151
|
Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 2013; 8:035003. [PMID: 23532037 DOI: 10.1088/1748-6041/8/3/035003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The fabrication of a smart magnetically controllable bio-based polymeric nanocomposite (NC) has immense potential in the biomedical domain. In this context, magneto-thermoresponsive sunflower oil modified hyperbranched polyurethane (HBPU)/Fe3O4 NCs with different wt.% of magnetic nanoparticles (Fe3O4) were prepared by an in situ polymerization technique. Fourier-transform infrared, x-ray diffraction, vibrating sample magnetometer, scanning electron microscope, transmission electron microscope, thermal analysis and differential scanning calorimetric were used to analyze various physico-chemical structural attributes of the prepared NC. The results showed good interfacial interactions between HBPU and well-dispersed superparamagnetic Fe3O4, with an average diameter of 7.65 nm. The incorporation of Fe3O4 in HBPU significantly improved the thermo-mechanical properties along with the shape-memory behavior, antibacterial activity, biocompatibility as well as biodegradability in comparison to the pristine system. The cytocompatibility of the degraded products of the NC was also verified by in vitro hemolytic activity and MTT assay. In addition, the in vivo biocompatibility and non-immunological behavior, as tested in Wistar rats after subcutaneous implantation, show promising signs for the NC to be used as antibacterial biomaterial for biomedical device and implant applications.
Collapse
Affiliation(s)
- Beauty Das
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur-784028, Assam, India
| | | | | | | | | |
Collapse
|
152
|
Chen X, Sevilla P, Aparicio C. Surface biofunctionalization by covalent co-immobilization of oligopeptides. Colloids Surf B Biointerfaces 2013; 107:189-97. [PMID: 23500730 DOI: 10.1016/j.colsurfb.2013.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 02/07/2023]
Abstract
Functionalization of implants with multiple bioactivities is desired to obtain surfaces with improved biological and clinical performance. Our objective was developing a simple and reliable method to obtain stable multifunctional coatings incorporating different oligopeptides. We co-immobilized on titanium surface oligopeptides of known cooperative bioactivities with a simple and reliable method. Appropriately designed oligopeptides containing either RGD or PHSRN bioactive sequences were mixed and covalently bonded on CPTES-silanized surfaces. Coatings made of only one of the two investigated peptides and coatings with physisorbed oligopeptides were produced and tested as control groups. We performed thorough characterization of the obtained surfaces after each step of the coating preparation and after mechanically challenging the obtained coatings. Fluorescence labeling of RGD and PHSRN peptides with fluorescence probes of different colors enabled the direct visualization of the co-immobilization of the oligopeptides. We proved that the coatings were mechanically stable. The surfaces with co-immobilized RGD and PHSRN peptides significantly improved osteoblasts response in comparison with control surfaces, which assessed the effectiveness of our coating method to bio-activate the implant surfaces. This same simple method can be used to obtain other multi-functional surfaces by co-immobilizing oligopeptides with different targeted bioactivities--cell recruitment and differentiation, biomineral nucleation, antimicrobial activity--and thus, further improving the clinical performance of titanium implants.
Collapse
Affiliation(s)
- Xi Chen
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
153
|
Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013; 34:3174-83. [PMID: 23391496 DOI: 10.1016/j.biomaterials.2013.01.074] [Citation(s) in RCA: 443] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/20/2013] [Indexed: 12/12/2022]
Abstract
Implants are widely used for orthopaedic applications such as fixing fractures, repairing non-unions, obtaining a joint arthrodesis, total joint arthroplasty, spinal reconstruction, and soft tissue anchorage. Previously, orthopaedic implants were designed simply as mechanical devices; the biological aspects of the implant were a byproduct of stable internal/external fixation of the device to the surrounding bone or soft tissue. More recently, biologic coatings have been incorporated into orthopaedic implants in order to modulate the surrounding biological environment. This opinion article reviews current and potential future use of biologic coatings for orthopaedic implants to facilitate osseointegration and mitigate possible adverse tissue responses including the foreign body reaction and implant infection. While many of these coatings are still in the preclinical testing stage, bioengineers, material scientists and surgeons continue to explore surface coatings as a means of improving clinical outcome of patients undergoing orthopaedic surgery.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
| | | | | | | |
Collapse
|
154
|
Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 2013; 14:1854-69. [PMID: 23325051 PMCID: PMC3565352 DOI: 10.3390/ijms14011854] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide with good biodegradability, biocompatibility and antimicrobial activity, which makes it potentially useful for biomedical applications, including an antimicrobial agent either alone or blended with other polymers. However, the poor solubility of CS in most solvents at neutral or high pH substantially limits its use. Quaternary ammonium CS, which was prepared by introducing a quaternary ammonium group on a dissociative hydroxyl group or amino group of the CS, exhibited improved water solubility and stronger antibacterial activity relative to CS over an entire range of pH values; thus, this quaternary modification increases the potential biomedical applications of CS in the field of anti-infection. This review discusses the current findings on the antimicrobial properties of quaternized CS synthesized using different methods and the mechanisms of its antimicrobial actions. The potential antimicrobial applications in the orthopedic field and perspectives regarding future studies in this field are also considered.
Collapse
|
155
|
Chen X, Li Y, Aparicio C. Biofunctional Coatings for Dental Implants. THIN FILMS AND COATINGS IN BIOLOGY 2013. [DOI: 10.1007/978-94-007-2592-8_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
156
|
Pidhatika B, Rodenstein M, Chen Y, Rakhmatullina E, Mühlebach A, Acikgöz C, Textor M, Konradi R. Comparative Stability Studies of Poly(2-methyl-2-oxazoline) and Poly(ethylene glycol) Brush Coatings. Biointerphases 2012; 7:1. [DOI: 10.1007/s13758-011-0001-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/31/2011] [Indexed: 11/28/2022] Open
|
157
|
Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci 2012; 179-182:142-9. [PMID: 22841530 DOI: 10.1016/j.cis.2012.06.015] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/13/2012] [Accepted: 06/28/2012] [Indexed: 12/17/2022]
Abstract
Substratum surface roughness is known to be one of the key factors in determining the extent of bacterial colonization. Understanding the way by which the substratum topography, especially at the nanoscale, mediates bacterial attachment remains ambiguous at best, despite the volume of work available on the topic. This is because the vast majority of bacterial attachment studies do not perform comprehensive topographical characterization analyses, and typically consider roughness parameters that describe only one aspect of the surface topography. The most commonly reported surface roughness parameters are average and root mean square (RMS) roughness (R(a) and R(q) respectively), which are both measures of the typical height variation of the surface. They offer no insights into the spatial distribution or shape of the surface features. Here, a brief overview of the current state of research on topography-mediated bacterial adhesion is presented, as well as an outline of the suite of roughness characterization parameters that are available for the comprehensive description of the surface architecture of a substratum. Finally, a set of topographical parameters is proposed as a new standard for surface roughness characterization in bacterial adhesion studies to improve the likelihood of identifying direct relationships between substratum topography and the extent of bacterial adhesion.
