151
|
Telomeres and the nucleus. Semin Cancer Biol 2012; 23:116-24. [PMID: 22330096 DOI: 10.1016/j.semcancer.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 01/08/2023]
Abstract
Telomeres are crucial for the maintenance of genome stability through "capping" of chromosome ends to prevent their recognition as double-strand breaks, thus avoiding end-to-end fusions or illegitimate recombination [1-3]. Similar to other genomic regions, telomeres participate to the nuclear architecture while being highly mobile. The interaction of telomeres with nuclear domains or compartments greatly differs not only between organisms but also between cells within the same organism. It is also expected that biological processes like replication, repair or telomere elongation impact the distribution of chromosome extremities within the nucleus, as they probably do with other regions of the genome. Pathological processes such as cancer induce profound changes in the nuclear architecture, which also affects telomere dynamics and spatial organization. Here we will expose our present knowledge on the relationship between telomeres and nuclear architecture and on how this relationship is affected by normal or abnormal telomere metabolisms.
Collapse
|
152
|
Lee YS, Tae K, Lee SH, Cho SH, Jeong JH, Min HJ, Ji YB. Change of telomerase activity in peripheral whole blood of head and neck squamous cell carcinoma patients before and after surgery: a pilot study. Clin Transl Oncol 2012; 13:747-53. [PMID: 21975338 DOI: 10.1007/s12094-011-0727-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate telomerase activity in peripheral whole blood from head and neck squamous cell carcinoma (HNSCC) patients as a biomarker for diagnosis of HNSCC or detection of recurrence during follow-up. MATERIALS AND METHODS Telomerase activity was measured from peripheral whole blood extracts by telomerase repeat amplification protocol (TRAP) in HNSCC patients before and after surgery and in a control group. Sixty-two HNSCC patients and 42 control subjects were included. RESULTS Telomerase activity was found in 41 out of 62 (66.1%) HNSCC patients before surgery and in 8 out of 42 (19.0%) controls (p<0.001). Among 41 HNSCC patients who showed positive telomerase activity before surgery, 32 (78.1%) showed a conversion of telomerase activity to negative after surgery. In follow-up, 6 out of 8 (75%) showed conversion of telomerase activity from negative to positive after recurrence. Telomerase activity was changed to negative in 4 out of 6 (66%) recurred patients with positive telomerase activity after second surgery. CONCLUSION The telomerase activity in peripheral whole blood extracts of HNSCC patients might be a useful biomarker for detecting recurrence after treatment. Further study with larger sample size using a more sensitive detection method of telomerase activity is necessary to verify these results.
Collapse
Affiliation(s)
- Y S Lee
- Department of Otolaryngology, Head and Neck Surgery, College of Medicine, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
153
|
Durant ST. Telomerase-independent paths to immortality in predictable cancer subtypes. J Cancer 2012; 3:67-82. [PMID: 22315652 PMCID: PMC3273709 DOI: 10.7150/jca.3965] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/28/2012] [Indexed: 01/17/2023] Open
Abstract
The vast majority of cancers commandeer the activity of telomerase - the remarkable enzyme responsible for prolonging cellular lifespan by maintaining the length of telomeres at the ends of chromosomes. Telomerase is only normally active in embryonic and highly proliferative somatic cells. Thus, targeting telomerase is an attractive anti-cancer therapeutic rationale currently under investigation in various phases of clinical development. However, previous reports suggest that an average of 10-15% of all cancers lose the functional activity of telomerase and most of these turn to an Alternative Lengthening of Telomeres pathway (ALT). ALT-positive tumours will therefore not respond to anti-telomerase therapies and there is a real possibility that such drugs would be toxic to normal telomerase-utilising cells and ultimately select for resistant cells that activate an ALT mechanism. ALT exploits certain DNA damage response (DDR) components to counteract telomere shortening and rapid trimming. ALT has been reported in many cancer subtypes including sarcoma, gastric carcinoma, central nervous system malignancies, subtypes of kidney (Wilm's Tumour) and bladder carcinoma, mesothelioma, malignant melanoma and germ cell testicular cancers to name but a few. A recent heroic study that analysed ALT in over six thousand tumour samples supports this historical spread, although only reporting an approximate 4% prevalence. This review highlights the various methods of ALT detection, unravels several molecular ALT models thought to promote telomere maintenance and elongation, spotlights the DDR components known to facilitate these and explores why certain tissues are more likely to subvert DDR away from its usually protective functions, resulting in a predictive pattern of prevalence in specific cancer subsets.
Collapse
Affiliation(s)
- Stephen T Durant
- AstraZeneca - DNA Damage Response, Bioscience, Oncology iMed, Alderley Park, Cheshire, SK10 4TG, England, UK
| |
Collapse
|
154
|
Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, Li WX. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 2012; 8:e1002473. [PMID: 22291607 PMCID: PMC3266895 DOI: 10.1371/journal.pgen.1002473] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
Organismal aging is influenced by a multitude of intrinsic and extrinsic factors, and heterochromatin loss has been proposed to be one of the causes of aging. However, the role of heterochromatin in animal aging has been controversial. Here we show that heterochromatin formation prolongs lifespan and controls ribosomal RNA synthesis in Drosophila. Animals with decreased heterochromatin levels exhibit a dramatic shortening of lifespan, whereas increasing heterochromatin prolongs lifespan. The changes in lifespan are associated with changes in muscle integrity. Furthermore, we show that heterochromatin levels decrease with normal aging and that heterochromatin formation is essential for silencing rRNA transcription. Loss of epigenetic silencing and loss of stability of the rDNA locus have previously been implicated in aging of yeast. Taken together, these results suggest that epigenetic preservation of genome stability, especially at the rDNA locus, and repression of unnecessary rRNA synthesis, might be an evolutionarily conserved mechanism for prolonging lifespan.
Collapse
Affiliation(s)
- Kimberly Larson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shian-Jang Yan
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Amy Tsurumi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jacqueline Liu
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jun Zhou
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Kriti Gaur
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Dongdong Guo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Willis X. Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
155
|
Hou L, Zhang X, Gawron AJ, Liu J. Surrogate tissue telomere length and cancer risk: shorter or longer? Cancer Lett 2012; 319:130-135. [PMID: 22269209 DOI: 10.1016/j.canlet.2012.01.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 12/24/2022]
Abstract
Telomeres play a critical role in chromosome stability. Telomere length (TL) shortening is a risk factor for cancers. Measuring TL in surrogate tissues that can be easily collected may provide a potential tool for early detection of cancers. A number of studies on surrogate tissue TL and cancer risks have been conducted and results are inconsistent, including positive, negative, or null associations. In this article, we reviewed the published data on surrogate tissue TL in relation to cancer risks, discussed the possible reasons for the differences in the results and future directions and challenges for this line of research.
Collapse
Affiliation(s)
- Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Chicago, IL 60611, United States; The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, United States.
| | - Xiao Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Chicago, IL 60611, United States
| | - Andrew J Gawron
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 N. St. Clair, Chicago, IL 60611, United States
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, PR China.
| |
Collapse
|
156
|
|
157
|
Slatter TL, Tan X, Yuen YC, Gunningham S, Ma SS, Daly E, Packer S, Devenish C, Royds JA, Hung NA. The alternative lengthening of telomeres pathway may operate in non-neoplastic human cells. J Pathol 2012; 226:509-18. [DOI: 10.1002/path.2981] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 01/20/2023]
|
158
|
Phillips MI, Tang Y. Genetic Modification of Stem Cells for Cardiac, Diabetic, and Hemophilia Transplantation Therapies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:285-304. [DOI: 10.1016/b978-0-12-398459-3.00013-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
159
|
Abstract
The role of telomeres and telomerase as a target for cancer therapeutics is an area of continuing interest. This review is intended to provide an update on the field, pointing to areas in which our knowledge remains deficient and exploring the details of the most promising areas being advanced into clinical trials. Topics that will be covered include the role of dysfunctional telomeres in cellular aging and how replicative senescence provides an initial barrier to the emergence of immortalized cells, a hallmark of cancer. As an important translational theme, this review will consider possibilities for selectively targeting telomeres and telomerase to enhance cancer therapy. The role of telomerase as an immunotherapy, as a gene therapy approach using telomerase promoter driven oncolytic viruses and as a small oligonucleotide targeted therapy (Imetelstat) will be discussed.
