151
|
Abstract
The fluorescent dye Lucifer yellow (LY) was introduced in 1978, and has been extremely useful in studying cell structure and communications. This dye has been used mostly for labelling cells by intracellular injection from microelectrodes. This review describes the numerous applications of LY, with emphasis on the enteric nervous system and interstitial cells of Cajal. Of particular importance is the dye coupling method, which enables the detection of cell coupling by gap junctions.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel.
| |
Collapse
|
152
|
Kjenseth A, Fykerud TA, Sirnes S, Bruun J, Yohannes Z, Kolberg M, Omori Y, Rivedal E, Leithe E. The gap junction channel protein connexin 43 is covalently modified and regulated by SUMOylation. J Biol Chem 2012; 287:15851-61. [PMID: 22411987 PMCID: PMC3346107 DOI: 10.1074/jbc.m111.281832] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 03/02/2012] [Indexed: 11/06/2022] Open
Abstract
SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system.
Collapse
Affiliation(s)
- Ane Kjenseth
- From the Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital and
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0310 Oslo, Norway and
| | - Tone A. Fykerud
- From the Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital and
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0310 Oslo, Norway and
| | - Solveig Sirnes
- From the Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital and
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0310 Oslo, Norway and
| | - Jarle Bruun
- From the Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital and
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0310 Oslo, Norway and
| | - Zeremariam Yohannes
- From the Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital and
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0310 Oslo, Norway and
| | - Matthias Kolberg
- From the Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital and
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0310 Oslo, Norway and
| | - Yasufumi Omori
- the Department of Molecular and Tumour Pathology, Akita University School of Medicine, Hondo 010-8543, Akita, Japan
| | - Edgar Rivedal
- From the Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital and
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0310 Oslo, Norway and
| | - Edward Leithe
- From the Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital and
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0310 Oslo, Norway and
| |
Collapse
|
153
|
Wang K, Gu S, Yin X, Weintraub ST, Hua Z, Jiang JX. Developmental truncations of connexin 50 by caspases adaptively regulate gap junctions/hemichannels and protect lens cells against ultraviolet radiation. J Biol Chem 2012; 287:15786-97. [PMID: 22418432 PMCID: PMC3346145 DOI: 10.1074/jbc.m111.313171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/02/2012] [Indexed: 11/06/2022] Open
Abstract
The gap junction-forming connexin (Cx) 50 is truncated gradually during lens development. Premature cleavage of lens connexins is thought to be associated with cataract formation. We have shown previously that Cx50 is likely to be cleaved by caspase-3 like protease during chick lens development. Here, using HPLC-electrospray tandem mass spectrometry, we mapped two cleavage sites at the C terminus of Cx50 after Glu-368 and Asp-379 and identified caspase-3 and caspase-1 as the responsible proteases, respectively. The activity of caspase-1, like caspase-3, was detected in the outer cortex increased during lens development, which coincided with the accumulation of the truncated fragments of Cx50 in the core region of the lens. The truncated Cx50 fragments present in older lenses were reproduced in the younger lens after treatment with UV radiation; this cleavage could be partially blocked by caspase-1/3-specific inhibitors. Interestingly, as compared with full-length Cx50, caspase-truncated Cx50 showed a dramatic decrease in gap junction coupling and a loss of hemichannel function. Furthermore, expression of caspase-truncated Cx50 fragments increased cell viability against UV radiation as compared with full-length Cx50. Together, these results suggest that both caspase-1 and -3 are responsible for the cleavage at the C terminus of Cx50 during lens development. The reduction of gap junction coupling and closure of hemichannels formed by truncated Cx50 are likely to adaptively protect cells against elevated oxidative stress associated with lens aging.
Collapse
Affiliation(s)
- Ke Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China and
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Sumin Gu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Xinye Yin
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Susan T. Weintraub
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Zichun Hua
- From the State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China and
| | - Jean X. Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| |
Collapse
|
154
|
Suadicani SO, Iglesias R, Wang J, Dahl G, Spray DC, Scemes E. ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes. Glia 2012; 60:1106-16. [PMID: 22499153 DOI: 10.1002/glia.22338] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/16/2012] [Indexed: 11/11/2022]
Abstract
Pannexins (Panx1, 2, and 3) comprise a group of proteins expressed in vertebrates that share weak yet significant sequence homology with the invertebrate gap junction proteins, the innexins. In contrast to the other vertebrate gap junction protein family (connexin), pannexins do not form intercellular channels, but at least Panx1 forms nonjunctional plasma membrane channels. Panx1 is ubiquitously expressed and has been shown to form large conductance (500 pS) channels that are voltage dependent, mechanosensitive, and permeable to relatively large molecules such as ATP. Pharmacological and knockdown approaches have indicated that Panx1 is the molecular substrate for the so-called "hemichannel" originally attributed to connexin43 and that Panx1 is the pore-forming unit of the P2X(7) receptor. Here, we describe, for the first time, conductance and permeability properties of Panx1-null astrocytes. The electrophysiological and fluorescence imaging analyses performed on these cells fully support our previous pharmacological and Panx1 knockdown studies that showed profoundly lower dye uptake and ATP release than wild-type untreated astrocytes. As a consequence of decreased ATP paracrine signaling, intercellular calcium wave spread is altered in Panx1-null astrocytes. Moreover, we found that in astrocytes as in Panx1-expressing oocytes, elevated extracellular K(+) activates Panx1 channels independently of membrane potential. Thus, on the basis of our present findings and our previous report, we propose that Panx1 channels serve as K(+) sensors for changes in the extracellular milieu such as those occurring under pathological conditions.
Collapse
Affiliation(s)
- Sylvia O Suadicani
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
155
|
Bejarano E, Girao H, Yuste A, Patel B, Marques C, Spray DC, Pereira P, Cuervo AM. Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Mol Biol Cell 2012; 23:2156-69. [PMID: 22496425 PMCID: PMC3364179 DOI: 10.1091/mbc.e11-10-0844] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Connexins modulate intercellular communication when assembled in gap junctions. Compromised macroautophagy increases cellular communication due to failure to degrade connexins at gap junctions. Nedd4-mediated ubiquitinylation of the connexin molecule is required to trigger its autophagy-dependent internalization and degradation. Different pathways contribute to the turnover of connexins, the main structural components of gap junctions (GJs). The cellular pool of connexins targeted to each pathway and the functional consequences of degradation through these degradative pathways are unknown. In this work, we focused on the contribution of macroautophagy to connexin degradation. Using pharmacological and genetic blockage of macroautophagy both in vitro and in vivo, we found that the cellular pool targeted by this autophagic system is primarily the one organized into GJs. Interruption of connexins' macroautophagy resulted in their retention at the plasma membrane in the form of functional GJs and subsequent increased GJ-mediated intercellular diffusion. Up-regulation of macroautophagy alone is not sufficient to induce connexin internalization and degradation. To better understand what factors determine the autophagic degradation of GJ connexins, we analyzed the changes undergone by the fraction of plasma membrane connexin 43 targeted for macroautophagy and the sequence of events that trigger this process. We found that Nedd4-mediated ubiquitinylation of the connexin molecule is required to recruit the adaptor protein Eps15 to the GJ and to initiate the autophagy-dependent internalization and degradation of connexin 43. This study reveals a novel regulatory role for macroautophagy in GJ function that is directly dependent on the ubiquitinylation of plasma membrane connexins.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Antioxidant activity of Fragilariopsis pseudonana and protective effect against hydrogen peroxide-induced inhibition of gap junctional intercellular communication. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
157
|
Selective esterase-ester pair for targeting small molecules with cellular specificity. Proc Natl Acad Sci U S A 2012; 109:4756-61. [PMID: 22411832 DOI: 10.1073/pnas.1111943109] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small molecules are important tools to measure and modulate intracellular signaling pathways. A longstanding limitation for using chemical compounds in complex tissues has been the inability to target bioactive small molecules to a specific cell class. Here, we describe a generalizable esterase-ester pair capable of targeted delivery of small molecules to living cells and tissue with cellular specificity. We used fluorogenic molecules to rapidly identify a small ester masking motif that is stable to endogenous esterases, but is efficiently removed by an exogenous esterase. This strategy allows facile targeting of dyes and drugs in complex biological environments to label specific cell types, illuminate gap junction connectivity, and pharmacologically perturb distinct subsets of cells. We expect this approach to have general utility for the specific delivery of many small molecules to defined cellular populations.
Collapse
|
158
|
WNT3A induces a contractile and secretory phenotype in cultured vascular smooth muscle cells that is associated with increased gap junction communication. J Transl Med 2012; 92:246-55. [PMID: 22105568 DOI: 10.1038/labinvest.2011.164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Evidence suggests a role for Wnt signaling in vascular wound repair and remodeling events. Despite this, very little is known about the effect of Wnt ligands on the structure and function of vascular cells. In this study, we treated vascular smooth muscle cells with 250 ng/ml of recombinant Wnt3a for 72 h and observed changes in the cell phenotype. Our data suggest Wnt3a completely alters the phenotype of vascular smooth muscle cells. The Wnt3a-treated cells appeared larger and had increased formation of stress fibers. These cells also had increased expression of the smooth muscle contractile proteins, calponin and smooth muscle α-actin, and contracted a collagen lattice faster than control cells. The Wnt3a-treated smooth muscle cells displayed increased extracellular matrix synthesis, as measured by collagen I and III mRNA expression, along with increased expression of MMP2 and MMP9, but decreased TIMP2 levels. The Wnt3a-induced change in cell phenotype was associated with increased expression of the gap junction protein connexin 43. Consistent with this, Wnt3a-treated smooth muscle cells displayed enhanced intercellular communication, as measured by the scrape-loading dye transfer technique. The canonical Wnt antagonist, dickkopf-related protein 1, completely reversed the contractile protein and connexin 43 expression seen in the Wnt3a-treated cells, suggesting these changes were dependent on canonical Wnt signaling. Collectively, this data suggest Wnt3a promotes a contractile and secretory phenotype in vascular smooth muscle cells that is associated with increased gap junction communication.