Collapse
Affiliation(s)
- Russell J Crawford
- Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | | | | | | | | |
Collapse
|
158
|
Ma Y, Chen M, Jones JE, Ritts AC, Yu Q, Sun H. Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrob Agents Chemother 2012; 56:5923-37. [PMID: 22964248 PMCID: PMC3486604 DOI: 10.1128/aac.01739-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/31/2012] [Indexed: 12/14/2022] Open
Abstract
Biofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction. Staphylococcus epidermidis infections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreased S. epidermidis biofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms.
Collapse
Affiliation(s)
- Yibao Ma
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Missouri, Columbia, Missouri, USA
| | - Meng Chen
- Nanova, Inc., Columbia, Missouri, USA
| | - John E. Jones
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA
| | | | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA
| | - Hongmin Sun
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
159
|
Gon S, Kumar KN, Nüsslein K, Santore MM. How Bacteria Adhere to Brushy PEG Surfaces: Clinging to Flaws and Compressing the Brush. Macromolecules 2012; 45:8373-8381. [PMID: 23148127 PMCID: PMC3494094 DOI: 10.1021/ma300981r] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examined the compression of solvated polymer brushes on bioengineered surfaces during the initial stages of Staphylococcus Aureus (S. aureus) adhesion from gentle flow. A series of PEG [poly(ethylene glycol)] brushes, 7 to 17 nm in height and completely non-adhesive to proteins and bacteria, were modified by the incorporation of sparse isolated ~10 nm cationic polymer "patches" at their bases. These nanoscale regions, which lacked PEG tethers, were electrostatically attractive towards negative bacteria or proteins. S. aureus drawn to the interface by multiple adhesive patches compressed the PEG brush in the remaining contact region. The observed onset of bacterial or fibrinogen capture with increases in patch content was compared with calculations. Balancing the attraction energy (proportional to the number of patches engaging a bacterium during capture) against steric forces (calculated using the Alexander-DeGennes treatment) provided perspective on the brush compression. The results were consistent with a bacteria-surface gap on the order of the Debye length in these studies. In this limit of strong brush compression, structural features (height, persistence length) of the brush were unimportant so that osmotic pressure dominated the steric repulsion. Thus, the dominant factor for bacterial repulsion was the mass of PEG in the brush. This result explains empirical reports in the literature that identify the total PEG content of a brush as a criteria for prevention of bioadhesion, independent of tether length and spacing, within a reasonable range for those parameters. Bacterial capture was also compared to that of protein capture. It was found, surprisingly, that the patchy brushes were more protein-than bacteria-resistant. S. aureus adhesion driven by patches within otherwise protein-resistant PEG brushes was explained by the bacteria's greater tendency to compress large areas of brush to interact with many patches. By contrast, proteins are thought to penetrate the brush at a few sites of PEO-free patches. The finding provides a mechanism for the literature reports that in-vitro protein resistance is a poor predictor of in-vitro implant failure related to cell-surface adhesion.
Collapse
Affiliation(s)
- S Gon
- Department of Chemical Engineering, Univeristy of Massachusetts Amherst, MA 01003
| | | | | | | |
Collapse
|
160
|
Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. BIOMATTER 2012; 2:176-94. [PMID: 23507884 PMCID: PMC3568104 DOI: 10.4161/biom.22905] [Citation(s) in RCA: 477] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field.
Collapse
Affiliation(s)
- Marta Ribeiro
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | |
Collapse
|
161
|
Gensheimer WG, Kleinman DM, Gonzalez MO, Sobti D, Cooper ER, Smits G, Loxley A, Mitchnick M, Aquavella JV. Novel Formulation of Glycerin 1% Artificial Tears Extends Tear Film Break-Up Time Compared with Systane Lubricant Eye Drops. J Ocul Pharmacol Ther 2012; 28:473-8. [DOI: 10.1089/jop.2011.0053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - David M. Kleinman
- Department of Ophthalmology, Flaum Eye Institute, Rochester, New York
- Eyeon Therapeutics, Inc., Rochester, New York
| | - Mithra O. Gonzalez
- Rocky Mountain Lions Eye Institute, University of Colorado Denver, Aurora, Colorado
| | - Deepak Sobti
- University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | - Gerard Smits
- Computer and Statistical Consultants, Inc., Santa Barbara, California
| | | | | | | |
Collapse
|
162
|
Abstract
Bacteria have been found to grow predominantly in biofilms. The initial stage includes the attachment of bacteria to the substratum. Bacterial growth and division then leads to the colonization of the surrounding area and the formation of the biofilm. The environment in a biofilm is not homogeneous; the bacteria in a multispecies biofilm are not randomly distributed, but rather are organized to best meet their needs. Although there is an initial understanding on the mechanisms of biofilm-associated antimicrobial resistance, this topic is still under investigation. A variety of approaches are being explored to overcome biofilm-associated antimicrobial resistance. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
Collapse
Affiliation(s)
- Aristides B Zoubos
- 1st Orthopaedic Department, University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | | | | |
Collapse
|
163
|
Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, Yakandawala N, Mentbayeva A, Khan B, Sukhishvili SA. Noneluting enzymatic antibiofilm coatings. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4708-16. [PMID: 22909396 PMCID: PMC3459334 DOI: 10.1021/am3010847] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices were assembled through electrostatic interactions of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMAA), followed by chemical cross-linking with glutaraldehyde and pH-triggered removal of PMAA, producing a stable PAH hydrogel matrix used for DspB loading. The amount of DspB loaded increased linearly with the number of PAH layers in surface hydrogels. DspB was retained within these coatings in the pH range from 4 to 7.5. DspB-loaded coatings inhibited biofilm formation by two clinical strains of Staphylococcus epidermidis. Biofilm inhibition was ≥98% compared to mock-loaded coatings as determined by CFU enumeration. In addition, DspB-loaded coatings did not inhibit attachment or growth of cultured human osteoblast cells. We suggest that the use of DspB-loaded multilayer coatings presents a promising method for creating biocompatible surfaces with high antibiofilm efficiency, especially when combined with conventional antimicrobial treatment of dispersed bacteria.