Collapse
Affiliation(s)
- Michel M Ouellette
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
160
|
Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Semin Cancer Biol 2011; 21:349-53. [PMID: 22015685 DOI: 10.1016/j.semcancer.2011.10.001] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 12/23/2022]
Abstract
There is mounting evidence for the existence of an important relationship between telomeres and telomerase and cellular aging and cancer. Normal human cells progressively lose telomeres with each cell division until a few short telomeres become uncapped leading to a growth arrest known as replicative aging. In the absence of genomic alterations these cells do not die but remain quiescent producing a different constellation of proteins compared to young quiescent cells. Upon specific genetic and epigenetic alterations, normal human cells bypass replicative senescence and continue to proliferate until many telomere ends become uncapped leading to a phenomenon known as crisis. In crisis cells have critically shortened telomeres but continue to attempt to divide leading to significant cell death (apoptosis) and progressive genomic instability. Rarely, a human cell escapes crisis and these cells almost universally express the ribonucleoprotein, telomerase, and maintain stable but short telomeres. The activation of telomerase may be thought of as a mechanism to slow down the rate genomic instability due to dysfunctional telomeres. While telomerase does not drive the oncogenic process, it is permissive and required for the sustain growth of most advanced cancers. Since telomerase is not expressed in most normal human cells, this has led to the development of targeted telomerase cancer therapeutic approaches that are presently in advanced clinical trials.
Collapse
Affiliation(s)
- Jerry W Shay
- UT Southwestern Medical Center, Department of Cell Biology, 5323 Harry Hines Blvd, Dallas, TX 75390-9039, USA.
| | | |
Collapse
|
161
|
Nicholls C, Li H, Wang JQ, Liu JP. Molecular regulation of telomerase activity in aging. Protein Cell 2011; 2:726-38. [PMID: 21976062 DOI: 10.1007/s13238-011-1093-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022] Open
Abstract
The process of aging is mitigated by the maintenance and repair of chromosome ends (telomeres), resulting in extended lifespan. This review examines the molecular mechanisms underlying the actions and regulation of the enzyme telomerase reverse transcriptase (TERT), which functions as the primary mechanism of telomere maintenance and regulates cellular life expectancy. Underpinning increased cell proliferation, telomerase is also a key factor in facilitating cancer cell immortalization. The review focuses on aspects of hormonal regulations of telomerase, and the intracellular pathways that converge to regulate telomerase activity with an emphasis on molecular interactions at protein and gene levels. In addition, the basic structure and function of two key telomerase enzyme components-the catalytic subunit TERT and the template RNA (TERC) are discussed briefly.
Collapse
Affiliation(s)
- Craig Nicholls
- Molecular Signalling Laboratory, Murdoch Childrens Research Institute, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
162
|
Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 2011; 13:119-31. [PMID: 21972126 DOI: 10.1007/s10522-011-9360-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/20/2011] [Indexed: 12/20/2022]
Abstract
Leukocyte telomere length is widely considered a biomarker of human age and in many studies indicative of health or disease. We have obtained quantitative estimates of telomere length from blood leukocytes in a population sample, confirming results of previous studies that telomere length significantly decreases with age. Telomere length was also positively associated with several measures of healthy aging, but this relationship was dependent on age. We screened two genes known to be involved in telomere maintenance for association with the age-related decline in telomere length observed in our population to identify candidate longevity-associated genes. A single-nucleotide polymorphism located in the SIRT1 gene and another in the 3' flanking region of XRCC6 had significant effects on telomere length. At each bi-allelic locus, the minor variant was associated with longer telomeres, though the mode of inheritance fitting best differed between the two genes. No statistical interaction was detected for telomere length between the SIRT1 and XRCC6 variants or between these polymorphisms and age. The SIRT1 locus was significantly associated with longevity (P < 0.003). The frequency of the minor allele was higher in long-lived cases than in young controls, which coincides with the protective role of the minor variant for telomere length. In contrast, the XRCC6 variant was not associated with longevity. Furthermore, it did not affect the association of SIRT1 with exceptional survival. The association of the same variant of SIRT1 with longevity was near significant (P < 0.07) in a second population. These results suggest a potential role of SIRT1 in linking telomere length and longevity. Given the differences between this gene and XRCC6, they point to the distinct impact that alternate pathways of telomere maintenance may have on aging and exceptional survival.
Collapse
|
163
|
Ishikawa N, Nakamura KI, Izumiyama-Shimomura N, Aida J, Ishii A, Goto M, Ishikawa Y, Asaka R, Matsuura M, Hatamochi A, Kuroiwa M, Takubo K. Accelerated in vivo epidermal telomere loss in Werner syndrome. Aging (Albany NY) 2011; 3:417-29. [PMID: 21732564 PMCID: PMC3117457 DOI: 10.18632/aging.100315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many data pertaining to the accelerated telomere loss in cultured cells derived from Werner syndrome (WS), a representative premature aging syndrome, have been accumulated. However, there have been no definitive data on in vivo telomere shortening in WS patients. In the present study, we measured terminal restriction fragment (TRF) lengths of 10 skin samples collected from extremities of 8 WS patients aged between 30 and 61 years that had been surgically amputated because of skin ulceration, and estimated the annual telomere loss. Whereas the values of TRF length in younger WS patients (in their thirties) were within the normal range, those in older WS patients were markedly shorter relative to non-WS controls. Regression analyses indicated that the TRF length in WS was significantly shorter than that in controls (p < 0.001). Furthermore, we found that TRF lengths in muscle adjacent to the examined epidermis were also significantly shorter than those of controls (p = 0.047). These data demonstrate for the first time that in vivo telomere loss is accelerated in systemic organs of WS patients, suggesting that abnormal telomere erosion is one of the major causes of early onset of age-related symptoms and a predisposition to sarcoma and carcinoma in WS.
Collapse
Affiliation(s)
- Naoshi Ishikawa
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173‐0015, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Buttiglieri S, Ruella M, Risso A, Spatola T, Silengo L, Avvedimento EV, Tarella C. The aging effect of chemotherapy on cultured human mesenchymal stem cells. Exp Hematol 2011; 39:1171-81. [PMID: 21864489 DOI: 10.1016/j.exphem.2011.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/29/2011] [Accepted: 08/13/2011] [Indexed: 01/31/2023]
Abstract
Various agents, including chemotherapeutic drugs, can induce cell senescence. However, the mechanisms involved in the aging pathway, particularly the stress that chemotherapy imposes on telomeres, are still undefined. To address these issues, human mesenchymal stem cells (MSCs) were assessed as target cells to investigate the initiation of the aging process by chemotherapy. The MSCs were obtained from bone marrow (BM) cells from normal adults and grown in the presence of platelet lysates. Cultured MSCs were identified for immunophenotype, and for growth and differentiation properties. The MSCs were exposed to 10 nM doxorubicin and 500 ng/mL etoposide, sublethal doses that induce DNA double-stranded breaks. Telomere length (TL) was assessed by flow-fluorescence in situ hybridization and Southern blotting. Initial TL shortening was detectable in MSCs at 5 days after drug exposure, with progressive reduction compared with untreated cells at 7, 14, 21, and 28 days in culture. After a single exposure, MSCs were unable to regain the lost telomere sequences for up to 28 days in culture. The ATM phosphorylation was documented early after drug exposure, while no telomerase activation was observed. Chemotherapy-induced TL shortening was associated with reduced clonogenic activity in vitro and accelerated adipose differentiation. Analogous behavior in the differentiation pattern was observed in naturally aged MSCs. These results indicate that cultured MSCs represent a useful cellular model to investigate novel drugs that may favor or, conversely, might prevent TL loss in human stem cells. The TL shortening is a permanent signature of previous chemotherapy-mediated DNA damage, and predicts impaired proliferative and differentiation potential.
