151
|
Cynis H, Frost JL, Crehan H, Lemere CA. Immunotherapy targeting pyroglutamate-3 Aβ: prospects and challenges. Mol Neurodegener 2016; 11:48. [PMID: 27363697 PMCID: PMC4929720 DOI: 10.1186/s13024-016-0115-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Immunization against amyloid-β (Aβ) peptides deposited in Alzheimer’s disease (AD) has shown considerable therapeutic effect in animal models however, the translation into human Alzheimer’s patients is challenging. In recent years, a number of promising Aβ immunotherapy trials failed to reach primary study endpoints. Aside from uncertainties in the selection of patients and the start and duration of treatment, these results also suggest that the mechanisms underlying AD are still not fully understood. Thorough characterizations of protein aggregates in AD brain have revealed a conspicuous heterogeneity of Aβ peptides enabling the study of the toxic potential of each of the major forms. One such form, amino-terminally truncated and modified pyroglutamate (pGlu)-3 Aβ peptide appears to play a seminal role for disease initiation, qualifying it as novel target for immunotherapy approaches.
Collapse
Affiliation(s)
- Holger Cynis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.,Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Jeffrey L Frost
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.,University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01605, USA
| | - Helen Crehan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB636, Boston, MA, 02115, USA.
| |
Collapse
|
152
|
Beyer I, Rezaei-Ghaleh N, Klafki HW, Jahn O, Haußmann U, Wiltfang J, Zweckstetter M, Knölker HJ. Solid-Phase Synthesis and Characterization of N-Terminally Elongated Aβ-3-x -Peptides. Chemistry 2016; 22:8685-93. [PMID: 27167300 PMCID: PMC5084751 DOI: 10.1002/chem.201600892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 01/24/2023]
Abstract
In addition to the prototypic amyloid-β (Aβ) peptides Aβ1-40 and Aβ1-42 , several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid-phase peptide synthesis of the N-terminally elongated Aβ-peptides Aβ-3-38 , Aβ-3-40 , and Aβ-3-42 . Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ-3-38 and Aβ-3-40 are generated by transfected cells even in the presence of a tripartite β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(-3) can be separated from N-terminally-truncated Aβ forms by high-resolution isoelectric-focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N-terminally elongated Aβ variants in Alzheimer's disease.
Collapse
Affiliation(s)
- Isaak Beyer
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Nasrollah Rezaei-Ghaleh
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-Universität, 37075, Göttingen, Germany
| | - Olaf Jahn
- Max Planck Institute for Experimental Medicine, Proteomics Group, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Ute Haußmann
- University of Duisburg-Essen, 45141, Essen, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany. ,
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-Universität, 37075, Göttingen, Germany. ,
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany.
| |
Collapse
|
153
|
Forloni G, Artuso V, La Vitola P, Balducci C. Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases. Mov Disord 2016; 31:771-81. [DOI: 10.1002/mds.26624] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gianluigi Forloni
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | | | - Pietro La Vitola
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | - Claudia Balducci
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| |
Collapse
|
154
|
Lyons B, Friedrich M, Raftery M, Truscott R. Amyloid Plaque in the Human Brain Can Decompose from Aβ(1-40/1-42) by Spontaneous Nonenzymatic Processes. Anal Chem 2016; 88:2675-84. [DOI: 10.1021/acs.analchem.5b03891] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Brian Lyons
- Illawarra
Health and Medical Research Institute, University of Wollongong, Northfields
Avenue, Wollongong, New South
Wales 2522, Australia
- Save
Sight Institute, Sydney Eye Hospital, University of Sydney, 8 Macquarie
Street, Sydney, New South
Wales 2001, Australia
| | - Michael Friedrich
- Illawarra
Health and Medical Research Institute, University of Wollongong, Northfields
Avenue, Wollongong, New South
Wales 2522, Australia
| | - Mark Raftery
- Biological
Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Roger Truscott
- Illawarra
Health and Medical Research Institute, University of Wollongong, Northfields
Avenue, Wollongong, New South
Wales 2522, Australia
| |
Collapse
|
155
|
Jang H, Arce FT, Lee J, Gillman AL, Ramachandran S, Kagan BL, Lal R, Nussinov R. Computational Methods for Structural and Functional Studies of Alzheimer's Amyloid Ion Channels. Methods Mol Biol 2016; 1345:251-68. [PMID: 26453217 PMCID: PMC7511997 DOI: 10.1007/978-1-4939-2978-8_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aggregation can be studied by a range of methods, experimental and computational. Aggregates form in solution, across solid surfaces, and on and in the membrane, where they may assemble into unregulated leaking ion channels. Experimental probes of ion channel conformations and dynamics are challenging. Atomistic molecular dynamics (MD) simulations are capable of providing insight into structural details of amyloid ion channels in the membrane at a resolution not achievable experimentally. Since data suggest that late stage Alzheimer's disease involves formation of toxic ion channels, MD simulations have been used aiming to gain insight into the channel shapes, morphologies, pore dimensions, conformational heterogeneity, and activity. These can be exploited for drug discovery. Here we describe computational methods to model amyloid ion channels containing the β-sheet motif at atomic scale and to calculate toxic pore activity in the membrane.
Collapse
Affiliation(s)
- Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles Street, Frederick, MD, 21702, USA.
| | - Fernando Teran Arce
- Department of Bioengineering, Materials Science Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Mechanical and Aerospace Engineering, Materials Science Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Joon Lee
- Department of Mechanical and Aerospace Engineering, Materials Science Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alan L Gillman
- Department of Bioengineering, Materials Science Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Srinivasan Ramachandran
- Department of Bioengineering, Materials Science Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Mechanical and Aerospace Engineering, Materials Science Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bruce L Kagan
- Department of Psychiatry, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90024, USA
| | - Ratnesh Lal
- Department of Bioengineering, Materials Science Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Mechanical and Aerospace Engineering, Materials Science Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles Street, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
156
|
Head E, Lott IT, Wilcock DM, Lemere CA. Aging in Down Syndrome and the Development of Alzheimer's Disease Neuropathology. Curr Alzheimer Res 2016; 13:18-29. [PMID: 26651341 PMCID: PMC4948181 DOI: 10.2174/1567205012666151020114607] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/18/2015] [Accepted: 09/01/2015] [Indexed: 02/04/2023]
Abstract
Chromosome 21, triplicated in Down Syndrome, contains several genes that are thought to play a critical role in the development of AD neuropathology. The overexpression of the gene for the amyloid precursor protein (APP), on chromosome 21, leads to early onset beta-amyloid (Aβ) plaques in DS. In addition to Aβ accumulation, middle-aged people with DS develop neurofibrillary tangles, cerebrovascular pathology, white matter pathology, oxidative damage, neuroinflammation and neuron loss. There is also evidence of potential compensatory responses in DS that benefit the brain and delay the onset of dementia after there is sufficient neuropathology for a diagnosis of AD. This review describes some of the existing literature and also highlights gaps in our knowledge regarding AD neuropathology in DS. It will be critical in the future to develop networked brain banks with standardized collection procedures to fully characterize the regional and temporal pathological events associated with aging in DS. As more information is acquired regarding AD evolution in DS, there will be opportunities to develop interventions that are age-appropriate to delay AD in DS.
Collapse
Affiliation(s)
- Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, 800 South Limestone Street, Lexington, KY, 40536, USA.
| | | | | | | |
Collapse
|
157
|
Becker A, Eichentopf R, Sedlmeier R, Waniek A, Cynis H, Koch B, Stephan A, Bäuscher C, Kohlmann S, Hoffmann T, Kehlen A, Berg S, Freyse EJ, Osmand A, Plank AC, Roßner S, von Hörsten S, Graubner S, Demuth HU, Schilling S. IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes. Biol Chem 2016; 397:45-55. [DOI: 10.1515/hsz-2015-0192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/12/2015] [Indexed: 11/15/2022]
Abstract
Abstract
Secretory peptides and proteins are frequently modified by pyroglutamic acid (pE, pGlu) at their N-terminus. This modification is catalyzed by the glutaminyl cyclases QC and isoQC. Here, we decipher the roles of the isoenzymes by characterization of IsoQC-/- mice. These mice show a significant reduction of glutaminyl cyclase activity in brain and peripheral tissue, suggesting ubiquitous expression of the isoQC enzyme. An assay of substrate conversion in vivo reveals impaired generation of the pGlu-modified C-C chemokine ligand 2 (CCL2, MCP-1) in isoQC-/- mice. The pGlu-formation was also impaired in primary neurons, which express significant levels of QC. Interestingly, however, the formation of the neuropeptide hormone thyrotropin-releasing hormone (TRH), assessed by immunohistochemistry and hormonal analysis of hypothalamic-pituitary-thyroid axis, was not affected in isoQC-/-, which contrasts to QC-/-. Thus, the results reveal differential functions of isoQC and QC in the formation of the pGlu-peptides CCL2 and TRH. Substrates requiring extensive prohormone processing in secretory granules, such as TRH, are primarily converted by QC. In contrast, protein substrates such as CCL2 appear to be primarily converted by isoQC. The results provide a new example, how subtle differences in subcellular localization of enzymes and substrate precursor maturation might influence pGlu-product formation.