Collapse
Affiliation(s)
- Svetlana V. Pavlukhina
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jeffrey B. Kaplan
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | - Li Xu
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wei Chang
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Srinivasa Madhyastha
- Kane Biotech Inc., 162–196 Innovation Drive, Winnipeg, MB, Canada R3T 2N2, Canada
| | | | - Almagul Mentbayeva
- Department of Chemistry, 71, Al-Farabi Ave, Kazakh National University, Almaty, 050038, Kazakhstan
| | - Babar Khan
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | - Svetlana A. Sukhishvili
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
164
|
Konradi R, Acikgoz C, Textor M. Polyoxazolines for Nonfouling Surface Coatings - A Direct Comparison to the Gold Standard PEG. Macromol Rapid Commun 2012; 33:1663-76. [DOI: 10.1002/marc.201200422] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/14/2012] [Indexed: 11/11/2022]
|
165
|
Petzold C, Gomez-Florit M, Lyngstadaas SP, Monjo M. EPA covalently bound to smooth titanium surfaces decreases viability and biofilm formation of Staphylococcus epidermidis in vitro. J Orthop Res 2012; 30:1384-90. [PMID: 22354694 DOI: 10.1002/jor.22089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/30/2012] [Indexed: 02/04/2023]
Abstract
Colonization of implant surfaces with bacteria should ideally be prevented right from implantation, as bacteria attaching to the surface will form a biofilm, being then well protected against antibiotic treatment. Therefore, implant coatings should combine antibacterial properties with biocompatibility towards their host tissue. We tested a UV-induced covalent coating procedure with eicosapentaenoic acid (EPA) for smooth titanium (Ti) surfaces for its ability to prevent attachment and proliferation of Staphylococcus epidermidis and to allow mineralization of MC3T3-E1 osteoblasts. Bacterial initial attachment was highest for EPA-coated surfaces, but was reduced by vigorous washing, possibly due to low adhesive strength on those surfaces. We found an increase in the ratio of dead bacteria and in overall biofilm after 16 h on Ti surfaces with covalently bound EPA compared to Ti. The UV-induced EPA coating did not impair the ability of MC3T3-E1 preosteoblasts to mineralize, while a reduction in mineralization could be found for UV-irradiated Ti surfaces and UV-irradiated surfaces washed with ethanol compared to Ti. Although in vivo studies are needed to evaluate the clinical significance, our results indicate that covalent coating of Ti surfaces with EPA by UV irradiation decreases the survival of S. epidermidis and maintains the mineralization ability of osteoblasts.
Collapse
Affiliation(s)
- Christiane Petzold
- Faculty of Dentistry, Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
166
|
Fang B, Gon S, Park MH, Kumar KN, Rotello VM, Nüsslein K, Santore MM. Using flow to switch the valency of bacterial capture on engineered surfaces containing immobilized nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7803-7810. [PMID: 22563906 DOI: 10.1021/la205080y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Toward an understanding of nanoparticle-bacterial interactions and the development of sensors and other substrates for controlled bacterial adhesion, this article describes the influence of flow on the initial stages of bacterial capture (Staphylococcus aureus) on surfaces containing cationic nanoparticles. A PEG (poly(ethylene glycol)) brush on the surface around the nanoparticles sterically repels the bacteria. Variations in ionic strength tune the Debye length from 1 to 4 nm, increasing the strength and range of the nanoparticle attractions toward the bacteria. At relatively high ionic strengths (physiological conditions), bacterial capture requires several nanoparticle-bacterial contacts, termed "multivalent capture". At low ionic strength and gentle wall shear rates (on the order of 10 s(-1)), individual bacteria can be captured and held by single surface-immobilized nanoparticles. Increasing the flow rate to 50 s(-1) causes a shift from monovalent to divalent capture. A comparison of experimental capture efficiencies with statistically determined capture probabilities reveals the initial area of bacteria-surface interaction, here about 50 nm in diameter for a Debye length κ(-1) of 4 nm. Additionally, for κ(-1) = 4 nm, the net per nanoparticle binding energies are strong but highly shear-sensitive, as is the case for biological ligand-receptor interactions. Although these results have been obtained for a specific system, they represent a regime of behavior that could be achieved with different bacteria and different materials, presenting an opportunity for further tuning of selective interactions. These finding suggest the use of surface elements to manipulate individual bacteria and nonfouling designs with precise but finite bacterial interactions.
Collapse
Affiliation(s)
- Bing Fang
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 2012; 95:299-311. [DOI: 10.1007/s00253-012-4144-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 02/07/2023]
|
168
|
Mahmoud H, Williams DW, Hannigan A, Lynch CD. Influence of extracellular matrix proteins in enhancing bacterial adhesion to titanium surfaces. J Biomed Mater Res B Appl Biomater 2012; 100:1319-27. [DOI: 10.1002/jbm.b.32698] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 01/02/2012] [Accepted: 01/09/2012] [Indexed: 11/06/2022]
|
169
|
Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: proliferative response of osteoblasts and antibacterial effects. Int J Artif Organs 2012; 34:882-8. [PMID: 22094570 DOI: 10.5301/ijao.5000022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2011] [Indexed: 01/26/2023]
Abstract
Implant infection still represents a major clinical problem in orthopedic surgery. We therefore tested the in vitro biocompatibility and antibacterial effects of copper (Cu)- and silver (Ag)-ion implantation. Discs of a commonly used titanium alloy (Ti6AlV4) with an aluminium oxide-blasted surface were treated by Cu- or Ag-ion implantation with different dosage regimen (ranging from 1e15-17 ions cm(-2) at energies of 2-20 keV). The samples were seeded with primary human osteoblasts and cell attachment and proliferation was analyzed by an MTT-assay. In comparison to the reference titanium alloy there was no difference in the number of attached viable cells after two days. After seven days the number of viable cells was increased for Cu with 1e17 ions cm(-2) at 2 and 5 keV, and for Ag with 1e16 ions cm(-2) at 5 keV while it was reduced for the highest amount of Ag deposition (1e17 ions cm(-2) at 20 keV). Antibacterial effects on S.aureus and E.coli were marginal for the studied dosages of Cu but clearly present for Ag with 1e16 ions cm(-2) at 2 and 5 keV and 1e17 ions cm(-2) at 20 keV. These results indicate that Ag-ion implantation may be a promising methodological approach for antibacterial functionalization of titanium implants.
