151
|
Minasyan H. Erythrocyte and blood antibacterial defense. Eur J Microbiol Immunol (Bp) 2014; 4:138-43. [PMID: 24883200 DOI: 10.1556/eujmi.4.2014.2.7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/10/2014] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED It is an axiom that blood cellular immunity is provided by leukocytes. As to erythrocytes, it is generally accepted that their main function is respiration. Our research provides objective video and photo evidence regarding erythrocyte bactericidal function. Phase-contrast immersion vital microscopy of the blood of patients with bacteremia was performed, and the process of bacteria entrapping and killing by erythrocytes was shot by means of video camera. Video evidence demonstrates that human erythrocytes take active part in blood bactericidal action and can repeatedly engulf and kill bacteria of different species and size. Erythrocytes are extremely important integral part of human blood cellular immunity. COMPARED WITH PHAGOCYTIC LEUKOCYTES, THE ERYTHROCYTES a) are more numerous; b) are able to entrap and kill microorganisms repeatedly without being injured; c) are more resistant to infection and better withstand the attacks of pathogens; d) have longer life span and are produced faster; e) are inauspicious media for proliferation of microbes and do not support replication of chlamidiae, mycoplasmas, rickettsiae, viruses, etc.; and f) are more effective and uncompromised bacterial killers. Blood cellular immunity theory and traditional view regarding the function of erythrocytes in human blood should be revised.
Collapse
|
152
|
Anselmo AC, Mitragotri S. Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J Control Release 2014; 190:531-41. [PMID: 24747161 DOI: 10.1016/j.jconrel.2014.03.050] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/22/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022]
Abstract
Cellular hitchhiking leverages the use of circulatory cells to enhance the biological outcome of nanoparticle drug delivery systems, which often suffer from poor circulation time and limited targeting. Cellular hitchhiking utilizes the natural abilities of circulatory cells to: (i) navigate the vasculature while avoiding immune system clearance, (ii) remain relatively inert until needed and (iii) perform specific functions, including nutrient delivery to tissues, clearance of pathogens, and immune system surveillance. A variety of synthetic nanoparticles attempt to mimic these functional attributes of circulatory cells for drug delivery purposes. By combining the advantages of circulatory cells and synthetic nanoparticles, many advanced drug delivery systems have been developed that adopt the concept of cellular hitchhiking. Here, we review the development and specific applications of cellular hitchhiking-based drug delivery systems.
Collapse
Affiliation(s)
- Aaron C Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara 93106, USA
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara 93106, USA.
| |
Collapse
|
153
|
Biagiotti S, Menotta M, Giacomini E, Radici L, Bianchi M, Bozzao C, Chessa L, Magnani M. Forward subtractive libraries containing genes transactivated by dexamethasone in ataxia-telangiectasia lymphoblastoid cells. Mol Cell Biochem 2014; 392:13-30. [DOI: 10.1007/s11010-014-2013-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/28/2014] [Indexed: 11/30/2022]
|
154
|
|
155
|
A Review of Theoretical Perspectives in Cognitive Science on the Presence of 1/f Scaling in Coordinated Physiological and Cognitive Processes. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/962043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Time series of human performances present fluctuations around a mean value. These fluctuations are typically considered as insignificant, and attributable to random noise. Over recent decades, it became clear that temporal fluctuations possess interesting properties, however, one of which the property of fractal 1/f scaling. 1/f scaling indicates that a measured process extends over a wide range of timescales, suggesting an assembly over multiple scales simultaneously. This paper reviews neurological, physiological, and cognitive studies that corroborate the claim that 1/f scaling is most clearly present in healthy, well-coordinated activities. Prominent hypotheses about the origins of 1/f scaling are confronted with these reviewed studies. It is concluded that 1/f scaling in living systems appears to reflect their genuine complex nature, rather than constituting a coincidental side-effect. The consequences of fractal dynamics extending from the small spatial and temporal scales (e.g., neurons) to the larger scales of human behavior and cognition, are vast, and impact the way in which relevant research questions may be approached. Rather than focusing on specialized isolable subsystems, using additive linear methodologies, nonlinear dynamics, more elegantly so, imply a complex systems methodology, thereby exploiting, rather than rejecting, mathematical concepts that enable describing large sets of natural phenomena.
Collapse
|
156
|
Zarrin A, Foroozesh M, Hamidi M. Carrier erythrocytes: recent advances, present status, current trends and future horizons. Expert Opin Drug Deliv 2014; 11:433-47. [PMID: 24456118 DOI: 10.1517/17425247.2014.880422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Carrier erythrocytes, thanks to their main advantages, including biocompatibility, biodegradability, immunocompatibility, simple and well-known structure and physiology, availability for sampling and versatility in loading and use, have been studied as cellular carriers for delivery of drugs and other bioactive agents for more than three decades. Based on this body of knowledge and recent advances in this field, and with the help of novel multidisciplinary sciences and technologies, it seems that this field is becoming renowned and experiencing an outstanding turning point in its developmental history. AREAS COVERED In this trendy and timely review, following a short historical review of the story of erythrocytes from oxygen delivery to drug delivery and evaluation of the present status of these biocarriers, recent advances and current experimental, technological and clinical trends, as well as future horizons, and, in particular, translation-prone strategies, are going to be discussed in detail. EXPERT OPINION Despite the challenging developmental history of carrier erythrocytes, they now stand closer to clinical use and market entrance due to their unique advantages in drug delivery, proven by recently reported success stories in late-stage clinical trials and progresses made in biotechnology, nanotechnology and biomaterials fields. Translation-prone approaches, like in vivo loading of circulating erythrocytes or semiautomatic loading of erythrocytes, and more realistic study designs by focusing on clinical needs that have not been responded to or erythrocyte biology/fate-inspired study design are among the main trends being focused on by pioneer research groups active in this field of drug delivery.