Collapse
|
158
|
Immunotherapy Against N-Truncated Amyloid-β Oligomers. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3560-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
159
|
Gunn AP, Wong BX, Johanssen T, Griffith JC, Masters CL, Bush AI, Barnham KJ, Duce JA, Cherny RA. Amyloid-β Peptide Aβ3pE-42 Induces Lipid Peroxidation, Membrane Permeabilization, and Calcium Influx in Neurons. J Biol Chem 2015; 291:6134-45. [PMID: 26697885 DOI: 10.1074/jbc.m115.655183] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 12/19/2022] Open
Abstract
Pyroglutamate-modified amyloid-β (pE-Aβ) is a highly neurotoxic amyloid-β (Aβ) isoform and is enriched in the brains of individuals with Alzheimer disease compared with healthy aged controls. Pyroglutamate formation increases the rate of Aβ oligomerization and alters the interactions of Aβ with Cu(2+) and lipids; however, a link between these properties and the toxicity of pE-Aβ peptides has not been established. We report here that Aβ3pE-42 has an enhanced capacity to cause lipid peroxidation in primary cortical mouse neurons compared with the full-length isoform (Aβ(1-42)). In contrast, Aβ(1-42) caused a significant elevation in cytosolic reactive oxygen species, whereas Aβ3pE-42 did not. We also report that Aβ3pE-42 preferentially associates with neuronal membranes and triggers Ca(2+) influx that can be partially blocked by the N-methyl-d-aspartate receptor antagonist MK-801. Aβ3pE-42 further caused a loss of plasma membrane integrity and remained bound to neurons at significantly higher levels than Aβ(1-42) over extended incubations. Pyroglutamate formation was additionally found to increase the relative efficiency of Aβ-dityrosine oligomer formation mediated by copper-redox cycling.
Collapse
Affiliation(s)
- Adam P Gunn
- From the Florey Institute of Neuroscience and Mental Health
| | - Bruce X Wong
- From the Florey Institute of Neuroscience and Mental Health
| | | | - James C Griffith
- Materials Characterisation and Fabrication Platform, University of Melbourne, Parkville, Melbourne 3010, Australia and
| | | | - Ashley I Bush
- From the Florey Institute of Neuroscience and Mental Health, Departments of Pathology and
| | - Kevin J Barnham
- From the Florey Institute of Neuroscience and Mental Health, Pharmacology and Therapeutics, and
| | - James A Duce
- From the Florey Institute of Neuroscience and Mental Health, Departments of Pathology and the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
| | - Robert A Cherny
- From the Florey Institute of Neuroscience and Mental Health,
| |
Collapse
|
160
|
Amyloid-binding proteins: affinity-based separation, proteomic identification, and optical biosensor validation. Methods Mol Biol 2015; 1295:465-77. [PMID: 25820741 DOI: 10.1007/978-1-4939-2550-6_33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The amyloid-beta peptide is considered as a key player in the development and progression of Alzheimer's disease (AD). Although good evidence exists that amyloid-beta accumulates inside cells, intracellular brain amyloid-beta-binding proteins remain poorly characterized. Here we describe a protocol for affinity-based profiling of amyloid-beta-binding proteins of rat brain, their proteomic identification and validation by a surface plasmon resonance (SPR)-based analysis. It includes: (a) SPR-based selection of immobilization conditions for beta-amyloid coupling and choice of appropriate resin for preparation of an affinity sorbent; (b) immobilization of beta-amyloid on the selected resin;
Collapse
|
161
|
Wisniewski T, Drummond E. Developing therapeutic vaccines against Alzheimer's disease. Expert Rev Vaccines 2015; 15:401-15. [PMID: 26577574 PMCID: PMC4940858 DOI: 10.1586/14760584.2016.1121815] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. It is characterized by an imbalance between the production and clearance of amyloid β (Aβ) and tau proteins. In AD these normal proteins accumulate, leading to aggregation and a conformational change forming oligomeric and fibrillary species with a high β-sheet content. Active and passive immunotherapeutic approaches result in dramatic reduction of Aβ pathology in AD animal models. However, there is much more limited evidence in human studies of significant clinical benefits from these strategies and it is becoming apparent that they may only be effective very early in AD. Vaccination targeting only tau pathology has shown benefits in some mouse studies but human studies are limited. Greater therapeutic efficacy for the next generation of vaccine approaches will likely benefit from specifically targeting the most toxic species of Aβ and tau, ideally simultaneously.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| | - Eleanor Drummond
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| |
Collapse
|
162
|
Dammers C, Gremer L, Neudecker P, Demuth HU, Schwarten M, Willbold D. Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-β Variants and Structural Analysis by Solution NMR Spectroscopy. PLoS One 2015; 10:e0139710. [PMID: 26436664 PMCID: PMC4593648 DOI: 10.1371/journal.pone.0139710] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/16/2015] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia in the elderly and is characterized by memory loss and cognitive decline. Pathological hallmark of AD brains are intracellular neurofibrillary tangles and extracellular amyloid plaques. The major component of these plaques is the highly heterogeneous amyloid-β (Aβ) peptide, varying in length and modification. In recent years pyroglutamate-modified amyloid-β (pEAβ) peptides have increasingly moved into the focus since they have been described to be the predominant species of all N-terminally truncated Aβ. Compared to unmodified Aβ, pEAβ is known to show increased hydrophobicity, higher toxicity, faster aggregation and β-sheet stabilization and is more resistant to degradation. Nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful method to investigate the conformations of pEAβ isoforms in solution and to study peptide/ligand interactions for drug development. However, biophysical characterization of pEAβ and comparison to its non-modified variant has so far been seriously hampered by the lack of highly pure recombinant and isotope-enriched protein. Here we present, to our knowledge, for the first time a reproducible protocol for the production of pEAβ from a recombinant precursor expressed in E. coli in natural isotope abundance as well as in uniformly [U-15N]- or [U-13C, 15N]-labeled form, with yields of up to 15 mg/l E. coli culture broth. The chemical state of the purified protein was evaluated by RP-HPLC and formation of pyroglutamate was verified by mass spectroscopy. The recombinant pyroglutamate-modified Aβ peptides showed characteristic sigmoidal aggregation kinetics as monitored by thioflavin-T assays. The quality and quantity of produced pEAβ40 and pEAβ42 allowed us to perform heteronuclear multidimensional NMR spectroscopy in solution and to sequence-specifically assign the backbone resonances under near-physiological conditions. Our results suggest that the presented method will be useful in obtaining cost-effective high-quality recombinant pEAβ40 and pEAβ42 for further physiological and biochemical studies.
Collapse
Affiliation(s)
- Christina Dammers
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lothar Gremer
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Neudecker
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology, Dep. Molecular Drug Biochemistry and Therapy, 06120 Halle (Saale), Germany
| | - Melanie Schwarten
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
163
|
Ji B, Chen CJ, Bando K, Ashino H, Shiraishi H, Sano H, Kasahara H, Minamizawa T, Yamada K, Ono M, Zhang MR, Seki C, Farde L, Suhara T, Higuchi M. Distinct binding of amyloid imaging ligands to unique amyloid-β deposited in the presubiculum of Alzheimer's disease. J Neurochem 2015; 135:859-66. [PMID: 26315807 DOI: 10.1111/jnc.13293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/09/2015] [Accepted: 08/22/2015] [Indexed: 11/28/2022]
Abstract
Non-invasive determination of amyloid-β peptide (Aβ) deposition with radioligands serves for the early diagnosis and clarification of pathogenetic mechanisms of Alzheimer's disease (AD). The polymorphic binding site on multimeric Aβ for current radioligands, however, is little understood. In this study, we investigated the binding of several radioligands including (11)C-Pittsburgh Compound B ((11)C-PiB), (3)H-AZD2184, and two recently developed compounds, (125)I-DRM106 and (125)I-DRK092, with unique presubicular Aβ deposits lacking interaction with the commonly used amyloid dyes FSB. (11)C-PiB, (3)H-AZD2184, and (125)I-DRK092 showed overt binding to presubicular Aβ deposits, while (125)I-DRM106 barely bound to these aggregates despite its strong binding in the hippocampal CA1 sector. Unlike neuritic plaques in the CA1, Aβ lesions in the presubiculum were not accompanied by inflammatory gliosis enriched with 18-kDa translocator protein (TSPO). Thus, there are at least two different components in Aβ aggregates providing distinct binding sites for the current amyloid radioligands, and one of these binding components is distinctly present in the presubicular Aβ deposits. Amyloid radioligands lacking affinity for this component, such as (125)I-DRM106, may selectively capture Aβ deposits tightly associated with TSPO neuroinflammation and neurodegeneration as exemplified by CA1 neuritic plaques. Hence, comparative autoradiographic assessments of radioligand binding in CA1 and presubiculum could serve for the development of an amyloid PET imaging agent visualizing neurotoxicity-related Aβ pathologies. Non-invasive determination of amyloid-β peptide (Aβ) serves for the early diagnosis and clarification of pathogenetic mechanisms of Alzheimer's disease (AD). We found that there are at least two different amyloid components in hippocampal CA1 and presubiculum providing distinct binding sites for the current amyloid radioligands. Comparative analysis for radioligand binding in these two regions could serve for developing novel imaging agents selectively visualizing neurotoxicity-related Aβ pathologies.