Collapse
|
170
|
Neoh KG, Hu X, Zheng D, Kang ET. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 2012; 33:2813-22. [DOI: 10.1016/j.biomaterials.2012.01.018] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/09/2012] [Indexed: 12/12/2022]
|
171
|
Pérez-Tanoira R, Pérez-Jorge C, Endrino JL, Gómez-Barrena E, Horwat D, Pierson JF, Esteban J. Bacterial adhesion on biomedical surfaces covered by micrometric silver Islands. J Biomed Mater Res A 2012; 100:1521-8. [DOI: 10.1002/jbm.a.34090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/14/2011] [Accepted: 01/04/2012] [Indexed: 11/05/2022]
|
172
|
Cortizo MC, Oberti TG, Cortizo MS, Cortizo AM, Fernández Lorenzo de Mele MA. Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: evaluation of cytotoxicity and early bacterial adhesion. J Dent 2012; 40:329-37. [PMID: 22305778 DOI: 10.1016/j.jdent.2012.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES The formation of biofilms on titanium dental implants is one of the main causes of failure of these devices. Streptococci are considered early colonizers that alter local environment favouring growing conditions for other colonizers. Chlorhexidine (CHX) is so far the most effective antimicrobial treatment against a wide variety of Gram-positive and Gram-negative organisms as well as fungi. This study was designed to develop a CHX delivery system appropriate for healing caps and abutments, with suitable drug release rate, effective as antimicrobial agent, and free of cytotoxic effects. METHODS Polybenzyl acrylate (PBA) coatings with and without CHX (Ti/PBA and Ti/PBA-CHX, respectively) and different drug loads (0.35, 0.70, and 1.40%, w/w) were assayed. The cytotoxic effect of CHX released from the different substrates on UMR106 cells was tested by alkaline phosphatase specific activity (ALP), and microscopic evaluation of the cells. Non-cytotoxic drug load (0.35%, w/w) was selected to evaluate the antimicrobial effectiveness of the system using a microbial consortium of Streptococcus species. RESULTS The kinetic profile of CHX delivered by Ti/PBA-CHX showed an initial fast release rate followed by a monotonic increase of delivered mass over 48 h. The number of attached bacteria decreased in the following order: Ti>Ti/PBA>Ti/PBA-0.35. CONCLUSIONS PBA-0.35 coating is effective to inhibit the adhesion of early colonizers on Ti without any cytotoxic effect on UMR-106 cells.
Collapse
Affiliation(s)
- María C Cortizo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CCT-La Plata, 1900 La Plata, Argentina
| | | | | | | | | |
Collapse
|
173
|
von Plocki SC, Armbruster D, Klein K, Kämpf K, Zlinszky K, Hilbe M, Kronen P, Gruskin E, von Rechenberg B. Biodegradable sleeves for metal implants to prevent implant-associated infection: an experimental in vivo study in sheep. Vet Surg 2012; 41:410-21. [PMID: 22239648 DOI: 10.1111/j.1532-950x.2011.00943.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To evaluate biocompatibility of biodegradable sleeves containing antimicrobial agents, designed for local drug delivery to prevent implant-related infection. STUDY DESIGN Synthetic polyester sleeves (a copolymer of glycolide, caprolactone, trimethylene carbonate, lactide) were cast as thin films. The antimicrobial agents incorporated in the sleeves included gentamicin sulfate, triclosan, or a combination of these drugs. ANIMALS Adult sheep (n = 15). METHODS Two limited contact dynamic compression plates (LC-DCP) with or without sleeves were implanted on tibiae (bilateral) of 15 sheep. Sleeves were placed over the plates before implantation. Beneath half of the plates, 5-mm drill hole defects were made in the near cortex. Samples were harvested 4 weeks later for histology and microradiography. RESULTS Macroscopically, no irritation of bone or adjacent tissue was seen. Small remnants of sleeves were visible on histology, and positively correlated with the presence of macrophages and foreign body cells. Thick sections showed no difference between the test samples and controls in terms of fibrous capsule formation, periosteal remodeling, and defect remodeling. Inflammatory cells, macrophages, and foreign body cells were more prominent in sections with sleeves, but were not statistically significantly different from controls. Cell numbers were within normal physiologic limits normally seen as cellular response to foreign bodies consisting of polymers. CONCLUSION The normal healing response indicated that the biodegradable sleeves demonstrate tissue biocompatibility.
Collapse
Affiliation(s)
- Stephanie C von Plocki
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty ZH, University of Zurich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Broggini N, Tosatti S, Ferguson SJ, Schuler M, Textor M, Bornstein MM, Bosshardt DD, Buser D. Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)- and heparin (KRSR)-binding peptides. J Biomed Mater Res A 2011; 100:703-11. [DOI: 10.1002/jbm.a.34004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/25/2011] [Accepted: 08/31/2011] [Indexed: 01/31/2023]
|
175
|
Grumezescu AM, Saviuc C, Chifiriuc MC, Hristu R, Mihaiescu DE, Balaure P, Stanciu G, Lazar V. Inhibitory activity of Fe(3) O(4)/oleic acid/usnic acid-core/shell/extra-shell nanofluid on S. aureus biofilm development. IEEE Trans Nanobioscience 2011; 10:269-74. [PMID: 22157076 DOI: 10.1109/tnb.2011.2178263] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Undesired biofilm development is a major concern in many areas, especially in the medical field. The purpose of the present study was to comparatively investigate the antibiofilm efficacy of usnic acid, in soluble versus nanofluid formulation, in order to highlight the potential use of Fe(3) O(4)/oleic acid (FeOA) nanofluid as potential controlled release vehicle of this antibiofilm agent. The (+) -UA loaded into nanofluid exhibited an improved antibiofilm effect on S. aureus biofilm formation, revealed by the drastic decrease of the viable cell counts as well as by confocal laser scanning microscopy images. Our results demonstrate that FeOA nanoparticles could be used as successful coating agents for obtaining antibiofilm pellicles on different medical devices, opening a new perspective for obtaining new antimicrobial and antibiofilm surfaces, based on hybrid functionalized nanostructured biomaterials.
Collapse
Affiliation(s)
- Alexandru Mihai Grumezescu
- Science and Engineering of Oxidic Materialsand Nanomaterials, University Politehnica of Bucharest, Romania.
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Poly(Ethylene Glycol) and Hydroxy Functionalized Alkane Phosphate Self-Assembled Monolayers Reduce Bacterial Adhesion and Support Osteoblast Proliferation. Int J Artif Organs 2011; 34:898-907. [DOI: 10.5301/ijao.5000047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 12/19/2022]
Abstract
Purpose Presently there is interest today in designing improved titanium surfaces capable of high bioactivity in order to promote strong anchorage of the bone surrounding implants while at the same time discouraging bioadhesion. Poly(ethylene glycol)-modified (PEG) alkane phosphate and OH-terminated alkane phosphates have been demonstrated to be spontaneously adsorbed onto titanium oxide surfaces and produce surfaces with different protein resistance in relation to the PEG surface density. This study aims to evaluate caries-associated Streptococcus mutans (S. mutans) adhesion and osteoblast proliferation while varying the PEG surface density of titanium surfaces. Methods Bacterial adhesion was quantified by fluorescence microscopy and SAOS-2 human osteoblast proliferation was evaluated up to 7 days of culture in vitro. Metabolic activity of osteoblasts was measured by MTT test and the secretion of extracellular matrix proteins (osteopontin, osteocalcin and type I collagen) in culture medium was determined by immunoenzymatic assays. Results As the PEG surface density increased, the bacterial adhesion considerably decreased when compared to uncoated titanium surfaces. The monomolecular coatings proved to be capable of supporting osteoblast proliferation with the greatest levels of metabolic activity at the highest PEG surface concentrations. Conclusions These results are extremely promising for potential clinical application in implant uses where both reduction of bacteria adhesion and stimulation of bone formation are highly desirable.