Collapse
Affiliation(s)
- Abdolhossein Zarrin
- Shiraz University of Medical Sciences, Medicinal and Natural Products Chemistry Research Center , Shiraz , Iran
| | | | | |
Collapse
|
157
|
TAKEUCHI Y, SUZUKI H, SASAHARA H, UEDA J, YABATA I, ITAGAKI K, SAITO S, MURASE K. Encapsulation of Iron Oxide Nanoparticles into Red Blood Cells as a Potential Contrast Agent for Magnetic Particle Imaging. ADVANCED BIOMEDICAL ENGINEERING 2014. [DOI: 10.14326/abe.3.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yuki TAKEUCHI
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University
| | - Hiroya SUZUKI
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University
| | - Hisato SASAHARA
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University
| | - Junpei UEDA
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University
| | - Isamu YABATA
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University
| | - Kouji ITAGAKI
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University
| | - Shigeyoshi SAITO
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University
| | - Kenya MURASE
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University
| |
Collapse
|
158
|
He H, Ye J, Wang Y, Liu Q, Chung HS, Kwon YM, Shin MC, Lee K, Yang VC. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J Control Release 2013; 176:123-132. [PMID: 24374002 DOI: 10.1016/j.jconrel.2013.12.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
Red blood cells (RBCs) based drug carrier appears to be the most appealing for protein drugs due to their unmatched biocompatability, biodegradability, and long lifespan in the circulation. Numerous methods for encapsulating protein drugs into RBCs were developed, however, most of them induce partial disruption of the cell membrane, resulting in irreversible alterations in both physical and chemical properties of RBCs. Herein, we introduce a novel method for encapsulating proteins into intact RBCs, which was meditated by a cell penetrating peptide (CPP) developed in our lab-low molecular weight protamine (LMWP). l-asparaginase, one of the primary drugs used in treatment of acute lymphoblastic leukemia (ALL), was chosen as a model protein to illustrate the encapsulation into erythrocytes mediated by CPPs. In addition current treatment of ALL using different l-asparaginase delivery and encapsulation methods as well as their associated problems were also reviewed.
Collapse
Affiliation(s)
- Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300072, P.R. China.,Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Junxiao Ye
- State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yinsong Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300072, P.R. China
| | - Quan Liu
- State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Hee Sun Chung
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Young Min Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida 33328, USA
| | - Meong Cheol Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Kyuri Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300072, P.R. China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA.,Department of Molecular Medicine and Biopharmaceutical Sciences, College of Medicine & College of Pharmacy, Seoul National University, South Korea
| |
Collapse
|
159
|
Oltra NS, Swift J, Mahmud A, Rajagopal K, Loverde SM, Discher DE. Filomicelles in nanomedicine - from flexible, fragmentable, and ligand-targetable drug carrier designs to combination therapy for brain tumors. J Mater Chem B 2013; 1:5177-5185. [PMID: 32263324 DOI: 10.1039/c3tb20431f] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Nanoparticles that are made by self-assembly into non-spherical shapes are promising as drug delivery vehicles. This review focuses on flexible and fragmentable filamentous micelles referred to as filomicelles made of degradable block copolymer amphiphiles. They are inspired by filoviruses and also by tubular proplatelets that break up into smaller platelets in blood flow. The synthesis and assembly of the constituent block copolymers are described together with ligand targeting and fragmentation as well as drug release in therapeutic applications to model tumors and most recently brain tumors.
Collapse
Affiliation(s)
- Núria Sancho Oltra
- Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
160
|
Abstract
AbstractIn this review we show and describe a concept of designing autonomously moving artificial cells (chemical robots) carrying drugs and having tactic behavior based on artificial chemotaxis. Such systems could help to provide new and more efficient drug delivery applications. Chemical robot can be constructed based on the self-organization — natural “bottom-up” way — of fatty acid or lipid molecules into ordered nano- or micrometer size objects that have the ability to move and respond to environmental stimuli. The idea of using tactic carriers in drug delivery applications can be justified by the fact that cancer sites in the living body have different physiological characters (lower pH and higher resting temperature) compared to normal cells. The proposed “bottom-up” design method for self-propelled objects at small scales for targeted drug delivery applications could realize the original designation of nanoscience proposed 50 years ago by Richard Feynman.
Collapse
|
161
|
Ngoepe M, Choonara YE, Tyagi C, Tomar LK, du Toit LC, Kumar P, Ndesendo VMK, Pillay V. Integration of biosensors and drug delivery technologies for early detection and chronic management of illness. SENSORS (BASEL, SWITZERLAND) 2013; 13:7680-713. [PMID: 23771157 PMCID: PMC3715220 DOI: 10.3390/s130607680] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/21/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022]
Abstract
Recent advances in biosensor design and sensing efficacy need to be amalgamated with research in responsive drug delivery systems for building superior health or illness regimes and ensuring good patient compliance. A variety of illnesses require continuous monitoring in order to have efficient illness intervention. Physicochemical changes in the body can signify the occurrence of an illness before it manifests. Even with the usage of sensors that allow diagnosis and prognosis of the illness, medical intervention still has its downfalls. Late detection of illness can reduce the efficacy of therapeutics. Furthermore, the conventional modes of treatment can cause side-effects such as tissue damage (chemotherapy and rhabdomyolysis) and induce other forms of illness (hepatotoxicity). The use of drug delivery systems enables the lowering of side-effects with subsequent improvement in patient compliance. Chronic illnesses require continuous monitoring and medical intervention for efficient treatment to be achieved. Therefore, designing a responsive system that will reciprocate to the physicochemical changes may offer superior therapeutic activity. In this respect, integration of biosensors and drug delivery is a proficient approach and requires designing an implantable system that has a closed loop system. This offers regulation of the changes by means of releasing a therapeutic agent whenever illness biomarkers prevail. Proper selection of biomarkers is vital as this is key for diagnosis and a stimulation factor for responsive drug delivery. By detecting an illness before it manifests by means of biomarkers levels, therapeutic dosing would relate to the severity of such changes. In this review various biosensors and drug delivery systems are discussed in order to assess the challenges and future perspectives of integrating biosensors and drug delivery systems for detection and management of chronic illness.