Collapse
Affiliation(s)
- Bin Ji
- Molecular Neuroimaging Program, National Institute of Radiological Sciences, Chiba, Japan
| | - Chun-Jen Chen
- Molecular Neuroimaging Program, National Institute of Radiological Sciences, Chiba, Japan.,Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | - Kazunori Bando
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | - Hiroki Ashino
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | | | - Hiroaki Sano
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | | | | | - Kazutaka Yamada
- Clinical Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Maiko Ono
- Molecular Neuroimaging Program, National Institute of Radiological Sciences, Chiba, Japan
| | - Ming-Rong Zhang
- Molecular Probe Program, National Institute of Radiological Sciences, Chiba, Japan
| | - Chie Seki
- Molecular Neuroimaging Program, National Institute of Radiological Sciences, Chiba, Japan
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.,AstraZeneca Translational Science Center, Karolinska Institute, Stockholm, Sweden
| | - Tetsuya Suhara
- Molecular Neuroimaging Program, National Institute of Radiological Sciences, Chiba, Japan
| | - Makoto Higuchi
- Molecular Neuroimaging Program, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
164
|
Role of amyloid-β CSF levels in cognitive deficit in MS. Clin Chim Acta 2015; 449:23-30. [DOI: 10.1016/j.cca.2015.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 11/18/2022]
|
165
|
Frost JL, Liu B, Rahfeld JU, Kleinschmidt M, O'Nuallain B, Le KX, Lues I, Caldarone BJ, Schilling S, Demuth HU, Lemere CA. An anti-pyroglutamate-3 Aβ vaccine reduces plaques and improves cognition in APPswe/PS1ΔE9 mice. Neurobiol Aging 2015; 36:3187-3199. [PMID: 26453001 DOI: 10.1016/j.neurobiolaging.2015.08.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 07/10/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Pyroglutamate-3 amyloid-beta (pGlu-3 Aβ) is an N-terminally truncated Aβ isoform likely playing a decisive role in Alzheimer's disease pathogenesis. Here, we describe a prophylactic passive immunization study in APPswe/PS1ΔE9 mice using a novel pGlu-3 Aβ immunoglobulin G1 (IgG1) monoclonal antibody, 07/1 (150 and 500 μg, intraperitoneal, weekly) and compare its efficacy with a general Aβ IgG1 monoclonal antibody, 3A1 (200 μg, intraperitoneal, weekly) as a positive control. After 28 weeks of treatment, plaque burden was reduced and cognitive performance of 07/1-immunized Tg mice, especially at the higher dose, was normalized to wild-type levels in 2 hippocampal-dependent tests and partially spared compared with phosphate-buffered saline-treated Tg mice. Mice that received 3A1 had reduced plaque burden but showed no cognitive benefit. In contrast with 3A1, treatment with 07/1 did not increase the concentration of Aβ in plasma, suggesting different modes of Aβ plaque clearance. In conclusion, early selective targeting of pGlu-3 Aβ by immunotherapy may be effective in lowering cerebral Aβ plaque burden and preventing cognitive decline in the clinical setting. Targeting this pathologically modified form of Aβ thereby is unlikely to interfere with potential physiologic function(s) of Aβ that have been proposed.
Collapse
Affiliation(s)
- Jeffrey L Frost
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Bin Liu
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | - Brian O'Nuallain
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kevin X Le
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Inge Lues
- Probiodrug AG, Halle (Saale), Germany
| | - Barbara J Caldarone
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard NeuroDiscovery Center NeuroBehavior Laboratory Core, Harvard Institutes of Medicine, Boston, MA, USA
| | | | | | - Cynthia A Lemere
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
166
|
Balakrishnan K, Rijal Upadhaya A, Steinmetz J, Reichwald J, Abramowski D, Fändrich M, Kumar S, Yamaguchi H, Walter J, Staufenbiel M, Thal DR. Impact of amyloid β aggregate maturation on antibody treatment in APP23 mice. Acta Neuropathol Commun 2015; 3:41. [PMID: 26141728 PMCID: PMC4491274 DOI: 10.1186/s40478-015-0217-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction The deposition of the amyloid β protein (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). Removal of Aβ by Aβ-antibody treatment has been developed as a potential treatment strategy against AD. First clinical trials showed neither a stop nor a reduction of disease progression. Recently, we have shown that the formation of soluble and insoluble Aβ aggregates in the human brain follows a hierarchical sequence of three biochemical maturation stages (B-Aβ stages). To test the impact of the B-Aβ stage on Aβ immunotherapy, we treated transgenic mice expressing human amyloid precursor protein (APP) carrying the Swedish mutation (KM670/671NL; APP23) with the Aβ-antibody β1 or phosphate-buffered saline (PBS) beginning 1) at 3 months, before the onset of dendrite degeneration and plaque deposition, and 2) at 7 months, after the start of Aβ plaque deposition and dendrite degeneration. Results At 5 months of age, first Aβ aggregates in APP23 brain consisted of non-modified Aβ (representing B-Aβ stage 1) whereas mature Aβ-aggregates containing N-terminal truncated, pyroglutamate-modified AβN3pE and phosphorylated Aβ (representing B-Aβ stage 3) were found at 11 months of age in both β1- and PBS-treated animals. Protective effects on commissural neurons with highly ramified dendritic trees were observed only in 3-month-old β1-treated animals sacrificed at 5 months. When treatment started at 7 months of age, no differences in the numbers of healthy commissural neurons were observed between β1- and PBS-treated APP23 mice sacrificed with 11 months. Conclusions Aβ antibody treatment was capable of protecting neurons from dendritic degeneration as long as Aβ aggregation was absent or represented B-Aβ stage 1 but had no protective or curative effect in later stages with mature Aβ aggregates (B-Aβ stage 3). These data indicate that the maturation stage of Aβ aggregates has impact on potential treatment effects in APP23 mice. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0217-z) contains supplementary material, which is available to authorized users.
Collapse
|
167
|
Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol 2015; 74:319-44. [PMID: 25756590 DOI: 10.1097/nen.0000000000000176] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To understand neuroinflammation-related gene regulation during normal aging and in sporadic Alzheimer disease (sAD), we performed functional genomics analysis and analyzed messenger RNA (mRNA) expression by quantitative reverse transcription-polymerase chain reaction of 22 genes involved in neuroinflammation-like responses in the cerebral cortex of wild-type and APP/PS1 transgenic mice. For direct comparisons, mRNA expression of 18 of the same genes was then analyzed in the entorhinal cortex, orbitofrontal cortex, and frontal cortex area 8 of middle-aged human subjects lacking Alzheimer disease-related pathology and in older subjects with sAD pathology covering Stages I-II/0(A), III-IV/A-B, and V-VI/C of Braak and Braak classification. Modifications of cytokine and immune mediator mRNA expression were found with normal aging in wild-type mice and in middle-aged individuals and patients with early stages of sAD-related pathology; these were accompanied by increased protein expression of certain mediators in ramified microglia. In APP/PS1 mice, inflammatory changes coincided with β-amyloid (Aβ) deposition; increased levels of soluble oligomers paralleled the modified mRNA expression of cytokines and mediators in wild-type mice. In patients with sAD, regulation was stage- and region-dependent and not merely acceleration and exacerbation of mRNA regulation with aging. Gene regulation at first stages of AD was not related to hyperphosphorylated tau deposition in neurofibrillary tangles, Aβ plaque burden, concentration of Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42), or fibrillar Aβ linked to membranes but rather to increased levels of soluble oligomers. Thus, species differences and region- and stage-dependent inflammatory responses in sAD, particularly at the initial stages, indicate the need to identify new anti-inflammatory compounds with specific molecular therapeutic targets.
Collapse
|
168
|
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is an emerging global epidemic. It is characterized by an imbalance between production and clearance of amyloid β (Aβ) and tau proteins. Oligomeric forms of Aβ and tau are believed to be the most toxic. Dramatic results from AD animal models showed great promise for active and passive immune therapies targeting Aβ. However, there is very limited evidence in human studies of the clinical benefits from these approaches. Immunotherapies targeting only tau pathology have had some success but are limited so far to mouse models. The majority of current methods is based on immunological targeting of a self-protein; hence, benefits need to be balanced against risks of stimulating excessive autoimmune toxic inflammation. For greater efficacy the next generation of vaccines needs to focus more on concurrently targeting all the intermediate toxic conformers of oligomeric Aβ and tau species.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA.
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA
| |
Collapse
|
169
|
Abstract
Proteostasis is maintained by multiple cellular pathways, including protein synthesis, quality control, and degradation. An imbalance of neuronal proteostasis, associated with protein misfolding and aggregation, leads to proteinopathies or neurodegeneration. While genetic variations and protein modifications contribute to aggregate formation, components of the proteostasis network dictate the fate of protein aggregates. Here we provide an overview of proteostasis pathways and their interplay (particularly autophagy) with the metabolism of disease-related proteins. We review recent studies on neuronal activity-mediated regulation of proteostasis and transcellular propagation of protein aggregates in the nervous system. Targeting proteostasis pathways therapeutically remains an attractive but challenging task.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
170
|
Isoglutaminyl cyclase contributes to CCL2-driven neuroinflammation in Alzheimer's disease. Acta Neuropathol 2015; 129:565-83. [PMID: 25666182 PMCID: PMC4366547 DOI: 10.1007/s00401-015-1395-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
The brains of Alzheimer’s disease (AD) patients are characterized by deposits of Abeta peptides and by accompanying chronic inflammation. Here, we provide evidence that the enzyme isoglutaminyl cyclase (isoQC) is a novel factor contributing to both aspects of AD pathology. Two putative substrates of isoQC, N-truncated Abeta peptides and the monocyte chemoattractant chemokine CCL2, undergo isoQC-catalyzed pyroglutamate (pGlu) modification. This triggers Abeta aggregation and facilitates the biological activity of CCL2, which collectively results in the formation of high molecular weight Abeta aggregates, glial cell activation, neuroinflammation and neuronal cell death. In mouse brain, we found isoQC to be neuron-specifically expressed in neocortical, hippocampal and subcortical structures, localized to the endoplasmic reticulum and Golgi apparatus as well as co-expressed with its substrate CCL2. In aged APP transgenic Tg2576 mice, both isoQC and CCL2 mRNA levels are up-regulated and isoQC and CCL2 proteins were found to be co-induced in Abeta plaque-associated reactive astrocytes. Also, in mouse primary astrocyte culture, a simultaneous up-regulation of isoQC and CCL2 expression was revealed upon Abeta and pGlu-Abeta stimulation. In brains of AD patients, the expression of isoQC and CCL2 mRNA and protein is up-regulated compared to controls and correlates with pGlu-Abeta load and with the decline in mini-mental state examination. Our observations provide evidence for a dual involvement of isoQC in AD pathogenesis by catalysis of pGlu-Abeta and pGlu-CCL2 formation which mutually stimulate inflammatory events and affect cognition. We conclude that isoQC inhibition may target both major pathological events in the development of AD.
Collapse
|
171
|
Extracellular vesicles in Alzheimer's disease: friends or foes? Focus on aβ-vesicle interaction. Int J Mol Sci 2015; 16:4800-13. [PMID: 25741766 PMCID: PMC4394450 DOI: 10.3390/ijms16034800] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
The intercellular transfer of amyloid-β (Aβ) and tau proteins has received increasing attention in Alzheimer’s disease (AD). Among other transfer modes, Aβ and tau dissemination has been suggested to occur through release of Extracellular Vesicles (EVs), which may facilitate delivery of pathogenic proteins over large distances. Recent evidence indicates that EVs carry on their surface, specific molecules which bind to extracellular Aβ, opening the possibility that EVs may also influence Aβ assembly and synaptotoxicity. In this review we focus on studies which investigated the impact of EVs in Aβ-mediated neurodegeneration and showed either detrimental or protective role for EVs in the pathology.