Collapse
|
165
|
Serrano D, Bleau AM, Fernandez-Garcia I, Fernandez-Marcelo T, Iniesta P, Ortiz-de-Solorzano C, Calvo A. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer. Mol Cancer 2011; 10:96. [PMID: 21827695 PMCID: PMC3199900 DOI: 10.1186/1476-4598-10-96] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/09/2011] [Indexed: 01/08/2023] Open
Abstract
Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs) are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC) cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH) positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect) and through decrease in telomere length (long-term effect). Administration of this telomerase inhibitor (40 mg/kg) in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls). Combination therapy consisting of irradiation (10Gy) plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer.
Collapse
Affiliation(s)
- Diego Serrano
- Laboratory of Novel Therapeutic Targets, Oncology Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
166
|
Cerone MA, Burgess DJ, Naceur-Lombardelli C, Lord CJ, Ashworth A. High-throughput RNAi screening reveals novel regulators of telomerase. Cancer Res 2011; 71:3328-40. [PMID: 21531765 DOI: 10.1158/0008-5472.can-10-2734] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Telomerase is considered an attractive anticancer target on the basis of its common and specific activation in most human cancers. While direct telomerase inhibition is being explored as a therapeutic strategy, alternative strategies to target regulators of telomerase that could disrupt telomere maintenance and cancer cell proliferation are not yet available. Here, we report the findings of a high-throughput functional RNA interference screen to globally profile the contribution of kinases to telomerase activity (TA). This analysis identified a number of novel telomerase modulators, including ERK8 kinase, whose inhibition reduces TA and elicited characteristics of telomere dysfunction. Given that kinases represent attractive drug targets, we addressed the therapeutic implications of our findings, such as demonstrating how limiting TA via kinase blockade could sensitize cells to inhibition of the telomere-associated protein tankyrase. Taken together, our findings suggest novel combinatorial approaches to targeting telomere maintenance as a strategy for cancer therapy.
Collapse
|
167
|
Moores CJ, Fenech M, O’Callaghan NJ. Telomere dynamics: the influence of folate and DNA methylation. Ann N Y Acad Sci 2011; 1229:76-88. [DOI: 10.1111/j.1749-6632.2011.06101.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
168
|
Buseman CM, Wright WE, Shay JW. Is telomerase a viable target in cancer? Mutat Res 2011; 730:90-7. [PMID: 21802433 DOI: 10.1016/j.mrfmmm.2011.07.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/20/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023]
Abstract
The ideal cancer treatment would specifically target cancer cells yet have minimal or no adverse effects on normal somatic cells. Telomerase, the ribonucleoprotein reverse transcriptase that maintains the ends of human chromosome, is an attractive cancer therapeutic target for exactly this reason [1]. Telomerase is expressed in more than 85% of cancer cells, making it a nearly universal cancer marker, while the majority of normal somatic cells are telomerase negative. Telomerase activity confers limitless replicative potential to cancer cells, a hallmark of cancer which must be attained for the continued growth that characterizes almost all advanced neoplasms [2]. In this review we will summarize the role of telomeres and telomerase in cancer cells, and how properties of telomerase are being exploited to create targeted cancer therapies including telomerase inhibitors, telomerase-targeted immunotherapies and telomerase-driven virotherapies. A frank and balanced assessment of the current state of telomerase inhibitors with caveats and potential limitations will be included.
Collapse
Affiliation(s)
- C M Buseman
- The University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, TX 75390-9039, USA
| | | | | |
Collapse
|
169
|
The use of hTERT-immortalized cells in tissue engineering. Cytotechnology 2011; 45:39-46. [PMID: 19003242 DOI: 10.1007/s10616-004-5124-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Accepted: 09/21/2004] [Indexed: 12/16/2022] Open
Abstract
The use of human telomerase reverse transcriptase (hTERT)-immortalized cells in tissue engineering protocols is a potentially important application of telomere biology. Several human cell types have been created that overexpress the hTERT gene with enhanced telomerase activity, extended life span and maintained or even improved functional activities. Furthermore, some studies have employed the telomerized cells in tissue engineering protocols with very good results. However, high telomerase activity allows extensive cell proliferation that may be associated with genomic instability and risk for cell transformation. Thus, safety issues should be studied carefully before using the telomerized tissues in the clinic. Alternatively, the development of conditional or intermittent telomerase activation protocols is needed.
Collapse
|
170
|
Cloning and characterization of telomerase reverse transcriptase gene in Trichinella spiralis. Parasitol Res 2011; 110:411-7. [PMID: 21748355 DOI: 10.1007/s00436-011-2506-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 06/22/2011] [Indexed: 01/08/2023]
Abstract
The telomerase reverse transcriptase (TERT) is primarily known for its ability to elongate telomeres for maintaining chromosomal integrity and delaying cellular senescence. It plays an important role in cell proliferation, differentiation, tumorigenesis, and aging. Telomerase includes two core components-an internal RNA moiety acting as a template of DNA extension and a catalytic subunit (TERT) which provides catalytic activity. Here, we described the cloning, sequence, and characterization of the TERT gene from Trichinella spiralis (T. spiralis). The prediction results of amino acid sequence showed that it possessed all the motifs characteristics of the TERT family members. T. spiralis TERT (Ts_TERT) cDNA contains an open reading frame encoding a protein with 1,201 amino acids with moleculer mass of 139 kDa and isoelectric point of 9.673, and the protein contains the conserved reverse transcriptase motifs 1, 2, A, B, C, D, and E, as well as the TERT-specific T motifs and the N-terminal conserved motifs GQ, CP, and QFP. While RT-PCR analysis indicates that TERT mRNA is expressed in T. spiralis adult worm, newborn larvae, and muscle larvae.
Collapse
|
171
|
Macieira-Coelho A. Cell division and aging of the organism. Biogerontology 2011; 12:503-15. [PMID: 21732041 DOI: 10.1007/s10522-011-9346-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/23/2011] [Indexed: 02/07/2023]
Abstract
The capacity to regenerate cell compartments through cell proliferation is an important characteristic of many developed metazoan tissues. Pre- and post-natal development proceeds through the modifications occurring during cell division. Experiments with cultivated cells showed that cell proliferation originates changes in cell functions and coordinations that contribute to aging and senescence. The implications of the finite cell proliferation to aging of the organism is not the accumulation of cells at the end of their life cycle, but rather the drift in cell function created by cell division. Comparative gerontology shows that the regulation of the length of telomeres has no implications for aging. On the other hand there are interspecies differences in regard to the somatic cell division potential that seem to be related with the "plasticity" of the genome and with longevity, which should be viewed independently of the aging phenomenon. Telomeres may play a role in this plasticity through the regulation of chromosome recombination, and via the latter also in development.
Collapse
|
172
|
Ross AL, Sanchez MI, Grichnik JM. Nevus senescence. ISRN DERMATOLOGY 2011; 2011:642157. [PMID: 22363855 PMCID: PMC3262546 DOI: 10.5402/2011/642157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/30/2011] [Indexed: 11/23/2022]
Abstract
Melanomas and nevi share many of the same growth-promoting mutations. However, melanomas grow relentlessly while benign nevi eventually undergo growth arrest and stabilize. The difference in their long-term growth potential may be attributed to activation of cellular senescence pathways. The primary mediator of senescence in nevi appears to be p16. Redundant, secondary senescence systems are also present and include the p14-p53-p21 pathway, the IGFBP7 pathway, the FBXO31 pathway, and the PI3K mediated stress induced endoplasmic reticulum unfolded protein response. It is evident that these senescence pathways result in an irreversible arrest in most instances; however, they can clearly be overcome in melanoma. Circumvention of these pathways is most frequently associated with gene deletion or transcriptional repression. Reactivation of senescence mechanisms could serve to inhibit melanoma tumor progression.