Collapse
Affiliation(s)
- Mpho Ngoepe
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Yahya E. Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lomas Kumar Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lisa C. du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Valence M. K. Ndesendo
- School of Pharmacy and Pharmaceutical Sciences, St. John's University of Tanzania, Dodoma, Tanzania; E-Mail:
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| |
Collapse
|
162
|
Lacroix S, Egrise D, Van Simaeys G, Doumont G, Monclus M, Sherer F, Herbaux T, Leroy D, Goldman S. [18F]-FBEM, a tracer targeting cell-surface protein thiols for cell trafficking imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:409-16. [DOI: 10.1002/cmmi.1540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 03/02/2013] [Accepted: 03/10/2013] [Indexed: 11/06/2022]
|
163
|
Zhumadilov Z. Global initiative for interdisciplinary approach to improve innovative clinical research and treatment outcomes in geriatrics: biological cell-based targeted drug delivery systems for geriatrics. Rejuvenation Res 2013; 16:212-23. [PMID: 23496161 DOI: 10.1089/rej.2013.1408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
At the intersection of the late 20(th) century and early 21(st) century, a worldwide challenge began to emerge--how can the quality of life be improved for a steadily increasing elderly population. It is well known that elderly patients show increased susceptibility to infections and a higher incidence of co-morbidity rates. Older adults frequently demonstrate pharmacokinetic and pharmacodynamic changes promoting adverse drug reactions and complications. Analysis of world literature and practical observations indicate that new approaches are required in gerontology and geriatric medicine due to recent significant advances in biomedical science. Global interdisciplinary approaches to improve medical science and medical care services for growing elderly population are indicated. This global, interdisciplinary initiative should integrate select, tangible clinical results achieved in leading research centers and universities that are applicable in the field of geriatrics and helpful to geriatricians. Among past scientific and clinically significant study results in the field of biomedicine, one must consider targeted drug delivery systems (DDS), which are designed to minimize drug side effects, increase the efficacy of drugs, and prolong and target drug interactions with particular pathological foci in sick patients. Many review articles focus on various methods of drug encapsulation and pharmacokinetics, but not on developing clinical modalities. This article attempts to further the discussion with researchers and clinicians from various fields, as well as to encourage comprehensive and elderly patient-oriented research focused on clinical implementation of DDS, especially erythrocyte-based DDS.
Collapse
|
164
|
Harisa GI, Ibrahim MF, Alanazi F, Shazly GA. Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel. Saudi Pharm J 2013; 22:223-30. [PMID: 25061408 DOI: 10.1016/j.jsps.2013.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/23/2013] [Indexed: 11/27/2022] Open
Abstract
Paclitaxel (PTX) is formulated in a mixture of Cremophor EL and dehydrated alcohol. The intravenous administration of this formula is associated with a risk of infection and hypersensitivity reactions. The presence of Cremophor EL as a pharmaceutical vehicle contributes to these effects. Therefore, in this study, we used human erythrocytes, instead of Cremophor, as a pharmaceutical vehicle. PTX was loaded into erythrocytes using the preswelling method. Analysis of the obtained data indicates that 148.8 μg of PTX was loaded/mL erythrocytes, with an entrapment efficiency of 46.36% and a cell recovery of 75.94%. Furthermore, we observed a significant increase in the mean cell volume values of the erythrocytes, whereas both the mean cell hemoglobin and the mean cell hemoglobin concentration decreased following the loading of PTX. The turbulence fragility index values for unloaded, sham-loaded and PTX-loaded erythrocytes were 3, 2, and 1 h, respectively. Additionally, the erythrocyte glutathione level decreased after PTX loading, whereas lipid peroxidation and protein oxidation increased. The release of PTX from loaded erythrocytes followed first-order kinetics, and about 81% of the loaded drug was released into the plasma after 48 h. The results of the present study revealed that PTX was loaded successfully into human erythrocytes with acceptable loading parameters and with some oxidative modification to the erythrocytes.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia ; Department of Biochemistry, College of Pharmacy, Al-Azhar University (Boys), Nasr City, Cairo, Egypt
| | - Mohamed F Ibrahim
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fars Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal A Shazly
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia ; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
165
|
Ma X, Yuan S, Yang L, Li L, Zhang X, Su C, Wang K. Fabrication and potential applications of CaCO3–lentinan hybrid materials with hierarchical composite pore structure obtained by self-assembly of nanoparticles. CrystEngComm 2013. [DOI: 10.1039/c3ce41275j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
166
|
Kolesnikova TA, Skirtach AG, Möhwald H. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles. Expert Opin Drug Deliv 2012; 10:47-58. [PMID: 23078091 DOI: 10.1517/17425247.2013.730516] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Red blood cells (RBCs) and lipid-based carriers on the one hand and polymeric capsules on the other hand represent two of the most widely used carriers in drug delivery. Each class of these carriers has its own set of properties, specificity and advantages. Thorough comparative studies of such systems are reported here for the first time. AREAS COVERED In this review, RBCs are described in comparison with synthetic polymeric drug delivery vehicles using polyelectrolyte multilayer capsules as an example. Lipid-based composition of the shell in the former case is particularly attractive due to their inherent biocompatibility and flexibility of the carriers. On the other hand, synthetic approaches to fabrication of polyelectrolyte multilayer capsules permit manipulation of the permeability of their shell as well as tuning their composition, mechanical properties, release methods and targeting. EXPERT OPINION In conclusion, properties of RBCs and polyelectrolyte multilayer capsules are reported here highlighting similarities and differences in their preparation and applications. In addition, their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Tatiana A Kolesnikova
- Max-Planck Institute of Colloids and Interfaces, Department of Interfaces, Golm/Potsdam, D14476, Germany.