Collapse
|
159
|
Sovari AA, Iravanian S, Dolmatova E, Jiao Z, Liu H, Zandieh S, Kumar V, Wang K, Bernstein KE, Bonini MG, Duffy HS, Dudley SC. Inhibition of c-Src tyrosine kinase prevents angiotensin II-mediated connexin-43 remodeling and sudden cardiac death. J Am Coll Cardiol 2012; 58:2332-9. [PMID: 22093512 DOI: 10.1016/j.jacc.2011.07.048] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/26/2011] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The aim of this study was to test whether c-Src tyrosine kinase mediates connexin-43 (Cx43) reduction and sudden cardiac death in a transgenic mouse model of cardiac-restricted overexpression of angiotensin-converting enzyme (ACE8/8 mice). BACKGROUND Renin-angiotensin system activation is associated with an increased risk for arrhythmia and sudden cardiac death, but the mechanism is not well understood. The up-regulation of c-Src by angiotensin II may result in the reduction of Cx43, which impairs gap junction function and provides a substrate for arrhythmia. METHODS Wild-type and ACE8/8 mice with and without treatment with the c-Src inhibitor 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP1) were studied. Telemetry monitoring, in vivo electrophysiologic studies, Western blot analyses for total and phosphorylated c-Src and Cx43, immunohistochemistry staining for Cx43, and functional assessment of Cx43 with fluorescent dye diffusion were performed. RESULTS The majority of the arrhythmic deaths resulted from ventricular tachycardia degenerating to ventricular fibrillation (83%). Levels of total and phosphorylated c-Src were increased and Cx43 reduced in ACE8/8 mice. PP1 reduced total and phosphorylated c-Src levels, increased Cx43 level by 2.1-fold (p < 0.005), increased Cx43 at the gap junctions (immunostaining), improved gap junctional communication (dye spread), and reduced ventricular tachycardia inducibility and sudden cardiac death. The survival rate increased from 11% to 86% with 4 weeks of PP1 treatment (p < 0.005). Treatment with an inactive analog did not change survival or Cx43 levels. CONCLUSIONS Renin-angiotensin system activation is associated with c-Src up-regulation, Cx43 loss, reduced myocyte coupling, and arrhythmic sudden death, which can be prevented by c-Src inhibition. This suggests that an increase in c-Src activity may help mediate renin-angiotensin system-induced arrhythmias and that c-Src inhibitors might exert antiarrhythmic activity.
Collapse
Affiliation(s)
- Ali A Sovari
- Section of Cardiology and Center for Cardiovascular Research, University of Illinois at Chicago, 840 S.Wood Street, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Suh HN, Kim MO, Han HJ. Laminin-111 stimulates proliferation of mouse embryonic stem cells through a reduction of gap junctional intercellular communication via RhoA-mediated Cx43 phosphorylation and dissociation of Cx43/ZO-1/drebrin complex. Stem Cells Dev 2012; 21:2058-70. [PMID: 22150760 DOI: 10.1089/scd.2011.0505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gap junctions within extracellular matrix (ECM)-defined boundaries ensure synchronous activity between cells destined to become functional mediators that regulate cell behavior. However, the role of ECM in connexin (Cx) function in mouse embryonic stem cells (mESCs) has not been elucidated. Therefore, we examined the role of laminin-111 in the control of Cx43 functions and related signal pathways in mESCs. ECM components (laminin-111, fibronectin, and collagen I) increased Cx43 phosphorylation and decreased Lucifer yellow (Ly) diffusion. In addition, laminin-111 increased the proliferation index through reduction of gap junctional intercellular communication (GJIC), which was confirmed by 18α-glycyrrhetinic acid (18α-GA). Laminin-111 increased phosphorylation of focal adhesion kinase (FAK)/Src and protein kinase C (PKC), which were inhibited by integrin β1 antibody (Ab) and laminin receptor-1 (LR-1) Ab, respectively. In addition, inhibition of both FAK/Src and PKC blocked Cx43 phosphorylation. Laminin-111 increased the Ras homolog gene family, member A (RhoA) activation, which was blocked by FAK/Src and PKC inhibitors, suggesting the existence of parallel pathways that merge at RhoA. Inhibition of RhoA reversed the laminin-111-induced increase of Cx43 phosphorylation and reduction of GJIC. Laminin-111 also stimulated the dissociation of Cx43/ZO-1 complex followed by disruption of Cx43/drebrin and Cx43/F-actin complexes, which were reversed by C3 (RhoA inhibitor). ZO-1 small interfering (si) RNA significantly decreased Ly diffusion. Moreover, laminin-111 decreased Cx43 labeling at the intercellular junction, whereas pretreatment with degradation inhibitors (lysosomal protease inhibitor, chloroquine; proteasome inhibitor, lactacystin) increased Cx43 expression, reversely. In conclusion, laminin-111 stimulated mESC proliferation through a reduction of GJIC via RhoA-mediated Cx43 phosphorylation and Cx43/ZO-1/drebrin complex instability-mediated Cx43 degradation.
Collapse
Affiliation(s)
- Han Na Suh
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | | | | |
Collapse
|
161
|
Fykerud TA, Kjenseth A, Schink KO, Sirnes S, Bruun J, Omori Y, Brech A, Rivedal E, Leithe E. Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43. J Cell Sci 2012; 125:3966-76. [DOI: 10.1242/jcs.093500] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junction channels are made of a family of integral membrane proteins called connexins, of which the best-studied member is connexin43. Gap junctions are dynamic plasma membrane domains, and connexin43 has a high turnover rate in most tissue types. However, the mechanisms involved in the regulation of connexin43 endocytosis and transport to lysosomes are still poorly understood. Here, we demonstrate by live-cell imaging analysis that treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) induces endocytosis of subdomains of connexin43 gap junctions. The internalized, connexin43-enriched vesicles were found to fuse with early endosomes, which was followed by transport of connexin43 to the lumen of early endosomes. The HECT E3 ubiquitin ligase smad ubiquitination regulatory factor-2 (Smurf2) was found to be recruited to connexin43 gap junctions in response to TPA treatment. Depletion of Smurf2 by small interfering RNA (siRNA) resulted in enhanced levels of connexin43 gap junctions between adjacent cells and increased gap junction intercellular communication. Smurf2 depletion also counteracted the TPA-induced endocytosis and degradation of connexin43. Collectively, these data identify Smurf2 as a novel regulator of connexin43 gap junctions.
Collapse
|
162
|
Elhassan MO, Christie J, Duxbury MS. Homo sapiens systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) protein mediates contact-dependent small RNA transfer and microRNA-21-driven chemoresistance. J Biol Chem 2011; 287:5267-77. [PMID: 22174421 DOI: 10.1074/jbc.m111.318865] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Locally initiated RNA interference (RNAi) has the potential for spatial propagation, inducing posttranscriptional gene silencing in distant cells. In Caenorhabditis elegans, systemic RNAi requires a phylogenetically conserved transmembrane channel, SID-1. Here, we show that a human SID-1 orthologue, SIDT1, facilitates rapid, contact-dependent, bidirectional small RNA transfer between human cells, resulting in target-specific non-cell-autonomous RNAi. Intercellular small RNA transfer can be both homotypic and heterotypic. We show SIDT1-mediated intercellular transfer of microRNA-21 to be a driver of resistance to the nucleoside analog gemcitabine in human adenocarcinoma cells. Documentation of a SIDT1-dependent small RNA transfer mechanism and the associated phenotypic effects on chemoresistance in human cancer cells raises the possibility that conserved systemic RNAi pathways contribute to the acquisition of drug resistance. Mediators of non-cell-autonomous RNAi may be tractable targets for novel therapies aimed at improving the efficacy of current cytotoxic agents.
