151
|
Parajuli SP, Zheng YM, Levin R, Wang YX. Big-conductance Ca 2+-activated K + channels in physiological and pathophysiological urinary bladder smooth muscle cells. Channels (Austin) 2016; 10:355-364. [PMID: 27101440 DOI: 10.1080/19336950.2016.1180488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions.
Collapse
Affiliation(s)
- Shankar P Parajuli
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Yun-Min Zheng
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Robert Levin
- b Stratton VA Medical Center , Albany , NY , USA
| | - Yong-Xiao Wang
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| |
Collapse
|
152
|
Muscarinic Attenuation of Mnemonic Rule Representation in Macaque Dorsolateral Prefrontal Cortex during a Pro- and Anti-Saccade Task. J Neurosci 2016; 35:16064-76. [PMID: 26658860 DOI: 10.1523/jneurosci.2454-15.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Maintenance of context is necessary for execution of appropriate responses to diverse environmental stimuli. The dorsolateral prefrontal cortex (DLPFC) plays a pivotal role in executive function, including working memory and representation of abstract rules. DLPFC activity is modulated by the ascending cholinergic system through nicotinic and muscarinic receptors. Although muscarinic receptors have been implicated in executive performance and gating of synaptic signals, their effect on local primate DLPFC neuronal activity in vivo during cognitive tasks remains poorly understood. Here, we examined the effects of muscarinic receptor blockade on rule-related activity in the macaque prefrontal cortex by combining iontophoretic application of the general muscarinic receptor antagonist scopolamine with single-cell recordings while monkeys performed a mnemonic rule-guided saccade task. We found that scopolamine reduced overall neuronal firing rate and impaired rule discriminability of task-selective cells. Saccade and visual direction selectivity measures were also reduced by muscarinic antagonism. These results demonstrate that blockade of muscarinic receptors in DLPFC creates deficits in working memory representation of rules in primates. SIGNIFICANCE STATEMENT Acetylcholine plays a pivotal role in higher-order cognitive functions, including planning, reasoning, impulse-control, and making decisions based on contingencies or rules. Disruption of acetylcholine function is central to many psychiatric disorders manifesting cognitive impairments, including Alzheimer's disease. Although much is known about the involvement of acetylcholine and its receptors in arousal and attention, its involvement in working memory, an essential short-term memory component of cognition dependent on the integrity of prefrontal cortex, remains poorly understood. Herein, we explored the impact of suppressing acetylcholine signaling on neurons encoding memorized rules while macaque monkeys made responses based on those rules. Our findings provide insights into the neural mechanisms by which a disruption in acetylcholine function impairs working memory in the prefrontal cortex.
Collapse
|
153
|
Bragança B, Oliveira-Monteiro N, Ferreirinha F, Lima PA, Faria M, Fontes-Sousa AP, Correia-de-Sá P. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria. Front Pharmacol 2016; 7:45. [PMID: 27014060 PMCID: PMC4780064 DOI: 10.3389/fphar.2016.00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/18/2016] [Indexed: 11/24/2022] Open
Abstract
Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type) channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca2+-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration and Ca2+ influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3, and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca2+ influx through Cav1 (L-type) channels.
Collapse
Affiliation(s)
- Bruno Bragança
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP) Porto, Portugal
| | - Nádia Oliveira-Monteiro
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP) Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP) Porto, Portugal
| | - Pedro A Lima
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisboa Lisboa, Portugal
| | - Miguel Faria
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP) Porto, Portugal
| | - Ana P Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP) Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia - Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP) Porto, Portugal
| |
Collapse
|
154
|
Zhu Y, Chen SR, Pan HL. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons. J Neurochem 2016; 137:226-39. [PMID: 26823384 DOI: 10.1111/jnc.13554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/11/2016] [Accepted: 01/21/2016] [Indexed: 11/30/2022]
Abstract
Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We found that activation of pre-synaptic M2 muscarinic receptors inhibit glutamatergic input from vestibular primary afferents, whereas stimulation of post-synaptic M3 muscarinic receptors increases the firing activity of cerebellum-projecting MVN neurons. This new information advances our understanding of the cholinergic mechanism regulating the vestibular system.
Collapse
Affiliation(s)
- Yun Zhu
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
155
|
Abraham G. The importance of muscarinic receptors in domestic animal diseases and therapy: Current and future perspectives. Vet J 2016; 208:13-21. [DOI: 10.1016/j.tvjl.2015.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023]
|
156
|
Abstract
New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents a distinct form of nervous system plasticity. During embryonic development, precise temporal and spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell (NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following developmental assembly, it remains relatively unclear what may be the key driving forces that sustain continued production of neurons in the postnatal/adult brain. Recent experimental evidence suggests that patterned activity from specific neural circuits can also directly govern postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic modulation, and how patterns of neuronal activity and acetylcholine release may differentially or synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs regulating cholinergic neuron firing, and their implications in neurogenesis control are also considered.
Collapse
Affiliation(s)
- Brent Asrican
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Joshua Erb
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Neurobiology Graduate Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Neurobiology Graduate Training Program, Duke University School of Medicine, Durham, NC 27710, USA; Brumley Neonatal Perinatal Research Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
157
|
|
158
|
Utilization of Superfused Cerebral Slices in Probing Muscarinic Receptor Autoregulation of Acetylcholine Release. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-2858-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
159
|
Zhang H, Wang X. Priming the proteasome by protein kinase G: a novel cardioprotective mechanism of sildenafil. Future Cardiol 2015; 11:177-89. [PMID: 25760877 DOI: 10.2217/fca.15.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The proteasome mediates the degradation of most cellular proteins including misfolded proteins, pivotal to intracellular protein hemostasis. Proteasome functional insufficiency is implicated in a large subset of human failing hearts. Experimental studies have established proteasome functional insufficiency as a major pathogenic factor, rationalizing proteasome enhancement as a potentially new therapeutic strategy for congestive heart failure. Protein kinase G activation known to be cardioprotective was recently found to facilitate proteasomal degradation of misfolded proteins in cardiomyocytes; sildenafil was shown to activate myocardial protein kinase G, improve cardiac protein quality control and slow down the progression of cardiac proteinopathy in mice. This identifies the first clinically used drug that is capable of benign proteasome enhancement and unveils a potentially novel cardioprotective mechanism for sildenafil.
Collapse
Affiliation(s)
- Hanming Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
160
|
Obis T, Hurtado E, Nadal L, Tomàs M, Priego M, Simon A, Garcia N, Santafe MM, Lanuza MA, Tomàs J. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Mol Brain 2015; 8:80. [PMID: 26625935 PMCID: PMC4665914 DOI: 10.1186/s13041-015-0171-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/25/2015] [Indexed: 01/20/2023] Open
Abstract
Background Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. Results We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca2+, stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3′,5′-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Conclusions Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.
Collapse
Affiliation(s)
- Teresa Obis
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Mercedes Priego
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Anna Simon
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Manel M Santafe
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
161
|
Gao X, Qin Q, Yu X, Liu K, Li L, Qiao H, Zhu B. Acupuncture at heterotopic acupoints facilitates distal colonic motility via activating M3 receptors and somatic afferent C-fibers in normal, constipated, or diarrhoeic rats. Neurogastroenterol Motil 2015; 27:1817-30. [PMID: 26459908 DOI: 10.1111/nmo.12694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/29/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Previous studies have demonstrated the efficacy of somatic stimulation for patients with gastrointestinal motility disorders. However, little effort has been made to investigate the effects of acupuncture on colonic motility, particularly in pathological conditions. The precise mechanism employed in the regulation of acupuncture on colonic motility still remains unclear. METHODS We assessed the effect of acupuncture at heterotopic acupoints on distal colonic motility using a warm-water-filled manometric balloon inserted 5-6 cm into the rectum of anesthetized normal rats or rats with diarrhea or constipation. Choline chloride, 4-DAMP, cobra venom and capsaicin were separately applied to investigate the role of M3 receptors in the regulation of distal colonic motility by acupuncture at heterotopic acupoints, and whether Aδ- and/or C-fibers are required for triggering distal colonic motility by acupuncture. KEY RESULTS Acupuncture at heterotopic acupoints increased distal colonic motility not only in normal rats but also in rats with constipation or diarrhea. M3 receptors play an important role in the facilitation of distal colonic motility triggered by acupuncture at heterotopic acupoints. Afferent nerve Aδ- and C-fibers mediate the transduction of the acupuncture signal and C-fibers are essential for enhancing the effect of acupuncture at the heterotopic acupoint on distal colonic motility. CONCLUSIONS & INFERENCES Our results reveal that acupuncture at heterotopic acupoints increases distal colonic motility regardless of normal or pathological conditions via predominately activating C-fibers of somatic afferent nerve and M3 receptors.