| | | | | |
Collapse
|
167
|
Zhang Y, Lovell JF. Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2012; 2:905-15. [PMID: 23082102 PMCID: PMC3475213 DOI: 10.7150/thno.4908] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
Long before humans roamed the planet, porphyrins in blood were serving not only as indispensable oxygen carriers, but also as the bright red contrast agent that unmistakably indicates injury sites. They have proven valuable as whole body imaging modalities have emerged, with endogenous hemoglobin porphyrins being used for new approaches such as functional magnetic resonance imaging and photoacoustic imaging. With the capability for both near infrared fluorescence imaging and phototherapy, porphyrins were the first exogenous agents that were employed with intrinsic multimodal theranostic character. Porphyrins have been used as tumor-specific diagnostic fluorescence imaging agents since 1924, as positron emission agents since 1951, and as magnetic resonance (MR) contrast agents since 1987. Exogenous porphyrins remain in clinical use for photodynamic therapy. Because they can chelate a wide range of metals, exogenous porphyrins have demonstrated potential for use in radiotherapy and multimodal imaging modalities. Going forward, intrinsic porphyrin biocompatibility and multimodality will keep new applications of this class of molecules at the forefront of theranostic research.
Collapse
|
168
|
|
169
|
Erythrocyte-mediated delivery of pravastatin: In Vitro study of effect of hypotonic lysis on biochemical parameters and loading efficiency. Arch Pharm Res 2012; 35:1431-9. [DOI: 10.1007/s12272-012-0813-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/10/2012] [Accepted: 03/22/2012] [Indexed: 01/28/2023]
|
170
|
Abstract
Herein recent progress in developing red blood cell (RBC)-inspired delivery systems is reviewed, with an emphasis on how our growing understanding of fundamental biological properties of natural RBCs has been applied in the design and engineering of these delivery systems. Specifically, progress achieved in developing carrier RBCs, a class of delivery vehicles engineered by directly loading natural RBCs with therapeutic agents, will be reviewed. Then alternative approaches to engineering synthetic vehicles through mimicking the mechanobiological and chemico-biological properties of natural RBCs will be considered. The synthesis and application of RBC membrane-derived vesicles, of which the natural RBC membranes are collected and directly utilized to prepare drug carriers, will then be discussed. Finally, a recent approach in engineering RBC membrane-camouflaged nanoparticle systems that combine advantages of natural RBCs and synthetic biomaterials will be highlighted. These developments indicate that RBC-inspired delivery systems will result in next-generation nanomedicine with extensive medical applications.
Collapse
Affiliation(s)
- Che-Ming J Hu
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
171
|
Erythrocytes as a novel delivery vehicle for biologics: from enzymes to nucleic acid-based therapeutics. Ther Deliv 2012; 3:405-14. [PMID: 22833997 DOI: 10.4155/tde.12.6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biological drugs are among the most exciting drugs of the future, offering better treatment options for patients than ever before but they need an appropriate delivery vehicle. Carrier erythrocytes are one of the most promising drug-delivery systems. Application of erythrocytes as containers for various drugs minimizes toxicity, decreasing the risk of side effects and pathologic immune reactions against encapsulated agents as well as improving their efficacy, leading to better patient compliance. This review discusses the rationale for the use of erythrocytes as a vehicle for biopharmaceuticals and summarizes the categories of these new encapsulable compounds that are currently under investigation. The authors' intent is to describe the development of this delivery system to give the reader an overview of the remarkable potential of erythrocytes as naturally designed carriers and their versatility in the field of biologics for the treatment of various pathological conditions.
Collapse
|
172
|
Solvent free fabrication of micro and nanostructured drug coatings by thermal evaporation for controlled release and increased effects. PLoS One 2012; 7:e40746. [PMID: 22870203 PMCID: PMC3411571 DOI: 10.1371/journal.pone.0040746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Nanostructuring of drug delivery systems offers many promising applications like precise control of dissolution and release kinetics, enhanced activities, flexibility in terms of surface coatings, integration into implants, designing the appropriate scaffolds or even integrating into microelectronic chips etc. for different desired applications. In general such kind of structuring is difficult due to unintentional mixing of chemical solvents used during drug formulations. We demonstrate here the successful solvent-free fabrication of micro-nanostructured pharmaceutical molecules by simple thermal evaporation (TE). The evaporation of drug molecules and their emission to a specific surface under vacuum led to controlled assembling of the molecules from vapour phase to solid phase. The most important aspects of thermal evaporation technique are: solvent-free, precise control of size, possibility of fabricating multilayer/hybrid, and free choice of substrates. This could be shown for twenty eight pharmaceutical substances of different chemical structures which were evaporated on surfaces of titanium and glass discs. Structural investigations of different TE fabricated drugs were performed by atomic force microscopy, scanning electron microscopy and Raman spectroscopy which revealed that these drug substances preserve their structurality after evaporation. Titanium discs coated with antimicrobial substances by thermal evaporation were subjected to tests for antibacterial or antifungal activities, respectively. A significant increase in their antimicrobial activity was observed in zones of inhibition tests compared to controls of the diluted substances on the discs made of paper for filtration. With thermal evaporation, we have successfully synthesized solvent-free nanostructured drug delivery systems in form of multilayer structures and in hybrid drug complexes respectively. Analyses of these substances consolidated that thermal evaporation opens up the possibility to convert dissoluble drug substances into the active forms by their transfer onto a specific surface without the need of their prior dissolution.