Collapse
|
172
|
Thal DR, Walter J, Saido TC, Fändrich M. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer's disease. Acta Neuropathol 2015; 129:167-82. [PMID: 25534025 DOI: 10.1007/s00401-014-1375-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is characterized by β-amyloid plaques and intraneuronal τ aggregation usually associated with cerebral amyloid angiopathy (CAA). Both β-amyloid plaques and CAA deposits contain fibrillar aggregates of the amyloid β-peptide (Aβ). Aβ plaques and CAA develop first in neocortical areas of preclinical AD patients and, then, expand in a characteristic sequence into further brain regions with end-stage pathology in symptomatic AD patients. Aβ aggregates are not restricted to amyloid plaques and CAA. Soluble and several types of insoluble non-plaque- and non-CAA-associated Aβ aggregates have been described. Amyloid fibrils are products of a complex self-assembly process that involves different types of transient intermediates. Amongst these intermediate species are protofibrils and oligomers. Different variants of Aβ peptides may result from alternative processing or from mutations that lead to rare forms of familial AD. These variants can exhibit different self-assembly and aggregation properties. In addition, several post-translational modifications of Aβ have been described that result, for example, in the production of N-terminal truncated Aβ with pyroglutamate modification at position 3 (AβN3pE) or of Aβ phosphorylated at serine 8 (pSer8Aβ). Both AβN3pE and pSer8Aβ show enhanced aggregation into oligomers and fibrils. However, the earliest detectable soluble and insoluble Aβ aggregates in the human brain exhibit non-modified Aβ, whereas AβN3pE and pSer8Aβ are detected in later stages. This finding indicates the existence of different biochemical stages of Aβ aggregate maturation with pSer8Aβ being related mainly to cases with symptomatic AD. The conversion from preclinical to symptomatic AD could thereby be related to combined effects of increased Aβ concentration, maturation of aggregates and spread of deposits into additional brain regions. Thus, the inhibition of Aβ aggregation and maturation before entering the symptomatic stage of the disease as indicated by the accumulation of pSer8Aβ may represent an attractive treatment strategy for preventing disease progression.
Collapse
|
173
|
Hook G, Yu J, Toneff T, Kindy M, Hook V. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic. J Alzheimers Dis 2015; 41:129-49. [PMID: 24595198 DOI: 10.3233/jad-131370] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyroglutamate amyloid-β peptides (pGlu-Aβ) are particularly pernicious forms of amyloid-β peptides (Aβ) present in Alzheimer's disease (AD) brains. pGlu-Aβ peptides are N-terminally truncated forms of full-length Aβ peptides (flAβ(1-40/42)) in which the N-terminal glutamate is cyclized to pyroglutamate to generate pGlu-Aβ(3-40/42). β-secretase cleavage of amyloid-β precursor protein (AβPP) produces flAβ(1-40/42), but it is not yet known whether the β-secretase BACE1 or the alternative β-secretase cathepsin B (CatB) participate in the production of pGlu-Aβ. Therefore, this study examined the effects of gene knockout of these proteases on brain pGlu-Aβ levels in transgenic AβPPLon mice, which express AβPP isoform 695 and have the wild-type (wt) β-secretase activity found in most AD patients. Knockout or overexpression of the CatB gene reduced or increased, respectively, pGlu-Aβ(3-40/42), flAβ(1-40/42), and pGlu-Aβ plaque load, but knockout of the BACE1 gene had no effect on those parameters in the transgenic mice. Treatment of AβPPLon mice with E64d, a cysteine protease inhibitor of CatB, also reduced brain pGlu-Aβ(3-42), flAβ(1-40/42), and pGlu-Aβ plaque load. Treatment of neuronal-like chromaffin cells with CA074Me, an inhibitor of CatB, resulted in reduced levels of pGlu-Aβ(3-40) released from the activity-dependent, regulated secretory pathway. Moreover, CatB knockout and E64d treatment has been previously shown to improve memory deficits in the AβPPLon mice. These data illustrate the role of CatB in producing pGlu-Aβ and flAβ that participate as key factors in the development of AD. The advantages of CatB inhibitors, especially E64d and its derivatives, as alternatives to BACE1 inhibitors in treating AD patients are discussed.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, La Jolla, CA, USA
| | - Jin Yu
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Neurosciences and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Neurosciences and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
174
|
Pivtoraiko VN, Abrahamson EE, Leurgans SE, DeKosky ST, Mufson EJ, Ikonomovic MD. Cortical pyroglutamate amyloid-β levels and cognitive decline in Alzheimer's disease. Neurobiol Aging 2015; 36:12-9. [PMID: 25048160 PMCID: PMC4268150 DOI: 10.1016/j.neurobiolaging.2014.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 02/02/2023]
Abstract
Posterior cingulate cortex (PCC) accumulates amyloid-β (Aβ) early in Alzheimer's disease (AD). The relative concentrations of full-length Aβ and truncated, pyroglutamate-modified Aβ (NpE3) forms, and their correlations to cognitive dysfunction in AD, are unknown. We quantified AβNpE3-42, AβNpE3-40, Aβ1-42, and Aβ1-40 concentrations in soluble (nonfibrillar) and insoluble (fibrillar) pools in PCC from subjects with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment, or mild-moderate AD. In clinical AD, increased PCC concentrations of Aβ were observed for all Aβ forms in the insoluble pool but only for Aβ1-42 in the soluble pool. Lower Mini-Mental State Exam and episodic memory scores correlated most strongly with higher concentrations of soluble and insoluble Aβ1-42. Greater neuropathology severity by Consortium to Establish a Registry for Alzheimer's Disease and National Institute on Aging-Reagan pathologic criteria was associated with higher concentrations of all measured Aβ forms, except soluble AβNpE3-40. Low concentrations of soluble pyroglutamate Aβ across clinical groups likely reflect its rapid sequestration into plaques, thus, the conversion to fibrillar Aβ may be a therapeutic target.
Collapse
Affiliation(s)
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Steven T DeKosky
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
175
|
Oberstein TJ, Spitzer P, Klafki HW, Linning P, Neff F, Knölker HJ, Lewczuk P, Wiltfang J, Kornhuber J, Maler JM. Astrocytes and microglia but not neurons preferentially generate N-terminally truncated Aβ peptides. Neurobiol Dis 2015; 73:24-35. [DOI: 10.1016/j.nbd.2014.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/05/2014] [Accepted: 08/31/2014] [Indexed: 12/30/2022] Open
|
176
|
Brooks AF, Jackson IM, Shao X, Kropog GW, Sherman P, Quesada CA, Scott PJH. Synthesis and evaluation of [ 11C]PBD150, a radiolabeled glutaminyl cyclase inhibitor for the potential detection of Alzheimer's disease prior to amyloid β aggregation. MEDCHEMCOMM 2015; 6:1065-1068. [PMID: 26101580 DOI: 10.1039/c5md00148j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phenol of 1-(3-(1H-imidazol-1-yl)propyl)-3-(4-hydroxy-3-methoxyphenyl)thiourea was selectively carbon-11 labelled to generate [11C]PBD150 in 7.3% yield from [11C]methyl triflate (non-decay corrected; radiochemical purity ≥95%, specific activity = 5.7 Ci/µmol, n=5). Evaluation of [11C]PBD150 by small animal PET imaging (mouse and rat) determined it does not permeate the blood brain barrier, indicating previously described therapeutic effect in transgenic mice was likely not the result of inhibiting central nervous system glutaminyl cyclase.
Collapse
Affiliation(s)
- Allen F Brooks
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Isaac M Jackson
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Xia Shao
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - George W Kropog
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Phillip Sherman
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Carole A Quesada
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Peter J H Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA ; The Interdepartmental Program in Medicinal Chemistry, The University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
177
|
The effects of endogenous non-peptide molecule isatin and hydrogen peroxide on proteomic profiling of rat brain amyloid-β binding proteins: relevance to Alzheimer's disease? Int J Mol Sci 2014; 16:476-95. [PMID: 25551598 PMCID: PMC4307257 DOI: 10.3390/ijms16010476] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/16/2014] [Indexed: 12/27/2022] Open
Abstract
The amyloid-β peptide is considered as a key player in the development and progression of Alzheimer’s disease (AD). Although good evidence exists that amyloid-β accumulates inside cells, intracellular brain amyloid-binding proteins remain poorly characterized. Proteomic profiling of rat brain homogenates, performed in this study, resulted in identification of 89 individual intracellular amyloid-binding proteins, and approximately 25% of them were proteins that we had previously identified as specifically binding to isatin, an endogenous neuroprotector molecule. A significant proportion of the amyloid-binding proteins (more than 30%) are differentially expressed or altered/oxidatively modified in AD patients. Incubation of brain homogenates with 70 µM hydrogen peroxide significantly influenced the profile of amyloid-β binding proteins and 0.1 mM isatin decreased the number of identified amyloid-β binding proteins both in control and hydrogen peroxide treated brain homogenates. The effects of hydrogen peroxide and isatin have been confirmed in optical biosensor experiments with purified glyceraldehyde-3-phosphate dehydrogenase, one of the known crucial amyloid-β binding proteins (also identified in this study). Data obtained suggest that isatin protects crucial intracellular protein targets against amyloid binding, and possibly favors intracellular degradation of this protein via preventing formation of amyloid-β oligomers described in the literature for some isatin derivatives.