Collapse
Affiliation(s)
- X Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Q Qin
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Acupuncture and Moxibustion, Henan Orthopedics Hospital, Luoyang, Henan Province, China
| | - X Yu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - K Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - L Li
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - H Qiao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - B Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
162
|
Zhang Y, Long Z, Guo Z, Wang Z, Zhang X, Ye RD, Liang X, Civelli O. Hydroxycinnamic acid amides from Scopolia tangutica inhibit the activity of M1 muscarinic acetylcholine receptor in vitro. Fitoterapia 2015; 108:9-12. [PMID: 26586621 DOI: 10.1016/j.fitote.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023]
Abstract
Scopolia tangutica Maxim (S. tangutica) extracts have been traditionally used as antispasmodic, sedative, and analgesic agents in Tibet and in the Qinghai province of China. Their active compositions are however poorly understood. We have recently isolated five new hydroxycinnamic acid (HCA) amides along with two known HCA amides, one cinnamic acid amide from these extracts. In this study, we evaluate their abilities to inhibit carbacol-induced activity of M1 muscarinic acetylcholine receptor along with the crude extracts. Chinese hamster ovary cells stably expressing the recombinant human M1 receptor (CHO-M1 cells) were employed to evaluate the anticholinergic potentials. Intracellular Ca(2+) changes were monitored using the FLIPR system. Five HCA amides as well as the crude S. tangutica extract displayed dose-dependent inhibitory effects against M1 receptor. These findings demonstrate that HCA amides are part of the M1 receptor-inhibiting principles of S. tangutica. Since blockade of parasympathetic nerve impulse transmission through the inhibition of the M1 receptor lessens smooth muscle spasms, our findings provided a molecular explanation for the traditional use of S. tangutica against spasm.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Zhen Long
- Key laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhimou Guo
- Key laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhiwei Wang
- Department of Pharmacology, University of California, Irvine, CA 92697, United States
| | - Xiuli Zhang
- Key laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinmiao Liang
- Key laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, CA 92697, United States
| |
Collapse
|
163
|
Bommagani S, Lee NR, Zhang X, Dwoskin LP, Zheng G. Synthesis of O- and N-alkylated products of 1,2,3,4-tetrahydrobenzo[ c][2,7]naphthyrin-5(6 H)-one. Tetrahedron Lett 2015; 56:6472-6474. [PMID: 26663991 DOI: 10.1016/j.tetlet.2015.09.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Efficient syntheses of O- and N-alkylated products of 1,2,3,4-tetrahydrobenzo[c][2,7]naphthyrin-5(6H)-one are presented. The O-alkylated analogues were synthesized through a reduction-cyclization cascade and a selective O-alkylation reaction; whereas the N-alkylated analogues were obtained through a key Buchwald coupling.
Collapse
Affiliation(s)
- Shobanbabu Bommagani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Na-Ra Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Xuan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
164
|
Schrage R, De Min A, Hochheiser K, Kostenis E, Mohr K. Superagonism at G protein-coupled receptors and beyond. Br J Pharmacol 2015; 173:3018-27. [PMID: 26276510 DOI: 10.1111/bph.13278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/01/2015] [Accepted: 08/08/2015] [Indexed: 12/18/2022] Open
Abstract
Ligands targeting GPCRs can be categorized according to their intrinsic efficacy to trigger a specific, receptor-mediated response. A ligand endowed with the same level of efficacy as the endogenous agonist can be classified as a full agonist, whereas a compound that displays greater efficacy, that is, higher receptor signalling output than the endogenous agonist, can be called a superagonist. Subsequent to GPCR activation, an intracellular signalling cascade is set in motion, which may generate substantial amplification of the signal. This may obscure superagonism in pharmacological assays and, therefore, the definition of superagonism necessitates a combination of operational approaches, reduction of spare receptors or estimation of receptor activation close to the receptor level to quantify relative agonist efficacies in a particular system. The first part of this review will compare GPCR superagonism with superagonism in the field of immunology, where this term is well established. In the second part, known GPCR superagonists will be reviewed. Then, the experimental and analytical challenges in the deconvolution of GPCR superagonism will be addressed. Finally, the potential benefit of superagonism is discussed. The molecular mechanisms behind GPCR superagonism are not completely understood. However, crystallography shows that agonist binding alone is not sufficient for a fully active receptor state and that binding of the G protein is at least equally important. Accordingly, the emerging number of reported superagonists implies that ligand-induced receptor conformations more active than the ones stabilized by the endogenous agonist are indeed feasible. Superagonists may have therapeutic potential when receptor function is impaired or to induce negative feedback mechanisms. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- R Schrage
- Pharmacology & Toxicology Section, Institute of Pharmacy, University of Bonn, 53121, Bonn, Germany.
| | - A De Min
- Pharmacology & Toxicology Section, Institute of Pharmacy, University of Bonn, 53121, Bonn, Germany
| | - K Hochheiser
- Peter Doherty Institute, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, 3100, Australia
| | - E Kostenis
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - K Mohr
- Pharmacology & Toxicology Section, Institute of Pharmacy, University of Bonn, 53121, Bonn, Germany
| |
Collapse
|
165
|
Stivala CE, Benoit E, Aráoz R, Servent D, Novikov A, Molgó J, Zakarian A. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins. Nat Prod Rep 2015; 32:411-35. [PMID: 25338021 DOI: 10.1039/c4np00089g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.
Collapse
Affiliation(s)
- Craig E Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons. Neuropharmacology 2015; 95:395-404. [DOI: 10.1016/j.neuropharm.2015.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 11/23/2022]
|
167
|
Vrolijk MF, Opperhuizen A, Jansen EHJM, Bast A, Haenen GRMM. Anticholinergic Accumulation: A Slumbering Interaction between Drugs and Food Supplements. Basic Clin Pharmacol Toxicol 2015; 117:427-32. [DOI: 10.1111/bcpt.12437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/21/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Misha F. Vrolijk
- Department of Pharmacology and Toxicology; Maastricht University; Maastricht the Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology; Maastricht University; Maastricht the Netherlands
- Netherlands Food and Consumer Product Safety Authority (NVWA); Utrecht the Netherlands
| | - Eugène H. J. M. Jansen
- National Institute for Public Health and the Environment (RIVM); Bilthoven the Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology; Maastricht University; Maastricht the Netherlands
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology; Maastricht University; Maastricht the Netherlands
| |
Collapse
|
168
|
Moraga FA, Urriola-Urriola N. Acetylcholine produces contraction mediated by cyclooxigenase pathway in arterial vessels in the marine fish (Isacia conceptionis). BRAZ J BIOL 2015; 75:362-7. [PMID: 26132019 DOI: 10.1590/1519-6984.13413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/16/2014] [Indexed: 11/22/2022] Open
Abstract
Preliminary studies showed that dorsal artery contraction mediated by acetylcholine (ACh) is blocked with indomethacin in intertidal fish (G. laevifrons). Our objective was to characterize the cholinergic pathway in several artery vessels of the I. conceptionis. Afferent and efferent branchial, dorsal and mesenteric arteries were dissected of 6 juvenile specimens, isometric tension studies were done using doses response curves (DRC) for Ach (10(-13) to 10(-3) M), and cholinergic pathways were obtained by blocking with atropine or indomethacin. CRC to ACh showed a pattern of high sensitivity only in efferente branchial artery and low sensibility in all vessels. Furthermore, these contractions were blocked in the presence of atropine and indomethacin in all vessels. Our results corroborate previous results observed in intertidal species that contraction induced by acetylcholine is mediated by receptors that activate a cyclooxygenase contraction pathway.
Collapse
Affiliation(s)
- F A Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - N Urriola-Urriola
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
169
|
Beinat C, Banister SD, Herrera M, Law V, Kassiou M. The therapeutic potential of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. CNS Drugs 2015; 29:529-42. [PMID: 26242477 DOI: 10.1007/s40263-015-0260-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homomeric α7 nicotinic acetylcholine receptors (α7 nAChRs) have implications in the regulation of cognitive processes such as memory and attention, and have shown promise as a therapeutic target for the treatment of the cognitive deficits associated with schizophrenia. Multiple α7 nAChR agonists have entered human trials; however, unfavorable side effects and pharmacokinetic issues have hindered the development of a clinical α7 nAChR agonist. Currently, EVP-6124 is in phase III clinical trials, and several other α7 nAChR agonists (GTS-21 and AQW051) are in earlier stages of development. This review will summarize the recent advances and failures of α7 nAChR agonists in clinical trials for the treatment of the aforementioned pathology.