Collapse
Affiliation(s)
- Andrew L. Ross
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Margaret I. Sanchez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James M. Grichnik
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Melanoma Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
173
|
Abstract
Older individuals (≥50 years of age) are increasingly becoming a new at-risk group for HIV-1 infection and, together with those surviving longer due to the introduction of anti-retroviral therapy (ART), it is predicted that more than half of all HIV-1-infected individuals in the United States will be greater than 50 years of age in the year 2015. Older individuals diagnosed with HIV-1 are prone to faster disease progression and reduced T-cell reconstitution despite successful virologic control with anti-retroviral therapy (ART). There is also growing evidence that the T-cell compartment in HIV-1(+) adults displays an aged phenotype, and HIV-1-infected individuals are increasingly diagnosed with clinical conditions more commonly seen in older uninfected persons. As aging in the absence of HIV infection is associated with alterations in T-cell function and immunosenescence, the combined impact of both HIV-1 infection and aging may provide an explanation for poorer clinical outcomes observed in older HIV-1-infected individuals. Thus, the development of novel therapeutics to stimulate immune function and delay immunosenescence is critical and would be beneficial to both the elderly and HIV-1-infected individuals.
Collapse
Affiliation(s)
- Tammy M Rickabaugh
- UCLA AIDS Institute and Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095-1745, USA
| | | |
Collapse
|
174
|
Pneumaticos SG, Triantafyllopoulos GK, Basdra EK, Papavassiliou AG. Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med 2011; 14:2561-9. [PMID: 20345845 PMCID: PMC4373476 DOI: 10.1111/j.1582-4934.2010.01062.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several conditions in clinical orthopaedic practice can lead to the development of a diaphyseal segmental bone defect, which cannot heal without intervention. Segmental bone defects have been traditionally treated with bone grafting and/or distraction osteogenesis, methods that have many advantages, but also major drawbacks, such as limited availability, risk of disease transmission and prolonged treatment. In order to overcome such limitations, biological treatments have been developed based on specific pathways of bone physiology and healing. Bone tissue engineering is a dynamic field of research, combining osteogenic cells, osteoinductive factors, such as bone morphogenetic proteins, and scaffolds with osteoconductive and osteoinductive attributes, to produce constructs that could be used as bone graft substitutes for the treatment of segmental bone defects. Scaffolds are usually made of ceramic or polymeric biomaterials, or combinations of both in composite materials. The purpose of the present review is to discuss in detail the molecular and cellular basis for the development of bone tissue engineering constructs.
Collapse
Affiliation(s)
- Spyros G Pneumaticos
- Third Department of Orthopaedic Surgery, Medical School, University of Athens, 'KAT' Accident's Hospital, Athens, Greece
| | | | | | | |
Collapse
|
175
|
Huna A, Salmina K, Jascenko E, Duburs G, Inashkina I, Erenpreisa J. Self-Renewal Signalling in Presenescent Tetraploid IMR90 Cells. J Aging Res 2011; 2011:103253. [PMID: 21629737 PMCID: PMC3100543 DOI: 10.4061/2011/103253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/22/2011] [Accepted: 02/25/2011] [Indexed: 12/22/2022] Open
Abstract
Endopolyploidy and genomic instability are shared features of both stress-induced cellular senescence and malignant growth. Here, we examined these facets in the widely used normal human fibroblast model of senescence, IMR90. At the presenescence stage, a small (2–7%) proportion of cells overcome the 4n-G1 checkpoint, simultaneously inducing self-renewal (NANOG-positivity), the DNA damage response (DDR; γ-H2AX-positive foci), and senescence (p16inka4a- and p21CIP1-positivity) signalling, some cells reach octoploid DNA content and divide. All of these markers initially appear and partially colocalise in the perinucleolar compartment. Further, with development of senescence and accumulation of p16inka4a and p21CIP1, NANOG is downregulated in most cells. The cells increasingly arrest in the 4n-G1 fraction, completely halt divisions and ultimately degenerate. A positive link between DDR, self-renewal, and senescence signalling is initiated in the cells overcoming the tetraploidy barrier, indicating that cellular and molecular context of induced tetraploidy during this period of presenescence is favourable for carcinogenesis.
Collapse
Affiliation(s)
- Anda Huna
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067 Riga, Latvia
| | | | | | | | | | | |
Collapse
|
176
|
Abstract
PURPOSE OF REVIEW Recent research suggests that chronic obstructive pulmonary disease (COPD) may be a disease of accelerated aging. The senescence hypothesis of COPD pathogenesis is supported by in-vitro, in-vivo and clinical studies. The purpose of this review is to provide a comprehensive overview of the senescence hypothesis of COPD and summarize methods that are used to assess cellular aging. RECENT FINDINGS Accelerated aging due to exposure to cigarette smoke is hypothesized to induce rapid progression of COPD. Recent studies have shown that COPD patients have enhanced expression of senescence-associated proteins in the lung and in the peripheral circulation compared to healthy controls. Murine models of accelerated aging demonstrate spontaneous emphysematous changes in the lungs, while lungs of COPD patients demonstrate enhanced markers of senescence in fibroblasts and alveolar cells. More recently, studies of telomeres, which shorten with cellular aging, have shown that COPD patients may experience accelerated telomere attrition compared with healthy controls. However, studies to date have been relatively small and have produced heterogeneous results. SUMMARY The evidence for the role of accelerated aging in COPD progression is growing and senescence is one possible molecular pathway by which COPD occurs.
Collapse
|
177
|
Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 2011; 140:1713-9. [PMID: 21530737 PMCID: PMC10924805 DOI: 10.1053/j.gastro.2011.02.011] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 12/02/2022]
Abstract
Little was known about the development of the gastrointestinal (GI) tract microbiota, until recently, because of difficulties in obtaining sufficient sequence information from enough people or time points. Now, with decreased costs of DNA sequencing and improved bioinformatic tools, we can compare GI tract bacterial communities among individuals, of all ages from infancy to adulthood. Some key recent findings are that the initial bacterial community, even in the GI tract, depends strongly on delivery mode; that the process of early development of the microbiota is highly unstable and idiosyncratic; that the microbiota differs considerably among children from different countries; and that older adults have substantially different GI tract communities than younger adults, indicating that the GI tract microbiota can change throughout life. We relate these observations to different models of evolution including the evolution of senescence and suggest that probiotics be selected based on patient age. Studies of the microbiota in older people might tell us which probiotics could increase longevity. Drug metabolism varies among individuals with different microbial communities, so age- and region-specific clinical trials are required to ensure safety and efficacy.
Collapse
Affiliation(s)
| | - Martin J. Blaser
- Departments of Medicine and Microbiology and University Langone Medical Center, New York, NY 10016
- Veterans Affairs Medical Center, New York University Langone Medical Center, New York, NY 10016
- Department of Biology, New York University, New York, NY 10003
| | - Ruth E. Ley
- Department of Microbiology, Cornell University, Ithaca, NY 14850
| | - Rob Knight
- Howard Hughes Medical Institute, Boulder, CO 80309
- Department of Chemistry & Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| |
Collapse
|
178
|
Watfa G, Dragonas C, Brosche T, Dittrich R, Sieber CC, Alecu C, Benetos A, Nzietchueng R. Study of telomere length and different markers of oxidative stress in patients with Parkinson's disease. J Nutr Health Aging 2011; 15:277-81. [PMID: 21437559 DOI: 10.1007/s12603-010-0275-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Many studies have shown that short telomere length (TL) is associated with high oxidative stress and various age-related diseases. Parkinson's disease (PD) is an age-related disease, and although its pathogenic mechanism is uncertain, oxidative stress is believed to be implicated in this pathology. The aim of this case-control study was to assess both TL and the different markers of oxidative stress in elderly patients with PD compared to age control subjects. METHODS 20 PD patients and 15 age-matched controls, >65 years were studied. TL was measured by Southern blotting from DNA samples extracted from white blood cells. Superoxide dismutase (SOD) activity and plasma levels of total glutathione and protein carbonyls were determined. RESULTS There was a trend for lower TL in PD patients: 6.06 ± 0.81 kb in PD versus 6.45 ± 0.73 kb in controls (p = 0.08). No significant difference was found between the two groups in terms of oxidative stress markers. In controls, age was the main determinant of telomere shortening (r = -0.547; p = 0.03) whereas, in PD patients, telomere shortening was mainly dependent on plasmatic concentrations of carbonyl proteins (r= -0.544; p=0.044). In PD patients, a negative association was observed between plasma carbonyl protein levels and SOD activity (r= -0.622, p=0.004). CONCLUSIONS In PD, TL is shorter in presence of high oxidative stress as measured by carbonyl protein levels. The absence of telomere attrition with age among patients with PD could reflect a telomere regulation by mechanisms other than age.