Collapse
|
177
|
Fang B, Gon S, Park M, Kumar KN, Rotello VM, Nusslein K, Santore MM. Bacterial adhesion on hybrid cationic nanoparticle–polymer brush surfaces: Ionic strength tunes capture from monovalent to multivalent binding. Colloids Surf B Biointerfaces 2011; 87:109-15. [DOI: 10.1016/j.colsurfb.2011.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/04/2011] [Accepted: 05/03/2011] [Indexed: 01/04/2023]
|
178
|
Gon S, Fang B, Santore MM. Interaction of Cationic Proteins and Polypeptides with Biocompatible Cationically-Anchored PEG Brushes. Macromolecules 2011. [DOI: 10.1021/ma201484h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S. Gon
- Department of Chemical Engineering and ‡Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - B. Fang
- Department of Chemical Engineering and ‡Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - M. M. Santore
- Department of Chemical Engineering and ‡Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
179
|
Wang H, Li L, Tong Q, Yan M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3463-71. [PMID: 21834589 PMCID: PMC3184304 DOI: 10.1021/am200690s] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Poly(2-ethyl-2-oxazoline) (PEOX) of various molecular weights were covalently immobilized on silicon wafers and gold slides to form protein-resistant surfaces via a fast and general photocoupling chemistry based on the CH insertion reaction of light-activated perfluorophenyl azide (PFPA). The thicknesses of the immobilized PEOX films ranged from 23 to 80 Å for molecular weight of 5000 to 500,000, and the grafting density reached 3.2 × 10(-3) Å(-2) for PEOX 5000. The protein-resistant property of the films was studied using bovine serum albumin (BSA) by fluorescence imaging, ellipsometry, and surface plasmon resonance imaging (SPRi). The fluorescence imaging and ellipsometry studies showed the largest amount of BSA adsorbed on PEOX 5000 and the smallest on PEOX 500,000. This was consistent with the kinetic analysis of BSA adsorption by SPRi showing that PEOX 5000 exhibited the fastest association rate and the slowest dissociation rate whereas PEOX 500,000 had the slowest association rate and the fastest dissociation rate. The PEOX film was then applied in the fabrication of carbohydrate microarrays to reduce the nonspecific adsorption of lectins and thus the background noises. Results showed that the microarray signals were significantly enhanced when the PEOX film was used.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Liling Li
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Qi Tong
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| |
Collapse
|
180
|
Bazaka K, Crawford RJ, Ivanova EP. Do bacteria differentiate between degrees of nanoscale surface roughness? Biotechnol J 2011; 6:1103-14. [PMID: 21910258 DOI: 10.1002/biot.201100027] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/13/2011] [Accepted: 07/22/2011] [Indexed: 11/08/2022]
Abstract
Whereas the employment of nanotechnology in electronics and optics engineering is relatively well established, the use of nanostructured materials in medicine and biology is undoubtedly novel. Certain nanoscale surface phenomena are being exploited to promote or prevent the attachment of living cells. However, as yet, it has not been possible to develop methods that completely prevent cells from attaching to solid surfaces, since the mechanisms by which living cells interact with the nanoscale surface characteristics of these substrates are still poorly understood. Recently, novel and advanced surface characterisation techniques have been developed that allow the precise molecular and atomic scale characterisation of both living cells and the solid surfaces to which they attach. Given this additional capability, it may now be possible to define boundaries, or minimum dimensions, at which a surface feature can exert influence over an attaching living organism.This review explores the current research on the interaction of living cells with both native and nanostructured surfaces, and the role that these surface properties play in the different stages of cell attachment.
Collapse
Affiliation(s)
- Kateryna Bazaka
- Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland, Australia
| | | | | |
Collapse
|
181
|
Neoh KG, Kang ET. Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications. ACS APPLIED MATERIALS & INTERFACES 2011; 3:2808-2819. [PMID: 21732600 DOI: 10.1021/am200646t] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Metals are widely used in engineering as well as medical applications. However, their surfaces are easily colonized by bacteria that form biofilms. Among the numerous concerns with biofilm formation, biocorrosion is of particular importance in industry, because structural integrity may be compromised, leading to technical failures. In the food industry and medical field, biofilms also pose health risks. To inhibit bacterial colonization, the surfaces of metals can be coated with a polymeric layer which is antiadhesive and/or bactericidal. This article describes polymers that have these desired properties and the methodologies for immobilizing them on metal surfaces of relevance to the marine and medical fields. The focus is on polymer coatings that have a high degree of stability in aqueous medium and do not leach out. The efficacies of the different polymer coatings against bacteria commonly encountered in marine (Desulfovibrio desulfuricans) and medical applications (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) are demonstrated.
Collapse
Affiliation(s)
- K G Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 119260.
| | | |
Collapse
|
182
|
Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomater 2011; 7:3003-12. [PMID: 21515421 DOI: 10.1016/j.actbio.2011.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/16/2011] [Accepted: 04/07/2011] [Indexed: 01/31/2023]
Abstract
Infection is a major problem in orthopedics leading to implant failure. It is a challenging task to treat orthopedic implant infection, which may lead to implant replacement and, in severe cases, may result in amputation and mortality. Infection poses an even further risk as bacteria are beginning to develop resistance against commonly used antibiotics. Therefore, in this research a combination of various approaches was used to fight implant infection without resorting to the use of antibiotics. Specifically, conventional titanium was altered through a process of anodization and electrical stimulation to reduce Staphylococcus aureus growth. It was shown that when a 15-30 V electrical stimulation was coupled with anodized nanotubular titanium a significant decrease in S. aureus biofilm formation was observed, compared with non-anodized and non-electrically stimulated titanium after 2 days culture. The decrease in biofilm formation observed here was explained by the presence of fluorine on the surfaces of anodized nanotubular titanium. Thus, coupling the positive influences of anodization and electrical stimulation could be a promising way to fight titanium-based orthopedic device-related infections.