Collapse
Affiliation(s)
- Corinne Beinat
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | | | |
Collapse
|
170
|
Rivas-Ramírez P, Cadaveira-Mosquera A, Lamas JA, Reboreda A. Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons. Eur J Neurosci 2015; 42:1797-807. [PMID: 25899939 DOI: 10.1111/ejn.12930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/30/2015] [Accepted: 04/20/2015] [Indexed: 01/05/2023]
Abstract
Muscarinic receptors play a key role in the control of neurotransmission in the autonomic ganglia, which has mainly been ascribed to the regulation of potassium M-currents and voltage-dependent calcium currents. Muscarinic agonists provoke depolarization of the membrane potential and a reduction in spike frequency adaptation in postganglionic neurons, effects that may be explained by M-current inhibition. Here, we report the presence of a riluzole-activated current (IRIL ) that flows through the TREK-2 channels, and that is also inhibited by muscarinic agonists in neurons of the mouse superior cervical ganglion (mSCG). The muscarinic agonist oxotremorine-M (Oxo-M) inhibited the IRIL by 50%, an effect that was abolished by pretreatment with atropine or pirenzepine, but was unaffected in the presence of himbacine. Moreover, these antagonists had similar effects on single-channel TREK-2 currents. IRIL inhibition was unaffected by pretreatment with pertussis toxin. The protein kinase C blocker bisindolylmaleimide did not have an effect, and neither did the inositol triphosphate antagonist 2-aminoethoxydiphenylborane. Nevertheless, the IRIL was markedly attenuated by the phospholipase C (PLC) inhibitor ET-18-OCH3. Finally, the phosphatidylinositol-3-kinase/phosphatidylinositol-4-kinase inhibitor wortmannin strongly attenuated the IRIL , whereas blocking phosphatidylinositol 4,5-bisphosphate (PIP2 ) depletion consistently prevented IRIL inhibition by Oxo-M. These results demonstrate that TREK-2 currents in mSCG neurons are inhibited by muscarinic agonists that activate M1 muscarinic receptors, reducing PIP2 levels via a PLC-dependent pathway. The similarities between the signaling pathways regulating the IRIL and the M-current in the same neurons reflect an important role of this new pathway in the control of autonomic ganglia excitability.
Collapse
Affiliation(s)
- P Rivas-Ramírez
- Department of Functional Biology and Health Sciences, Faculty of Biology - CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - A Cadaveira-Mosquera
- Department of Functional Biology and Health Sciences, Faculty of Biology - CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - J A Lamas
- Department of Functional Biology and Health Sciences, Faculty of Biology - CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - A Reboreda
- Department of Functional Biology and Health Sciences, Faculty of Biology - CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
171
|
Santafe MM, Priego M, Obis T, Garcia N, Tomàs M, Lanuza MA, Tomàs J. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse. Eur J Neurosci 2015; 42:1775-87. [PMID: 25892551 DOI: 10.1111/ejn.12922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/30/2022]
Abstract
Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway.
Collapse
Affiliation(s)
- M M Santafe
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, carrer St Llorenç num 21, Reus, 43201, Spain
| | - M Priego
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, carrer St Llorenç num 21, Reus, 43201, Spain
| | - T Obis
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, carrer St Llorenç num 21, Reus, 43201, Spain
| | - N Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, carrer St Llorenç num 21, Reus, 43201, Spain
| | - M Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, carrer St Llorenç num 21, Reus, 43201, Spain
| | - M A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, carrer St Llorenç num 21, Reus, 43201, Spain
| | - J Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, carrer St Llorenç num 21, Reus, 43201, Spain
| |
Collapse
|
172
|
Huang M, Suk DH, Cho NC, Bhattarai D, Kang SB, Kim Y, Pae AN, Rhim H, Keum G. Synthesis and biological evaluation of isoxazoline derivatives as potent M1 muscarinic acetylcholine receptor agonists. Bioorg Med Chem Lett 2015; 25:1546-51. [DOI: 10.1016/j.bmcl.2015.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/15/2015] [Accepted: 02/07/2015] [Indexed: 01/25/2023]
|
173
|
Silverman HA, Dancho M, Regnier-Golanov A, Nasim M, Ochani M, Olofsson PS, Ahmed M, Miller EJ, Chavan SS, Golanov E, Metz CN, Tracey KJ, Pavlov VA. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation. Mol Med 2015; 20:601-11. [PMID: 25299421 DOI: 10.2119/molmed.2014.00147] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022] Open
Abstract
Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune-brain communication, including the impact of peripheral inflammation on brain region-specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region-specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, New York, United States of America
| | - Meghan Dancho
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | | | - Mansoor Nasim
- Neuropathology-Anatomic Pathology, North Shore-LIJ Health System, New Hyde Park, New York, United States of America
| | - Mahendar Ochani
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Peder S Olofsson
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mohamed Ahmed
- Cohen Children's Medical Center, North Shore-LIJ Health System, New Hyde Park, New York, United States of America.,Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Edmund J Miller
- Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, New York, United States of America.,Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Eugene Golanov
- The Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Christine N Metz
- Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, New York, United States of America.,Laboratory of Medicinal Biochemistry, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J Tracey
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, New York, United States of America
| | - Valentin A Pavlov
- Laboratory of Biomedical Science, Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, New York, United States of America
| |
Collapse
|
174
|
Roganović J, Djukić LJ, Kršljak E, Tanić N, Stojić D. Reduced muscarinic parotid secretion is underlain by impaired NO signaling in diabetic rabbits. Oral Dis 2015; 21:634-40. [PMID: 25703905 DOI: 10.1111/odi.12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The influence of experimental diabetes (alloxan, 100 mg kg(-1) ) was studied on rabbit parotid gland function. MATERIAL AND METHODS Carbachol-induced parotid secretion in vivo, and in vitro quantification of inducible nitric oxide synthase (iNOS) mRNA expression, by real-time RT-PCR, and activity of superoxide dismutase (SOD) and total antioxidant capacity (TAC) in commercial colorimetric assays were measured in parotid glands of non-diabetic and diabetic rabbits. RESULTS Carbachol-induced dose-dependent increase in parotid secretion significantly reduced in diabetic rabbits. Functional studies in the presence of muscarinic receptor and nitric oxide synthase (NOS) antagonists revealed that in M3 receptor-mediated carbachol secretion, nitric oxide, deriving mainly from neuronal NOS (nNOS) in control, and iNOS in diabetic rabbits, was involved. Also, upregulation of iNOS mRNA expression and enhanced SOD activity and TAC were detected in diabetic glands. CONCLUSIONS Our data suggest that decreased M3 receptor-mediated parotid secretion in diabetic rabbits appears to be due to alterations in NO signaling, mainly due to iNOS induction, accompanied by elevated antioxidant response.
Collapse
Affiliation(s)
- J Roganović
- Department of Pharmacology in Dentistry, School of Dental medicine, University of Belgrade, Belgrade, Serbia
| | - L J Djukić
- Department of Pharmacology in Dentistry, School of Dental medicine, University of Belgrade, Belgrade, Serbia
| | - E Kršljak
- Department of Physiology, School of Dental medicine, University of Belgrade, Belgrade, Serbia
| | - N Tanić
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - D Stojić
- Department of Pharmacology in Dentistry, School of Dental medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
175
|
Roy A, Guatimosim S, Prado VF, Gros R, Prado MAM. Cholinergic activity as a new target in diseases of the heart. Mol Med 2015; 20:527-37. [PMID: 25222914 DOI: 10.2119/molmed.2014.00125] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system is an important modulator of cardiac signaling in both health and disease. In fact, the significance of altered parasympathetic tone in cardiac disease has recently come to the forefront. Both neuronal and nonneuronal cholinergic signaling likely play a physiological role, since modulating acetylcholine (ACh) signaling from neurons or cardiomyocytes appears to have significant consequences in both health and disease. Notably, many of these effects are solely due to changes in cholinergic signaling, without altered sympathetic drive, which is known to have significant adverse effects in disease states. As such, it is likely that enhanced ACh-mediated signaling not only has direct positive effects on cardiomyocytes, but it also offsets the negative effects of hyperadrenergic tone. In this review, we discuss recent studies that implicate ACh as a major regulator of cardiac remodeling and provide support for the notion that enhancing cholinergic signaling in human patients with cardiac disease can reduce morbidity and mortality. These recent results support the idea of developing large clinical trials of strategies to increase cholinergic tone, either by stimulating the vagus or by increased availability of Ach, in heart failure.