Collapse
|
173
|
Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: In vivo performances. J Control Release 2012; 160:418-30. [DOI: 10.1016/j.jconrel.2012.03.013] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/08/2012] [Indexed: 01/08/2023]
|
174
|
Force dependent internalization of magnetic nanoparticles results in highly loaded endothelial cells for use as potential therapy delivery vectors. Pharm Res 2012; 29:1270-81. [PMID: 22234617 DOI: 10.1007/s11095-011-0663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
PURPOSE To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. METHODS MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. RESULTS MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. CONCLUSIONS Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems.
Collapse
|
175
|
Magnani M. Erythrocytes as carriers for drugs: the transition from the laboratory to the clinic is approaching. Expert Opin Biol Ther 2012; 12:137-8. [PMID: 22230036 DOI: 10.1517/14712598.2012.650163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Erythrocytes have been suggested to be smart carriers for drugs, biologics and other therapeutic agents, and a paper in the present issue of the journal confirms the wide interest and the expectations the technology has generated. In this Editorial, I briefly summarize the advances in the field and try to figure out the process that will take this technology to the clinic. The conclusion is that, after several years of basic research, the time is fast approaching since two companies in Europe are actively engaged in industrializing the process and searching approval for treatments with structured clinical trials.
Collapse
|
176
|
Engineering erythrocytes to be erythrosensors: first steps. Blood Cells Mol Dis 2012; 47:100-6. [PMID: 21641241 DOI: 10.1016/j.bcmd.2011.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 11/23/2022]
Abstract
Molecules can be loaded into mammalian erythrocytes through a reversible lysis pore that forms in the membrane when placed in hypotonic media, the result being resealed red cell ghosts. Many studies on the sidedness of transport processes have utilized this approach. In addition, red cell ghosts encapsulated with enzymes have been used in patients to treat specific enzyme deficiencies, particularly when the substrate can cross the red cell membrane. Our long-term goal is to put fluorescent sensors inside erythrocytes, return the loaded red cell ghosts to the animal or patient, and then monitor the fluorescence non-invasively to follow changes in plasma analyte concentration. In this paper, we present a novel dialysis method for making the red cell ghosts. In addition, we present a theoretical analysis showing that it is not necessary that every loaded red cell ghost has the same dye concentration. Finally we discuss the constraints on the optimal affinity for the sensor/analyte interaction.
Collapse
|
177
|
Luo R, Mutukumaraswamy S, Venkatraman SS, Neu B. Engineering of erythrocyte-based drug carriers: control of protein release and bioactivity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:63-71. [PMID: 22095447 DOI: 10.1007/s10856-011-4485-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/01/2011] [Indexed: 05/31/2023]
Abstract
This work reports the fabrication of layer-by-layer (LbL) polyelectrolyte coated erythrocyte carriers that provide a simple means for controlling the burst and subsequent release of lysozyme. Erythrocytes were loaded with RITC-lysozyme as model compound via the hypotonic dialysis method. An encapsulation efficiency of 41.6% and a loading amount of 12.7 pg/cell was achieved. It is demonstrated that these carriers maintain their shape and integrity similar to natural erythrocytes after the encapsulation procedures, and achieve a uniform distribution of the encapsulated lysozyme. The erythrocyte carriers were fixed with glutaraldehyde and then successfully coated with biocompatible polyelectrolytes, poly-L: -lysine hydrobromide and dextran sulfate, using the LbL method. It is demonstrated that the release profile of the encapsulated macromolecule can be regulated by adjusting the number of polyelectrolyte layers. Furthermore by adjusting the concentrations of the cross linking agent the activity of the encapsulated lysozyme can be well preserved. These core-shell microcapsules, consisting of erythrocytes loaded with bioactive substances and coated with a polyelectrolyte multilayer shell, hold promise for a new type of biocompatible and biodegradable drug delivery system.
Collapse
Affiliation(s)
- Rongcong Luo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | | | | |
Collapse
|
178
|
Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2011; 12:39-50. [PMID: 22193407 DOI: 10.1038/nrc3180] [Citation(s) in RCA: 797] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis accounts for the vast majority of cancer deaths. The unique challenges for treating metastases include their small size, high multiplicity and dispersion to diverse organ environments. Nanoparticles have many potential benefits for diagnosing and treating metastatic cancer, including the ability to transport complex molecular cargoes to the major sites of metastasis, such as the lungs, liver and lymph nodes, as well as targeting to specific cell populations within these organs. This Review highlights the research, opportunities and challenges for integrating engineering sciences with cancer biology and medicine to develop nanotechnology-based tools for treating metastatic disease.
