts mostly belong to the embryonic (fast) lineage and likely generate fibers containing only embryonic (fast) myosin. The relationship with current models of avian myogenesis are discussed.
Collapse
Affiliation(s)
- E Vivarelli
- Istituto di Istologia ed Embriologia Generale, l'Università di Roma, Italy
| | | | | | | |
Collapse
|
168
|
Kilby K, Dhoot GK. Identification and distribution of some developmental isoforms of myosin heavy chains in avian muscle fibres. J Muscle Res Cell Motil 1988; 9:516-24. [PMID: 3209691 DOI: 10.1007/bf01738756] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two monoclonal antibodies that react with all the slow skeletal myosin heavy chains in the mammalian skeletal muscles appeared to react with only SM1 myosin heavy chain in the post-hatch muscles of chicken. Further studies on the developing chicken showed one of these two antibodies to react with an additional myosin heavy chain in the early embryonic skeletal muscle as well as with the cardiac muscle. It is concluded that this antibody identified a slow muscle-like embryonic isoform of myosin heavy chain during earlier stages of development. While this embryonic isoform was more abundant during early development, the synthesis of SM1 myosin heavy chain was restricted to only presumptive slow muscle cells.
Collapse
Affiliation(s)
- K Kilby
- Department of Immunology, Medical School, University of Birmingham, U.K
| | | |
Collapse
|
169
|
McClearn D, Noden DM. Ontogeny of architectural complexity in embryonic quail visceral arch muscles. THE AMERICAN JOURNAL OF ANATOMY 1988; 183:277-93. [PMID: 3218618 DOI: 10.1002/aja.1001830402] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding the mechanisms of muscle pattern formation requires that the complete sequence of ontogenetic events be defined, particularly in the emergence of architectural complexity and in the spatial relations between muscles and skeletal elements. This analysis of visceral arch myogenesis in quail (Coturnix coturnix japonica) embryos identifies the location of premuscle condensations and subsequent segregation of individual muscles, documents the initial orientation of myofibers and changes in alignment associated with maturation, and describes the spatial and temporal relations between muscle development and the formation of connective tissues. Premuscle condensations form within the visceral arches on embryonic days 2-4, before skeletal elements make their appearance. Discrete muscles may form from the subdivision of a muscle mass after fiber orientations have been established (e.g., jaw adductor and hyobranchial muscles) or by the segregation of a mesenchymal cluster from the condensation prior to the appearance of oriented fibers (e.g., protractor, muscle of the columella). The rate and pattern of subsequent muscle maturation are closely associated with the development of the hard tissues. Myogenesis in 4-9-day embryos centers around the quadrate cartilage, the retroarticular process of the mandibular (Meckel's) cartilage, and the epibranchial cartilage. Muscles form attachments on these elements and remain without additional attachments until the appropriate elements (e.g., otic capsule, pterygoid bone) develop. No single description of myogenic events applies to all visceral arch muscles, nor is there an arch-specific pattern of ontogeny. Rather, each muscle has distinctive characteristics based on its spatial relations within the developing head.
Collapse
Affiliation(s)
- D McClearn
- Department of Anatomy, New York State College of Veterinary Medicine, Cornell University, Ithaca 14853
| | | |
Collapse
|
170
|
Kucera J, Walro JM, Reichler J. Innervation of developing intrafusal muscle fibers in the rat. THE AMERICAN JOURNAL OF ANATOMY 1988; 183:344-58. [PMID: 3218622 DOI: 10.1002/aja.1001830408] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The chronology of development of spindle neural elements was examined by electron microscopy in fetal and neonatal rats. The three types of intrafusal muscle fiber of spindles from the soleus muscle acquired sensory and motor innervation in the same sequence as they formed--bag2, bag1, and chain. Both the primary and secondary afferents contacted developing spindles before day 20 of gestation. Sensory endings were present on myoblasts, myotubes, and myofibers in all intrafusal bundles regardless of age. The basic features of the sensory innervation--first-order branching of the parent axon, separation of the primary and secondary sensory regions, and location of both primary and secondary endings beneath the basal lamina of the intrafusal fibers--were all established by the fourth postnatal day. Cross-terminals, sensory terminals shared by more than one intrafusal fiber, were more numerous at all developmental stages than in mature spindles. No afferents to immature spindles were supernumerary, and no sensory axons appeared to retract from terminations on intrafusal fibers. The earliest motor axons contacted spindles on the 20th day of gestation or shortly afterward. More motor axons supplied the immature spindles, and a greater number of axon terminals were visible at immature intrafusal motor endings than in adult spindles; hence, retraction of supernumerary motor axons accompanies maturation of the fusimotor system analogous to that observed during the maturation of the skeletomotor system. Motor endings were observed only on the relatively mature myofibers; intrafusal myoblasts and myotubes lacked motor innervation in all age groups. This independence of the early stages of intrafusal fiber assembly from motor innervation may reflect a special inherent myogenic potential of intrafusal myotubes or may stem from the innervation of spindles by sensory axons.