Collapse
Affiliation(s)
- Ashbeel Roy
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
176
|
Karpinsky-Semper D, Tayou J, Levay K, Schuchardt BJ, Bhat V, Volmar CH, Farooq A, Slepak VZ. Helix 8 and the i3 loop of the muscarinic M3 receptor are crucial sites for its regulation by the Gβ5-RGS7 complex. Biochemistry 2015; 54:1077-88. [PMID: 25551629 PMCID: PMC4318586 DOI: 10.1021/bi500980d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The muscarinic M3 receptor (M3R)
is a Gq-coupled receptor and is
known to interact with many intracellular regulatory proteins. One
of these molecules is Gβ5-RGS7, the permanently associated heterodimer
of G protein β-subunit Gβ5 and RGS7, a regulator of G
protein signaling. Gβ5-RGS7 can attenuate M3R-stimulated release
of Ca2+ from intracellular stores or enhance the influx
of Ca2+ across the plasma membrane. Here we show that deletion
of amino acids 304–345 from the central portion of the i3 loop
renders M3R insensitive to regulation by Gβ5-RGS7. In addition
to the i3 loop, interaction of M3R with Gβ5-RGS7 requires helix
8. According to circular dichroism spectroscopy, the peptide corresponding
to amino acids 548–567 in the C-terminus of M3R assumes an
α-helical conformation. Substitution of Thr553 and Leu558 with
Pro residues disrupts this α-helix and abolished binding to
Gβ5-RGS7. Introduction of the double Pro substitution into full-length
M3R (M3RTP/LP) prevents trafficking of the receptor to
the cell surface. Using atropine or other antagonists as pharmacologic
chaperones, we were able to increase the level of surface expression
of the TP/LP mutant to levels comparable to that of wild-type M3R.
However, M3R-stimulated calcium signaling is still severely compromised.
These results show that the interaction of M3R with Gβ5-RGS7
requires helix 8 and the central portion of the i3 loop.
Collapse
Affiliation(s)
- Darla Karpinsky-Semper
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , 1600 NW 10th Avenue, RMSB6024A, Miami, Florida 33136, United States
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Fassini A, Antero LS, Corrêa FMA, Joca SR, Resstel LBM. The prelimbic cortex muscarinic M₃ receptor-nitric oxide-guanylyl cyclase pathway modulates cardiovascular responses in rats. J Neurosci Res 2015; 93:830-8. [PMID: 25594849 DOI: 10.1002/jnr.23537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 11/06/2022]
Abstract
The prelimbic cortex (PL), a limbic structure, sends projections to areas involved in the control of cardiovascular responses. Stimulation of the PL with acetylcholine (ACh) evokes depressor and tachycardiac responses mediated by local PL muscarinic receptors. Early studies demonstrated that stimulation of muscarinic receptors induced nitric oxide (NO) synthesis and cyclic guanosine cyclic monophosphate (cGMP) formation. Hence, this study investigates which PL muscarinic receptor subtype is involved in the cardiovascular response induced by ACh and tests the hypothesis that cardiovascular responses caused by muscarinic receptor stimulation in the PL are mediated by local NO and cGMP formation. PL pretreatment with J104129 (an M3 receptor antagonist) blocked the depressor and tachycardiac response evoked by injection of ACh into the PL. Pretreatment with either pirenzepine (an M1 receptor antagonist) or AF-DX 116 (an M2 and M4 receptor antagonist) did not affect cardiovascular responses evoked by ACh. Moreover, similarly to the antagonism of PL M3 receptors, pretreatment with N(ω)-propyl-L-arginine (an inhibitor of neuronal NO synthase), carboxy-PTIO(S)-3-carboxy-4-hydroxyphenylglicine (an NO scavenger), or 1H-[1,2,4]oxadiazolol-[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) blocked both the depressor and the tachycardiac response evoked by ACh. The current results demonstrate that cardiovascular responses evoked by microinjection of ACh into the PL are mediated by local activation of the M3 receptor-NO-guanylate cyclase pathway.
Collapse
Affiliation(s)
- Aline Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
178
|
Qin QG, Gao XY, Liu K, Yu XC, Li L, Wang HP, Zhu B. Acupuncture at heterotopic acupoints enhances jejunal motility in constipated and diarrheic rats. World J Gastroenterol 2014; 20:18271-18283. [PMID: 25561794 PMCID: PMC4277964 DOI: 10.3748/wjg.v20.i48.18271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/09/2014] [Accepted: 07/30/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect and mechanism of acupuncture at heterotopic acupoints on jejunal motility, particularly in pathological conditions.
METHODS: Jejunal motility was assessed using a manometric balloon placed in the jejunum approximately 18-20 cm downstream from the pylorus and filled with approximately 0.1 mL warm water in anesthetized normal rats or rats with diarrhea or constipation. The heterotopic acupoints including LI11 (Quchi), ST37 (Shangjuxu), BL25 (Dachangshu), and the homotopic acupoint ST25 (Tianshu), were stimulated for 60 s by rotating acupuncture needles right and left at a frequency of 2 Hz. To determine the type of afferent fibers mediating the regulation of jejunal motility by manual acupuncture, the ipsilateral sciatic A or C fibers of ST37 were inactivated by local application of the A-fiber selective demyelination agent cobra venom or the C fiber blocker capsaicin. Methoctramine, a selective M2 receptor antagonist, was injected intravenously to identify a specific role of M2 receptors in mediating the effect of acupuncture on jejunal motility.
RESULTS: Acupuncture at heterotopic acupoints, such as LI11 and ST37, increased jejunal motility not only in normal rats, but also in rats with constipation or diarrhea. In normal rats, manual acupuncture at LI11 or ST37 enhanced jejunal pressure from 7.34 ± 0.19 cmH2O to 7.93 ± 0.20 cmH2O, an increase of 9.05% ± 0.82% (P < 0.05), and from 6.95 ± 0.14 cmH2O to 8.97 ± 0.22 cmH2O, a significant increase of 27.44% ± 1.96% (P < 0.01), respectively. In constipated rats, manual acupuncture at LI11 or ST37 increased intrajejunal pressure from 8.17 ± 0.31 cmH2O to 9.86 ± 0.36 cmH2O, an increase of 20.69% ± 2.10% (P < 0.05), and from 8.82 ± 0.28 cmH2O to 10.83 ± 0.28 cmH2O, an increase of 22.81% ± 1.46% (P < 0.05), respectively. In rats with diarrhea, MA at LI11 or ST37 increased intrajejunal pressure from 11.95 ± 0.35 cmH2O to 13.96 ± 0.39 cmH2O, an increase of 16.82% ± 2.35% (P < 0.05), and tended to increase intrajejunal pressure (from 12.42 ± 0.38 cmH2O to 13.05 ± 0.38 cmH2O, an increase of 5.07% ± 1.08%, P > 0.05), respectively. In contrast, acupuncture ST25, a homotopic acupoint, not only decreased intrajejunal pressure, but also significantly decreased frequency in normal rats and rats with constipation or diarrhea. Following demyelination of Aδ fibers, acupuncture at ST37 again augmented intrajejunal pressure to 121.48% ± 3.06% of baseline. Following capsaicin application for 24 h, acupuncture at ipsilateral ST37 increased intrajejunal pressure to 106.63% ± 1.26% of basal levels when compared to measurements prior to capsaicin treatment (P < 0.05). Acupuncture at LI11, ST37, or BL25 significantly rescued methoctramine-mediated inhibition of jejunal motility amplitude from 42.83% ± 1.65% to 53.43% ± 1.95% of baseline (P < 0.05), from 45.15% ± 2.22% to 70.51% ± 2.34% of baseline (P < 0.01), and from 38.03% ± 2.34% to 70.12% ± 2.22% of baseline (P < 0.01), respectively.
CONCLUSION: Acupuncture at heterotopic acupoints increases the amplitude of jejunal motility in rats. C fibers and M2 receptors predominantly and (or) partially mediate the regulation of jejunal motility by acupuncture, respectively.