Collapse
Affiliation(s)
- Mohamed O Elhassan
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, United Kingdom
| | | | | |
Collapse
|
163
|
Pocrnich CE, Shao Q, Liu H, Feng MM, Harasym S, Savage M, Khimdas S, Laird DW, Hutnik CML. The effect of connexin43 on the level of vascular endothelial growth factor in human retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 2011; 250:515-22. [DOI: 10.1007/s00417-011-1871-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/29/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022] Open
|
164
|
Zhang X, Liu Y, Si YJ, Chen XH, Li ZJ, Gao L, Gao L, Zhang C. Effect of Cx43 gene-modified leukemic bone marrow stromal cells on the regulation of Jurkat cell line in vitro. Leuk Res 2011; 36:198-204. [PMID: 22030334 DOI: 10.1016/j.leukres.2011.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 08/15/2011] [Accepted: 10/02/2011] [Indexed: 12/21/2022]
Abstract
We recently reported that Cx43 expression and gap junction intercellular communication (GJIC) between acute leukemic bone marrow stromal cells (BMSCs) were deficient, which could recovery after effective chemotherapy. However, the exact role of GJIC in the hematopoietic microenvironment in leukemic cell death and proliferation is not clear. We show here that following transfection with the Cx43 gene, GJIC function was increased between leukemic BMSCs. Furthermore, compared with leukemic cells alone, the proliferation and apoptosis of leukemic cells co-cultured with BMSCs were inhibited, the percentage of G0-phase cells was higher; and expression of p53 increased and bax decreased. However, after co-culturing leukemic cells with Cx43-modified BMSCs, the number of proliferative and spontaneously apoptotic Jurkat cells increased; the percentage of G0-phase cells decreased; the expression of p53 decreased; and bax increased. Compared with Jurkat cells co-cultured with BMSCs and Jurkat cells alone, the sensitivity of leukemic cells co-cultured with Cx43-modified BMSCs to chemotherapeutics increased. Our data suggests that GJIC between leukemia BMSCs is one of the impact factor to the proliferation, apoptosis and drug sensitivity of co-cultured leukemic cells. Up-regulating its function can inhibit the protective effects of leukemic BMSCS and enhance the efficacy of therapies in hematologic malignancies.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Xinqiao Street, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Gairhe S, Bauer NN, Gebb SA, McMurtry IF. Myoendothelial gap junctional signaling induces differentiation of pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L527-35. [DOI: 10.1152/ajplung.00091.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myoendothelial gap junctions are involved in regulating systemic arterial smooth muscle cell phenotype and function, but their role in the regulation of pulmonary arterial smooth muscle cell (PASMC) phenotype is unknown. We therefore investigated in cocultured pulmonary arterial endothelial cells (PAECs) and PASMCs whether myoendothelial gap junctional signaling played a role in PAEC-dependent regulation of PASMC phenotype. Rat PAECs and PASMCs were cocultured on opposite sides of a porous Transwell membrane that permitted formation of heterotypic cell-cell contacts. Immunostaining showed expression of the gap junctional protein connexin 43 (Cx43) on projections extending into the membrane from both cell types. Dye transfer exhibited functional gap junctional communication from PAECs to PASMCs. PASMCs cocultured with PAECs had a more contractile-like phenotype (spindle shape and increased expression of the contractile proteins myosin heavy chain, H1-calponin, and α-smooth muscle cell-actin) than PASMCs cocultured with PASMCs or cocultured without direct contact with PAECs. Transforming growth factor (TGF)-β1 signaling was activated in PASMCs cocultured with PAECs, and the PASMC differentiation was inhibited by TGF-β type I receptor blockade. Inhibition of gap junctional communication pharmacologically or by knock down of Cx43 in PAECs blocked TGF-β signaling and PASMC differentiation. These results implicate myoendothelial gap junctions as a gateway for PAEC-derived signals required for maintaining TGF-β-dependent PASMC differentiation. This study identifies an alternative pathway to paracrine signaling to convey regulatory signals from PAECs to PASMCs and raises the possibility that dysregulation of this direct interaction is involved in the pathogenesis of hypertensive pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Salina Gairhe
- Departments of 1Pharmacology,
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Natalie N. Bauer
- Departments of 1Pharmacology,
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sarah A. Gebb
- Cell Biology and Neuroscience, and
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ivan F. McMurtry
- Departments of 1Pharmacology,
- Medicine and
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
166
|
Breheny D, Oke O, Faux SP. The use of in vitro systems to assess cancer mechanisms and the carcinogenic potential of chemicals. Altern Lab Anim 2011; 39:233-55. [PMID: 21777038 DOI: 10.1177/026119291103900301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Carcinogenesis is a highly complex, multi-stage process that can occur over a relatively long period before its clinical manifestation. While the sequence in which a cancer cell acquires the necessary traits for tumour formation can vary, there are a number of mechanisms that are common to most, if not all, cancers across the spectrum of possible causes. Many aspects of carcinogenesis can be modelled in vitro. This has led to the development of a number of mechanistically driven, cell-based assays to assess the pro-carcinogenic and anti-carcinogenic potential of chemicals. A review is presented of the current in vitro models that can be used to study carcinogenesis, with examples of cigarette smoke testing in some of these models, in order to illustrate their potential applications. We present an overview of the assays used in regulatory genotoxicity testing, as well as those designed to model other aspects that are considered to be hallmarks of cancer. The latter assays are described with a view to demonstrating the recent advances in these areas, to a point where they should now be considered for inclusion in an overall testing strategy for chemical carcinogens.
Collapse
|
167
|
Desforges B, Savarin P, Bounedjah O, Delga S, Hamon L, Curmi PA, Pastré D. Gap junctions favor normal rat kidney epithelial cell adaptation to chronic hypertonicity. Am J Physiol Cell Physiol 2011; 301:C705-16. [PMID: 21677260 DOI: 10.1152/ajpcell.00128.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upon hypertonic stress most often resulting from high salinity, cells need to balance their osmotic pressure by accumulating neutral osmolytes called compatible osmolytes like betaine, myo-inositol, and taurine. However, the massive uptake of compatible osmolytes is a slow process compared with other defense mechanisms related to oxidative or heat stress. This is especially critical for cycling cells as they have to double their volume while keeping a hospitable intracellular environment for the molecular machineries. Here we propose that clustered cells can accelerate the supply of compatible osmolytes to cycling cells via the transit, mediated by gap junctions, of compatible osmolytes from arrested to cycling cells. Both experimental results in epithelial normal rat kidney cells and theoretical estimations show that gap junctions indeed play a key role in cell adaptation to chronic hypertonicity. These results can provide basis for a better understanding of the functions of gap junctions in osmoregulation not only for the kidney but also for many other epithelia. In addition to this, we suggest that cancer cells that do not communicate via gap junctions poorly cope with hypertonic environments thus explaining the rare occurrence of cancer coming from the kidney medulla.
Collapse
Affiliation(s)
- Bénédicte Desforges
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Institut National de la Santé et de la Recherche Médicale U, Université Evry-Val d’Essonne, France
| | | | | | | | | | | | | |
Collapse
|
168
|
Upham BL. Role of integrative signaling through gap junctions in toxicology. ACTA ACUST UNITED AC 2011; Chapter 2:Unit2.18. [PMID: 21400682 DOI: 10.1002/0471140856.tx0218s47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gap junctional intercellular communication (GJIC) plays a central role in coordinating signal-transduction pathways that control gene expression inside of cells with those of neighboring cells in maintaining the homeostasis of a tissue. The normal homeostatic set point of gap junctions within tissues is in an open state, and although transient closure of gap junctions in response to mitogenic effectors is normal, chronic closure of channels by continuous exposure to environmental and food-borne contaminants can result in adverse health effects such as cancer, teratogenesis, reproductive dysfunction, neuropathies, and cardiac arrhythmias. GJIC is the primary means of integrating signal transduction pathways controlling gene expression between contiguous cells. Thus, bioassay systems that can measure GJIC offer a central, more biosystems approach to assessing the potential for toxicants to epigenetically alter gene expression.
Collapse
Affiliation(s)
- Brad L Upham
- Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
169
|
Liu J, Ek Vitorin JF, Weintraub ST, Gu S, Shi Q, Burt JM, Jiang JX. Phosphorylation of connexin 50 by protein kinase A enhances gap junction and hemichannel function. J Biol Chem 2011; 286:16914-28. [PMID: 21454606 DOI: 10.1074/jbc.m111.218735] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of connexins is an important mechanism regulating gap junction channels. However, the role(s) of connexin (Cx) phosphorylation in vivo are largely unknown. Here, we showed by mass spectrometry that Ser-395 in the C terminus of chicken Cx50 was phosphorylated in the lens. Ser-395 is located within a PKA consensus site. Analyses of Cx50 phosphorylation by two-dimensional thin layer chromatography tryptic phosphopeptide profiles suggested that Ser-395 was targeted by PKA in vivo. PKA activation increased both gap junction dye coupling and hemichannel dye uptake in a manner not involving increases in total Cx50 expression or relocation to the cell surface or gap junctional plaques. Single channel recordings indicated PKA enhanced transitions between the closed and ∼200-pS open state while simultaneously reducing transitions between this open state and a ∼65-pS subconductance state. The mutation of Ser-395 to alanine significantly attenuated PKA-induced increases in dye coupling and uptake by Cx50. However, channel records indicated that phosphorylation at this site was unnecessary for enhanced transitions between the closed and ∼200-pS conductance state. Together, these results suggest that Cx50 is phosphorylated in vivo by PKA at Ser-395 and that this event, although unnecessary for PKA-induced alterations in channel conductance, promotes increased dye permeability of Cx50 channels, which plays an important role in metabolic coupling and transport in lens fibers.