Collapse
Affiliation(s)
- J Kucera
- Department of Neurology, School of Medicine, Boston University, Massachusetts 02118
| | | | | |
Collapse
|
171
|
Bandman E, Bennett T. Diversity of fast myosin heavy chain expression during development of gastrocnemius, bicep brachii, and posterior latissimus dorsi muscles in normal and dystrophic chickens. Dev Biol 1988; 130:220-31. [PMID: 2460389 DOI: 10.1016/0012-1606(88)90428-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The expression of fast myosin heavy chain (MHC) isoforms was examined in developing bicep brachii, lateral gastrocnemius, and posterior latissimus dorsi (PLD) muscles of inbred normal White Leghorn chickens (Line 03) and genetically related inbred dystrophic White Leghorn chickens (Line 433). Utilizing a highly characterized monoclonal antibody library we employed ELISA, Western blot, immunocytochemical, and MHC epitope mapping techniques to determine which MHCs were present in the fibers of these muscles at different stages of development. The developmental pattern of MHC expression in the normal bicep brachii was uniform with all fibers initially accumulating embryonic MHC similar to that of the pectoralis muscle. At hatching the neonatal isoform was expressed in all fibers; however, unlike in the pectoralis muscle the embryonic MHC isoform did not disappear. With increasing age the neonatal MHC was repressed leaving the embryonic MHC as the only detectable isoform present in the adult bicep brachii muscle. While initially expressing embryonic MHC in ovo, the post-hatch normal gastrocnemius expressed both embryonic and neonatal MHCs. However, unlike the bicep brachii muscle, this pattern of expression continued in the adult muscle. The adult normal gastrocnemius stained heterogeneously with anti-embryonic and anti-neonatal antibodies indicating that mature fibers could contain either isoform or both. Neither the bicep brachii muscle nor the lateral gastrocnemius muscle reacted with the adult specific antibody at any stage of development. In the developing posterior latissimus dorsi muscle (PLD), embryonic, neonatal, and adult isoforms sequentially appeared; however, expression of the embryonic isoform continued throughout development. In the adult PLD, both embryonic and adult MHCs were expressed, with most fibers expressing both isoforms. In dystrophic neonates and adults virtually all fibers of the bicep brachii, gastrocnemius, and PLD muscles were identical and contained embryonic and neonatal MHCs. These results corroborate previous observations that there are alternative programs of fast MHC expression to that found in the pectoralis muscle of the chicken (M.T. Crow and F.E. Stockdale, 1986, Dev. Biol. 118, 333-342), and that diversification into fibers containing specific MHCs fails to occur in the fast muscle fibers of the dystrophic chicken. These results are consistent with the hypothesis that avian muscular dystrophy is a developmental disorder that is associated with alterations in isoform switching during muscle maturation.
Collapse
Affiliation(s)
- E Bandman
- Department of Food Science and Technology, University of California, Davis 95616
| | | |
Collapse
|
172
|
Hofmann S, Düsterhöft S, Pette D. Six myosin heavy chain isoforms are expressed during chick breast muscle development. FEBS Lett 1988; 238:245-8. [PMID: 3169260 DOI: 10.1016/0014-5793(88)80488-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two major embryonic myosin heavy chains are expressed in embryonic chick breast muscle until the first week after hatching. Of these, one is already detected in the 8-day-old embryo. The other appears on day 12. Two putative slow embryonic isoforms represent minor components transiently expressed between days 8 and 12. A neonatal heavy chain is expressed at low concentrations on day 8 and increases with development. It is the only isoform two weeks after hatching, and is ultimately replaced by the fast myosin heavy chain in the adult muscle.