Collapse
|
178
|
Waniek A, Hartlage-Rübsamen M, Höfling C, Kehlen A, Schilling S, Demuth HU, Roßner S. Identification of thyrotropin-releasing hormone as hippocampal glutaminyl cyclase substrate in neurons and reactive astrocytes. Biochim Biophys Acta Mol Basis Dis 2014; 1852:146-55. [PMID: 25446989 DOI: 10.1016/j.bbadis.2014.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023]
Abstract
Recently, Aβ peptide variants with an N-terminal truncation and pyroglutamate modification were identified and shown to be highly neurotoxic and prone to aggregation. This modification of Aβ is catalyzed by glutaminyl cyclase (QC) and pharmacological inhibition of QC diminishes Aβ deposition and accompanying gliosis and ameliorates memory impairment in transgenic mouse models of Alzheimer's disease (AD). QC expression was initially described in the hypothalamus, where thyrotropin-releasing hormone (TRH) is one of its physiological substrates. In addition to its hormonal role, a novel neuroprotective function of TRH following excitotoxicity and Aβ-mediated neurotoxicity has been reported in the hippocampus. Functionally matching this finding, we recently demonstrated QC expression by hippocampal interneurons in mouse brain. Here, we detected neuronal co-expression of QC and TRH in the hippocampus of young adult wild type mice using double immunofluorescence labeling. This provides evidence for TRH being a physiological QC substrate in hippocampus. Additionally, in neocortex of aged but not of young mice transgenic for amyloid precursor protein an increase of QC mRNA levels was found compared to wild type littermates. This phenomenon was not observed in hippocampus, which is later affected by Aβ pathology. However, in hippocampus of transgenic - but not of wild type mice - a correlation between QC and TRH mRNA levels was revealed. This co-regulation of the enzyme QC and its substrate TRH was reflected by a co-induction of both proteins in reactive astrocytes in proximity of Aβ deposits. Also, in primary mouse astrocytes a co-induction of QC and TRH was demonstrated upon Aβ stimulation.
Collapse
Affiliation(s)
- Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | - Astrid Kehlen
- Institute for Medical Microbiology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Stephan Schilling
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT Halle, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany.
| |
Collapse
|
179
|
Jang H, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R. Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs. Chem Soc Rev 2014; 43:6750-64. [PMID: 24566672 PMCID: PMC4143503 DOI: 10.1039/c3cs60459d] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aggregation of disordered amyloidogenic peptides into oligomers is the causative agent of amyloid-related diseases. In solution, disordered protein states are characterized by heterogeneous ensembles. Among these, β-rich conformers self-assemble via a conformational selection mechanism to form energetically-favored cross-β structures, regardless of their precise sequences. These disordered peptides can also penetrate the membrane, and electrophysiological data indicate that they form ion-conducting channels. Based on these and additional data, including imaging and molecular dynamics simulations of a range of amyloid peptides, Alzheimer's amyloid-β (Aβ) peptide, its disease-related variants with point mutations and N-terminal truncated species, other amyloidogenic peptides, as well as a cytolytic peptide and a synthetic gel-forming peptide, we suggest that disordered amyloidogenic peptides can also present a common motif in the membrane. The motif consists of curved, moon-like β-rich oligomers associated into annular organizations. The motif is favored in the lipid bilayer since it permits hydrophobic side chains to face and interact with the membrane and the charged/polar residues to face the solvated channel pores. Such channels are toxic since their pores allow uncontrolled leakage of ions into/out of the cell, destabilizing cellular ionic homeostasis. Here we detail Aβ, whose aggregation is associated with Alzheimer's disease (AD) and for which there are the most abundant data. AD is a protein misfolding disease characterized by a build-up of Aβ peptide as senile plaques, neurodegeneration, and memory loss. Excessively produced Aβ peptides may directly induce cellular toxicity, even without the involvement of membrane receptors through Aβ peptide-plasma membrane interactions.
Collapse
Affiliation(s)
- Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, U.S.A
| | - Fernando Teran Arce
- Departments of Bioengineering and of Mechanical and Aerospace Engineering, and Materials Science Program, University of California, San Diego, La Jolla, California 92093, U.S.A
| | - Srinivasan Ramachandran
- Departments of Bioengineering and of Mechanical and Aerospace Engineering, and Materials Science Program, University of California, San Diego, La Jolla, California 92093, U.S.A
| | - Bruce L. Kagan
- Department of Psychiatry, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90024, U.S.A
| | - Ratnesh Lal
- Departments of Bioengineering and of Mechanical and Aerospace Engineering, and Materials Science Program, University of California, San Diego, La Jolla, California 92093, U.S.A
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
180
|
Luccarini I, Grossi C, Rigacci S, Coppi E, Pugliese AM, Pantano D, la Marca G, Ed Dami T, Berti A, Stefani M, Casamenti F. Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ß toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging 2014; 36:648-63. [PMID: 25293421 DOI: 10.1016/j.neurobiolaging.2014.08.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/01/2014] [Accepted: 08/28/2014] [Indexed: 01/12/2023]
Abstract
Amyloid-ß (Aß) fragments, oligomeric Aß aggregates, and pyroglutamylated-Aß peptides, as well as epigenetic mechanisms and autophagy dysfunction all appear to contribute in various ways to Alzheimer's disease progression. We previously showed that dietary supplementation of oleuropein aglycone, a natural phenol abundant in the extra virgin olive oil, can be protective by reducing Aß42 deposits in the brain of young and middle-aged TgCRND8 mice. Here, we extended our study to aged TgCRND8 mice showing increased pE3-Aß in the brain deposits. We report that oleuropein aglycone is active against glutaminylcyclase-catalyzed pE3-Aß generation reducing enzyme expression and interferes both with Aß42 and pE3-Aß aggregation. Moreover, the phenol astonishingly activates neuronal autophagy even in mice at advanced stage of pathology, where it increases histone 3 and 4 acetylation, which matches both a decrease of histone deacetylase 2 expression and a significant improvement of synaptic function. The occurrence of these functional, epigenetic, and histopathologic beneficial effects even at a late stage of the pathology suggests that the phenol could be beneficial at the therapeutic, in addition to the prevention, level.
Collapse
Affiliation(s)
- Ilaria Luccarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Cristina Grossi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giancarlo la Marca
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy; Department of NEUROFARBA, Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Teresa Ed Dami
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy; Department of NEUROFARBA, Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Andrea Berti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| |
Collapse
|
181
|
Allan K, Perez KA, Barnham KJ, Camakaris J, Burke R. A commonly usedDrosophilamodel of Alzheimer's disease generates an aberrant species of amyloid-β with an additional N-terminal glutamine residue. FEBS Lett 2014; 588:3739-43. [DOI: 10.1016/j.febslet.2014.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
182
|
Lee J, Gillman AL, Jang H, Ramachandran S, Kagan BL, Nussinov R, Teran Arce F. Role of the fast kinetics of pyroglutamate-modified amyloid-β oligomers in membrane binding and membrane permeability. Biochemistry 2014; 53:4704-14. [PMID: 24950761 PMCID: PMC4215883 DOI: 10.1021/bi500587p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Membrane
permeability to ions and small molecules is believed to
be a critical step in the pathology of Alzheimer’s disease
(AD). Interactions of oligomers formed by amyloid-β (Aβ)
peptides with the plasma cell membrane are believed to play a fundamental
role in the processes leading to membrane permeability. Among the
family of Aβs, pyroglutamate (pE)-modified Aβ peptides
constitute the most abundant oligomeric species in the brains of AD
patients. Although membrane permeability mechanisms have been studied
for full-length Aβ1–40/42 peptides, these
have not been sufficiently characterized for the more abundant AβpE3–42 fragment. Here we have compared the adsorbed
and membrane-inserted oligomeric species of AβpE3–42 and Aβ1–42 peptides. We find lower concentrations
and larger dimensions for both species of membrane-associated AβpE3–42 oligomers. The larger dimensions are attributed
to the faster self-assembly kinetics of AβpE3–42, and the lower concentrations are attributed to weaker interactions
with zwitterionic lipid headgroups. While adsorbed oligomers produced
little or no significant membrane structural damage, increased membrane
permeabilization to ionic species is understood in terms of enlarged
membrane-inserted oligomers. Membrane-inserted AβpE3–42 oligomers were also found to modify the mechanical properties of
the membrane. Taken together, our results suggest that membrane-inserted
oligomers are the primary species responsible for membrane permeability.
Collapse
Affiliation(s)
- Joon Lee
- Department of Bioengineering, University of California at San Diego , La Jolla, California 92093, United States
| | | | | | | | | | | | | |
Collapse
|
183
|
Gillman AL, Jang H, Lee J, Ramachandran S, Kagan B, Nussinov R, Teran Arce F. Activity and architecture of pyroglutamate-modified amyloid-β (AβpE3-42) pores. J Phys Chem B 2014; 118:7335-44. [PMID: 24922585 PMCID: PMC4096221 DOI: 10.1021/jp5040954] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/10/2014] [Indexed: 12/17/2022]
Abstract
Among the family of Aβ peptides, pyroglutamate-modified Aβ (AβpE) peptides are particularly associated with cytotoxicity in Alzheimer's disease (AD). They represent the dominant fraction of Aβ oligomers in the brains of AD patients, but their accumulation in the brains of elderly individuals with normal cognition is significantly lower. Accumulation of AβpE plaques precedes the formation of plaques of full-length Aβ (Aβ1-40/42). Most of these properties appear to be associated with the higher hydrophobicity of AβpE as well as an increased resistance to enzymatic degradation. However, the important question of whether AβpE peptides induce pore activity in lipid membranes and their potential toxicity compared with other Aβ pores is still open. Here we examine the activity of AβpE pores in anionic membranes using planar bilayer electrical recording and provide their structures using molecular dynamics simulations. We find that AβpE pores spontaneously induce ionic current across the membrane and have some similar properties to the other previously studied pores of the Aβ family. However, there are also some significant differences. The onset of AβpE3-42 pore activity is generally delayed compared with Aβ1-42 pores. However, once formed, AβpE3-42 pores produce increased ion permeability of the membrane, as indicated by a greater occurrence of higher conductance electrical events. Structurally, the lactam ring of AβpE peptides induces a change in the conformation of the N-terminal strands of the AβpE3-42 pores. While the N-termini of wild-type Aβ1-42 peptides normally reside in the bulk water region, the N-termini of AβpE3-42 peptides tend to reside in the hydrophobic lipid core. These studies provide a first step to an understanding of the enhanced toxicity attributed to AβpE peptides.