Collapse
Affiliation(s)
- G Watfa
- Department of Geriatrics, University Hospital of Nancy, Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Rodgers CC. Dental X-ray exposure and Alzheimer's disease: a hypothetical etiological association. Med Hypotheses 2011; 77:29-34. [PMID: 21458164 DOI: 10.1016/j.mehy.2011.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/23/2011] [Accepted: 03/07/2011] [Indexed: 11/17/2022]
Abstract
Despite the fact that Alzheimer's disease was identified more than 100 years ago, its cause remains elusive. Although the chance of developing Alzheimer's disease increases with age, it is not a natural consequence of aging. This article proposes that dental X-rays can damage microglia telomeres - the structures at the end of chromosomes that determine how many times cells divide before they die - causing them to age prematurely. Degenerated microglia lose their neuroprotective properties, resulting in the formation of neurofibrillary tau tangles and consequently, the neuronal death that causes Alzheimer's dementia. The hypothesis that Alzheimer's is caused specifically by microglia telomere damage would explain the delay of one decade or longer between the presence of Alzheimer's brain pathology and symptoms; telomere damage would not cause any change in microglial function, it would just reset the countdown clock so that senescence and apoptosis occurred earlier than they would have without the environmental insult. Once microglia telomere damage causes premature aging and death, the adjacent neurons are deprived of the physical support, maintenance and nourishment they require to survive. This sequence of events would explain why therapies and vaccines that eliminate amyloid plaques have been unsuccessful in stopping dementia. Regardless of whether clearing plaques is beneficial or harmful - which remains a subject of debate - it does not address the failing microglia population. If microglia telomere damage is causing Alzheimer's disease, self-donated bone marrow or dental pulp stem cell transplants could give rise to new microglia populations that would maintain neuronal health while the original resident microglia population died.
Collapse
|
180
|
Diet, nutrition and telomere length. J Nutr Biochem 2011; 22:895-901. [PMID: 21429730 DOI: 10.1016/j.jnutbio.2010.12.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/19/2010] [Accepted: 12/25/2010] [Indexed: 02/08/2023]
Abstract
The ends of human chromosomes are protected by DNA-protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA.
Collapse
|
181
|
Westin ER, Aykin-Burns N, Buckingham EM, Spitz DR, Goldman FD, Klingelhutz AJ. The p53/p21(WAF/CIP) pathway mediates oxidative stress and senescence in dyskeratosis congenita cells with telomerase insufficiency. Antioxid Redox Signal 2011; 14:985-97. [PMID: 21087144 PMCID: PMC3043957 DOI: 10.1089/ars.2010.3444] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Telomere attrition is a natural process that occurs due to inadequate telomere maintenance. Once at a critically short threshold, telomeres signal growth arrest, leading to senescence. Telomeres can be elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Mutations in genes for telomere binding proteins or components of telomerase give rise to the premature aging disorder dyskeratosis congenita (DC), which is characterized by extremely short telomeres and an aging phenotype. The current study demonstrates that DC cells signal a DNA damage response through p53 and its downstream mediator, p21(WAF/CIP), which is accompanied by an elevation in steady-state levels of superoxide and percent glutathione disulfide, both indicators of oxidative stress. Poor proliferation of DC cells can be partially overcome by reducing O(2) tension from 21% to 4%. Further, restoring telomerase activity or inhibiting p53 or p21(WAF/CIP) significantly mitigated growth inhibition as well as caused a significant decrease in steady-state levels of superoxide. Our results support a model in which telomerase insufficiency in DC leads to p21(WAF/CIP) signaling, via p53, to cause increased steady-state levels of superoxide, metabolic oxidative stress, and senescence.
Collapse
Affiliation(s)
- Erik R Westin
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
182
|
Kong Y, Cui H, Ramkumar C, Zhang H. Regulation of senescence in cancer and aging. J Aging Res 2011; 2011:963172. [PMID: 21423549 PMCID: PMC3056284 DOI: 10.4061/2011/963172] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/12/2011] [Indexed: 12/12/2022] Open
Abstract
Senescence is regarded as a physiological response of cells to stress, including telomere dysfunction, aberrant oncogenic activation, DNA damage, and oxidative stress. This stress response has an antagonistically pleiotropic effect to organisms: beneficial as a tumor suppressor, but detrimental by contributing to aging. The emergence of senescence as an effective tumor suppression mechanism is highlighted by recent demonstration that senescence prevents proliferation of cells at risk of neoplastic transformation. Consequently, induction of senescence is recognized as a potential treatment of cancer. Substantial evidence also suggests that senescence plays an important role in aging, particularly in aging of stem cells. In this paper, we will discuss the molecular regulation of senescence its role in cancer and aging. The potential utility of senescence in cancer therapeutics will also be discussed.
Collapse
Affiliation(s)
- Yahui Kong
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, S7-125, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
183
|
Emmerson E, Hardman MJ. The role of estrogen deficiency in skin ageing and wound healing. Biogerontology 2011; 13:3-20. [PMID: 21369728 DOI: 10.1007/s10522-011-9322-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 02/11/2011] [Indexed: 12/12/2022]
Abstract
The links between hormonal signalling and lifespan have been well documented in a range of model organisms. For example, in C. elegans or D. melanogaster, lifespan can be modulated by ablating germline cells, or manipulating reproductive history or pregnenolone signalling. In mammalian systems, however, hormonal contribution to longevity is less well understood. With increasing age human steroid hormone profiles change substantially, particularly following menopause in women. This article reviews recent links between steroid sex hormones and ageing, with special emphasis on the skin and wound repair. Estrogen, which substantially decreases with advancing age in both males and females, protects against multiple aspects of cellular ageing in rodent models, including oxidative damage, telomere shortening and cellular senescence. Estrogen's effects are particularly pronounced in the skin where cutaneous changes post-menopause are well documented, and can be partially reversed by classical Hormone Replacement Therapy (HRT). Our research shows that while chronological ageing has clear effects on skin wound healing, falling estrogen levels are the principle mediator of these effects. Thus, both HRT and topical estrogen replacement substantially accelerate healing in elderly humans, but are associated with unwanted deleterious effects, particularly cancer promotion. In fact, much current research effort is being invested in exploring the therapeutic potential of estrogen signalling manipulation to reverse age-associated pathology in peripheral tissues. In the case of the skin the differential targeting of estrogen receptors to promote healing in aged subjects is a real therapeutic possibility.