Collapse
|
179
|
Davie BJ, Sexton PM, Capuano B, Christopoulos A, Scammells PJ. Development of a photoactivatable allosteric ligand for the m1 muscarinic acetylcholine receptor. ACS Chem Neurosci 2014; 5:902-7. [PMID: 25188871 DOI: 10.1021/cn500173x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of G protein-coupled receptor drug discovery has benefited greatly from the structural and functional insights afforded by photoactivatable ligands. One G protein-coupled receptor subfamily for which photoactivatable ligands have been developed is the muscarinic acetylcholine receptor family, though, to date, all such ligands have been designed to target the orthosteric (endogenous ligand) binding site of these receptors. Herein we report the synthesis and pharmacological investigation of a novel photoaffinity label, MIPS1455 (4), designed to bind irreversibly to an allosteric site of the M1 muscarinic acetylcholine receptor; a target of therapeutic interest for the treatment of cognitive deficits. MIPS1455 may be a valuable molecular tool for further investigating allosteric interactions at this receptor.
Collapse
Affiliation(s)
- Briana J. Davie
- Medicinal Chemistry and ‡Drug Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Patrick M. Sexton
- Medicinal Chemistry and ‡Drug Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ben Capuano
- Medicinal Chemistry and ‡Drug Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Medicinal Chemistry and ‡Drug Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Peter J. Scammells
- Medicinal Chemistry and ‡Drug Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
180
|
Moraga FA, Urriola-Urriola N. Vascular function in arteries of intertidal fish Girella laevifrons (Kyphosidae). BRAZ J BIOL 2014; 74:739-43. [PMID: 25296227 DOI: 10.1590/bjb.2014.0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/14/2013] [Indexed: 11/21/2022] Open
Abstract
Preliminary studies showed that dorsal artery contraction mediated by acetylcholine (ACh) is blocked with indomethacin in intertidal fish (Girella laevifrons). Our objective was to characterise the cholinergic pathway in several artery vessels of the G. laevifrons. Afferent and efferent branchial, dorsal and mesenteric arteries were dissected of 6 juvenile specimens, isometric tension studies were done using dose response curves (DRC) for Ach (10(-13) to 10(-3) M), and cholinergic pathways were obtained by blocking with atropine or indomethacin. CRC to ACh showed a pattern of high and low sensitivity. Furthermore, these contractions were blocked in the presence of atropine and indomethacin in all vessels. Our results suggest that contraction observed with acetylcholine is mediated by receptors that activate a cyclooxygenase contraction pathway.
Collapse
Affiliation(s)
- F A Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte - UCN, Campus Guayacán, Coquimbo, Chile
| | - N Urriola-Urriola
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte - UCN, Campus Guayacán, Coquimbo, Chile
| |
Collapse
|
181
|
Pourmotabbed A, Mahmoodi G, Mahmoodi S, Mohammadi-Farani A, Nedaei S, Pourmotabbed T, Pourmotabbed T. Effect of central muscarinic receptors on passive-avoidance learning deficits induced by prenatal pentylenetetrazol kindling in male offspring. Neuroscience 2014; 279:232-7. [DOI: 10.1016/j.neuroscience.2014.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
|
182
|
Lee KK, Lee MY, Han DY, Jung HJ, Joo MC. Effects of bladder function by early tamsulosin treatment in a spinal cord injury rat model. Ann Rehabil Med 2014; 38:433-42. [PMID: 25229021 PMCID: PMC4163582 DOI: 10.5535/arm.2014.38.4.433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/25/2014] [Indexed: 11/06/2022] Open
Abstract
Objective To investigate the effects of early tamsulosin treatment on changes in bladder characteristics after a spinal cord injury. Methods We divided 45 rats into three groups: the control (CON) group, the spinal cord injury (SCI) group, and the SCI+tamsulosin treatment (SCI+TAM) group. Spinal cord transection was performed in the SCI and SCI+TAM groups. Tamsulosin was injected for 7 days in the SCI+TAM group. Intravesical and intra-abdominal catheters were implanted before cord injury. Basal pressure (BP), maximal vesical pressure (MVP), micturition volume (MV), and voiding interval time (VIT) were measured at 7 days after SCI. The bladder was then removed and used for an in vitro organ bath study and Western blot analysis. The percentage changes in contractility from baseline after acetylcholine alone, pretreatment with a muscarinic 2 (M2) receptor blocker (AQ-RA741), and pretreatment with a M3 receptor blocker (4-DAMP) were compared among the groups. Western blot analyses were performed to determine expression levels of pERK1/2 and rho-kinase. Results In cystometry, MVP, BP, MV, and VIT showed changes in the SCI and SCI+TAM groups versus the CON group (p<0.05). In the organ bath study, acetylcholine-induced contractility in the three groups differed significantly (p<0.05). Additionally, acetylcholine-induced contractility with 4-DAMP pretreatment was reduced significantly in the SCI+TAM group versus the SCI group. In Western blotting, pERK1/2 expression was stronger (p<0.05) and rho-kinase expression was weaker in the SCI+TAM group than the SCI group (p<0.05). Conclusion These results suggest that the bladder contraction due to acetylcholine after SCI can be decreased by tamsulosin in the acute stage and this involves changes in pERK1/2 and rho-kinase.
Collapse
Affiliation(s)
- Kang Keun Lee
- Department of Rehabilitation Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Korea
| | - Moon Young Lee
- Department of Physiology, Wonkwang University School of Medicine, Iksan, Korea
| | - Dong Yeop Han
- Department of Urology, Wonkwang University School of Medicine, Iksan, Korea
| | - Hee Jong Jung
- Department of Urology, Wonkwang University School of Medicine, Iksan, Korea
| | - Min Cheol Joo
- Department of Rehabilitation Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Korea
| |
Collapse
|
183
|
Davie BJ, Valant C, White JM, Sexton PM, Capuano B, Christopoulos A, Scammells PJ. Synthesis and pharmacological evaluation of analogues of benzyl quinolone carboxylic acid (BQCA) designed to bind irreversibly to an allosteric site of the M ₁ muscarinic acetylcholine receptor. J Med Chem 2014; 57:5405-18. [PMID: 24856614 DOI: 10.1021/jm500556a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activation of the M1 muscarinic acetylcholine receptor (mAChR) is a prospective treatment for alleviating cognitive decline experienced in central nervous system (CNS) disorders. Current therapeutics indiscriminately enhance the activity of the endogenous neurotransmitter ACh, leading to side effects. BQCA is a positive allosteric modulator and allosteric agonist at the M1 mAChR that has high subtype selectivity and is a promising template from which to generate higher affinity, more pharmacokinetically viable drug candidates. However, to efficiently guide rational drug design, the binding site of BQCA needs to be conclusively elucidated. We report the synthesis and pharmacological validation of BQCA analogues designed to bind irreversibly to the M1 mAChR. One analogue in particular, 11, can serve as a useful structural probe to confirm the location of the BQCA binding site; ideally, by co-crystallization with the M1 mAChR. Furthermore, this ligand may also be used as a pharmacological tool with a range of applications.
Collapse
Affiliation(s)
- Briana J Davie
- Medicinal Chemistry and ‡Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
184
|
Jakubík J, Zimčík P, Randáková A, Fuksová K, El-Fakahany EE, Doležal V. Molecular mechanisms of methoctramine binding and selectivity at muscarinic acetylcholine receptors. Mol Pharmacol 2014; 86:180-92. [PMID: 24870405 DOI: 10.1124/mol.114.093310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methoctramine (N,N'-bis[6-[[(2-methoxyphenyl)-methyl]hexyl]-1,8-octane] diamine) is an M(2)-selective competitive antagonist of muscarinic acetylcholine receptors and exhibits allosteric properties at high concentrations. To reveal the molecular mechanisms of methoctramine binding and selectivity we took advantage of reciprocal mutations of the M(2) and M(3) receptors in the second and third extracellular loops that are involved in the binding of allosteric ligands. To this end we performed measurements of kinetics of the radiolabeled antagonists N-methylscopolamine (NMS) in the presence of methoctramine and its precursors, fluorescence energy transfer between green fluorescent protein-fused receptors and an Alexa-555-conjugated precursor of methoctramine, and simulation of molecular dynamics of methoctramine association with the receptor. We confirm the hypothesis that methoctramine high-affinity binding to the M(2) receptors involves simultaneous interaction with both the orthosteric binding site and the allosteric binding site located between the second and third extracellular loops. Methoctramine can bind solely with low affinity to the allosteric binding site on the extracellular domain of NMS-occupied M(2) receptors by interacting primarily with glutamate 175 in the second extracellular loop. In this mode, methoctramine physically prevents dissociation of NMS from the orthosteric binding site. Our results also demonstrate that lysine 523 in the third extracellular loop of the M(3) receptors forms a hydrogen bond with glutamate 219 of the second extracellular loop that hinders methoctramine binding to the allosteric site at this receptor subtype. Impaired interaction with the allosteric binding site manifests as low-affinity binding of methoctramine at the M(3) receptor.