Collapse
|
183
|
Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chu PK. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011; 32:5706-16. [PMID: 21565401 DOI: 10.1016/j.biomaterials.2011.04.040] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/18/2011] [Indexed: 02/07/2023]
Abstract
Titanium (Ti) implants are widely used clinically but post-operation infection remains one of the most common and serious complications. A surface boasting long-term antibacterial ability is highly desirable in order to prevent implant associated infection. In this study, titania nanotubes (TiO(2)-NTs) incorporated with silver (Ag) nanoparticles are fabricated on Ti implants to achieve this purpose. The Ag nanoparticles adhere tightly to the wall of the TiO(2)-NTs prepared by immersion in a silver nitrate solution followed by ultraviolet light radiation. The amount of Ag introduced to the NTs can be varied by changing processing parameters such as the AgNO(3) concentration and immersion time. The TiO(2)-NTs loaded with Ag nanoparticles (NT-Ag) can kill all the planktonic bacteria in the suspension during the first several days, and the ability of the NT-Ag to prevent bacterial adhesion is maintained without obvious decline for 30 days, which are normally long enough to prevent post-operation infection in the early and intermediate stages and perhaps even late infection around the implant. Although the NT-Ag structure shows some cytotoxicity, it can be reduced by controlling the Ag release rate. The NT-Ag materials are also expected to possess satisfactory osteoconductivity in addition to the good biological performance expected of TiO(2)-NTs. This controllable NT-Ag structure which provides relatively long-term antibacterial ability and good tissue integration has promising applications in orthopedics, dentistry, and other biomedical devices.
Collapse
Affiliation(s)
- Lingzhou Zhao
- School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Bazaka K, Jacob MV, Crawford RJ, Ivanova EP. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 2011; 7:2015-28. [PMID: 21194574 DOI: 10.1016/j.actbio.2010.12.024] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/01/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022]
Abstract
Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.
Collapse
Affiliation(s)
- Kateryna Bazaka
- Electronic Materials Research Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland, Australia
| | | | | | | |
Collapse
|
185
|
Xie X, Möller J, Konradi R, Kisielow M, Franco-Obregón A, Nyfeler E, Mühlebach A, Chabria M, Textor M, Lu Z, Reimhult E. Automated time-resolved analysis of bacteria-substrate interactions using functionalized microparticles and flow cytometry. Biomaterials 2011; 32:4347-57. [PMID: 21458060 DOI: 10.1016/j.biomaterials.2011.02.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Surface biofouling poses an increasing problem in industrial and health care applications, driving research for surface coatings to prevent anti-microbial colonization and characterization of the efficacy of the same. The diversity and increasing sophistication of such coatings, which postulate different types of anti-microbial action on planktonic and surface adhering bacteria, challenge the suitability of current approaches to evaluate and compare the different approaches as well as the speed and accuracy at which screening can be made. We describe and provide proof of principle for a method to use microparticles functionalized with molecular coatings through self-assembly together with flow cytometry readout to evaluate Escherichia coli bacteria surface adhesion and killing efficiency. Advantages of the method are the automation of the method that allows recording an immense number of interactions and the possibility to simultaneously record effects on both surface adhering and planktonic bacteria. We demonstrate and discuss design criteria to obtain this information on two coatings, poly(L-lysine)-graft-C(3)H(6)N(+)(CH(3))(2)C(12)H(25) (PLL-g-QAC) and poly(L-lysine)-graft-poly(ethylene glycol)-C(3)H(6)N(+)(CH(3))(2)C(12)H(25) (PLL-g-PEG-QAC), which exemplify two different approaches to creating anti-microbial interfaces. Despite an apparent higher killing efficiency of the PLL-g-QAC during brief exposures, the rapid fouling of that surface quickly reduces its efficiency, whereas the PLL-g-PEG-QAC coating showed greater promise in reducing the growth and interfacial colonization of bacteria over longer time scales.
Collapse
Affiliation(s)
- Xiao Xie
- State Key laboratory of Bioelectronics, Southeast University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3012-9. [PMID: 21288031 DOI: 10.1021/la104607g] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-tier micro- and nanoscale quasi-periodic self-organized structures, mimicking the surface of a lotus Nelumbo nucifera leaf, were fabricated on titanium surfaces using femtosecond laser ablation. The first tier consisted of large grainlike convex features between 10 and 20 μm in size. The second tier existed on the surface of these grains, where 200 nm (or less) wide irregular undulations were present. The introduction of the biomimetic surface patterns significantly transformed the surface wettabilty of the titanium surface. The original surface possessed a water contact angle of θ(W) 73 ± 3°, whereas the laser-treated titanium surface became superhydrophobic, with a water contact angle of θ(W) 166 ± 4°. Investigations of the interaction of S. aureus and P. aeruginosa with these superhydrophobic surfaces at the surface-liquid interface revealed a highly selective retention pattern for two pathogenic bacteria. While S. aureus cells were able to successfully colonize the superhydrophobic titanium surfaces, no P. aeruginosa cells were able to attach to the surface (i.e., any attached bacterial cells were below the estimated lower detection limit).
Collapse
Affiliation(s)
- Elena Fadeeva
- Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
187
|
|
188
|
Bruellhoff K, Fiedler J, Möller M, Groll J, Brenner RE. Surface coating strategies to prevent biofilm formation on implant surfaces. Int J Artif Organs 2011; 33:646-53. [PMID: 20890881 DOI: 10.1177/039139881003300910] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2010] [Indexed: 02/02/2023]
Abstract
Implant surfaces should ideally be designed to promote the attachment of target tissue cells; at the same time, they should prevent bacterial adhesion, achievable through modification strategies comprising three lines of defense. As the first criterion, selective adhesion can be realized by means of non-adhesive coatings that can be functionalized with small peptides, thereby supporting osteogenic cell attachment for implants in bone contact but not bacterial adhesion. The second line of defense, defined by bacterial survival, quorum sensing and biofilm formation, can be addressed by various antimicrobial substances that can be leaching or non-leaching. The possibility of a third line of defense, the disruption of an established biofilm, is just emerging. Since microorganisms are quite ''ingenious'' at finding ways to overcome a certain line of defense, the most promising solution might be a combination of all these antibacterial strategies. Coating systems that allow such different approaches to be combined are scarce. However, ultrathin multifunctional NCO-sP(EO-stat-PO)-based layers may represent a promising platform for such an integrated approach.