Collapse
Affiliation(s)
- S Hofmann
- Fakultät für Biologie, Universität Konstanz, FRG
| | | | | |
Collapse
|
173
|
Evans D, Miller JB, Stockdale FE. Developmental patterns of expression and coexpression of myosin heavy chains in atria and ventricles of the avian heart. Dev Biol 1988; 127:376-83. [PMID: 3378670 DOI: 10.1016/0012-1606(88)90324-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Monoclonal antibodies (mAbs), electrophoresis, immunoblotting, and immunohistochemistry were used to determine the molecular properties of cardiac myosin heavy chain (MHC) isoforms and the regions of the developing chicken heart in which they were expressed. Adult atria expressed three electrophoretically distinct MHCs that reacted specifically with mAbs F18, F59, or S58. During embryonic Days 2-4, when the atrial and ventricular chambers are forming, MHCs that reacted with mAbs F18, F59, or S58 were expressed in both the atria and ventricles. The atria continued to express MHCs that reacted with mAbs F18, F59, or S58 at all stages of development and in the adult. In the ventricles, expression of the MHCs reacting with these mAbs was found to be developmentally regulated. By embryonic Day 16, MHC(s) reacting with mAb F18 had disappeared from the developing ventricles, whereas MHCs reacting with S58 and F59 continued to be expressed throughout the ventricles. As development continued, MHC(s) reacting with S58 in the ventricle became restricted to expression in only the ventricular conducting system. MHC(s) reacting with F59 were expressed in both the ventricular myocytes and the ventricular conducting system throughout development and in the adult. Thus, in contrast to the embryonic chicken heart where at least three MHC isoforms were expressed in both the atria and ventricles, we found in the adult chicken heart that-at a minimum-three MHC isoforms were expressed in the atria, two MHC isoforms were expressed in the ventricular conducting system, and one MHC isoform in the ventricular myocardium. MHC isoform expression in the developing avian heart appears to be more complex than previously recognized.
Collapse
Affiliation(s)
- D Evans
- Department of Medicine, Stanford University Medical School, California 94305-5306
| | | | | |
Collapse
|
174
|
Borrione AC, Zanellato AM, Saggin L, Mazzoli M, Azzarello G, Sartore S. Neonatal myosin heavy chains are not expressed in Ni-induced rat rhabdomyosarcoma. Differentiation 1988; 38:49-59. [PMID: 3181651 DOI: 10.1111/j.1432-0436.1988.tb00591.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myosin heavy chain (MHC) composition of chemically-induced rhabdomyosarcoma (RMS) was analyzed by gel electrophoresis and Western blotting using a panel of monoclonal antimyosin antibodies specific for embryonic-, neonatal-, slow- and adult fast-type MHC isoforms. Myosin extracted from tumours and electrophoresed on 6%-sodium dodecyl sulfate (SDS)glycerol gels was found to migrate as three distinct MHC components. These polypeptides were present in different relative amounts in the five RMS studied. Western blotting experiments revealed that variable proportions of embryonic-, slow- and adult fast-, but not neonatal-type, MHC isoforms are consistently expressed in RMS. Indirect and double immunofluorescence procedures applied to cryosections of tumoral tissue showed that: (a) RMS cells were unreactive with antineonatal-type-MHC antibody, (b) the majority of neoplastic, desmin-positive, cells contained embryonic- as well as adult fast-type MHCs and (c) a minority of cells were labelled by anti-slow MHC antibody. The results of this study indicate that there is no obligatory sequence of MHC isoform expression in the molecular transition (emb----neo----adult) which occurs during rat skeletal myogenesis.
Collapse
Affiliation(s)
- A C Borrione
- Institute of General Pathology, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
175
|
Dhoot GK. Identification and changes in the pattern of expression of slow-skeletal-muscle-like myosin heavy chains in a developing fast muscle. Differentiation 1988; 37:53-61. [PMID: 3384226 DOI: 10.1111/j.1432-0436.1988.tb00796.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunochemical studies of chicken pectoralis major, a fast muscle, have demonstrated large amounts of myosin heavy chains (MHCs) of the slow-skeletal-muscle type during early stages of embryonic development. A large majority of the myotubes present in early embryonic muscle stained for this class of MHC. As development progressed, its synthesis was suppressed in most of the muscle, except in the deeper presumptive red-strip region. The level of this MHC in the embryonic muscle appeared to be reduced by its suppression in a proportion of the existing cells, by the addition of many presumptive fast cells that never expressed this MHC, and by atrophy or degeneration of a small proportion of the slow MHC-positive cells. Further suppression of this MHC in a proportion of the histochemically typed slow cells present in the red-strip region did not occur until quite late in the post-hatch period.
Collapse
Affiliation(s)
- G K Dhoot
- Department of Immunology, Medical School, University of Birmingham, United Kingdom
| |
Collapse
|
176
|
Latham KE, Konigsberg IR. Expression of myosin heavy chain isoforms in myogenic clones obtained from developing quail breast muscle. Dev Genes Evol 1988; 197:503-506. [DOI: 10.1007/bf00385684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1988] [Accepted: 12/05/1988] [Indexed: 11/30/2022]
|
177
|
Woo SL, Buckwalter JA. AAOS/NIH/ORS workshop. Injury and repair of the musculoskeletal soft tissues. Savannah, Georgia, June 18-20, 1987. J Orthop Res 1988; 6:907-31. [PMID: 3171771 DOI: 10.1002/jor.1100060615] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S L Woo
- Division of Orthopaedics and Rehabilitation, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|