Collapse
Affiliation(s)
- Avi Schroeder
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Sternberg N, Georgieva R, Duft K, Bäumler H. Surface-modified loaded human red blood cells for targeting and delivery of drugs. J Microencapsul 2011; 29:9-20. [DOI: 10.3109/02652048.2011.629741] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
180
|
Palma L, Sfara C, Antonelli A, Magnani M. Dexamethasone restrains ongoing expression of interleukin-23p19 in peripheral blood-derived human macrophages. BMC Pharmacol 2011; 11:8. [PMID: 21791059 PMCID: PMC3166892 DOI: 10.1186/1471-2210-11-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/26/2011] [Indexed: 11/24/2022] Open
Abstract
Background Since its recent discovery, interleukin-23 has been shown to be involved in the pathogenesis of autoimmune diseases favoring the development of a T cell subset referred to as T helper 17. Glucocorticoids are widely employed in inflammatory and autoimmune diseases as they inhibit pro-inflammatory signaling and prevent production of inflammation mediators. Very limited information is available about the efficacy of synthetic glucocorticoids in containing the expression of interleukin-23 under cell activation. Results We demonstrate here that the glucocorticoid analogue dexamethasone administered to human monocyte-derived macrophages is indeed able to restrain the expression of interleukin-23 once it has been triggered by a pro-inflammatory stimulus. This effect of dexamethasone is here demonstrated being secondary to suppression of p38 MAPK activity, and involving a protein phosphatase - likely MAPK phosphatase-1 (MKP-1). Conclusions Results reported in this paper show that a 10 nanomolar dose of dexamethasone not only prevents inflammatory activation but is also efficacious in confining active inflammation. This effect is here demonstrated not to occur through "canonical" inhibition of the NF-κB transcription factor but through a distinct cascade of down-modulation, that underlines the importance of the transactivating activity of glucocorticoid receptor in the context of its anti-inflammatory action.
Collapse
Affiliation(s)
- Linda Palma
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via A, Saffi 2, 61029 Urbino, PU, Italy.
| | | | | | | |
Collapse
|
181
|
Biagiotti S, Paoletti MF, Fraternale A, Rossi L, Magnani M. Drug delivery by red blood cells. IUBMB Life 2011; 63:621-31. [DOI: 10.1002/iub.478] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 03/30/2011] [Indexed: 02/04/2023]
|
182
|
Ritter SC, Milanick MA, Meissner KE. Encapsulation of FITC to monitor extracellular pH: a step towards the development of red blood cells as circulating blood analyte biosensors. BIOMEDICAL OPTICS EXPRESS 2011; 2:2012-2021. [PMID: 21750776 PMCID: PMC3130585 DOI: 10.1364/boe.2.002012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 05/29/2023]
Abstract
A need exists for a long-term, minimally-invasive system to monitor blood analytes. For certain analytes, such as glucose in the case of diabetics, a continuous system would help reduce complications. Current methods suffer significant drawbacks, such as low patient compliance for the finger stick test or short lifetime (i.e., 3-7 days) and required calibrations for continuous glucose monitors. Red blood cells (RBCs) are potential biocompatible carriers of sensing assays for long-term monitoring. We demonstrate that RBCs can be loaded with an analyte-sensitive fluorescent dye. In the current study, FITC, a pH-sensitive fluorescent dye, is encapsulated within resealed red cell ghosts. Intracellular FITC reports on extracellular pH: fluorescence intensity increases as extracellular pH increases because the RBC rapidly equilibrates to the pH of the external environment through the chloride-bicarbonate exchanger. The resealed ghost sensors exhibit an excellent ability to reversibly track pH over the physiological pH range with a resolution down to 0.014 pH unit. Dye loading efficiency varies from 30% to 80%. Although complete loading is ideal, it is not necessary, as the fluorescence signal is an integration of all resealed ghosts within the excitation volume. The resealed ghosts could serve as a long-term (>1 to 2 months), continuous, circulating biosensor for the management of diseases, such as diabetes.
Collapse
Affiliation(s)
- Sarah C. Ritter
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mark A. Milanick
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Kenith E. Meissner
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
183
|
Ma X, Chen H, Yang L, Wang K, Guo Y, Yuan L. Construction and Potential Applications of a Functionalized Cell with an Intracellular Mineral Scaffold. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
184
|
Ma X, Chen H, Yang L, Wang K, Guo Y, Yuan L. Construction and potential applications of a functionalized cell with an intracellular mineral scaffold. Angew Chem Int Ed Engl 2011; 50:7414-7. [PMID: 21714046 DOI: 10.1002/anie.201100126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 06/03/2011] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaoming Ma
- College of Chemistry and Environmental Science, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, PR China
| | | | | | | | | | | |
Collapse
|
185
|
Harisa GEDI, Ibrahim MF, Alanazi FK. Characterization of human erythrocytes as potential carrier for pravastatin: an in vitro study. Int J Med Sci 2011; 8:222-30. [PMID: 21448309 PMCID: PMC3065791 DOI: 10.7150/ijms.8.222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/18/2011] [Indexed: 11/06/2022] Open
Abstract
Drug delivery systems including chemical, physical and biological agents that enhance the bioavailability, improve pharmacokinetics and reduce toxicities of the drugs. Carrier erythrocytes are one of the most promising biological drug delivery systems investigated in recent decades. The bioavailability of statin drugs is low due the effects of P-glycoprotein in the gastro-intestinal tract as well as the first-pass metabolism. Therefore in this work we study the effect of time, temperature as well as concentration on the loading of pravastatin in human erythrocytes to be using them as systemic sustained release delivery system for this drug. After the loading process is performed the carriers' erythrocytes were physically and cellulary characterized. Also, the in vitro release of pravastatin from carrier erythrocytes was studied over time interval. Our results revealed that, human erythrocytes have been successfully loaded with pravastatin using endocytosis method either at 25(o)C or at 37(o)C. The loaded amount at 10 mg/ml is 0.32 mg/0.1 ml and 0.69 mg/0.1 ml. Entrapment efficiency is 34% and 94% at 25(o)C and 37(o)C respectively at drug concentration 4 mg/ml. Moreover the percent of cells recovery is 87-93%. Hematological parameters and osmotic fragility behavior of pravastatin loaded erythrocytes were similar that of native erythrocytes. Scanning electron microscopy demonstrated that the pravastatin loaded cells has no change in the morphology. Pravastatin releasing from carrier cell was 83% after 23 hours in phosphate buffer saline and decreased to 72% by treatment of carrier cells with glutaraldehyde. The releasing pattern of the drug from loaded erythrocytes obeyed first order kinetics. It concluded that pravastatin is successfully entrapped into erythrocytes with acceptable loading parameters and moderate morphological changes, this suggesting that erythrocytes can be used as prolonged release for pravastatin.