Collapse
Affiliation(s)
- Kristina Bruellhoff
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | | | | | | | | |
Collapse
|
189
|
The Effect of Polyterpenol Thin Film Surfaces on Bacterial Viability and Adhesion. Polymers (Basel) 2011. [DOI: 10.3390/polym3010388] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
190
|
Onaizi SA, Leong SS. Tethering antimicrobial peptides: Current status and potential challenges. Biotechnol Adv 2011; 29:67-74. [DOI: 10.1016/j.biotechadv.2010.08.012] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/12/2010] [Accepted: 08/22/2010] [Indexed: 12/14/2022]
|
191
|
Tang P, Zhang W, Wang Y, Zhang B, Wang H, Lin C, Zhang L. Effect of Superhydrophobic Surface of Titanium on Staphylococcus aureusAdhesion. JOURNAL OF NANOMATERIALS 2011; 2011:1-8. [PMID: 0 DOI: 10.1155/2011/178921] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Despite the systemic antibiotics prophylaxis, orthopedic implants still remain highly susceptible to bacterial adhesion and resulting in device-associated infection. Surface modification is an effective way to decrease bacterial adhesion. In this study, we prepared surfaces with different wettability on titanium surface based on TiO2nanotube to examine the effect of bacterial adhesion. Firstly, titanium plates were calcined to form hydrophilic TiO2nanotube films of anatase phase. Subsequently, the nanotube films and inoxidized titaniums were treated with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES), forming superhydrophobic and hydrophobic surfaces. Observed by SEM and contact angle measurements, the different surfaces have different characteristics.Staphylococcus aureus(SA) adhesion on different surfaces was evaluated. Our experiment results show that the superhydrophobic surface has contact angles of water greater than 150∘and also shows high resistance to bacterial contamination. It is indicated that superhydrophobic surface may be a factor to reduce device-associated infection and could be used in clinical practice.
Collapse
Affiliation(s)
- Peifu Tang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Wei Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Yan Wang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Boxun Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Hao Wang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Changjian Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 36100, China
| | - Lihai Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
192
|
Qin G, Santos C, Zhang W, Li Y, Kumar A, Erasquin UJ, Liu K, Muradov P, Trautner BW, Cai C. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry. J Am Chem Soc 2010; 132:16432-41. [PMID: 21033708 PMCID: PMC3059218 DOI: 10.1021/ja1025497] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.
Collapse
|
193
|
Tanaka Y, Matin K, Gyo M, Okada A, Tsutsumi Y, Doi H, Nomura N, Tagami J, Hanawa T. Effects of electrodeposited poly(ethylene glycol) on biofilm adherence to titanium. J Biomed Mater Res A 2010; 95:1105-13. [PMID: 20878986 DOI: 10.1002/jbm.a.32932] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/19/2010] [Accepted: 05/21/2010] [Indexed: 11/07/2022]
Abstract
Protein-resistant coatings have been studied for inhibiting biofilm formation on implant devices. In this study, titanium (Ti) surfaces were biofunctionalized with poly(ethylene glycol) (PEG) by electrodeposition and were evaluated as biofilm substrates under an oral simulated environment. Streptococcus gordonii, an early colonizer of oral biofilms, was inoculated on Ti and PEG-electrodeposited Ti (PEG-Ti) surfaces and was analyzed quantitatively and topographically. Streptococcus mutans supplemented with sucrose, a late colonizer mainly found in dental plaque, was also used to form biofilms on the surfaces of Ti and PEG-Ti for 20 h followed by sonication as a means of detaching the biofilms. The results indicated that the attachment of S. gordonii on PEG-Ti surfaces was inhibited compared with Ti, and the S. mutans biofilm was easier to be detached from the surface of PEG-Ti than that of Ti. Moreover, the presence of PEG electrodeposited on Ti surface inhibited salivary protein adsorption. The degree of detachment of biofilms from PEG-Ti was associated with the inhibition of the salivary protein adsorption, suggesting weak basal attachment of the biofilms to the electrodeposited surfaces. Therefore, controlling protein adsorption at the initial stage of biofilm formation may be an effective strategy to protect metal surfaces from bacterial contamination not only in dental manipulations but also in orthopedic applications.
Collapse
Affiliation(s)
- Yuta Tanaka
- Department of Metals, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials 2010; 31:8854-63. [PMID: 20800276 DOI: 10.1016/j.biomaterials.2010.08.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 08/04/2010] [Indexed: 02/07/2023]
Abstract
The long-term success of orthopedic implants may be compromised by defective osseointegration and bacterial infection. An effective approach to minimize implant failure would be to modify the surface of the implant to make it habitable for bone-forming cells and anti-infective at the same time. In this in vitro study, the surfaces of titanium (Ti) substrates were functionalized by first covalently grafting either dopamine followed by carboxymethyl chitosan (CMCS) or hyaluronic acid-catechol (HAC). Vascular endothelial growth factor (VEGF) was then conjugated to the polysaccharide-grafted surface. Antibacterial assay with Staphylococcus aureus (S. aureus) showed that the polysaccharide-modified substrates significantly decrease bacterial adhesion. The CMCS-functionalized Ti demonstrated better antibacterial property than the HAC-functionalized Ti since CMCS is bactericidal while HA only inhibits the adhesion of bacteria without killing them. Osteoblast attachment, as well as alkaline phosphatase (ALP) activity and calcium deposition were enhanced by the immobilized VEGF on the polysaccharide-grafted Ti. Thus, Ti substrates modified with polysaccharides conjugated with VEGF can promote osteoblast functions and concurrently reduce bacterial adhesion. Since VEGF is also known to enhance angiogenesis, the VEGF-polysaccharide functionalized substrates will have promising applications in the orthopedic field.
Collapse
|
195
|
Lawson MC, Hoth KC, DeForest CA, Bowman CN, Anseth KS. Inhibition of Staphylococcus epidermidis biofilms using polymerizable vancomycin derivatives. Clin Orthop Relat Res 2010; 468:2081-91. [PMID: 20191335 PMCID: PMC2895847 DOI: 10.1007/s11999-010-1266-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Biofilm formation on indwelling medical devices is a ubiquitous problem causing considerable patient morbidity and mortality. In orthopaedic surgery, this problem is exacerbated by the large number and variety of material types that are implanted. Metallic hardware in conjunction with polymethylmethacrylate (PMMA) bone cement is commonly used. QUESTIONS/PURPOSES We asked whether polymerizable derivatives of vancomycin might be useful to (1) surface modify Ti-6Al-4V alloy and to surface/bulk modify PMMA bone cement to prevent Staphylococcus epidermidis biofilm formation and (2) whether the process altered the compressive modulus, yield strength, resilience, and/or fracture strength of cement copolymers. METHODS A Ti-6Al-4V alloy was silanized with methacryloxypropyltrimethoxysilane in preparation for subsequent polymer attachment. Surfaces were then coated with polymers formed from PEG(375)-acrylate or a vancomycin-PEG(3400)-PEG(375)-acrylate copolymer. PMMA was loaded with various species, including vancomycin and several polymerizable vancomycin derivatives. To assess antibiofilm properties of these materials, initial bacterial adherence to coated Ti-6Al-4V was determined by scanning electron microscopy (SEM). Biofilm dry mass was determined on PMMA coupons; the compressive mechanical properties were also determined. RESULTS SEM showed the vancomycin-PEG(3400)-acrylate-type surface reduced adherent bacteria numbers by approximately fourfold when compared with PEG(375)-acrylate alone. Vancomycin-loading reduced all mechanical properties tested; in contrast, loading a vancomycin-acrylamide derivative restored these deficits but demonstrated no antibiofilm properties. A polymerizable, PEGylated vancomycin derivative reduced biofilm attachment but resulted in inferior cement mechanical properties. CLINICAL RELEVANCE The approaches presented here may offer new strategies for developing biofilm-resistant orthopaedic materials. Specifically, polymerizable derivatives of traditional antibiotics may allow for direct polymerization into existing materials such as PMMA bone cement while minimizing mechanical property compromise. Questions remain regarding ideal monomer structure(s) that confer biologic and mechanical benefits.