Collapse
Affiliation(s)
- Alan L. Gillman
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Hyunbum Jang
- Cancer
and Inflammation Program, National Cancer Institute at Frederick,
Leidos Biomedical Research, Inc., Frederick
National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joon Lee
- Department
of Mechanical and Aerospace Engineering and Material Science Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Srinivasan Ramachandran
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Mechanical and Aerospace Engineering and Material Science Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bruce
L. Kagan
- Department
of Psychiatry, David Geffen School of Medicine, Semel Institute for
Neuroscience and Human Behavior, University
of California, 760 Westwood
Plaza, Los Angeles, California 90024, United States
| | - Ruth Nussinov
- Cancer
and Inflammation Program, National Cancer Institute at Frederick,
Leidos Biomedical Research, Inc., Frederick
National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fernando Teran Arce
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Mechanical and Aerospace Engineering and Material Science Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
184
|
Mandler M, Walker L, Santic R, Hanson P, Upadhaya AR, Colloby SJ, Morris CM, Thal DR, Thomas AJ, Schneeberger A, Attems J. Pyroglutamylated amyloid-β is associated with hyperphosphorylated tau and severity of Alzheimer's disease. Acta Neuropathol 2014; 128:67-79. [PMID: 24861310 DOI: 10.1007/s00401-014-1296-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/11/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022]
Abstract
Pyroglutamylated amyloid-β (pE(3)-Aβ) has been suggested to play a major role in Alzheimer's disease (AD) pathogenesis as amyloid-β (Aβ) oligomers containing pE(3)-Aβ might initiate tau-dependent cytotoxicity. We aimed to further elucidate the associations among pE(3)-Aβ, full-length Aβ and hyperphosphorylated tau (HP-τ) in human brain tissue. We examined 41 post mortem brains of both AD (n = 18) and controls. Sections from frontal and entorhinal cortices were stained with pE(3)-Aβ, HP-τ and full-length Aβ antibodies. The respective loads were assessed using image analysis and western blot analysis was performed in a subset of cases. All loads were significantly higher in AD, but when using Aβ loads as independent variables only frontal pE(3)-Aβ load predicted AD. In frontal and entorhinal cortices pE(3)-Aβ load independently predicted HP-τ load while non-pE(3)-Aβ failed to do so. All loads correlated with the severity of AD neuropathology. However, partial correlation analysis revealed respective correlations in the frontal cortex only for pE(3)-Aβ load only while in the entorhinal cortex respective correlations were seen for both HP-τ and non-pE(3)-Aβ loads. Mini Mental State Examination scores were independently predicted by entorhinal HP-τ load and by frontal pE(3)-Aβ load. Here, we report an association between pE(3)-Aβ and HP-τ in human brain tissue and an influence of frontal pE(3)-Aβ on both the severity of AD neuropathology and clinical dementia. Our findings further support the notion that pE(3)-Aβ may represent an important link between Aβ and HP-τ, and investigations into its role as diagnostic and therapeutic target in AD are warranted.
Collapse
Affiliation(s)
- Markus Mandler
- AFFiRiS AG, Vienna Biocenter, Karl-Farkas-Gasse 22, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Cynis H, Funkelstein L, Toneff T, Mosier C, Ziegler M, Koch B, Demuth HU, Hook V. Pyroglutamate-amyloid-β and glutaminyl cyclase are colocalized with amyloid-β in secretory vesicles and undergo activity-dependent, regulated secretion. NEURODEGENER DIS 2014; 14:85-97. [PMID: 24943989 DOI: 10.1159/000358430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/07/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS N-truncated pyroglutamate (pGlu)-amyloid-β [Aβ(3-40/42)] peptides are key components that promote Aβ peptide accumulation, leading to neurodegeneration and memory loss in Alzheimer's disease. Because Aβ deposition in the brain occurs in an activity-dependent manner, it is important to define the subcellular organelle for pGlu-Aβ(3-40/42) production by glutaminyl cyclase (QC) and their colocalization with full-length Aβ(1-40/42) peptides for activity-dependent, regulated secretion. Therefore, the objective of this study was to investigate the hypothesis that pGlu-Aβ and QC are colocalized with Aβ in dense-core secretory vesicles (DCSV) for activity-dependent secretion with neurotransmitters. METHODS Purified DCSV were assessed for pGlu-Aβ(3-40/42), Aβ(1-40/42), QC, and neurotransmitter secretion. Neuron-like chromaffin cells were analyzed for cosecretion of pGlu-Aβ, QC, Aβ, and neuropeptides. The cells were treated with a QC inhibitor, and pGlu-Aβ production was measured. Human neuroblastoma cells were also examined for pGlu-Aβ and QC secretion. RESULTS Isolated DCSV contain pGlu-Aβ(3-40/42), QC, and Aβ(1-40/42) with neuropeptide and catecholamine neurotransmitters. Cellular pGlu-Aβ and QC undergo activity-dependent cosecretion with Aβ and enkephalin and galanin neurotransmitters. The QC inhibitor decreased the level of secreted pGlu-Aβ. The human neuroblastoma cells displayed regulated secretion of pGlu-Aβ that was colocalized with QC. CONCLUSIONS pGlu-Aβ and QC are present with Aβ in DCSV and undergo activity-dependent, regulated cosecretion with neurotransmitters.
Collapse
|
186
|
Höfling C, Indrischek H, Höpcke T, Waniek A, Cynis H, Koch B, Schilling S, Morawski M, Demuth HU, Roßner S, Hartlage-Rübsamen M. Mouse strain and brain region-specific expression of the glutaminyl cyclases QC and isoQC. Int J Dev Neurosci 2014; 36:64-73. [PMID: 24886834 DOI: 10.1016/j.ijdevneu.2014.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022] Open
Abstract
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) from glutamine precursors at the N-terminus of a number of peptide hormones, neuropeptides and chemokines. This post-translational modification stabilizes these peptides, protects them from proteolytical degradation or is important for their biological activity. However, QC is also involved in a pathogenic pGlu modification of peptides accumulating in protein aggregation disorders such as Alzheimer's disease and familial Danish and familial British dementia. Its isoenzyme (isoQC) was shown to contribute to aspects of inflammation by pGlu-modifying and thereby stabilizing the monocyte chemoattractant protein CCL2. For the generation of respective animal models and for pharmacological treatment studies the characterization of the mouse strain and brain region-specific expression of QC and isoQC is indispensible. In order to address this issue, we used enzymatic activity assays and specific antibodies to detect both QC variants by immunohistochemistry in nine different mouse strains. Comparing different brain regions, the highest enzymatic QC/isoQC activity was detected in ventral brain, followed by cortex and hippocampus. Immunohistochemical stainings revealed that QC/isoQC activity in cortex mostly arises from isoQC expression. For most brain regions, the highest QC/isoQC activity was detected in C3H and FVB mice, whereas low QC/isoQC activity was present in CD1, SJL and C57 mice. Quantification of QC- and isoQC-immunoreactive cells by unbiased stereology revealed a higher abundance of isoQC- than of QC-immunoreactive neurons in Edinger-Westphal nucleus and in substantia nigra. In the locus coeruleus, however, there were comparable densities of QC- and of isoQC-immunoreactive neurons. These observations are of considerable importance with regard to the selection of appropriate mouse strains for the study of QC/isoQC relevance in mouse models of neurodegeneration and neuroinflammation and for the testing of therapeutical interventions in these models.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henrike Indrischek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Theodor Höpcke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Holger Cynis
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Birgit Koch
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Stephan Schilling
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
187
|
Kummer MP, Heneka MT. Truncated and modified amyloid-beta species. ALZHEIMERS RESEARCH & THERAPY 2014; 6:28. [PMID: 25031638 PMCID: PMC4055046 DOI: 10.1186/alzrt258] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease pathology is closely connected to the processing of the amyloid precursor protein (APP) resulting in the formation of a variety of amyloid-beta (Aβ) peptides. They are found as insoluble aggregates in senile plaques, the histopathological hallmark of the disease. These peptides are also found in soluble, mostly monomeric and dimeric, forms in the interstitial and cerebrospinal fluid. Due to the combination of several enzymatic activities during APP processing, Aβ peptides exist in multiple isoforms possessing different N-termini and C-termini. These peptides include, to a certain extent, part of the juxtamembrane and transmembrane domain of APP. Besides differences in size, post-translational modifications of Aβ – including oxidation, phosphorylation, nitration, racemization, isomerization, pyroglutamylation, and glycosylation – generate a plethora of peptides with different physiological and pathological properties that may modulate disease progression.
Collapse
Affiliation(s)
- Markus P Kummer
- Department of Neurology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Michael T Heneka
- Department of Neurology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Holbeinstrasse 15, 53117 Bonn, Germany
| |
Collapse
|
188
|
Matos JO, Goldblatt G, Jeon J, Chen B, Tatulian SA. Pyroglutamylated amyloid-β peptide reverses cross β-sheets by a prion-like mechanism. J Phys Chem B 2014; 118:5637-43. [PMID: 24802697 PMCID: PMC4216196 DOI: 10.1021/jp412743s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The amyloid hypothesis causatively
relates the fibrillar deposits
of amyloid β peptide (Aβ) to Alzheimer’s disease
(AD). More recent data, however, identify the soluble oligomers as
the major cytotoxic entities. Pyroglutamylated Aβ (pE-Aβ)
is present in AD brains and exerts augmented neurotoxicity, which
is believed to result from its higher β-sheet propensity and
faster fibrillization. While this concept is based on a set of experimental
results, others have reported similar β-sheet contents in unmodified
and pyroglutamylated Aβ, and slower aggregation of pE-Aβ
as compared to unmodified Aβ, leaving the issue unresolved.