Collapse
Affiliation(s)
- Gamal El-din I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
186
|
Cinti C, Taranta M, Naldi I, Grimaldi S. Newly engineered magnetic erythrocytes for sustained and targeted delivery of anti-cancer therapeutic compounds. PLoS One 2011; 6:e17132. [PMID: 21373641 PMCID: PMC3044154 DOI: 10.1371/journal.pone.0017132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/21/2011] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy.
Collapse
Affiliation(s)
- Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Siena, Italy.
| | | | | | | |
Collapse
|
187
|
Bruce IJ. Novel and Improved Nanomaterials, Chemistries and Apparatus for Nanobiotechnology: the NACBO Project. Nanomedicine (Lond) 2011; 6:187-93. [DOI: 10.2217/nnm.10.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article outlines the nature and activities of the recently completed EU Framework Programme 6 Integrated Project, Novel and Improved Nanomaterials, Chemistries and Apparatus for Nanobiotechnology (NACBO). This project was designed to yield new nanomaterials, surface activation and synthetic nucleic acid chemistries, procedures and hardware for applications in forensics and diagnostics. It provides details on the project’s structure and partnership along with its principal objectives and successes in terms of publications and commercial exploitation.
Collapse
Affiliation(s)
- Ian James Bruce
- Nanobiotechnology Research Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
188
|
Premaletha K, Licy CD, Jose S, Saraladevi A, Shirwaikar A, Shirwaikar A. Formulation, characterization and optimization of hepatitis B surface antigen (HBsAg)-loaded chitosan microspheres for oral delivery. Pharm Dev Technol 2010; 17:251-8. [PMID: 21108582 DOI: 10.3109/10837450.2010.535824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Approximately 400 million persons worldwide have chronic hepatitis B. This is due to problems associated with vaccine delivery, stability and cost. Hence the present challenge in vaccinology is to develop safer, cheaper and easy-to-deliver forms of vaccines. A novel needle-free oral vaccine will be an ideal tool to fight this silent killer disease. OBJECTIVE The aim of this work was to prepare and evaluate chitosan-loaded HBsAg microspheres for oral delivery. MATERIALS AND METHODS Chitosan microspheres were prepared by emulsion solvent evaporation technique. To overcome the enzymatic and permeation barrier, protease inhibitors and permeation enhancers were also added. Studies were conducted to find the effect of stabilizer concentration, stirring speed, cross-linking agent and polymer concentration on microsphere size and entrapment efficiency. Formulations were characterized for their particle size, entrapment efficiency. They were also evaluated for the in vitro drug release, in vivo performances and the effect of different storage conditions. RESULTS HBsAg-loaded chitosan microspheres with bacitracin as protease inhibitor showed better protective levels of immunity after oral administration comparing with aprotinin as protease inhibitor. Stability at room temperature up to a period of four months reduces incomplete vaccine coverage and logistic requirements. CONCLUSION The study signifies the potential of the formulated chitosan microspheres for effective oral administration of HBsAg.
Collapse
Affiliation(s)
- K Premaletha
- Academy of Pharmaceutical Sciences, Pariyaram Medical College, Kannur, Kerala, India.
| | | | | | | | | | | |
Collapse
|
189
|
Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C, Magnani M. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 2010; 55:6461-73. [DOI: 10.1088/0031-9155/55/21/008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
190
|
Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010; 7:403-27. [PMID: 20192900 DOI: 10.1517/17425241003610633] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
191
|
Rossi NA, Constantinescu I, Kainthan RK, Brooks DE, Scott MD, Kizhakkedathu JN. Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols. Biomaterials 2010; 31:4167-78. [DOI: 10.1016/j.biomaterials.2010.01.137] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/27/2010] [Indexed: 11/29/2022]
|
192
|
Sharma P, Garg S. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev 2010; 62:491-502. [PMID: 19931328 DOI: 10.1016/j.addr.2009.11.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022]
Abstract
The impact of human immunodeficiency virus (HIV) infection has been devastating with nearly 7400 new infections every day. Although, the advent of highly active antiretroviral therapy (HAART) has made a tremendous contribution in reducing the morbidity and mortality in developed countries, the situation in developing countries is still grim with millions of people being infected by this disease. The new advancements in the field of nanotechnology based drug delivery systems hold promise to improve the situation. These nanoscale systems have been successfully employed in other diseases such as cancer, and therefore, we now have a better understanding of the practicalities and technicalities associated with their clinical development. Nanotechnology based approaches offer some unique opportunities specifically for the improvement of water solubility, stability, bioavailability and targeting of antiretroviral drugs. This review presents discussion on the contribution of pure drug and polymer based nanotechnologies for the delivery anti-HIV drugs.