Collapse
Affiliation(s)
- Jialu Liu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil Steril 2011; 95:1308-15.e1. [DOI: 10.1016/j.fertnstert.2010.09.064] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/14/2010] [Accepted: 09/28/2010] [Indexed: 12/26/2022]
|
171
|
Autsavapromporn N, de Toledo SM, Little JB, Jay-Gerin JP, Harris AL, Azzam EI. The role of gap junction communication and oxidative stress in the propagation of toxic effects among high-dose α-particle-irradiated human cells. Radiat Res 2011; 175:347-57. [PMID: 21388278 PMCID: PMC3139025 DOI: 10.1667/rr2372.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the roles of gap junction communication and oxidative stress in modulating potentially lethal damage repair in human fibroblast cultures exposed to doses of α particles or γ rays that targeted all cells in the cultures. As expected, α particles were more effective than γ rays at inducing cell killing; further, holding γ-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality and was associated with persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects in α-particle-irradiated cell cultures during confluent holding. Upregulation of antioxidant defense by ectopic overexpression of glutathione peroxidase protected against cell killing by α particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours after irradiation are amplified by intercellular communication, but the communicated molecule(s) is unlikely to be a substrate of glutathione peroxidase.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Department of Radiology, UMDNJ – New Jersey Medical School Cancer Center, Newark, New Jersey 07103
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke (Québec) J1H 5N4, Canada
| | - Sonia M. de Toledo
- Department of Radiology, UMDNJ – New Jersey Medical School Cancer Center, Newark, New Jersey 07103
| | - John B. Little
- Laboratory of Radiobiology, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Jean-Paul Jay-Gerin
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke (Québec) J1H 5N4, Canada
| | - Andrew L. Harris
- Department of Pharmacology and Physiology, UMDNJ – New Jersey Medical School, Newark, New Jersey 07103
| | - Edouard I. Azzam
- Department of Radiology, UMDNJ – New Jersey Medical School Cancer Center, Newark, New Jersey 07103
| |
Collapse
|
172
|
Klaunig JE, Shi Y. Assessment of gap junctional intercellular communication. CURRENT PROTOCOLS IN TOXICOLOGY 2011; Chapter 2:Unit2.17. [PMID: 20941698 DOI: 10.1002/0471140856.tx0217s41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gap junctions are important plasma membrane organelles through which most cells in normal tissues communicate with each other. They exist in two neighboring cells and each cell contributes half of the structure. One gap junction consists of two hexameric connexons that dock with each other to create a channel. Six of the basic subunits referred to as connexins form a connexon. Less than one hundred to several thousand gap junction channels cluster together in the plane of the membrane. The gap junction channels serve as a regulated conduit for the intercellular exchange of small molecules. Maintenance of the integrity of gap junctional intercellular communication (GJIC) is important and required for normal electrical coupling, homeostasis, and embryogenesis. Aberrations of gap junctions have been related to human diseases such as cancer, cardiac arrhythmia, Charcot-Marie-tooth disease, and visceroatrial heterotaxia syndrome. This unit describes methods for measuring gap junctional intercellular communication using primary mouse hepatocytes as a model. Focus is only on functional evaluation based on dye coupling. Other methods, such as intracellular calcium waves and dual patch clamp, have been used to measure gap junctional communication, but these are not described in this unit.
Collapse
Affiliation(s)
- James E Klaunig
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
173
|
Chaurra A, Gutzman BM, Taylor E, Ackroyd PC, Christensen KA. Lucifer Yellow as a live cell fluorescent probe for imaging water transport in subcellular organelles. APPLIED SPECTROSCOPY 2011; 65:20-25. [PMID: 21211149 DOI: 10.1366/10-06095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
While the water permeability of the plasma membranes of mammalian cells has been studied extensively, water transport across membranes of subcellular compartments (e.g., lysosomes, macropinosomes) has been difficult to study. Here we demonstrate a new method for measuring water flux in late endosomes and lysosomes of intact living cells using time-lapse fluorescence microscopy. Cells were loaded by fluid-phase uptake with a mixture of the Lucifer Yellow dextran (LY-dex), a D(2)O sensitive dye, and a D(2)O insensitive control dye, Alexa fluor 546 dextran (AF546-dex). LY-dex responded linearly to changes in D(2)O concentration and the LY-dex D(2)O sensitivity was not affected by changes in pH, physiological salt, and protein concentrations. The co-loaded control dye, AF546-dex, showed no signal changes as a function of D(2)O concentration. To measure membrane water flux, the LY-dex fluorescence in labeled organelles was recorded during rapid superfusion of cells with isotonic buffers prepared in D(2)O. The time constant of water exchange across the lysosomal membrane of intact cells was determined by fitting the data to a single exponential function. From these data, together with the measured area of the organelles, observed water permeability for intracellular CHO-K1 lysosomes was calculated to be 5.3 × 10(-3) ± 0.3 × 10(-3) cm/s. This work demonstrates the feasibility of measuring water flux into subcellular organelles in live cells using LY-dex.
Collapse
Affiliation(s)
- Adriana Chaurra
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | |
Collapse
|
174
|
Zhang S, Liang R, Zhou F, Huang X, Ding JH, Hu G. Reversal of rotenone-induced dysfunction of astrocytic connexin43 by opening mitochondrial ATP-sensitive potassium channels. Cell Mol Neurobiol 2011; 31:111-7. [PMID: 20824494 PMCID: PMC11498518 DOI: 10.1007/s10571-010-9560-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/25/2010] [Indexed: 12/21/2022]
Abstract
Growing evidence suggests that the astrocytic gap junctions (GJs), mainly formed by connexin 43 (Cx43), play an important role in physiological maintenance and various central nervous system (CNS) pathological conditions. However, little is known about the role of Cx43 in Parkinson's disease (PD). In this article, we report that rotenone, a classic neurotoxin for PD, could inhibit expression of astrocytic Cx43 and gap junction permeability. ATP-sensitive potassium (K(ATP)) channel openers, iptakalim (IPT) and diazoxide (DZ), exerted protective effect on rotenone-induced dysfunction of Cx43 and astrocyte apoptosis, which was reversed by selective mitochondrial K(ATP) (mitoK(ATP)) channel blocker 5-hydroxydecanoate (5-HD). Taken together, our findings reveal that rotenone-induced dysfunction of astrocytic Cx43 may be involved in the pathology of PD. Moreover, opening mitoK(ATP) channels in astrocytes can reverse rotenone-induced dysfunction of astrocytic Cx43 and therefore protect against toxicity of rotenone on astrocytes.
Collapse
Affiliation(s)
- Shu Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
- Clinical Research Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Rui Liang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Fang Zhou
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Xu Huang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| |
Collapse
|
175
|
Liu J, Xu J, Gu S, Nicholson BJ, Jiang JX. Aquaporin 0 enhances gap junction coupling via its cell adhesion function and interaction with connexin 50. J Cell Sci 2010; 124:198-206. [PMID: 21172802 DOI: 10.1242/jcs.072652] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Both connexin 50 (Cx50) and aquaporin 0 (AQP0) have important roles in lens development and homeostasis, and their mutations are associated with human congenital cataracts. We have previously shown that Cx50 directly interacts with AQP0. Here, we demonstrate the importance of the Cx50 intracellular loop (IL) domain in mediating the interaction with AQP0 in the lens in vivo. AQP0 significantly increased (~20-30%) the intercellular coupling and conductance of Cx50 gap junctions. However, this increase was not observed when the IL domain was replaced with those from other lens connexins. The Cx50-AQP0 interaction had no effect on Cx50 hemichannel function. A fusion protein containing three extracellular loop domains of AQP0 efficiently blocked the cell-to-cell adhesion of AQP0 and attenuated the stimulatory effect of AQP0 on Cx50 gap junction conductance. These data suggest that the specific interaction between Cx50 and AQP0 enhances the coupling of Cx50 gap junctions, but not hemichannels, through the cell adhesion function of AQP0. This result establishes a physiological role of AQP0 in the functional regulation of gap junction channels.
Collapse
Affiliation(s)
- Jialu Liu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
176
|
Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 2010; 467:863-7. [PMID: 20944749 DOI: 10.1038/nature09413] [Citation(s) in RCA: 876] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 08/12/2010] [Indexed: 02/08/2023]
Abstract
Apoptotic cells release 'find-me' signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 overexpression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the 'selective' plasma membrane permeability of early apoptotic cells to specific dyes. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases.
Collapse
|
177
|
Yamaji S, Droggiti A, Lu SC, Martinez-Chantar ML, Warner A, Varela-Rey M. S-Adenosylmethionine regulates connexins sub-types expressed by hepatocytes. Eur J Cell Biol 2010; 90:312-22. [PMID: 21093098 DOI: 10.1016/j.ejcb.2010.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 01/01/2023] Open
Abstract
Intercellular communication via GAP Junctions plays an important role in tissue homeostasis, apoptosis, carcinogenesis, cell proliferation and differentiation. Hepatocyte connexins (Cx) 26 and 32 levels are decreased during the de-differentiation process of primary hepatocytes in culture, a situation that is also characterized by a decrease in S-Adenosylmethionine (SAMe) levels. In this current study, we show that SAMe supplementation in cultured hepatocytes every 12h, leads to an up-regulation of Cx26 and 32 mRNA and protein levels and blocks culture-induced Cx43 expression, although it failed to increase Cx26 and 32 membrane localization and GAP junction intracellular communication. SAMe reduced nuclear β-catenin accumulation, which is known to stimulate the TCF/LEF-dependent gene transcription of Cx43. Moreover SAMe-induced reduction in Cx43 and β-catenin was prevented by the proteasome inhibitor MG132, and was not mediated by GSK3 activity. SAMe, and its metabolite 5'-methylthioadenosine (MTA) increased Cx26 mRNA in a process partially mediated by Adenosine A(2A) receptors but independent of PKA. Finally livers from MAT1A knockout mice, characterized by low hepatic SAMe levels, express higher Cx43 and lower Cx26 and 32 protein levels than control mice. These results suggest that SAMe maintains a characteristic expression pattern of the different Cxs in hepatocytes by differentially regulating their levels.