Collapse
Affiliation(s)
- Jan Jakubík
- Institute of Physiology, v.v.i. (J.J., P.Z., A.R., V.D.) and Institute of Experimental Botany, v.v.i. (K.F.), Academy of Sciences of the Czech Republic, Prague, Czech Republic; and Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (E.E.E.)
| | - Pavel Zimčík
- Institute of Physiology, v.v.i. (J.J., P.Z., A.R., V.D.) and Institute of Experimental Botany, v.v.i. (K.F.), Academy of Sciences of the Czech Republic, Prague, Czech Republic; and Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (E.E.E.)
| | - Alena Randáková
- Institute of Physiology, v.v.i. (J.J., P.Z., A.R., V.D.) and Institute of Experimental Botany, v.v.i. (K.F.), Academy of Sciences of the Czech Republic, Prague, Czech Republic; and Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (E.E.E.)
| | - Květoslava Fuksová
- Institute of Physiology, v.v.i. (J.J., P.Z., A.R., V.D.) and Institute of Experimental Botany, v.v.i. (K.F.), Academy of Sciences of the Czech Republic, Prague, Czech Republic; and Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (E.E.E.)
| | - Esam E El-Fakahany
- Institute of Physiology, v.v.i. (J.J., P.Z., A.R., V.D.) and Institute of Experimental Botany, v.v.i. (K.F.), Academy of Sciences of the Czech Republic, Prague, Czech Republic; and Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (E.E.E.)
| | - Vladimír Doležal
- Institute of Physiology, v.v.i. (J.J., P.Z., A.R., V.D.) and Institute of Experimental Botany, v.v.i. (K.F.), Academy of Sciences of the Czech Republic, Prague, Czech Republic; and Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota (E.E.E.)
| |
Collapse
|
185
|
Cima MJ, Lee H, Daniel K, Tanenbaum LM, Mantzavinou A, Spencer KC, Ong Q, Sy JC, Santini J, Schoellhammer CM, Blankschtein D, Langer RS. Single compartment drug delivery. J Control Release 2014; 190:157-71. [PMID: 24798478 DOI: 10.1016/j.jconrel.2014.04.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 02/06/2023]
Abstract
Drug design is built on the concept that key molecular targets of disease are isolated in the diseased tissue. Systemic drug administration would be sufficient for targeting in such a case. It is, however, common for enzymes or receptors that are integral to disease to be structurally similar or identical to those that play important biological roles in normal tissues of the body. Additionally, systemic administration may not lead to local drug concentrations high enough to yield disease modification because of rapid systemic metabolism or lack of sufficient partitioning into the diseased tissue compartment. This review focuses on drug delivery methods that physically target drugs to individual compartments of the body. Compartments such as the bladder, peritoneum, brain, eye and skin are often sites of disease and can sometimes be viewed as "privileged," since they intrinsically hinder partitioning of systemically administered agents. These compartments have become the focus of a wide array of procedures and devices for direct administration of drugs. We discuss the rationale behind single compartment drug delivery for each of these compartments, and give an overview of examples at different development stages, from the lab bench to phase III clinical trials to clinical practice. We approach single compartment drug delivery from both a translational and a technological perspective.
Collapse
Affiliation(s)
- Michael J Cima
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Heejin Lee
- TARIS Biomedical, Inc., Lexington, MA 02421, USA
| | - Karen Daniel
- TARIS Biomedical, Inc., Lexington, MA 02421, USA
| | - Laura M Tanenbaum
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aikaterini Mantzavinou
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin C Spencer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qunya Ong
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jay C Sy
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John Santini
- On Demand Therapeutics, Inc., Menlo Park, CA 94025, USA
| | - Carl M Schoellhammer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert S Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
186
|
De Angelis F, Marinelli S, Fioretti B, Catacuzzeno L, Franciolini F, Pavone F, Tata AM. M2 receptors exert analgesic action on DRG sensory neurons by negatively modulating VR1 activity. J Cell Physiol 2014; 229:783-90. [PMID: 24166293 DOI: 10.1002/jcp.24499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022]
Abstract
The peripheral application of the M2 cholinergic agonist arecaidine on sensory nerve endings shows anti-nociceptive properties. In this work, we analyze in vitro, the mechanisms downstream M2 receptor activation causing the analgesic effects, and in vivo the effects produced by M2 agonist arecaidine administration on nociceptive responses in a murine model of nerve growth factor (NGF)-induced pain. Cultured DRG neurons treated with arecaidine showed a decreased level of VR1 and SP transcripts. Conversely, we found an increased expression of VR1 and SP transcripts in DRG from M2/M4(-/-) mice compared to WT and M1(-/-) mice, confirming the inhibitory effect in particular of M2 receptors on SP and VR1 expression. Patch-clamp experiments in the whole-cell configuration showed that arecaidine treatment caused a reduction of the fraction of capsaicin-responsive cells, without altering the mean capsaicin-activated current in responsive cells. We also demonstrated that arecaidine prevents PKCϵ translocation to the plasma membrane after inflammatory agent stimulation, mainly in medium-small sensory neurons. Finally, in mice, we have observed that intraperitoneal injection of arecaidine reduces VR1 expression blocking hyperalgesia and allodynia caused by NGF intraplantar administration. In conclusion, our data demonstrate that in vivo M2 receptor activation induces desensitization to mechanical and heat stimuli by a down-regulation of VR1 expression and by the inhibition of PKCϵ activity hindering its translocation to the plasma membrane, as suggested by in vitro experiments.
Collapse
Affiliation(s)
- Federica De Angelis
- Department of Biology and Biotechnologies C. Darwin, "Sapienza" University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
187
|
Hescham S, Temel Y, Casaca-Carreira J, Arslantas K, Yakkioui Y, Blokland A, Jahanshahi A. A neuroanatomical analysis of the effects of a memory impairing dose of scopolamine in the rat brain using cytochrome c oxidase as principle marker. J Chem Neuroanat 2014; 59-60:1-7. [PMID: 24768696 DOI: 10.1016/j.jchemneu.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/13/2022]
Abstract
Acetylcholine plays a role in mnemonic and attentional processes, but also in locomotor and anxiety-related behavior. Receptor blockage by scopolamine can therefore induce cognitive as well as motor deficits and increase anxiety levels. Here we show that scopolamine, at a dose that has previously been found to affect learning and memory performance (0.1 mg/kg i.p.), has a widespread effect on cytochrome c oxidase histochemistry in various regions of the rat brain. We found a down-regulation of cytochrome c oxidase in the nucleus basalis, in movement-related structures such as the primary motor cortex and the globus pallidus, memory-related structures such as the CA1 subfield of the hippocampus and perirhinal cortex and in anxiety-related structures like the amygdala, which also plays a role in memory. However choline acetyltransferase levels were only affected in the CA1 subfield of the hippocampus and both, choline acetyltransferase and c-Fos expression levels were decreased in the amygdala. These findings corroborate strong cognitive behavioral effects of this drug, but also suggest possible anxiety- and locomotor-related changes in subjects. Moreover, they present histochemical evidence that the effects of scopolamine are not ultimately restricted to cognitive parameters.