Collapse
Affiliation(s)
- McKinley C. Lawson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA
- Medical Scientist Training Program (MD/PhD Program), University of Colorado School of Medicine, Denver, CO USA
- University of Colorado School of Medicine, UCHSC MSTP Mailstop B176, Academic Office One, Room L15-2601, 12631 E 17th Avenue, Aurora, CO 80045 USA
| | - Kevin C. Hoth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA
| | - Cole A. DeForest
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, University of Colorado, 424 UCB, Boulder, CO 80309 USA
| |
Collapse
|
196
|
Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomedicine 2010; 5:277-83. [PMID: 20463943 PMCID: PMC2865022 DOI: 10.2147/ijn.s9220] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Indexed: 11/23/2022] Open
Abstract
In order to study the effects of iron oxide (IO) nanoparticles on Staphylococcus aureus, IO nanoparticles were synthesized via a novel matrix-mediated method using polyvinyl alcohol (PVA). The IO nanoparticles were characterized by transmission electron microscopy and dynamic light scattering. Further, S. aureus were grown in the presence of three different IO nanoparticle concentrations for four, 12, and 24 hours. Live/dead assays were performed and the results provide evidence that IO/PVA nanoparticles inhibited S. aureus growth at the highest concentration (3 mg/mL) at all time points.
Collapse
Affiliation(s)
- Nhiem Tran
- Department of Physics, Brown University, Providence, Rhode Island, USA
| | - Aparna Mir
- Department of Materials Science and Technology, National Metallurgical Laboratory, Burmamnines 831007, Jamshedpur, India
| | - Dhriti Mallik
- Department of Materials Science and Technology, National Metallurgical Laboratory, Burmamnines 831007, Jamshedpur, India
| | - Arvind Sinha
- Department of Materials Science and Technology, National Metallurgical Laboratory, Burmamnines 831007, Jamshedpur, India
| | - Suprabha Nayar
- Department of Materials Science and Technology, National Metallurgical Laboratory, Burmamnines 831007, Jamshedpur, India
| | - Thomas J Webster
- Division of Engineering and Department of Orthopedics, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
197
|
Tanaka Y, Matsuo Y, Komiya T, Tsutsumi Y, Doi H, Yoneyama T, Hanawa T. Characterization of the spatial immobilization manner of poly(ethylene glycol) to a titanium surface with immersion and electrodeposition and its effects on platelet adhesion. J Biomed Mater Res A 2010; 92:350-8. [PMID: 19189389 DOI: 10.1002/jbm.a.32375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Both terminals of a poly(ethylene glycol) (PEG) molecule were terminated with amines. The PEG was electrodeposited onto titanium (Ti) to give it the biofunctions such as blood compatibility. The effects of the amine of PEG terminals and the pH at PEG solution on the adsorption amount of PEG molecules and the thickness of PEG layer immobilized on the Ti surface were evaluated using quartz crystal microbalance technique and X-ray photoelectron spectroscopy. The interfacial reactivity between PEG terminals and the Ti surface was the largest at pH 11, according to the interaction between the charge of terminal amines of PEG and the point of zero charge of Ti oxide. The orientations of PEG molecules immobilized on the Ti surface with immersion or electrodeposition at pH 11 were determined by Fourier transform infrared reflection absorption spectroscopy. Consequently, the terminal amines of PEG were oriented perpendicularly to the surface in electrodeposition rather than in immersion. The charged PEG randomly immobilized on the Ti surface with immersion led to platelet aggregation, whereas U-shaped PEG molecule immobilized with electrodeposition inhibited platelet adhesion and aggregation. The immobilization manners of PEG on the Ti surface were strongly associated with a biofunction such as platelet adhesion.
Collapse
Affiliation(s)
- Yuta Tanaka
- Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | | | | | | | | | | | | |
Collapse
|
198
|
Ivanova EP, Truong VK, Wang JY, Berndt CC, Jones RT, Yusuf II, Peake I, Schmidt HW, Fluke C, Barnes D, Crawford RJ. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1973-82. [PMID: 19842625 DOI: 10.1021/la902623c] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two human pathogenic bacteria, Staphylococcus aureus CIP 68.5 and Pseudomonas aeruginosa ATCC 9025, were adsorbed onto surfaces containing Ti thin films of varying thickness to determine the extent to which nanoscale surface roughness influences the extent of bacterial attachment. A magnetron sputter thin film system was used to deposit titanium films with thicknesses of 3, 12, and 150 nm on glass substrata with corresponding surface roughness parameters of R(q) 1.6, 1.2, and 0.7 nm (on a 4 microm x 4 microm scanning area). The chemical composition, wettability, and surface architecture of titanium thin films were characterized using X-ray photoelectron spectroscopy, contact angle measurements, atomic force microscopy, three-dimensional interactive visualization, and statistical approximation of the topographic profiles. Investigation of the dynamic evolution of the Ti thin film topographic parameters indicated that three commonly used parameters, R(a), R(q), and R(max), were insufficient to effectively characterize the nanoscale rough/smooth surfaces. Two additional parameters, R(skw) and R(kur), which describe the statistical distributions of roughness character, were found to be useful for evaluating the surface architecture. Analysis of bacterial retention profiles indicated that bacteria responded differently to the surfaces on a scale of less than 1 nm change in the R(a) and R(q) Ti thin film surface roughness parameters by (i) an increased number of retained cells by a factor of 2-3, and (ii) an elevated level of secretion of extracellular polymeric substances.
Collapse
Affiliation(s)
- Elena P Ivanova
- Faculty Life and Social Sciences, IRIS, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria, 3122, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Subbiahdoss G, Grijpma DW, van der Mei HC, Busscher HJ, Kuijer R. Microbial biofilm growth versus tissue integration on biomaterials with different wettabilities and a polymer-brush coating. J Biomed Mater Res A 2010; 94:533-8. [DOI: 10.1002/jbm.a.32731] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
200
|
Song SJ, Park YJ, Park J, Cho MD, Kim JH, Jeong MH, Kim YS, Cho DL. Preparation of a drug-eluting stent using a TiO2 film deposited by plasma enhanced chemical vapour deposition as a drug-combining matrix. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b925409a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|