Collapse
Affiliation(s)
- Sachie Yamaji
- Department of Cell and Developmental Biology (formerly Anatomy and Developmental Biology), University College London, London, UK
| | | | | | | | | | | |
Collapse
|
178
|
Green tea prevents down-regulation of gap junction intercellular communication in human keratinocytes treated with PMA. Eur Arch Otorhinolaryngol 2010; 268:885-92. [DOI: 10.1007/s00405-010-1411-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
|
179
|
Long AC, Bomser JA, Grzybowski DM, Chandler HL. All-trans retinoic Acid regulates cx43 expression, gap junction communication and differentiation in primary lens epithelial cells. Curr Eye Res 2010; 35:670-9. [PMID: 20673043 DOI: 10.3109/02713681003770746] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To examine the effect of all-trans retinoic acid (ATRA) treatment on connexin 43 (Cx43) expression, gap junction intercellular communication (GJIC), and cellular differentiation in primary canine lens epithelial cells (LEC). METHODS AND MATERIALS Dose and time-dependent effects of ATRA on Cx43 protein, mRNA and GJIC, were assessed by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and scrape loading/dye transfer assays, respectively. Expression of beta crystallin was evaluated by immunoblotting. RESULTS Treatment with ATRA at non-cytotoxic concentrations significantly increased Cx43 protein, mRNA and GJIC in primary canine LEC. Treatment with ATRA for five and seven days increased levels of beta crystallin, a protein marker of LEC differentiation. Inhibition of GJIC via pre-treatment with a synthetic inhibitor, 18-alpha glycyrrethinic acid (AGA), reduced ATRA-induced increases in Cx43 and GJIC and partially blocked ATRA-induced beta crystallin protein. CONCLUSIONS Treatment with ATRA significantly increased Cx43 expression and GJIC in canine LEC, and these effects were associated with increased LEC differentiation. Results from this study suggest that functional gap junctions may play a role in the modulation of cellular differentiation in primary canine LEC.
Collapse
Affiliation(s)
- Amy C Long
- The Ohio State University, Interdisciplinary Ph.D Program in Nutrition, Department of Human Nutrition, Department of Ophthalmology, Biomedical Engineering Center, College of Optometry, Department of Veterinary Clinical Sciences, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
180
|
Kang HG, Jeong SH, Cho JH. Antimutagenic and anticarcinogenic effect of methanol extracts of Petasites japonicus Maxim leaves. J Vet Sci 2010; 11:51-8. [PMID: 20195065 PMCID: PMC2833430 DOI: 10.4142/jvs.2010.11.1.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methanol extract from the leaves of Petasites japonicus Maxim (PJ) was studied for its (anti-)mutagenic effect with the SOS chromotest and reverse mutation assay. The (anti-)carcinogenic effects were evaluated by the cytotoxicity on human cancer line cells and by the function and the expression of gap junctions in rat liver epithelial cell. PJ extracts significantly decreased spontaneous β-galactosidase activity and β-galactosidase activity induced by a mutagen, ICR, in Salmonella (S.) typhimurium TA 1535/pSK 1002. All doses of the extract (0.08-100 mg/plate) decreased the reversion frequency induced by benzo (α)pyrene (BaP) in S. typhimurium TA 98. It decreased not only the spontaneous reversion frequency but also that induced by BaP in S. typhimurium TA 100. PJ extract showed greater cytotoxic effects on human stomach, colon and uterus cancer cells than on other cancer cell types and normal rat liver epithelial cells. Dye transfers though gap junctions were significantly increased by PJ extracts at concentrations greater than 200 µg/mL and the inhibition of dye transfer by 12-O-tetradecanoylphorobol-13-acetate (TPA) was obstructed in all concentrations of PJ. PJ significantly increased the numbers of gap junction protein connexin 43, and increased the protein expression decreased by TPA in a dose-dependent manner. Based on these findings, PJ is suggested to contain antimutagenic and anticarcionogenic compounds.
Collapse
Affiliation(s)
- Hwan-Goo Kang
- National Veterinary Research and Quarantine Service, Anyang, Korea
| | | | | |
Collapse
|
181
|
Wu CH, Yang JG, Yang JJ, Lin YM, Tsai HD, Lin CY, Kuo PL. Androgen excess down-regulates connexin43 in a human granulosa cell line. Fertil Steril 2010; 94:2938-41. [PMID: 20684953 DOI: 10.1016/j.fertnstert.2010.06.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
By use of a cell model, we found that high levels of androgen reduce connexin43 expression and impair gap junction intercellular communication between human granulosa cells through the androgen receptors. High levels of androgen may impair folliculogenesis and in turn lead to ovulatory dysfunction in polycystic ovary syndrome patients.
Collapse
Affiliation(s)
- Cheng-Hsuan Wu
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | | | | | | | |
Collapse
|
182
|
Herrero-González S, Gangoso E, Giaume C, Naus CC, Medina JM, Tabernero A. Connexin43 inhibits the oncogenic activity of c-Src in C6 glioma cells. Oncogene 2010; 29:5712-23. [PMID: 20676131 DOI: 10.1038/onc.2010.299] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the characteristics of gliomas is a decrease in the expression of connexin43, a protein that forms gap junctions. Restoring connexin43 expression in glioma cells reduces their exacerbated rate of cell growth, although it is not yet known how connexin43 modifies the expression of genes involved in cell proliferation. Here, we show that restoring connexin43 to C6 glioma cells impedes their progression from G0/G1 to the S phase of the cell cycle by reducing retinoblastoma phosphorylation and cyclin E expression through the upregulation of p21 and p27. Interestingly, connexin43 diminishes the oncogenic activity of c-Src exhibited by glioma cells. By studying a Tyr247 and Tyr265 mutant connexin43, we show that these residues are required for connexin43 to inhibit c-Src activity and cell proliferation. In conclusion, by acting as a substrate of c-Src, connexin43 reduces its oncogenic activity and decreases the rate of glioma cell proliferation, potentially an early step in the antiproliferative effects of connexin43. Although c-Src is known to phosphorylate connexin43, this study provides the first evidence that connexin43 can also inhibit c-Src activity.
Collapse
Affiliation(s)
- S Herrero-González
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
183
|
Moon MS, Richie JP, Isom HC. Iron potentiates acetaminophen-induced oxidative stress and mitochondrial dysfunction in cultured mouse hepatocytes. Toxicol Sci 2010; 118:119-27. [PMID: 20667997 DOI: 10.1093/toxsci/kfq230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Liver disease is responsible for more than 42,000 deaths yearly. Elevated hepatic iron levels have been shown to play a role in chronic liver diseases including hereditary hemochromatosis, thalassemia, and chronic hepatitis C, whereas acetaminophen (APAP) is the leading cause of acute liver failure. The goal of this study was to determine whether increased hepatic iron affects APAP-induced cytotoxicity, reactive oxygen species (ROS) production, and/or mitochondrial dysfunction in primary mouse hepatocytes (PMHs) that are differentiated and have gap junctional intracellular integrity, properties associated with hepatocytes in vivo and important for conducting toxicant studies. Treatment of PMHs with the iron donor 3,5,5-trimethyl-hexanoyl ferrocene (TMHF) caused an elevation in ferritin, reduction in transferrin receptor 1, and accumulation of hemosiderin, but TMHF treatment alone did not induce ROS or cause mitochondrial dysfunction. The threshold APAP dose that induced PMH cell death after TMHF treatment of PMHs was lower than in the absence of TMHF. In addition, treatment with the iron chelator deferoxamine (DFO) protected from APAP and resulted in a higher threshold dose being needed to induce cell death. We also showed that after TMHF treatment, APAP induced ROS and mitochondrial dysfunction at earlier time points than treatment with APAP alone; treatment with DFO increased the length of time required for APAP to induce ROS and mitochondrial dysfunction; and treatment with DFO, subsequent to TMHF, partially protected against TMHF-potentiated APAP injury. We conclude that iron potentiates the effects of APAP on cytotoxicity, ROS production, and mitochondrial dysfunction in PMHs.
Collapse
Affiliation(s)
- Mi Sun Moon
- Department of Microbiology and Immunology, Penn State Cancer Institute, Penn State Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
184
|
Losso JN, Truax RE, Richard G. trans-resveratrol inhibits hyperglycemia-induced inflammation and connexin downregulation in retinal pigment epithelial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8246-8252. [PMID: 20578705 DOI: 10.1021/jf1012067] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The purpose of this study was to determine the inhibitory activity of trans-resveratrol against hyperglycemia-induced inflammation and degradation of gap junction intercellular communication in retinal pigment epithelial cells. Retinal (ARPE-19) cells were incubated with 5.5 mM glucose, 5.5 mM glucose and 10 microM resveratrol, 33 mM glucose, or 33 mM glucose and 0-10 microM trans-resveratrol at 37 degrees C and 5% CO(2) for 9 days. Cell viability was determined by the crystal violet assay. The levels of low-grade inflammation biomarkers interleukin-6 and interleukin-8 (IL-6 and IL-8), angiogenic factors, and vascular endothelial growth factor (VEGF) were determined by the enzyme-linked immunosorbent assay (ELISA). Gap junction intercellular communication (GJIC) was determined by the scrape-load/dye transfer method. The expression levels of protein kinase Cbeta (PKCbeta), connexin 43 (Cx43), transforming growth factor-beta1 (TGF-beta1), and cyclooxygenase-2 (COX-2) were determined by Western blot. Incubation of retinal cells with 10 microM trans-resveratrol in the presence of 5.5 mM glucose did not affect any of the biomarkers investigated. Incubation of ARPE-19 cells with 33 mM glucose for 9 days significantly induced the accumulation of VEGF, IL-6, IL-8, TGF-beta, and COX-2, activation of PKCbeta, and reduction of Cx43 and GJIC. Incubation of ARPE-19 cells with 33 mM glucose in the presence of 0-10 microM trans-resveratrol dose-dependently inhibited VEGF, TGF-beta1, COX-2, IL-6, and IL-8 accumulation, PKCbeta activation, and Cx43 degradation and enhanced GJIC. These data suggest that trans-resveratrol can protect the retinal pigment epithelial cells against hyperglycemia-induced low-grade inflammation and GJIC degradation.