Collapse
Affiliation(s)
- Puneet Sharma
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
193
|
Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, Gil MH. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J 2010; 1:164-209. [PMID: 23199049 PMCID: PMC3405312 DOI: 10.1007/s13167-010-0001-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 01/25/2010] [Indexed: 12/31/2022]
Abstract
Advanced drug delivery systems (DDS) present indubitable benefits for drug administration. Over the past three decades, new approaches have been suggested for the development of novel carriers for drug delivery. In this review, we describe general concepts and emerging research in this field based on multidisciplinary approaches aimed at creating personalized treatment for a broad range of highly prevalent diseases (e.g., cancer and diabetes). This review is composed of two parts. The first part provides an overview on currently available drug delivery technologies including a brief history on the development of these systems and some of the research strategies applied. The second part provides information about the most advanced drug delivery devices using stimuli-responsive polymers. Their synthesis using controlled-living radical polymerization strategy is described. In a near future it is predictable the appearance of new effective tailor-made DDS, resulting from knowledge of different interdisciplinary sciences, in a perspective of creating personalized medical solutions.
Collapse
Affiliation(s)
- Jorge F. Coelho
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Paula C. Ferreira
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
- Department of Health Sciences, Portuguese Catholic University, 3504-505 Viseu, Portugal
| | - Patricia Alves
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Rosemeyre Cordeiro
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Ana C. Fonseca
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Joana R. Góis
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Maria H. Gil
- Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| |
Collapse
|
194
|
Pastorelli L, Pizarro TT, Cominelli F, Vecchi M. Emerging drugs for the treatment of ulcerative colitis. Expert Opin Emerg Drugs 2009; 14:505-21. [PMID: 19656075 DOI: 10.1517/14728210903146882] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, relapsing inflammatory disorder of the colon for which the etiology is currently unknown. At present, strategies to treat UC are primarily targeted to control inflammation during active phases of disease as well as maintain remission during quiescence. As such, several unmet needs in the treatment of UC still remain. In recent years, basic research has led to the recognition of several key factors in the pathogenesis of UC, translating into the development of several novel therapeutic agents. OBJECTIVE The aim of this study is to review emerging therapies that may advance the treatment and improve the overall care of UC patients. METHODS An extensive literature search on published manuscripts and meeting proceedings has been performed to provide a comprehensive review of future drug therapies to treat UC. RESULTS/CONCLUSION The translational application of new discoveries in the basic understanding of UC pathogenesis is continuing and critical for the development of novel treatment strategies. Design of novel biologic therapies to treat UC has the challenge of addressing potential safety issues, while more traditional drugs should be further developed to facilitate patient compliance to treat this chronic, debilitating disease.
Collapse
Affiliation(s)
- Luca Pastorelli
- Case Western Reserve University School of Medicine, Department of Pathology, 2103 Cornell Road, Room 5501, Cleveland, OH, 44106, USA
| | | | | | | |
Collapse
|
195
|
Kim SH, Kim EJ, Hou JH, Kim JM, Choi HG, Shim CK, Oh YK. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials 2008; 30:959-67. [PMID: 19027156 DOI: 10.1016/j.biomaterials.2008.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
The use of antisense oligodeoxynucleotides (AS-ODNs) in therapeutic applications requires the development of appropriate analysis and delivery systems. Here, we report a quantitation method and a carrier-mediated AS-ODN delivery system. AS-ODN levels were quantitated using an enzyme-linked immunosorbent assay (ELISA) in which biotinylated AS-ODNs bound to streptavidin-coated plates were detected by binding of a complementary, dinitrophenol-labeled detector ODN. The ELISA-based assay could detect AS-ODNs at the femtomole level. AS-ODN delivery systems based on opsinized erythrocyte ghosts (EGs) were developed using various combinations of hypotonic solution and resealing buffer to optimize AS-ODN encapsulation efficiencies. AS-ODN and polyethyleneimine (PEI) complex formation did not affect encapsulation into EGs. The ELISA-based assay showed that the pharmacokinetics of AS-ODNs differed significantly among the various delivery methods. Opsonized EG-encapsulated AS-ODNs exhibited a mean residence time (MRT) significantly shorter than AS-ODN encapsulated in EGs. The biodistribution of EG-loaded AS-ODNs depended on opsonization, with opsonized EG carriers producing 4.5-fold higher levels of AS-ODN in the liver compared with unopsonized EGs. These results indicate that opsonized EGs can be used for liver-targeted delivery of AS-ODN and suggest that an ELISA-based method may be useful for studying the in vivo fate of AS-ODNs.
Collapse
Affiliation(s)
- Sang-Hee Kim
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seungbuk-gu, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
Use of cells as therapeutic carriers has increased in the past few years and has developed as a distinct concept and delivery method. Cell-based vehicles are particularly attractive for delivery of biotherapeutic agents that are difficult to synthesize, have reduced half-lives, limited tissue penetrance or are rapidly inactivated upon direct in vivo introduction. Initial studies using cell-based approaches served to identify some of the key factors for the success of this type of therapeutic delivery. These factors include the efficiency of cell loading with a therapeutic payload, the means of cell loading and the nature of therapeutics that cells can carry. However, one important aspect of cell-based delivery yet to be fully investigated is the process of actual delivery of the cell payload in vivo. In this regard, the potential ability of cell carriers to provide site-specific or targeted delivery of therapeutics deserves special attention. The present review focuses on a variety of targeting approaches that may be utilized to improve cell-based therapeutic delivery strategies. The different aspects of targeting that can be applied to cell vehicles will be discussed, including physical methods for directing cell distribution, intrinsic cell-mediated homing mechanisms and the feasibility of engineering cells with novel targeting mechanisms. Development of cell targeting strategies will further advance cell vehicle applications, broaden the applicability of this delivery approach and potentiate therapeutic outcomes.
Collapse
Affiliation(s)
- J C Roth
- Department of Medicine, Division of Human Gene Therapy, The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA.
| | | | | |
Collapse
|