Here, we assess the structural differences between Aβ and pE-Aβ
peptides that may underlie their distinct cytotoxicities. Transmission
electron microscopy identifies a larger number of prefibrillar aggregates
of pE-Aβ at early stages of aggregation and suggests that pE-Aβ
affects the fibrillogenesis even at low molar fractions. Circular
dichroism and FTIR data indicate that while the unmodified Aβ
readily forms β-sheet fibrils in aqueous media, pE-Aβ
displays increased α-helical and decreased β-sheet propensity.
Moreover, isotope-edited FTIR spectroscopy shows that pE-Aβ
reverses β-sheet formation and hence fibrillogenesis of the
unmodified Aβ peptide via a prion-like mechanism. These data
provide a novel structural mechanism for pE-Aβ hypertoxicity;
pE-Aβ undergoes faster formation of prefibrillar aggregates
due to its increased hydrophobicity, thus shifting the initial stages
of fibrillogenesis toward smaller, hypertoxic oligomers of partial
α-helical structure.
Collapse
Affiliation(s)
- Jason O Matos
- Biotechnology Graduate Program, University of Central Florida , 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | | | | | | | | |
Collapse
|
189
|
Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer's disease. Acta Neuropathol 2014; 127:787-801. [PMID: 24803226 PMCID: PMC4024135 DOI: 10.1007/s00401-014-1287-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
Although N-truncated Aβ variants are known to be the main constituent of amyloid plaques in the brains of patients with Alzheimer’s disease, their potential as targets for pharmacological intervention has only recently been investigated. In the last few years, the Alzheimer field has experienced a paradigm shift with the ever increasing understanding that targeting amyloid plaques has not led to a successful immunotherapy. On the other hand, there can be no doubt that the amyloid cascade hypothesis is central to the etiology of Alzheimer’s disease, raising the question as to why it is apparently failing to translate into the clinic. In this review, we aim to refocus the amyloid hypothesis integrating N-truncated Aβ peptides based on mounting evidence that they may represent better targets than full-length Aβ. In addition to Aβ peptides starting with an Asp at position 1, a variety of different N-truncated Aβ peptides have been identified starting with amino residue Ala-2, pyroglutamylated Glu-3, Phe-4, Arg-5, His-6, Asp-7, Ser-8, Gly-9, Tyr-10 and pyroglutamylated Glu-11. Certain forms of N-truncated species are better correlates for early pathological changes found pre-symptomatically more often than others. There is also evidence that, together with full-length Aβ, they might be physiologically detectable and are naturally secreted by neurons. Others are known to form soluble aggregates, which have neurotoxic properties in transgenic mouse models. It has been clearly demonstrated by several groups that some N-truncated Aβs dominate full-length Aβ in the brains of Alzheimer’s patients. We try to address which of the N-truncated variants may be promising therapeutic targets and which enzymes might be involved in the generation of these peptides
Collapse
|
190
|
Wisniewski T, Goñi F. Immunotherapy for Alzheimer's disease. Biochem Pharmacol 2014; 88:499-507. [PMID: 24412277 PMCID: PMC3972315 DOI: 10.1016/j.bcp.2013.12.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. In AD the normal soluble amyloid β (sAβ) peptide is converted into oligomeric/fibrillar Aβ. The oligomeric forms of Aβ are thought to be the most toxic, while fibrillar Aβ becomes deposited as amyloid plaques and congophilic angiopathy, which serve as neuropathological markers of the disease. In addition the accumulation of abnormally phosphorylated tau as soluble toxic oligomers and as neurofibrillary tangles is a critical part of the pathology. Numerous therapeutic interventions are under investigation to prevent and treat AD. Among the more exciting and advanced of these approaches is vaccination. Active and passive Immunotherapy targeting only Aβ has been successful in many AD model animal trials; however, the more limited human data has shown much less benefit so far, with encephalitis occurring in a minority of patients treated with active immunization and vasogenic edema or amyloid-related imaging abnormalities (ARIA) being a complication in some passive immunization trials. Therapeutic intervention targeting only tau has been tested only in mouse models; and no approaches targeting both pathologies concurrently has been attempted, until very recently. The immune approaches tried so far were targeting a self-protein, albeit in an abnormal conformation; however, effective enhanced clearance of the disease associated conformer has to be balanced with the potential risk of stimulating excessive toxic inflammation. The design of future more effective immunomodulatory approaches will need to target all aspects of AD pathology, as well as specifically targeting pathological oligomeric conformers, without the use of any self-antigen.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Departments of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, NY 10016, United States; Departments of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, NY 10016, United States; Departments of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, NY 10016, United States.
| | - Fernando Goñi
- Departments of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, NY 10016, United States
| |
Collapse
|
191
|
Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC. Single App knock-in mouse models of Alzheimer's disease. Nat Neurosci 2014; 17:661-3. [PMID: 24728269 DOI: 10.1038/nn.3697] [Citation(s) in RCA: 832] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/12/2014] [Indexed: 11/09/2022]
Abstract
Experimental studies of Alzheimer's disease have largely depended on transgenic mice overexpressing amyloid precursor protein (APP). These mice, however, suffer from artificial phenotypes because, in addition to amyloid β peptide (Aβ), they overproduce other APP fragments. We generated knock-in mice that harbor Swedish and Beyreuther/Iberian mutations with and without the Arctic mutation in the APP gene. The mice showed typical Aβ pathology, neuroinflammation and memory impairment in an age-dependent manner.
Collapse
Affiliation(s)
- Takashi Saito
- 1] Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan. [2] Japan Science and Technology Agency, Saitama, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Jiro Takano
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Nobuhisa Iwata
- 1] Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan. [2] Department of Molecular Medicinal Sciences, Division of Biotechnology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| |
Collapse
|
192
|
Huesgen PF, Lange PF, Overall CM. Ensembles of protein termini and specific proteolytic signatures as candidate biomarkers of disease. Proteomics Clin Appl 2014; 8:338-50. [PMID: 24497460 DOI: 10.1002/prca.201300104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 12/23/2022]
Abstract
Early accurate diagnosis and personalized treatment are essential in order to treat complex or fatal diseases such as cancer and autoimmune, cardiovascular and neurodegenerative diseases. To realize this vision, new diagnostic and prognostic biomarkers are urgently required. MS-based proteomics is the most promising approach for protein biomarker identification, but suffers in clinical translation of biomarker candidates that show only quantitative differences from normal tissue. Indeed, success in translating proteomic data to biomarkers in the clinic has been disappointing. Here, we propose that protein termini provide a new opportunity for biomarker discovery due to qualitative differences in intact and new protein termini between diseased and normal tissues. Altered proteolysis occurs in most pathologies. Disease- and process-specific protein modifications, including proteolytic processing and subsequent modification of the terminal amino acids, frequently lead to altered protein activity that plays key roles in the disease process. Thus, mapping of ensembles of characteristic protein termini provides a proteolytic signature of high information content that shows both quantitative and most importantly qualitative differences in different diseases and stage of disease. These unique protein biomarkers have the added benefit of being mechanistically informative by revealing the activity state of the bioactive protein. Moreover, proteome-wide isolation of protein termini leads to generalized sample simplification, thereby enabling up to three orders of magnitude lower LODs compared to traditional shotgun proteomic approaches. We introduce the potential of protein termini for biomarker discovery, briefly review methods enabling large-scale studies of protein termini, and discuss how these may be integrated into a termini-oriented biomarker discovery pipeline from discovery to clinical application.
Collapse
Affiliation(s)
- Pitter F Huesgen
- Centre for Blood Research, University of British Columbia, Vancouver, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
193
|
Kövari E, Herrmann FR, Hof PR, Bouras C. The relationship between cerebral amyloid angiopathy and cortical microinfarcts in brain ageing and Alzheimer's disease. Neuropathol Appl Neurobiol 2014; 39:498-509. [PMID: 23163235 DOI: 10.1111/nan.12003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/13/2012] [Indexed: 11/28/2022]
Abstract
AIMS Cerebral amyloid angiopathy (CAA) represents the deposition of amyloid β protein (Aβ) in the meningeal and intracerebral vessels. It is often observed as an accompanying lesion of Alzheimer's disease (AD) or in the brain of elderly individuals even in the absence of dementia. CAA is largely age-dependent. In subjects with severe CAA a higher frequency of vascular lesions has been reported. The goal of our study was to define the frequency and distribution of CAA in a 1-year autopsy population (91 cases) from the Department of Internal Medicine, Rehabilitation, and Geriatrics, Geneva. MATERIALS AND METHODS Five brain regions were examined, including the hippocampus, and the inferior temporal, frontal, parietal and occipital cortex, using an antibody against Aβ, and simultaneously assessing the severity of AD-type pathology with Braak stages for neurofibrillary tangles identified with an anti-tau antibody. In parallel, the relationships of CAA with vascular brain lesions were established. RESULTS CAA was present in 53.8% of the studied population, even in cases without AD (50.6%). The strongest correlation was seen between CAA and age, followed by the severity of amyloid plaques deposition. Microinfarcts were more frequent in cases with CAA; however, our results did not confirm a correlation between these parameters. CONCLUSION The present data show that CAA plays a role in the development of microvascular lesions in the ageing brain, but cannot be considered as the most important factor in this vascular pathology, suggesting that other mechanisms also contribute importantly to the pathogenesis of microvascular changes.