Collapse
Affiliation(s)
- Jack N Losso
- Department of Food Science, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
185
|
Paíno T, Gangoso E, Medina JM, Tabernero A. Inhibition of ATP-sensitive potassium channels increases HSV-tk/GCV bystander effect in U373 human glioma cells by enhancing gap junctional intercellular communication. Neuropharmacology 2010; 59:480-91. [PMID: 20603136 DOI: 10.1016/j.neuropharm.2010.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/15/2010] [Accepted: 06/25/2010] [Indexed: 01/16/2023]
Abstract
It is well known that the efficiency of Herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) therapy is improved by the bystander effect, which mainly relies on gap junctional intercellular communication (GJIC). Malignant gliomas communicate poorly through gap junctions, consequently, agents with the ability to increase GJIC are good candidates to improve the efficiency of this therapy. Since we previously showed that the inhibition of ATP-sensitive potassium (KATP) channels promoted by tolbutamide increased GJIC in rat C6 glioma cells, we have investigated whether tolbutamide could increase the bystander effect in HSV-tk/GCV therapy against human glioma cells. We found that tolbutamide increased GJIC in U373 human glioma cells, an effect that was due to the up-regulation of connexin43, a protein that forms gap junctions channels. More interestingly, our results show that tolbutamide increased the efficiency of HSV-tk/GCV in co-cultures containing U373 cells and U373 cells transfected with HSV-tk. This effect was impaired in the presence of carbenoxolone, an inhibitor of GJIC. Furthermore, tolbutamide did not enhance the bystander effect in connexin43-silenced co-cultures. Together our results reveal that the inhibition of KATP channels promoted by tolbutamide enhances the bystander effect in HSV-tk/GCV therapy by increasing connexin43-mediated gap junctional intercellular communication in U373 human glioma cells.
Collapse
Affiliation(s)
- Teresa Paíno
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León, INCYL, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
186
|
Kotnik T, Pucihar G, Miklavcic D. Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membr Biol 2010; 236:3-13. [PMID: 20617432 DOI: 10.1007/s00232-010-9279-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 06/11/2010] [Indexed: 01/17/2023]
Abstract
Exposure of a cell to an electric field results in inducement of a voltage across its membrane (induced transmembrane voltage, DeltaPsi (m)) and, for sufficiently strong fields, in a transient increase of membrane permeability (electroporation). We review the analytical, numerical and experimental methods for determination of DeltaPsi (m) and a method for monitoring of transmembrane transport. We then combine these methods to investigate the correlation between DeltaPsi (m) and molecular transport through an electroporated membrane for isolated cells of regular and irregular shapes, for cells in dense suspensions as well as for cells in monolayer clusters. Our experiments on isolated cells of both regular and irregular shapes confirm the theoretical prediction that the highest absolute values of DeltaPsi (m) are found in the membrane regions facing the electrodes and that electroporation-mediated transport is confined to these same regions. For cells in clusters, the location of transport regions implies that, at the field strengths sufficient for electroporation, the cells behave as electrically insulated (i.e., as individual) cells. In contrast, with substantially weaker, nonelectroporating fields, potentiometric measurements show that the cells in these same clusters behave as electrically interconnected cells (i.e., as one large cell). These results suggest that sufficiently high electric fields affect the intercellular pathways and thus alter the electric behavior of the cells with respect to their normal physiological state.
Collapse
Affiliation(s)
- Tadej Kotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
187
|
Lee CH, Chen IH, Lee CR, Chi CH, Tsai MC, Tsai JL, Lin HF. Inhibition of gap junctional Intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways. J Occup Med Toxicol 2010; 5:17. [PMID: 20591183 PMCID: PMC2904784 DOI: 10.1186/1745-6673-5-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Organotin compounds (OTCs) have been widely used as stabilizers in the production of plastic, agricultural pesticides, antifoulant plaints and wood preservation. The toxicity of triphenyltin (TPT) compounds was known for their embryotoxic, neurotoxic, genotoxic and immunotoxic effects in mammals. The carcinogenicity of TPT was not well understood and few studies had discussed the effects of OTCs on gap junctional intercellular communication (GJIC) of cells. Method In the present study, the effects of triphenyltin chloride (TPTC) on GJIC in WB-F344 rat liver epithelial cells were evaluated, using the scrape-loading dye transfer technique. Results TPTC inhibited GJIC after a 30-min exposure in a concentration- and time-dependent manner. Pre-incubation of cells with the protein kinase C (PKC) inhibitor did not modify the response, but the specific MEK 1 inhibitor PD98059 and PI3K inhibitor LY294002 decreased substantially the inhibition of GJIC by TPTC. After WB-F344 cells were exposed to TPTC, phosphorylation of Cx43 increased as seen in Western blot analysis. Conclusions These results show that TPTC inhibits GJIC in WB-F344 rat liver epithelial cells by altering the Cx43 protein expression through both MAPK and PI3-kinase pathways.
Collapse
Affiliation(s)
- Chung-Hsun Lee
- Graduate Institute of Occupational Safety and Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
188
|
Chung SSW, Choi C, Wang X, Hallock L, Wolgemuth DJ. Aberrant distribution of junctional complex components in retinoic acid receptor alpha-deficient mice. Microsc Res Tech 2010; 73:583-96. [PMID: 19937743 PMCID: PMC2877760 DOI: 10.1002/jemt.20797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retinoic acid receptor alpha (RARalpha)-deficient mice are sterile, with abnormalities in the progression of spermatogenesis and spermiogenesis. In this study, we investigated whether defective retinoid signaling involved at least in part, disrupted cell-cell interactions. Hypertonic fixation approaches revealed defects in the integrity of the Sertoli-cell barrier in the tubules of RARalpha-deficient testes. Dye transfer experiments further revealed that coupling between cells from the basal to adluminal compartments was aberrant. There were also differences in the expression of several known retinoic acid (RA)-responsive genes encoding structural components of tight junctions and gap junctions. Immunostaining demonstrated a delay in the incorporation of zonula occludens (ZO-1), a peripheral component protein of tight junctions, into the Sertoli cell tight junctions. Markedly reduced expression of connexin-40 in mutant pachytene spermatocytes and round spermatids was found by in situ hybridization. An ectopic distribution of vimentin and disrupted cyclic expression of vimentin, which is usually tightly regulated during spermiogenesis, was found in RARalpha-deficient testes at all ages examined. Thus, the specific defects in spermiogenesis in RARalpha-deficient testes may correlate with a disrupted cyclic expression of RA-responsive structural components, including vimentin, a downregulation of connexin-40 in spermatogenic cells, and delayed assembly of ZO-1 into Sertoli cell tight junctions. Interestingly, bioinformatic analysis revealed that many genes that are components of tight junctions and gap junctions contained potential retinoic acid response element binding sites.
Collapse
Affiliation(s)
- Sanny S W Chung
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032
- The Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032
| | - Cindy Choi
- The Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032
| | - Xiangyuan Wang
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Loretta Hallock
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032
- The Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
189
|
Kim MO, Lee YJ, Han HJ. Involvement of Cx43 phosphorylation in 5'-N-ethylcarboxamide-induced migration and proliferation of mouse embryonic stem cells. J Cell Physiol 2010; 224:187-94. [PMID: 20232318 DOI: 10.1002/jcp.22117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite a lot of gap junction research, the complex connection between gap junction and cell proliferation remains an exciting area of investigation. Thus, we examined the effect of connexin 43 (Cx43) on the migration and proliferation of embryonic stem (ES) cells and its related signaling pathways following stimulation with the adenosine analogue 5'-N-ethylcarboxamide (NECA). NECA increased phosphorylation of Cx43 which was blocked by caffeine, a non-selective adenosine receptor antagonist. In experiment to measure the gap junctional intercellular communication, NECA blocked transfer of Lucifer yellow to neighboring cells in a scrape loading/dye transfer (SL/DT) assay. In addition, NECA-induced phosphorylation of phosphoinositide 3-kinase (PI3K)/Akt, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and nuclear factor-kappa B (NF-kappaB) signal pathways. Inhibition of these signaling pathways reduced NECA-induced phosphorylation of Cx43. Moreover, NECA-treated cells demonstrated phosphorylation of Src, which was blocked by caffeine. In this experiment, a disruption of Cx43 using Cx43-specific small interfering RNA (siRNA) also enhanced Src phosphorylation. In a further study, phosphorylations of integrin beta1, focal adhesion kinase (FAK), and paxillin by NECA were restrained by caffeine as well as the Src blocker, PP2. Finally, we identified that NECA-stimulated cell migration and expressions of cell-cycle regulatory proteins [cyclin D1, cyclin-dependent kinase (CDK) 4, cyclin E, and CDK2]; these increases were inhibited by caffeine, or PP2. We conclude that NECA-stimulated Cx43 phosphorylation mediated by PI3K/Akt, PKC, MAPKs, and NF-kappaB, which subsequently stimulated cell migration and proliferation through Src, integrin beta1, FAK, and paxillin signal pathways.