Collapse
Affiliation(s)
- Elaine Emmerson
- The University of Manchester, A V Hill Building, Manchester, UK
| | | |
Collapse
|
184
|
Abstract
Skin is a self-renewing tissue that is required to go through extensive proliferation throughout the lifespan of an organism. Telomere shortening acts as a mitotic clock that prevents aberrant proliferation such as cancer. A consequence of this protection is cellular senescence and ageing. The telomerase enzyme complex maintains telomere length in germline cells and in cancer cells. Telomerase is also active in certain somatic cells such as those in the epidermis but is almost undetectable in the dermis. Increasing evidence indicates that telomerase plays a significant role in maintenance of skin function and proliferation. Mutations in telomerase component genes in the disease dyskeratosis congenita result in numerous epidermal abnormalities. Studies also indicate that telomerase activity in epidermal stem cells might have roles that go beyond telomere elongation. Telomeres in skin cells may be particularly susceptible to accelerated shortening because of both proliferation and DNA-damaging agents such as reactive oxygen species. Skin might present an accessible tissue for manipulation of telomerase activity and telomere length with the potential of ameliorating skin diseases associated with ageing.
Collapse
Affiliation(s)
- Erin M Buckingham
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
185
|
Baecher-Allan CM, Costantino CM, Cvetanovich GL, Ashley CW, Beriou G, Dominguez-Villar M, Hafler DA. CD2 costimulation reveals defective activity by human CD4+CD25(hi) regulatory cells in patients with multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3317-26. [PMID: 21300823 DOI: 10.4049/jimmunol.1002502] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studying the activity of homogeneous regulatory T cell (Treg) populations will advance our understanding of their mechanisms of action and their role in human disease. Although isolating human Tregs exhibiting low expression of CD127 markedly increases purity, the resulting Treg populations are still heterogeneous. To examine the complexity of the Tregs defined by the CD127 phenotype in comparison with the previously described CD4(+)CD25(hi) subpopulations, we subdivided the CD25(hi) population of memory Tregs into subsets based on expression of CD127 and HLA-DR. These subsets exhibited differences in suppressive capacity, ability to secrete IL-10 and IL-17, Foxp3 gene methylation, cellular senescence, and frequency in neonatal and adult blood. The mature, short telomere, effector CD127(lo)HLA-DR(+) cells most strongly suppressed effector T cells within 48 h, whereas the less mature CD127(lo)HLA-DR(-) cells required 96 h to reach full suppressive capacity. In contrast, whereas the CD127(+)HLA-DR(-) cells also suppressed proliferation of effector cells, they could alternate between suppression or secretion of IL-17 depending upon the stimulation signals. When isolated from patients with multiple sclerosis, both the nonmature and the effector subsets of memory CD127(lo) Tregs exhibited kinetically distinct defects in suppression that were evident with CD2 costimulation. These data demonstrate that natural and not induced Tregs are less suppressive in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Clare M Baecher-Allan
- Division of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
186
|
Devore EE, Prescott J, De Vivo I, Grodstein F. Relative telomere length and cognitive decline in the Nurses' Health Study. Neurosci Lett 2011; 492:15-8. [PMID: 21295115 DOI: 10.1016/j.neulet.2011.01.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/06/2011] [Accepted: 01/14/2011] [Indexed: 11/16/2022]
Abstract
Telomeres are short DNA repeats on the ends of mammalian chromosomes, which can undergo incomplete replication leading to gradual shortening with each cell cycle. Age and oxidative stress are contributors to telomere shortening; thus, telomere length may be a composite measure of biologic aging, and a potential predictor of health status in older adults. We evaluated whether relative telomere length (the proportion of telomere repeat copy number to single gene copy number, using a real-time PCR method) predicts cognitive decline measured ten years later among ∼ 2000 older participants in the Nurses' Health Study (NHS). Mixed linear regression was used to evaluate mean differences in cognitive decline according to telomere length. After adjustment for potential confounders, we found that decreasing telomere length was associated with more cognitive decline, although associations were modest (e.g. for a global score, averaging all six tests in our cognitive battery, mean difference=0.03 standard units per SD increase in telomere length; p=0.04). The magnitude of these estimates was similar to the differences we find in this cohort for women one year apart in age (e.g. the differences that we observe between women who are 73 versus 74 years of age); thus, our results suggest that telomere length is not a particularly powerful marker of impending cognitive decline.
Collapse
Affiliation(s)
- Elizabeth E Devore
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
187
|
Yang S, Xiang J, Yang Q, Zhou Q, Zhang X, Li Q, Tang Y, Xu G. Distinct G-quadruplex structures of human telomeric DNA formed by the induction of sanguinarine and nitidine under salt-deficient condition. Fitoterapia 2010; 81:1026-32. [DOI: 10.1016/j.fitote.2010.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/21/2010] [Accepted: 06/27/2010] [Indexed: 11/15/2022]
|
188
|
Abstract
RÉSUMÉ:Des mécanismes moléculaires liant le cancer à la sénescence cellulaire sont présentement explorés. Les télomères (l'extrémité des chromosomes) raccourcissent à chaque division cellulaire et il a été proposé que ce raccourcissement soit l'horloge moléculaire qui déclenche le processus de la sénescence cellulaire. La re-expression de la télomérase, une enzyme qui aide à maintenir la longueur des télomères et à prévenir leur raccourcissement, est un événement fréquemment observé dans les cellules tumorales. Cette re-expression est probablement essentielle à la formation et à la croissance soutenue de la majorité des cancers.
Collapse
|
189
|
Olofsson P. Can telomere shortening explain sigmoidal growth curves? JOURNAL OF BIOLOGICAL DYNAMICS 2010; 4:527-538. [PMID: 22881202 DOI: 10.1080/17513750903377442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A general branching process model is proposed to describe the shortening of telomeres in eukaryotic chromosomes. The model is flexible and incorporates many special cases to be found in the literature. In particular, we show how telomere shortening can give rise to sigmoidal growth curves, an idea first expressed by Portugal et al. [A computational model for telomere-dependent cell-replicative aging, BioSystems 91 (2008), pp. 262-267]. We also demonstrate how other types of growth curves arise if telomere shortening is mitigated by other cellular processes. We compare our results with published data sets from the biological literature.
Collapse
Affiliation(s)
- Peter Olofsson
- Department of Mathematics, Trinity University, One Trinity Place, San Antonio, TX 78212, USA.
| |
Collapse
|
190
|
Brassat U, Balabanov S, Bali D, Dierlamm J, Braig M, Hartmann U, Sirma H, Günes C, Wege H, Fehse B, Gontarewicz A, Dikomey E, Borgmann K, Brümmendorf TH. Functional p53 is required for effective execution of telomerase inhibition in BCR-ABL-positive CML cells. Exp Hematol 2010; 39:66-76.e1-2. [PMID: 20940029 DOI: 10.1016/j.exphem.2010.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/16/2010] [Accepted: 10/04/2010] [Indexed: 02/08/2023]
Abstract
OBJECTIVE In chronic myeloid leukemia (CML), increased cellular turnover of hematopoietic cells driven by the oncogene BCR-ABL leads to accelerated telomere shortening despite increased telomerase activity. It has been postulated that shortened telomeres, particularly in the context of increased telomerase activity, might facilitate accumulation of genetic aberrations and, consequently, disease progression from chronic phase to accelerated phase and blast crisis. Therefore, inhibition of telomerase might be a promising approach in CML therapy. MATERIAL AND METHODS To investigate the therapeutic potential of telomerase inhibition in this model disorder, we used a small molecule telomerase inhibitor, BIBR1532 as well as expression of a dominant-negative mutant of hTERT (DNhTERT-IRES-GFP) in the p53-negative CML blast crisis cell line K562 and characterized the effects in long-term culture. Furthermore, we expressed an inducible p53 construct (vector pBabe-p53ER(tam)) via retroviral transduction in cells with critically short telomeres and in cells with a normal telomere length to explain the role of the tumor suppressor in response to critical telomere shortening in BCR-ABL-positive cells. RESULTS BIBR1532-treated bulk cultures did not show altered growth kinetics despite significant telomere shortening to a critical length of approximately 5 kb. In comparison, DNhTERT-expressing clones either lost telomere length, leading to a significant but transient slow down in proliferation but eventually all escaped senescence/crisis (group I) or, alternatively, remained virtually unaffected despite measurable telomerase inhibition (group II). Further analyses of group I clones revealed impaired DNA damage response and an accumulation of dicentric chromosomes. However, upon restoration of p53 in telomerase-negative K562 clones with critically short telomeres, immediate reinduction of apoptosis and complete eradication of cells was observed, whereas vector control cells continued to escape from crisis. CONCLUSIONS These results suggest that the success of strategies aimed at telomerase inhibition in CML is highly dependent on the presence of functional p53 and should be explored preferentially in chronic phase CML.