Collapse
Affiliation(s)
- E Kövari
- Department of Mental Health and Psychiatry, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
194
|
Rijal Upadhaya A, Kosterin I, Kumar S, von Arnim CAF, Yamaguchi H, Fändrich M, Walter J, Thal DR. Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer’s disease. Brain 2014; 137:887-903. [PMID: 24519982 DOI: 10.1093/brain/awt362] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ajeet Rijal Upadhaya
- 1 Laboratory of Neuropathology, Institute of Pathology, Centre for Clinical Research at the University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Caillava C, Ranaldi S, Lauritzen I, Bauer C, Fareh J, Abraham JD, Checler F. Study on Aβ34 biology and detection in transgenic mice brains. Neurobiol Aging 2014; 35:1570-81. [PMID: 24495834 DOI: 10.1016/j.neurobiolaging.2014.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
The β-amyloid precursor protein undergoes cleavages by β- and γ-secretasses yielding amyloid-β peptides (Aβ) that accumulate in Alzheimer's disease. Subsequently, Aβ peptides are targets of additional truncations or endoproteolytic cleavages explaining the diversity of Aβ-related fragments recovered in cell media or pathologic human fluids. Here, we focused on Aβ1-34 (Aβ34) that has been detected both in vitro and in vivo and that derives from the hydrolysis of Aβ by β-secretase. We have obtained and fully characterized by immunologic and biochemical approaches, a polyclonal antibody that specifically recognizes the C-terminus of Aβx-34. We present immunohistochemical evidence for the presence of Aβx-34 in the brain of 3xTg mice and Alzheimer's disease-affected human brains. Finally, we demonstrate a neprilysin-mediated degradation process of Aβ34 and the ability of synthetic Aβ34 to protect HEK cells overexpressing either wild type or Swedish-mutated β-amyloid precursor protein from apoptosis.
Collapse
Affiliation(s)
- Céline Caillava
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, Team "Fondation pour la Recherche Médicale" and "Labex Distalz", Valbonne, France
| | | | - Inger Lauritzen
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, Team "Fondation pour la Recherche Médicale" and "Labex Distalz", Valbonne, France
| | - Charlotte Bauer
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, Team "Fondation pour la Recherche Médicale" and "Labex Distalz", Valbonne, France
| | - Jeannette Fareh
- SysDiag CNRS-Bio-Rad, UMR3145, SysDiag,, Montpellier, France
| | | | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, Team "Fondation pour la Recherche Médicale" and "Labex Distalz", Valbonne, France.
| |
Collapse
|
196
|
Perez-Garmendia R, Gevorkian G. Pyroglutamate-Modified Amyloid Beta Peptides: Emerging Targets for Alzheimer´s Disease Immunotherapy. Curr Neuropharmacol 2014; 11:491-8. [PMID: 24403873 PMCID: PMC3763757 DOI: 10.2174/1570159x11311050004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/16/2013] [Accepted: 03/28/2013] [Indexed: 12/25/2022] Open
Abstract
Extracellular and intraneuronal accumulation of amyloid-beta (Aβ) peptide aggregates in the brain has been hypothesized to play an important role in the neuropathology of Alzheimer’s Disease (AD). The main Aβ variants detected in the human brain are Aβ1-40 and Aβ1-42, however a significant proportion of AD brain Aβ consists also of N-terminal truncated species. Pyroglutamate-modified Aβ peptides have been demonstrated to be the predominant components among all N-terminal truncated Aβ species in AD brains and represent highly desirable and abundant therapeutic targets. The current review describes the properties and localization of two pyroglutamate-modified Aβ peptides, AβN3(pE) and AβN11(pE), in the brain. The role of glutaminyl cyclase (QC) in the formation of these peptides is also addressed. In addition, two potential therapeutic strategies, the inhibition of QC and immunotherapy approaches, and clinical trials aimed to target these important pathological Aβ species are reviewed.
Collapse
Affiliation(s)
- Roxanna Perez-Garmendia
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
197
|
Sabharwal P, Wisniewski T. Novel immunological approaches for the treatment of Alzheimer's disease. ZHONGGUO XIAN DAI SHEN JING JI BING ZA ZHI 2014; 14:139-151. [PMID: 25429302 PMCID: PMC4241771 DOI: 10.3969/j.issn.1672-6731.2014.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia worldwide, can be deemed as the next global health epidemic. The biochemistry underlying deposition of amyloid beta (A β) and hyperphosphorylated tau aggregates in AD has been extensively studied. The oligomeric forms of A β that are derived from the normal soluble A β peptides are believed to be the most toxic. However, it is the fibrillar Aβ form that aggregates as amyloid plaques and cerebral amyloid angiopathy, which serve as pathological hallmarks of AD. Moreover, deposits of abnormally phosphorylated tau that form soluble toxic oligomers and then accumulate as neurofibrillary tangles are an essential part of AD pathology. Currently, many strategies are being tested that either inhibit, eradicate or prevent the development of plaques in AD. An exciting new approach on the horizon is the immunization approach. Dramatic results from AD animal models have shown promise for active and passive immune therapies targeting A β. However, there is very limited data in humans that suggests a clear benefit. Some hurdles faced with these studies arise from complications noted with therapy. Encephalitis has been reported in trials of active immunization and vasogenic edema or amyloid - related imaging abnormalities (ARIA) has been reported with passive immunization in a minority of patients. As yet, therapies targeting only tau are still limited to mouse models with few studies targeting both pathologies. As the majority of approaches tried so far are based on targeting a self - protein, though in an abnormal conformation, benefits of therapy need to be balanced against the possible risks of stimulating excessive toxic inflammation. For better efficacy, future strategies will need to focus on the toxic oligomers and targeting all aspects of AD pathology.
Collapse
Affiliation(s)
- Priyanka Sabharwal
- Department of Neurology, New York University School of Medicine, New York, USA
| | - Thomas Wisniewski
- Department of Neurology, New York University School of Medicine, New York, USA
- Department of Pathology, New York University School of Medicine, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|
198
|
Wu G, Miller RA, Connolly B, Marcus J, Renger J, Savage MJ. Pyroglutamate-Modified Amyloid-� Protein Demonstrates Similar Properties in an Alzheimer's Disease Familial Mutant Knock-In Mouse and Alzheimer's Disease Brain. NEURODEGENER DIS 2014; 14:53-66. [DOI: 10.1159/000353634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
|
199
|
Rijal Upadhaya A, Scheibe F, Kosterin I, Abramowski D, Gerth J, Kumar S, Liebau S, Yamaguchi H, Walter J, Staufenbiel M, Thal DR. The type of Aβ-related neuronal degeneration differs between amyloid precursor protein (APP23) and amyloid β-peptide (APP48) transgenic mice. Acta Neuropathol Commun 2013; 1:77. [PMID: 24252227 PMCID: PMC4046770 DOI: 10.1186/2051-5960-1-77] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/06/2013] [Indexed: 12/16/2022] Open
Abstract
Background The deposition of the amyloid β-peptide (Aβ) in the brain is one of the hallmarks of Alzheimer’s disease (AD). It is not yet clear whether Aβ always leads to similar changes or whether it induces different features of neurodegeneration in relation to its intra- and/or extracellular localization or to its intracellular trafficking routes. To address this question, we have analyzed two transgenic mouse models: APP48 and APP23 mice. The APP48 mouse expresses Aβ1-42 with a signal sequence in neurons. These animals produce intracellular Aβ independent of amyloid precursor protein (APP) but do not develop extracellular Aβ plaques. The APP23 mouse overexpresses human APP with the Swedish mutation (KM670/671NL) in neurons and produces APP-derived extracellular Aβ plaques and intracellular Aβ aggregates. Results Tracing of commissural neurons in layer III of the frontocentral cortex with the DiI tracer revealed no morphological signs of dendritic degeneration in APP48 mice compared to littermate controls. In contrast, the dendritic tree of highly ramified commissural frontocentral neurons was altered in 15-month-old APP23 mice. The density of asymmetric synapses in the frontocentral cortex was reduced in 3- and 15-month-old APP23 but not in 3- and 18-month-old APP48 mice. Frontocentral neurons of 18-month-old APP48 mice showed an increased proportion of altered mitochondria in the soma compared to wild type and APP23 mice. Aβ was often seen in the membrane of neuronal mitochondria in APP48 mice at the ultrastructural level. Conclusions These results indicate that APP-independent intracellular Aβ accumulation in APP48 mice is not associated with dendritic and neuritic degeneration but with mitochondrial alterations whereas APP-derived extra- and intracellular Aβ pathology in APP23 mice is linked to dendrite degeneration and synapse loss independent of obvious mitochondrial alterations. Thus, Aβ aggregates in APP23 and APP48 mice induce neurodegeneration presumably by different mechanisms and APP-related production of Aβ may, thereby, play a role for the degeneration of neurites and synapses. Electronic supplementary material The online version of this article (doi:10.1186/2051-5960-1-77) contains supplementary material, which is available to authorized users.
Collapse
|
200
|
Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, Zhang MR, Trojanowski JQ, Lee VMY, Ono M, Masamoto K, Takano H, Sahara N, Iwata N, Okamura N, Furumoto S, Kudo Y, Chang Q, Saido TC, Takashima A, Lewis J, Jang MK, Aoki I, Ito H, Higuchi M. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 2013; 79:1094-108. [PMID: 24050400 DOI: 10.1016/j.neuron.2013.07.037] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 11/27/2022]
Abstract
Accumulation of intracellular tau fibrils has been the focus of research on the mechanisms of neurodegeneration in Alzheimer's disease (AD) and related tauopathies. Here, we have developed a class of tau ligands, phenyl/pyridinyl-butadienyl-benzothiazoles/benzothiazoliums (PBBs), for visualizing diverse tau inclusions in brains of living patients with AD or non-AD tauopathies and animal models of these disorders. In vivo optical and positron emission tomographic (PET) imaging of a transgenic mouse model demonstrated sensitive detection of tau inclusions by PBBs. A pyridinated PBB, [(11)C]PBB3, was next applied in a clinical PET study, and its robust signal in the AD hippocampus wherein tau pathology is enriched contrasted strikingly with that of a senile plaque radioligand, [(11)C]Pittsburgh Compound-B ([(11)C]PIB). [(11)C]PBB3-PET data were also consistent with the spreading of tau pathology with AD progression. Furthermore, increased [(11)C]PBB3 signals were found in a corticobasal syndrome patient negative for [(11)C]PIB-PET.
Collapse
Affiliation(s)
- Masahiro Maruyama
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|