Collapse
Affiliation(s)
- Mi Ok Kim
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
190
|
Shi Q, Banks EA, Yu XS, Gu S, Lauer J, Fields GB, Jiang JX. Amino acid residue Val362 plays a critical role in maintaining the structure of C terminus of connexin 50 and in lens epithelial-fiber differentiation. J Biol Chem 2010; 285:18415-22. [PMID: 20395299 DOI: 10.1074/jbc.m110.107052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that connexin (Cx) 50, unlike the other two lens connexins, Cx43 and Cx46, promotes chicken lens epithelial-fiber differentiation in a channel-independent manner. Here, we show that deletion of the PEST motif at the C terminus (CT) domain of Cx50 attenuates the stimulatory effect of Cx50 on lens fiber differentiation. Valine 362, a residue located within the PEST domain, is functionally involved. The structure of the Cx50 CT predicted by molecular modeling revealed four alpha-helices and Val(362) was found to be located in the middle of the 3rd helix. Replacement of Val(362) with amino acid residues that disrupt the alpha-helical structure predicted by molecular modeling, such as arginine, glutamate, or phenylalanine, attenuated the stimulatory effects of Cx50 on lens differentiation, whereas replacement with threonine, isoleucine, leucine, or proline, which maintain the structure preserved the function of Cx50. Circular dichroism (CD) studies supported the structural predictions and showed that the substitution with Glu, but not Thr or Pro, disrupted the alpha-helix, which appears to be the structural feature important for lens epithelial-fiber differentiation. Together, our results suggest that Val(362) is important for maintaining the helical structure and is crucial for the role of Cx50 in promoting lens epithelial-fiber differentiation.
Collapse
Affiliation(s)
- Qian Shi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
191
|
Boswell BA, VanSlyke JK, Musil LS. Regulation of lens gap junctions by Transforming Growth Factor beta. Mol Biol Cell 2010; 21:1686-97. [PMID: 20357001 PMCID: PMC2869375 DOI: 10.1091/mbc.e10-01-0055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using cultured lens epithelial cells, we discovered a new type of cross-talk between the FGF and TGF-β pathways, as well as a novel role for TGF-β and p38 kinase in the regulation of gap junctional intercellular communication. Our findings provide an explanation for how pathologically increased TGF-β signaling could contribute to cataract formation. Gap junction–mediated intercellular communication (GJIC) is essential for the proper function of many organs, including the lens. GJIC in lens epithelial cells is increased by FGF in a concentration-dependent process that has been linked to the intralenticular gradient of GJIC required for lens transparency. Unlike FGF, elevated levels of TGF-β are associated with lens dysfunction. We show that TGF–β1 or -2 up-regulates dye coupling in serum-free primary cultures of chick lens epithelial cells (dissociated cell-derived monolayer cultures [DCDMLs]) via a mechanism distinct from that utilized by other growth factors. Remarkably, the ability of TGF-β and of FGF to up-regulate GJIC is abolished if DCDMLs are simultaneously exposed to both factors despite undiminished cell–cell contact. This reduction in dye coupling is attributable to an inhibition of gap junction assembly. Connexin 45.6, 43, and 56–containing gap junctions are restored, and intercellular dye coupling is increased, if the activity of p38 kinase is blocked. Our data reveal a new type of cross-talk between the FGF and TGF-β pathways, as well as a novel role for TGF-β and p38 kinase in the regulation of GJIC. They also provide an explanation for how pathologically increased TGF-β signaling could contribute to cataract formation.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
192
|
Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro 2010; 2:e00030. [PMID: 20396375 PMCID: PMC2839462 DOI: 10.1042/an20090048] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/03/2010] [Accepted: 01/05/2010] [Indexed: 01/21/2023] Open
Abstract
Sensory and cognitive impairments have been documented in diabetic humans and
animals, but the pathophysiology of diabetes in the central nervous system is
poorly understood. Because a high glucose level disrupts gap junctional
communication in various cell types and astrocytes are extensively coupled by
gap junctions to form large syncytia, the influence of experimental diabetes on
gap junction channel-mediated dye transfer was assessed in astrocytes in tissue
culture and in brain slices from diabetic rats. Astrocytes grown in
15–25 mmol/l glucose had a slow-onset, poorly reversible decrement in
gap junctional communication compared with those grown in 5.5 mmol/l glucose.
Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at
20–24 weeks after the onset of diabetes also exhibited reduced dye
transfer. In cultured astrocytes grown in high glucose, increased oxidative
stress preceded the decrement in dye transfer by several days, and gap
junctional impairment was prevented, but not rescued, after its manifestation by
compounds that can block or reduce oxidative stress. In sharp contrast with
these findings, chaperone molecules known to facilitate protein folding could
prevent and rescue gap junctional impairment, even in the presence of elevated
glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30,
but not Cx26, was altered by growth in high glucose. Disruption of astrocytic
trafficking of metabolites and signalling molecules may alter interactions among
astrocytes, neurons and endothelial cells and contribute to changes in brain
function in diabetes. Involvement of the microvasculature may contribute to
diabetic complications in the brain, the cardiovascular system and other
organs.
Collapse
Key Words
- 4-PBA, 4-phenylbutyric acid
- 6-NBDG, 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose
- Cx, connexin
- DCF, 2′,7′-dichlorodihydrofluorescein
- DIC, differential interference contrast
- DMEM, Dulbecco's modified Eagle's medium
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- LYCH, Lucifer Yellow CH
- LYVS, Lucifer Yellow VS
- MnTBAP, manganese(III) tetrakis (4-benzoic acid) porphyrin chloride
- NA, numerical aperture
- NOS, nitric oxide synthase
- PKC, protein kinase C
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- STZ, streptozotocin
- TMAO, trimethylamine N-oxide dihydrate
- TUDCA, tauroursodeoxycholic acid
- aCSF, artificial cerebrospinal fluid
- astrocyte
- carboxy-DCF-DA, carboxy DCF diacetate
- connexin (Cx)
- dBcAMP, dibutyryl cAMP
- diabetes
- gap junction
- hyperglycaemia
- l-NAME, l-Nω-nitro-l-arginine methyl ester
- streptozotocin
Collapse
|
193
|
Kang HG, Jeong SH, Cho JH. Antimutagenic and Anticarcinogenic Effect of Methanol Extracts of Sweetpotato (Ipomea batata) Leaves. Toxicol Res 2010; 26:29-35. [PMID: 24278503 PMCID: PMC3834463 DOI: 10.5487/tr.2010.26.1.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 02/22/2010] [Accepted: 02/25/2010] [Indexed: 11/20/2022] Open
Abstract
The present study was conducted to investigate the antimutagenic potential of the methanolic extract from the leaves of sweet potato (Ipomea batatas, IB) with the SOS chromotest (umu test) and Salmonella typhimurium TA 98 and TA 100. The anticarcinogenic effects were also studied by calculation of the IC50 on human cancer cell lines and investigating the function of gap junction in rat liver epithelial cells. The IB extract inhibited dose-dependently the β-galactosidase activity induced spontaneously at concentration of more than 200 mg/ml in S. typhimurium TA 1535/pSK 1002, and decreased significantly (p < 0.01) the β-galactosidase activities induced by mutagen 6-chloro-9-[3- (2-chloroethylamino) proylamino]-2-methoxyacridine dihydrochloride (ICR) at dose of more than 0.4 mg/0.1 ml. The IB extract showed no effect on the spontaneous reversions of S. typhimurium TA 98 and 100 but benzo (α) pyrene (BaP) -stimulated reversions were decreased dose-dependently (p < 0.01) at the concentration of more than 100 mg/ml. The IC50 value of stomach cancer cells was lower than that of normal rat liver epithelial cells, but the values of colon and uterine cancer cell lines were similar to those of normal rat liver epithelial cells. The transfer of dye through gap junctions was not affected by treatment of the IB extracts at any concentration during treatment periods. The simultaneously treatment of IB extract and 12-O-tetradecanoylphorbol-13-acetate (TPA) effectively prevented the inhibition of dye transfer induced by TPA 1 hour after treatment at all exposed concentrations. The number of gap junctions was significantly (p < 0.01) increased by the treatment with IB extract at concentrations of more than 40 μg/ml. The inhibition of the expression of gap junction proteins by TPA (0.01 μg/ml) was recovered dose dependently by the simultaneous treatment of IB extracts. Our data suggest that Ipomea batatas has antimutagenic and anticarcionogenic activity in vitro.
Collapse
Affiliation(s)
- Hwan-Goo Kang
- National Research and Quarantine Service, Anyang 430-757
| | | | | |
Collapse
|
194
|
Abstract
Gap junctions are protein channels between cells that allow direct electrical and metabolic coupling via the exchange of biomolecules and ions. Their expression, though ubiquitous in most mammalian cell types, is especially important for the proper functioning of cardiac and neuronal systems. Many existing methods for studying gap junction communication suffer from either unquantifiable data or difficulty of use. Here, we measure the extent of dye spread and effective diffusivities through gap junction connected cells using a quantitative microfluidic cell biology platform. After loading dye by hydrodynamic focusing of calcein/AM, dye transfer dynamics into neighboring, unexposed cells can be monitored via timelapse fluorescent microscopy. By using a selective microfluidic dye loading over a confluent layer of cells, we found that high expression of gap junctions in C6 cells transmits calcein across the monolayer with an effective diffusivity of 3.4 x 10(-13) m(2)/s, which are highly coupled by Cx43. We also found that the gap junction blocker 18alpha-GA works poorly in the presence of serum even at high concentrations (50 microM); however, it is highly effective down to 2.5 microM in the absence of serum. Furthermore, when the drug is washed out, dye spread resumes rapidly within 1 min for all doses, indicating the drug does not affect transcriptional regulation of connexins in these Cx43+ cells, in contrast to previous studies. This integrated microfluidic platform enables the in situ monitoring of gap junction communication, yielding dynamic information about intercellular molecular transfer and pharmacological inhibition and recovery.
