Oxford JS. Polypeptide composition of Influenza B viruses and enzymes associated with the purified virus particles.
J Virol 1973;
12:827-35. [PMID:
4359955 PMCID:
PMC356700 DOI:
10.1128/jvi.12.4.827-835.1973]
[Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Influenza B/LEE/40, B/Rome/1/67, B/Hong Kong/8/73, and B/Victoria/98926/70 viruses have a similar polypeptide composition as analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These viruses are composed of six or seven polypeptides, depending on whether one or two high-molecular-weight polypeptides are resolved, ranging in molecular weights from 27,000 to 90,400. Three of these polypeptides, namely the heavy and light hemagglutinin chains and the neuraminidase, have attached carbohydrate. Highly purified influenza B/LEE/40 and B/Rome/1/67 virus preparations have RNA-dependent RNA polymerase activity equivalent to the incorporation of 100 and 30 pmol, respectively, of (3)H-UMP per mg of virus protein per h at 37 C, which is demonstrated only in detergent-treated virus suspensions. However, no RNA-dependent DNA polymerase enzyme activity was detected in the two viruses although virus suspensions were "activated" by heat, alpha-chymotrypsin, and detergents. Other enzymatic activities were associated with purified preparations of influenza B virus and were attributed to minor contamination of virus with host cell enzymes. Thus, nucleoside and deoxynucleoside phosphohydrolase enzymes were active in the absence of detergents and catalyzed the release of 1,200 and 1,800 nmol of P(i) per mg of virus protein in 30 min at 37 C from ATP and dATP substrates. Thin-layer chromatography indicated that the products of the phosphohydrolase enzymes of influenza B/LEE/40 were mainly nucleoside diphosphate and monophosphate. The latter enzymes were tightly bound to influenza B/LEE/40 virus and could not be removed completely by repeated centrifugation, including centrifugation of the virus to equilibrium in density gradients of 25 to 40% (wt/vol) cesium chloride. A low degree of RNase (approximately 0.01 mug% contamination) and phosphatase (10-30 nmol of P(i) released per mg of virus protein per 30 min) activity was detected in some, but not all, influenza B/LEE/40 virus preparations.
Collapse