Collapse
Affiliation(s)
- Sarah Hescham
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands; European Graduate School of Neuroscience (Euron), The Netherlands.
| | - Yasin Temel
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neurosurgery, Maastricht University, Maastricht, The Netherlands; European Graduate School of Neuroscience (Euron), The Netherlands
| | - João Casaca-Carreira
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands; European Graduate School of Neuroscience (Euron), The Netherlands
| | - Kemal Arslantas
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Youssef Yakkioui
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neurosurgery, Maastricht University, Maastricht, The Netherlands; European Graduate School of Neuroscience (Euron), The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, The Netherlands; European Graduate School of Neuroscience (Euron), The Netherlands
| | - Ali Jahanshahi
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neurosurgery, Maastricht University, Maastricht, The Netherlands; European Graduate School of Neuroscience (Euron), The Netherlands.
| |
Collapse
|
188
|
M1-muscarinic receptors promote fear memory consolidation via phospholipase C and the M-current. J Neurosci 2014; 34:1570-8. [PMID: 24478341 DOI: 10.1523/jneurosci.1040-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuromodulators released during and after a fearful experience promote the consolidation of long-term memory for that experience. Because overconsolidation may contribute to the recurrent and intrusive memories of post-traumatic stress disorder, neuromodulatory receptors provide a potential pharmacological target for prevention. Stimulation of muscarinic receptors promotes memory consolidation in several conditioning paradigms, an effect primarily associated with the M1 receptor (M1R). However, neither inhibiting nor genetically disrupting M1R impairs the consolidation of cued fear memory. Using the M1R agonist cevimeline and antagonist telenzepine, as well as M1R knock-out mice, we show here that M1R, along with β2-adrenergic (β2AR) and D5-dopaminergic (D5R) receptors, regulates the consolidation of cued fear memory by redundantly activating phospholipase C (PLC) in the basolateral amygdala (BLA). We also demonstrate that fear memory consolidation in the BLA is mediated in part by neuromodulatory inhibition of the M-current, which is conducted by KCNQ channels and is known to be inhibited by muscarinic receptors. Manipulating the M-current by administering the KCNQ channel blocker XE991 or the KCNQ channel opener retigabine reverses the effects on consolidation caused by manipulating β2AR, D5R, M1R, and PLC. Finally, we show that cAMP and protein kinase A (cAMP/PKA) signaling relevant to this stage of consolidation is upstream of these neuromodulators and PLC, suggesting an important presynaptic role for cAMP/PKA in consolidation. These results support the idea that neuromodulatory regulation of ion channel activity and neuronal excitability is a critical mechanism for promoting consolidation well after acquisition has occurred.
Collapse
|
189
|
Ranek MJ, Kost CK, Hu C, Martin DS, Wang X. Muscarinic 2 receptors modulate cardiac proteasome function in a protein kinase G-dependent manner. J Mol Cell Cardiol 2014; 69:43-51. [PMID: 24508699 PMCID: PMC3977985 DOI: 10.1016/j.yjmcc.2014.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/31/2013] [Accepted: 01/28/2014] [Indexed: 12/26/2022]
Abstract
Proteasome function insufficiency and inadequate protein quality control are strongly implicated in a large subset of cardiovascular disease and may play an important role in their pathogenesis. Protein degradation by the ubiquitin proteasome system can be physiologically regulated. Cardiac muscarinic 2 (M2) receptors were pharmacologically interrogated in intact mice and cultured neonatal rat ventricular myocytes (NRVMs). Proteasome-mediated proteolysis was measured with a surrogate misfolded protein, proteasome peptidase assay, and by characterizing key proteasome subunits. Successful M2 receptor manipulation in cardiomyocytes was determined by measuring an endogenous protein substrate, and in mice, the cardiovascular physiological response. M2 receptor stimulation was associated with increased proteasome-mediated proteolysis and enhanced peptidase activities, while M2 receptor inhibition yielded opposing results. Additionally, M2 receptor manipulation did not alter abundance of the key proteasome subunits, Rpt6 and β5, but significantly shifted their isoelectric points. Inhibition of protein kinase G abrogated the stimulatory effects on proteasome-mediated proteolysis from M2 receptor activation. We conclude that M2 receptor stimulation enhances, whereas M2 receptor inhibition reduces, proteasome-mediated proteolysis likely through posttranslational modifications. Protein kinase G appears to be the mediator of the M2 receptors actions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cyclic GMP-Dependent Protein Kinases/genetics
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mice
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Fluorescence
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Protein Processing, Post-Translational
- Proteolysis
- RNA, Messenger/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Curtis K Kost
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Chengjun Hu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Douglas S Martin
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| |
Collapse
|
190
|
Jiang S, Li Y, Zhang C, Zhao Y, Bu G, Xu H, Zhang YW. M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neurosci Bull 2014; 30:295-307. [PMID: 24590577 DOI: 10.1007/s12264-013-1406-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/28/2013] [Indexed: 01/31/2023] Open
Abstract
The degeneration of cholinergic neurons and cholinergic hypofunction are pathologies associated with Alzheimer's disease (AD). Muscarinic acetylcholine receptors (mAChRs) mediate acetylcholine-induced neurotransmission and five mAChR subtypes (M1-M5) have been identified. Among them, M1 mAChR is widely expressed in the central nervous system and has been implicated in many physiological and pathological brain functions. In addition, M1 mAChR is postulated to be an important therapeutic target for AD and several other neurodegenerative diseases. In this article, we review recent progress in understanding the functional involvement of M1 mAChR in AD pathology and in developing M1 mAChR agonists for AD treatment.
Collapse
Affiliation(s)
- Shangtong Jiang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | | | | | | | | | | | | |
Collapse
|
191
|
Tomàs J, Santafé MM, Garcia N, Lanuza MA, Tomàs M, Besalduch N, Obis T, Priego M, Hurtado E. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse. J Neurosci Res 2014; 92:543-54. [PMID: 24464361 DOI: 10.1002/jnr.23346] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/11/2013] [Accepted: 11/19/2013] [Indexed: 01/06/2023]
Abstract
Over the past few years, we have studied, in the mammalian neuromuscular junction (NMJ), the local involvement in transmitter release of the presynaptic muscarinic ACh autoreceptors (mAChRs), purinergic adenosine autoreceptors (P1Rs), and trophic factor receptors (TFRs; for neurotrophins and trophic cytokines) during development and in the adult. At any given moment, the way in which a synapse works is largely the logical outcome of the confluence of these (and other) metabotropic signalling pathways on intracellular kinases, which phosphorylate protein targets and materialize adaptive changes. We propose an integrated interpretation of the complementary function of these receptors in the adult NMJ. The activity of a given receptor group can modulate a given combination of spontaneous, evoked, and activity-dependent release characteristics. For instance, P1Rs can conserve resources by limiting spontaneous quantal leak of ACh (an A1 R action) and protect synapse function, because stimulation with adenosine reduces the magnitude of depression during repetitive activity. The overall outcome of the mAChRs seems to contribute to upkeep of spontaneous quantal output of ACh, save synapse function by decreasing the extent of evoked release (mainly an M2 action), and reduce depression. We have also identified several links among P1Rs, mAChRs, and TFRs. We found a close dependence between mAChR and some TFRs and observed that the muscarinic group has to operate correctly if the tropomyosin-related kinase B receptor (trkB) is also to operate correctly, and vice versa. Likewise, the functional integrity of mAChRs depends on P1Rs operating normally.
Collapse
Affiliation(s)
- Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F, Ribas C. Gαq signalling: the new and the old. Cell Signal 2014; 26:833-48. [PMID: 24440667 DOI: 10.1016/j.cellsig.2014.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/25/2023]
Abstract
In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cβ (PLCβ), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCβ-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Carlota García-Hoz
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Anna M Aragay
- Department of Cell Biology, Molecular Biology Institute of Barcelona, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|
193
|
Lainé DI. Long-acting muscarinic antagonists for the treatment of chronic obstructive pulmonary disease. Expert Rev Clin Pharmacol 2014; 3:43-53. [DOI: 10.1586/ecp.09.48] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
194
|
Santafé MM, Garcia N, Tomàs M, Obis T, Lanuza MA, Besalduch N, Tomàs J. The interaction between tropomyosin-related kinase B receptors and serine kinases modulates acetylcholine release in adult neuromuscular junctions. Neurosci Lett 2014; 561:171-5. [PMID: 24406154 DOI: 10.1016/j.neulet.2013.12.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/19/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
Abstract
We conducted an electrophysiological study of the functional link between the tropomyosin-related kinase B (trkB) receptor signaling mechanism and serine-threonine kinases, both protein kinase C (PKC) and protein kinase A (PKA). We describe their coordinated role in transmitter release at the neuromuscular junction (NMJ) of the Levator auris longus muscle of the adult mouse. The trkB receptor normally seems to be coupled to stimulate ACh release because inhibiting the trkB receptor with K-252a results in a significant reduction in the size of EPPs. We found that the intracellular PKC pathway can operate as in basal conditions (to potentiate ACh release) without the involvement of the trkB receptor function, although the trkB pathway needs an operative PKC pathway if it is to couple to the release mechanism and potentiate it. To actively stimulate PKA (which also results in ACh release potentiation), the operativity of trkB is a necessary condition, and one effect of trkB may be PKA stimulation.