Collapse
Affiliation(s)
- Ute Brassat
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Bazzicalupi C, Chioccioli M, Sissi C, Porcù E, Bonaccini C, Pivetta C, Bencini A, Giorgi C, Valtancoli B, Melani F, Gratteri P. Modeling and Biological Investigations of an Unusual Behavior of Novel Synthesized Acridine-Based Polyamine Ligands in the Binding of Double Helix and G-Quadruplex DNA. ChemMedChem 2010; 5:1995-2005. [DOI: 10.1002/cmdc.201000332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
192
|
Shaker OG, Hammam OA, El Leithy TR, El Ganzoury H, Wishahi MM, Mikhailidis DP. Molecular markers and bladder carcinoma: Schistosomal and non-schistosomal. Clin Biochem 2010; 44:237-44. [PMID: 20934419 DOI: 10.1016/j.clinbiochem.2010.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Detection of telomeric repeat amplification protocol (TRAP) activity, the human telomerase reverse transcriptase (hTERT), tumor suppressor gene (p53) and proliferating marker (MIB-1) in bladder specimens. DESIGN AND METHODS Specimens were obtained from 85 patients and 10 controls. TRAP technique and immunohistochemistry (IHC) method were performed. RESULTS TRAP activity, hTERT, p53 and MIB1 were detected in 62.4%, 65.9%, 57.6% and 62.4% of all 85 patient cases, respectively. TRAP activity was detected in 75% of schistosomal urothelial carcinoma, 100% in schistosomal squamous cell carcinoma (SQCC) and 71.4% in non-schistosomal urothelial carcinoma. hTERT protein was detected in schistosomal urothelial carcinoma (83.3%), 93.3% in schistosomal SQCC and 75.7% in non-schistosomal urothelial carcinoma. CONCLUSIONS TRAP and hTERT are useful for the detection of telomerase with special emphasis on their role in the detection of schistosomal-associated bladder cancer. Correlation of TRAP and hTERT protein with MIB1 and p53 reveals the importance of telomerase as a new marker in cancer bladder.
Collapse
Affiliation(s)
- Olfat G Shaker
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Egypt
| | | | | | | | | | | |
Collapse
|
193
|
Cellular aging and cancer. Crit Rev Oncol Hematol 2010; 79:189-95. [PMID: 20705476 DOI: 10.1016/j.critrevonc.2010.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 06/19/2010] [Accepted: 07/13/2010] [Indexed: 11/21/2022] Open
Abstract
Aging is manifest in a variety of changes over time, including changes at the cellular level. Cellular aging acts primarily as a tumor suppressor mechanism, but also may enhance cancer development under certain circumstances. One important process of cellular aging is oncogene-induced senescence, which acts as a significant anti-cancer mechanism. Cellular senescence resulting from damage caused by activated oncogenes prevents the growth of potentially neoplastic cells. Moreover, cells that have entered senescence appear to be targets for elimination by the innate immune system. In another aspect of cellular aging, the absence of telomerase activity in normal tissues results in such cells lacking a telomere maintenance mechanism. One consequence is that in aging there is an increase in cells with shortened telomeres. In the presence of active oncogenes that cause expansion of a neoplastic clone, shortening of telomeres, leading to telomere dysfunction, prevents the indefinite expansion of the clone, because the cells enter crisis. Crisis results from chromosome fusions and other defects caused by dysfunctional telomeres and is a terminal state of the neoplastic clone. In this way the absence of telomerase in human cells, while one cause of cellular aging, also acts as an anti-cancer mechanism.
Collapse
|
194
|
Correlation of telomere length shortening with promoter methylation profile of p16/Rb and p53/p21 pathways in breast cancer. Mod Pathol 2010; 23:763-72. [PMID: 20081803 DOI: 10.1038/modpathol.2009.195] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unregulated cell growth, a major hallmark of cancer, is coupled with telomere shortening. Measurement of telomere length could provide important information on cell replication and proliferation state in cancer tissues. Telomere shortening and its potential correlation with downregulation of cell-cycle regulatory elements were studied by the examination of relative telomere length and methylation status of the TP53, P21 and P16 promoters in tissues from breast cancer patients. Telomere length was measured in 104 samples (52 tumors and paired adjacent normal breast tissues) by quantitative PCR. Methylation profile of selected genes was analyzed in all samples using a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results demonstrated a significant shortening of tumor telomere regions compared with paired adjacent normal tissues (P<0.001). Similarly, telomere lengths were significantly shorter in advanced stage cases and in those with higher histological grades (P<0.05). Telomere shortening in cancer tissues was correlated with a different level of hypermethylation in the TP53, P21 and P16 promoters (r=-0.33, P=0.001; r=-0.70, P<0.0001 and r=-0.71, P<0.0001, respectively). The results suggested that inactivation of p16/Rb and/or p53/p21 pathways by hypermethylation may be linked to critical telomere shortening, leading to genome instability and ultimately to malignant transformation. Thus, telomere shortening and promoter hypermethylation of related genes both might serve as breast cancer biomarkers.
Collapse
|
195
|
Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 2010; 214:516-59. [PMID: 19422428 DOI: 10.1111/j.1469-7580.2009.01066.x] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically, the term 'keratin' stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as 'prekeratins' or 'cytokeratins'. Currently, the term 'keratin' covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are different especially with respect to the keratins that are produced. Future research in keratins will provide a better understanding of the processes of keratinization and cornification of stratified epithelia, including those of skin modifications, of the adaptability of epithelia in general, of skin diseases, and of the changes in structure and function of epithelia in the course of evolution. This review focuses on keratins and keratin filaments in mammalian tissue but keratins in the tissues of some other vertebrates are also considered.
Collapse
Affiliation(s)
- Hermann H Bragulla
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, 70803, USA.
| | | |
Collapse
|
196
|
Pooley KA, Sandhu MS, Tyrer J, Shah M, Driver KE, Luben RN, Bingham SA, Ponder BA, Pharoah PD, Khaw KT, Easton DF, Dunning AM. Telomere length in prospective and retrospective cancer case-control studies. Cancer Res 2010; 70:3170-6. [PMID: 20395204 PMCID: PMC2855947 DOI: 10.1158/0008-5472.can-09-4595] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have reported that shorter mean telomere length in lymphocytes was associated with increased susceptibility to common diseases of aging, and may be predictive of cancer risk. However, most analyses have examined retrospectively collected case-control studies. Mean telomere length was measured using high-throughput quantitative real-time PCR. Blood for DNA extraction was collected after cancer diagnosis in the East Anglian SEARCH Breast (2,243 cases and 2,181 controls) and SEARCH Colorectal (2,249 cases and 2,161 controls) studies. Prospective case-control studies were conducted for breast cancer (199 cases) and colorectal cancer (185 cases), nested within the EPIC-Norfolk cohort. Blood was collected at least 6 months prior to diagnosis, and was matched to DNA from two cancer-free controls per case. In the retrospective SEARCH studies, the age-adjusted odds ratios for shortest (Q4) versus longest (Q1) quartile of mean telomere length was 15.5 [95% confidence intervals (CI), 11.6-20.8; p-het = 5.7 x 10(-75)], with a "per quartile" P-trend = 2.1 x 10(-80) for breast cancer; and 2.14 (95% CI, 1.77-2.59; p-het = 7.3 x 10(-15)), with a per quartile P-trend = 1.8 x 10(-13) for colorectal cancer. In the prospective EPIC study, the comparable odds ratios (Q4 versus Q1) were 1.58 (95% CI, 0.75-3.31; p-het = 0.23) for breast cancer and 1.13 (95% CI, 0.54-2.36; p-het = 0.75) for colorectal cancer risk. Mean telomere length was shorter in retrospectively collected cases than in controls but the equivalent association was markedly weaker in the prospective studies. This suggests that telomere shortening largely occurs after diagnosis, and therefore, might not be of value in cancer prediction.