Collapse
Affiliation(s)
- Sisi Chen
- Biomolecular Nanotechnology Center, Berkeley Sensor & Actuator Center, Department of Bioengineering, University of California-Berkeley, 408C Stanley Hall, CA 94720-1762, USA
| | | |
Collapse
|
195
|
Zhang Y, Kanter EM, Yamada KA. Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovasc Pathol 2010; 19:e233-40. [PMID: 20093048 DOI: 10.1016/j.carpath.2009.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/15/2009] [Accepted: 12/15/2009] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We have recently shown that native murine ventricular fibroblasts express both connexin43 (Cx43) and Cx45, and that the level of Cx43 expression influences intercellular coupling and cell proliferation. Relatively little is known, however, about how myocardial infarction (MI) influences expression of Cx43, or how altered Cx43 expression may affect fibroblast function post-MI. Fibroblasts are critical for infarct healing and post-infarct ventricular remodeling. They can couple electrically with cardiac myocytes and influence myocardial activation patterns. Thus, Cx43 remodeling and the level of intercellular communication in fibroblasts expressed in the infarcted heart were the subject of the present investigation. METHODS Fibroblasts were isolated from both infarct scar and remote, noninfarcted regions of murine hearts 6 d after coronary ligation. Expression levels of Cx43, α-smooth muscle actin and N-cadherin were quantified by immunoblotting. Gap junctional intercellular communication was quantified by Lucifer yellow dye transfer. RESULTS AND CONCLUSIONS Fibroblasts isolated from infarcted hearts exhibited marked up-regulation of Cx43 protein expression and enhanced intercellular coupling. Exogenous administration of transforming growth factor-β (TGF-β) to fibroblast cultures from normal, non-operated hearts produced comparable up-regulation of Cx43, suggesting that increased intercellular communication between fibroblasts in infarct and peri-infarct regions may be secondary to activation of a TGF-β pathway. Unlike cardiac myocytes that down-regulate Cx43, presumably to limit intercellular transmission of biochemical mediators of ischemic injury, fibroblasts may up-regulate Cx43 to maintain electrical and metabolic coupling at a time when intercellular communication is compromised.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicine (Cardiovascular Division and the Center for Cardiovascular Research), Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
196
|
Dominant connexin26 mutants associated with human hearing loss have trans-dominant effects on connexin30. Neurobiol Dis 2010; 38:226-36. [PMID: 20096356 DOI: 10.1016/j.nbd.2010.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/27/2009] [Accepted: 01/12/2010] [Indexed: 11/23/2022] Open
Abstract
Dominant mutations in GJB2, the gene encoding the human gap junction protein connexin26 (Cx26), cause hearing loss. We investigated whether dominant Cx26 mutants interact directly with Cx30. HeLa cells stably expressing nine dominant Cx26 mutants, six associated with non-syndromic hearing loss (W44C, W44S, R143Q, D179N, R184Q and C202F) and three associated with hearing loss and palmoplantar keratoderma (G59A, R75Q and R75W), individually or together with Cx30, were analyzed by immunocytochemistry, co-immunoprecipitation, and functional assays (scrape-loading and/or fluorescence recovery after photobleaching). When expressed alone, all mutants formed gap junction plaques, but with impaired intercellular dye transfer. When expressed with Cx30, all mutants co-localized and co-immunoprecipitated with Cx30, indicating they likely co-assembled into heteromers. Furthermore, 8/9 Cx26 mutants inhibited the transfer of neurobiotin or calcein, indicating that these Cx26 mutants have trans-dominant effects on Cx30, an effect that may contribute to the pathogenesis of hearing loss.
Collapse
|
197
|
Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling. Mol Cell Biol 2010; 30:206-19. [PMID: 19841066 DOI: 10.1128/mcb.01844-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junction intercellular communication in osteocytes plays an important role in bone remodeling in response to mechanical loading; however, the responsible molecular mechanisms remain largely unknown. Here, we show that phosphoinositide-3 kinase (PI3K)/Akt signaling activated by fluid flow shear stress and prostaglandin E(2) (PGE(2)) had a stimulatory effect on both connexin 43 (Cx43) mRNA and protein expression. PGE(2) inactivated glycogen synthase kinase 3 (GSK-3) and promoted nuclear localization and accumulation of beta-catenin. Knockdown of beta-catenin expression resulted in a reduction in Cx43 protein. Furthermore, the chromatin immunoprecipitation (ChIP) assay demonstrated an association of beta-catenin with the Cx43 promoter, suggesting that beta-catenin could regulate Cx43 expression at the level of gene transcription. We have previously reported that PGE(2) activates cyclic AMP (cAMP)-protein kinase A (PKA) signaling and increases Cx43 and gap junctions. Interestingly, the activation of PI3K/Akt appeared to be independent of the activation of PKA, whereas both PI3K/Akt and PKA signaling inactivated GSK-3 and increased beta-catenin translocation. Together, these results suggest that shear stress, through PGE(2) release, activates both PI3K/Akt and cAMP-PKA signaling, which converge through the inactivation of GSK-3, leading to the increase in nuclear accumulation of beta-catenin. beta-Catenin binds to the Cx43 promoter, stimulating Cx43 expression and functional gap junctions between osteocytes.
Collapse
|
198
|
Dipyridamole increases gap junction coupling in bovine GM-7373 aortic endothelial cells by a cAMP-protein kinase A dependent pathway. J Bioenerg Biomembr 2010; 42:79-84. [DOI: 10.1007/s10863-009-9262-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 11/23/2009] [Indexed: 01/24/2023]
|
199
|
Liu CL, Huang YS, Hosokawa M, Miyashita K, Hu ML. Inhibition of proliferation of a hepatoma cell line by fucoxanthin in relation to cell cycle arrest and enhanced gap junctional intercellular communication. Chem Biol Interact 2009; 182:165-72. [PMID: 19737546 DOI: 10.1016/j.cbi.2009.08.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/12/2009] [Accepted: 08/31/2009] [Indexed: 12/18/2022]
Abstract
Fucoxanthin is one of the most abundant carotenoids found in Undaria pinnatifida and has been shown to inhibit tumor proliferation in vitro. However, the mechanisms underlying the anti-cancer effects of fucoxanthin are unclear. In this study, we hypothesized that fucoxanthin may cause cell cycle arrest and enhance gap junctional intercellular communication (GJIC) in SK-Hep-1 human hepatoma cells. Data revealed that fucoxanthin (1-20microM) strongly and concentration-dependently inhibited the proliferation of SK-Hep-1 cells at 24h of incubation, whereas fucoxanthin facilitated the growth of a murine embryonic hepatic (BNL CL.2) cells at 24h of incubation and only slightly slowed the cell proliferation at 48h. In SK-Hep-1 cells, fucoxanthin caused cell cycle arrest at G0/G1 phase and induced cell apoptosis, as evidenced by increased subG1 cells and induction of DNA strand breaks. Using scrape loading-dye-transfer assay, fucoxanthin was found to significantly enhance GJIC of SK-Hep-1 cells without affecting that of BNL CL.2 cells. In addition, fucoxanthin significantly increased protein and mRNA expressions of connexin 43 (Cx43) and connexin 32 (Cx32) in SK-Hep-1 cells. Moreover, fucoxanthin markedly increased the concentration of intracellular calcium levels in SK-Hep-1 cells. Thus, fucoxanthin is specifically antiproliferative against SK-Hep-1 cells, and the effect is associated with upregulation of Cx32 and Cx43, which enhances GJIC of SK-Hep-1 cells. The enhanced GJIC may be responsible for the increase of the intracellular calcium level, which then causes cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Cheng-Ling Liu
- Department of Food Science, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
200
|
Interleukin-1beta increases gap junctional communication among synovial fibroblasts via the extracellular-signal-regulated kinase pathway. Biol Cell 2009; 102:37-49. [PMID: 19656083 DOI: 10.1042/bc20090056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The gap junction protein, Cx43 (connexin 43), has been implicated in the aetiology of osteoarthritis. Studies have revealed that the size and number of gap junctions increase in synovial biopsies from patients with osteoarthritis. Furthermore, pharmacological inhibition of Cx43 function has been shown to reduce IL-1beta (interleukin-1beta)-induced metalloproteinase production by synovial fibroblasts in vitro. RESULTS In the present study, we examined the link between IL-1beta and Cx43 function. We demonstrated that treatment of a rabbit synovial fibroblast cell line with IL-1beta markedly increased the level of the Cx43 protein in a concentration- and time-dependent manner. The impact on Cx43 protein levels appeared to occur post-transcriptionally, as mRNA levels are unaffected by IL-1beta administration. Additionally, we showed by fluorescence microscopy that IL-1beta alters the cellular distribution of Cx43 to cell-cell junctions and is concomitant with a striking increase in gap junction communication. Furthermore, we demonstrated that the increase in Cx43 protein, and the associated change in protein localization and gap junction communication following IL-1beta treatment, are dependent upon activation of the ERK (extracellular-signal-regulated kinase) signalling cascade. CONCLUSION These data show that IL-1beta acts through the ERK signalling cascade to alter the expression and function of Cx43 in synovial fibroblasts.
Collapse
|