Collapse
Affiliation(s)
- Manel M Santafé
- Unitat Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, carrer St. Llorenç num 21, 43201 Reus, Spain.
| | - Neus Garcia
- Unitat Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, carrer St. Llorenç num 21, 43201 Reus, Spain
| | - Marta Tomàs
- Unitat Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, carrer St. Llorenç num 21, 43201 Reus, Spain
| | - Teresa Obis
- Unitat Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, carrer St. Llorenç num 21, 43201 Reus, Spain
| | - Maria A Lanuza
- Unitat Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, carrer St. Llorenç num 21, 43201 Reus, Spain
| | - Nuria Besalduch
- Unitat Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, carrer St. Llorenç num 21, 43201 Reus, Spain
| | - Josep Tomàs
- Unitat Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, carrer St. Llorenç num 21, 43201 Reus, Spain.
| |
Collapse
|
195
|
Márquez BT, Krahe R, Chacron MJ. Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish. ACTA ACUST UNITED AC 2014; 216:2442-50. [PMID: 23761469 DOI: 10.1242/jeb.082370] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensory neurons continually adapt their processing properties in response to changes in the sensory environment or the brain's internal state. Neuromodulators are thought to mediate such adaptation through a variety of receptors and their action has been implicated in processes such as attention, learning and memory, aggression, reproductive behaviour and state-dependent mechanisms. Here, we review recent work on neuromodulation of electrosensory processing by acetylcholine and serotonin in the weakly electric fish Apteronotus leptorhynchus. Specifically, our review focuses on how experimental application of these neuromodulators alters excitability and responses to sensory input of pyramidal cells within the hindbrain electrosensory lateral line lobe. We then discuss current hypotheses on the functional roles of these two neuromodulatory pathways in regulating electrosensory processing at the organismal level and the need for identifying the natural behavioural conditions that activate these pathways.
Collapse
Affiliation(s)
- Brenda Toscano Márquez
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC, Canada, H3A 1B1
| | | | | |
Collapse
|
196
|
Yoshida A, Kuraoka S, Ito Y, Okura T, Deguchi Y, Otsuka A, Ozono S, Takeda M, Masuyama K, Araki I, Yamada S. Muscarinic Receptor Binding of the Novel Radioligand, [3H]Imidafenacin in the Human Bladder and Parotid Gland. J Pharmacol Sci 2014; 124:40-6. [DOI: 10.1254/jphs.13193fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
197
|
Nonneuronal Cholinergic System in Breast Tumors and Dendritic Cells: Does It Improve or Worsen the Response to Tumor? ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/486545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Besides being the main neurotransmitter in the parasympathetic nervous system, acetylcholine (ACh) can act as a signaling molecule in nonneuronal tissues. For this reason, ACh and the enzymes that synthesize and degrade it (choline acetyltransferase and acetylcholinesterase) as well as muscarinic (mAChRs) and nicotinic receptors conform the non-neuronal cholinergic system (nNCS). It has been reported that nNCS regulates basal cellular functions including survival, proliferation, adhesion, and migration. Moreover, nNCS is broadly expressed in tumors and in different components of the immune system. In this review, we summarize the role of nNCS in tumors and in different immune cell types focusing on the expression and function of mAChRs in breast tumors and dendritic cells (DCs) and discussing the role of DCs in breast cancer.
Collapse
|
198
|
McCarron JG, Olson ML, Wilson C, Sandison ME, Chalmers S. Examining the role of mitochondria in Ca²⁺ signaling in native vascular smooth muscle. Microcirculation 2013; 20:317-29. [PMID: 23305516 PMCID: PMC3708117 DOI: 10.1111/micc.12039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/07/2013] [Indexed: 01/18/2023]
Abstract
Mitochondrial Ca2+ uptake contributes important feedback controls to limit the time course of Ca2+signals. Mitochondria regulate cytosolic [Ca2+] over an exceptional breath of concentrations (∼200 nM to >10 μM) to provide a wide dynamic range in the control of Ca2+ signals. Ca2+ uptake is achieved by passing the ion down the electrochemical gradient, across the inner mitochondria membrane, which itself arises from the export of protons. The proton export process is efficient and on average there are less than three protons free within the mitochondrial matrix. To study mitochondrial function, the most common approaches are to alter the proton gradient and to measure the electrochemical gradient. However, drugs which alter the mitochondrial proton gradient may have substantial off target effects that necessitate careful consideration when interpreting their effect on Ca2+ signals. Measurement of the mitochondrial electrochemical gradient is most often performed using membrane potential sensitive fluorophores. However, the signals arising from these fluorophores have a complex relationship with the electrochemical gradient and are altered by changes in plasma membrane potential. Care is again needed in interpreting results. This review provides a brief description of some of the methods commonly used to alter and measure mitochondrial contribution to Ca2+ signaling in native smooth muscle.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | |
Collapse
|
199
|
White CW, Short JL, Ventura S. Rho kinase activation mediates adrenergic and cholinergic smooth muscle contractile responses in the mouse prostate gland. Eur J Pharmacol 2013; 721:313-21. [DOI: 10.1016/j.ejphar.2013.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 12/16/2022]
|
200
|
Nickla DL, Zhu X, Wallman J. Effects of muscarinic agents on chick choroids in intact eyes and eyecups: evidence for a muscarinic mechanism in choroidal thinning. Ophthalmic Physiol Opt 2013; 33:245-56. [PMID: 23662958 DOI: 10.1111/opo.12054] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 03/06/2013] [Indexed: 12/31/2022]
Abstract
PURPOSE In chicks, ocular growth inhibition is associated with choroidal thickening and growth stimulation with choroidal thinning, suggesting a mechanistic link between the two responses. Because muscarinic antagonists inhibit the development of myopia in animal models by a non-accommodative mechanism, we tested the hypothesis that agonists would stimulate eye growth and thin the choroid. We also hypothesized that the effective growth-inhibiting antagonists would thicken the choroid. METHODS Chicks, age 12-16 days, were used. In vivo: Agonists: Single intravitreal injections (20 μL) of oxotremorine (oxo), pilocarpine (pilo), carbachol (carb), or arecaidine (arec) were given to otherwise untreated eyes. A-scan ultrasonography was done prior to injections, and at 3, 24, 48 and 72 h. Antagonists: -10D lenses were worn on one eye for 4 days. Atropine (atro), pirenzepine (pirz), oxyphenonium (oxy) or dicyclomine (dicy) were injected (20 μL) daily into lens-wearing eyes; saline injections were done as controls. Ultrasonography was done on d1 and on d4; on d4 measurements were done before and 3 h after injections. In vitro: Paired eyecups of retinal pigment epithelium (RPE), choroid and sclera were made from 1-week old chicks. All drugs except atropine were tested on one eyecup, its pair in plain medium. Choroidal thickness was measured at various times over 48 h. RESULTS Agonists: In vivo, oxotremorine caused an increase in the rate of axial elongation (drug vs saline: 24-72 h: 338 μm vs 250 μm; p < 0.001). All except pilocarpine caused choroidal thinning by 24 h (oxo, carb and arec vs saline: -25, -35 and -46 μm vs 3 μm). In vitro, all agonists thinned choroids by 24 h (oxo: -6 vs 111 μm; pilo: 45 vs 212 μm; carb: -58 vs 65 μm; arec: 47 vs 139 μm; p < 0.05). Antagonists: Atropine, pirenzepine and oxyphenonium inhibited the development of myopia in negative lens-wearing eyes, and also caused choroidal thickening (drug vs saline: 42, 80, 88 vs 10 μm per 3 h). In vitro, pirenzepine thickened choroids by 3 h (77 vs 2 μm, p < 0.01). CONCLUSIONS Muscarinic agonists caused choroidal thinning in intact eyes and eyecups, supporting a role for acetylcholine in the choroidal response to hyperopic defocus or form deprivation. Only oxotremorine stimulated eye growth, which is inconsistent with a muscarinic receptor mechanism for antagonist-induced eye growth inhibition. The dissociation between choroidal thinning and ocular growth stimulation for the other agonists in vivo suggest separate pathways for the two.
Collapse
Affiliation(s)
- Debora L Nickla
- Department of Biomedical Sciences and Disease, The New England College of Optometry, Boston, MA, USA.
| | | | | |
Collapse
|