Collapse
Affiliation(s)
- Karen A. Pooley
- Cancer Research UK Genetic Epidemiology Unit, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Manjinder S. Sandhu
- Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
- Genetic Epidemiology, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Jonathan Tyrer
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Mitul Shah
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Kristy E. Driver
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Robert N. Luben
- Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Sheila A. Bingham
- Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Bruce A.J. Ponder
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Paul D.P. Pharoah
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Douglas F. Easton
- Cancer Research UK Genetic Epidemiology Unit, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Alison M. Dunning
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| |
Collapse
|
197
|
Yu ST, Yang YB, Liang GP, Li C, Chen L, Shi CM, Tang XD, Li CZ, Li L, Wang GZ, Wu YY, Yang SM, Fang DC. An optimized telomerase-specific lentivirus for optical imaging of tumors. Cancer Res 2010; 70:2585-94. [PMID: 20233877 DOI: 10.1158/0008-5472.can-09-3841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advances in medical imaging techniques, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography, have made great progress in detecting tumors. However, these imaging techniques are unable to differentiate malignant tumors from benign ones. Recently developed optical imaging of tumors in small animals provides a useful method to distinguish malignant tumors from their surrounding normal tissues. Human telomerase reverse transcriptase (hTERT) is normally inactivated in most somatic cells, whereas it is commonly reactivated in many cancer cells. In this study, we constructed a lentiviral vector that expresses green fluorescent protein (GFP) driven by an optimized hTERT promoter to create a noninvasive tumor-specific imaging methodology. The activity of this optimized hTERT promoter was found to be equal to the activity of SV40 and cytomegalovirus promoters. In vitro experiments showed that GFP was only expressed in telomerase-positive tumor cells infected with this lentivirus, whereas there was no GFP expression in telomerase-negative tumor cells or normal somatic cells. We also found that subcutaneous telomerase-positive tumors could be visualized 24 hours after an intratumoral injection with this lentivirus by using a charge-coupled device (CCD) camera. In contrast, telomerase-negative tumors could not be imaged after an intratumoral injection even for 30 days. These results suggest that infection with lentivirus containing this optimized hTERT promoter might be a useful diagnostic tool for the real-time visualization of macroscopically invisible tumor tissues using a highly sensitive CCD imaging system.
Collapse
Affiliation(s)
- Song-Tao Yu
- Institute of Gastroenterology, Southwest Hospital and Institute of Combined Injure, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Cho EJ, Okamoto T, Yokozawa T. Therapeutic efficacy of Kangen-karyu against H2O2-induced premature senescence. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.11.0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
The anti-aging potential of Kangen-karyu extract was investigated using the mechanisms of the cellular aging model of stress-induced premature senescence (SIPS) in TIG-1 human fibroblasts. SIPS was induced by a sublethal dose of H2O2 and chronic oxidative stress with repeat treatment of low-dose H2O2. Reactive oxygen species generation, lipid peroxidation, and senescence-associated β-galactosidase activity were elevated in TIG-1 cells under SIPS induced by H2O2. However, Kangen-karyu extract led to significant declines in these parameters, suggesting its role in ameliorating oxidative stress-related aging. It was also observed that SIPS due to H2O2 treatment led to the loss of cell viability, whereas Kangen-karyu extract improved cell viability by attenuating H2O2-induced oxidative damage. TIG-1 cells under the condition of SIPS caused by sublethal and chronic low doses of H2O2 showed nuclear factor-κB (NF-κB) translocation to the nucleus from the cytosol, while Kangen-karyu extract inhibited NF-κB nuclear translocation, implying that Kangen-karyu extract could exert an anti-aging effect through NF-κB modulation. In addition, treatment with Kangen-karyu extract under H2O2-induced chronic oxidative stress normalized the cell cycle by reducing the number of cells in the G0/G1 phase and elevating the proportion of those in the S phase, indicating the role of Kangen-karyu extract in cell cycle regulation. On the other hand, Kangen-karyu extract did not exert such an effect on cell cycle regulation under acute oxidative stress induced by sublethal H2O2. Furthermore, treatment with Kangen-karyu extract prolonged the lifespan of TIG-1 cells under SIPS. The present study suggests that Kangen-karyu might play a therapeutic role against the aging process caused by oxidative stress.
Collapse
Affiliation(s)
- Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, South Korea
| | - Takuya Okamoto
- Iskra Industry Co., Ltd, 1-14-2 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
199
|
Satoh A, Yokozawa T, Kim YA, Cho EJ, Okamoto T, Sei Y. The mechanisms underlying the anti-aging activity of the Chinese prescription Kangen-karyu in hydrogen peroxide-induced human fibroblasts. J Pharm Pharmacol 2010. [DOI: 10.1111/j.2042-7158.2005.tb01609.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Our previous study showed that Kangen-karyu extract protected against cellular senescence by reducing oxidative damage through the inhibition of reactive oxygen species generation and regulation of the antioxidative status. Although these findings suggest that Kangen-karyu could delay the aging process, the mechanisms responsible for protection against aging have rarely been elucidated. Therefore, this study was focussed on the mechanisms responsible for the anti-aging activity of Kangen-karyu extract using hydrogen peroxide (H2O2)-induced human diploid fibroblasts, a well-established experimental model of cellular aging. Kangen-karyu extract exerted a protective effect against the morphological changes induced by H2O2 treatment and inhibited senescence-associated β-galactosidase activity. In addition, the beneficial effects of Kangen-karyu extract on cell viability and lifespan indicated that Kangen-karyu extract could delay the cellular aging process. The observation that Kangen-karyu extract prevented nuclear factor kappa B (NF-κB) translocation in response to oxidative stress suggested that Kangen-karyu exerted its anti-aging effect through NF-κB modulation and prevention of H2O2-induced overexpression of haem oxygenase-1 protein. Moreover, pretreatment with Kangen-karyu extract reduced overexpression of bax protein and prevented the mitochondrial membrane potential decline, suggesting that Kangen-karyu extract may protect mitochondria from mitochondrial oxidative stress and dysfunction. These findings indicate that Kangen-karyu is a promising potential anti-aging agent that may delay, or normalize, the aging process by virtue of its protective activity against oxidative stress-related conditions.
Collapse
Affiliation(s)
- Akiko Satoh
- Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takako Yokozawa
- Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | - Young Ae Kim
- Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, South Korea
| | - Takuya Okamoto
- Iskra Industry Co., Ltd., 1-14-2 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Yasuo Sei
- Iskra Industry Co., Ltd., 1-14-2 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
200
|
Zhang Z, Dai J, Veliath E, Jones RA, Yang D. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res 2010; 38:1009-21. [PMID: 19946019 PMCID: PMC2817458 DOI: 10.1093/nar/gkp1029] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 12/21/2022] Open
Abstract
Human telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. The telomeric sequence shows intrinsic structure polymorphism. Here we report a novel intramolecular G-quadruplex structure formed by a variant human telomeric sequence in K(+) solution. This sequence forms a basket-type intramolecular G-quadruplex with only two G-tetrads but multiple-layer capping structures formed by loop residues. While it is shown that this structure can only be detected in the specifically truncated telomeric sequences without any 5'-flanking residues, our results suggest that this two-G-tetrad conformation is likely to be an intermediate form of the interconversion of different telomeric G-quadruplex conformations.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724, BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721 and Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Jixun Dai
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724, BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721 and Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Elizabeth Veliath
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724, BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721 and Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Roger A. Jones
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724, BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721 and Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Danzhou Yang
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724, BIO5 Institute, The University of Arizona, 1140 E. South Campus Dr, Tucson, AZ 85721 and Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|