151
|
Malic L, Daoud J, Geissler M, Boutin A, Lukic L, Janta M, Elmanzalawy A, Veres T. Epigenetic subtyping of white blood cells using a thermoplastic elastomer-based microfluidic emulsification device for multiplexed, methylation-specific digital droplet PCR. Analyst 2019; 144:6541-6553. [DOI: 10.1039/c9an01316d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Digital droplet PCR for epigenetic leukocyte subtyping from clinically relevant samples is implemented using a thermoplastic elastomer microfluidic droplet generator as a first step towards an economical, customizable and easily deployable system.
Collapse
Affiliation(s)
- Lidija Malic
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Jamal Daoud
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Matthias Geissler
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Alex Boutin
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Ljuboje Lukic
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Mojra Janta
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | | | - Teodor Veres
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| |
Collapse
|
152
|
Sreejith KR, Ooi CH, Jin J, Dao DV, Nguyen NT. Digital polymerase chain reaction technology - recent advances and future perspectives. LAB ON A CHIP 2018; 18:3717-3732. [PMID: 30402632 DOI: 10.1039/c8lc00990b] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has remained a "hot topic" in the last two decades due to its potential applications in cell biology, genetic engineering, and medical diagnostics. Various advanced techniques have been reported on sample dispersion, thermal cycling and output monitoring of digital PCR. However, a fully automated, low-cost and handheld digital PCR platform has not been reported in the literature. This paper attempts to critically evaluate the recent developments in techniques for sample dispersion, thermal cycling and output evaluation for dPCR. The techniques are discussed in terms of hardware simplicity, portability, cost-effectiveness and suitability for automation. The present paper also discusses the research gaps observed in each step of dPCR and concludes with possible improvements toward portable, low-cost and automatic digital PCR systems.
Collapse
Affiliation(s)
- Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | | | | | | | | |
Collapse
|
153
|
Cao J, Yao Y, Fan K, Tan G, Xiang W, Xia X, Li S, Wang W, Zhang L. Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro. SCIENCE ADVANCES 2018; 4:eaau4602. [PMID: 30498782 PMCID: PMC6261655 DOI: 10.1126/sciadv.aau4602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/30/2018] [Indexed: 05/15/2023]
Abstract
A plethora of bacterial allosteric transcription factors (aTFs) have been identified to sense a variety of small molecules. Introduction of a novel aTF-based approach to sense diverse small molecules in vitro will signify a broad series of detection applications. Here, we found that aTFs could interact with their nicked DNA binding sites. Building from this new finding, we designed and implemented a novel aTF-based nicked DNA template-assisted signal transduction system (aTF-NAST) by using the competition between aTFs and T4 DNA ligase to bind to the nicked DNA. This aTF-NAST could reliably and modularly transduce the signal of small molecules recognized by aTFs to the ligated DNA signal, thus enabling the small molecules to be measured via various mature and robust DNA detection methods. Coupling this aTF-NAST with three DNA detection methods, we demonstrated nine novel biosensors for the detection of an antiseptic 4-hydroxybenzoic acid, a disease marker uric acid and an antibiotic tetracycline. These biosensors show impressive sensitivity and robustness in real-life analysis, highlighting the great potential of our aTF-NAST for biosensing applications.
Collapse
Affiliation(s)
- Jiaqian Cao
- State Key Laboratory of Microbial Resources and Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS, Beijing 100101, P.R. China
| | - Yongpeng Yao
- State Key Laboratory of Microbial Resources and Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS, Beijing 100101, P.R. China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources and Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS, Beijing 100101, P.R. China
| | - Gaoyi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xuekui Xia
- Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, P.R. China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
- Corresponding author. (L.Z.); (W.W.); (S.L.)
| | - Weishan Wang
- State Key Laboratory of Microbial Resources and Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS, Beijing 100101, P.R. China
- Corresponding author. (L.Z.); (W.W.); (S.L.)
| | - Lixin Zhang
- State Key Laboratory of Microbial Resources and Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS, Beijing 100101, P.R. China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, P.R. China
- Corresponding author. (L.Z.); (W.W.); (S.L.)
| |
Collapse
|
154
|
Takehara H, Nakamoto Y, Ikeda N, Sasagawa K, Haruta M, Noda T, Tokuda T, Ohta J. Compact Lensless Fluorescence Counting System for Single Molecular Assay. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1177-1185. [PMID: 29994772 DOI: 10.1109/tbcas.2018.2820151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In digital enzyme-linked immunosorbent assay, which is used for biomarker detection and diagnosis, the concentration of target biomarkers is estimated by counting the number of fluorescence chambers in the microchamber array. We propose a compact system for counting fluorescent chambers. Our system consists of three components: a micro-reaction chamber array, an absorption filter for attenuating excitation light, and a photodetector. The absorption filter has a micro-light-pipe array (m-LPA) structure. A stacked photodiode CMOS image sensor (CIS), which can discriminate color, is applied as a photodetector. This paper describes the fabrication process enabling thin m-LPA chips. The unique low-noise characteristics of the stacked photodiode CIS that attains high sensitivity by adopting the 4T-APS configuration are explained. Furthermore, a detection method using the photobleaching phenomenon is proposed for high-sensitivity fluorescence detection. This method suggests that fluorescence by a single molecular enzyme can be detected within 30 min of the start of the fluorescence reaction.
Collapse
|
155
|
Zhou R, Cai Y, Li Z, Shen S, Sha M, Head SR, Wang Y. A digital PCR assay development to detect EGFR T790M mutation in NSCLC patients. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.flm.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
156
|
Yang H, Chen Z, Cao X, Li Z, Stavrakis S, Choo J, deMello AJ, Howes PD, He N. A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Anal Bioanal Chem 2018; 410:7019-7030. [PMID: 30155705 DOI: 10.1007/s00216-018-1335-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
A variety of automated sample-in-answer-out systems for in vitro molecular diagnostics have been presented and even commercialized. Although efficient in operation, they are incapable of quantifying targets, since quantitation based on analog analytical methods (via standard curve analysis) is complex, expensive, and challenging. To address this issue, herein, we describe an integrated sample-in-digital-answer-out (SIDAO) diagnostic system incorporating DNA extraction and digital recombinase polymerase amplification, which enables rapid and quantitative nucleic acid analysis from bodily fluids within a disposable cartridge. Inside the cartridge, reagents are pre-stored in sterilized tubes, with an automated pipetting module allowing facile liquid transfer. For digital analysis, we fabricate a simple, single-layer polydimethylsiloxane microfluidic device and develop a novel and simple sample compartmentalization strategy. Sample solution is partitioned into an array of 40,044 fL-volume microwells by sealing the microfluidic device through the application of mechanical pressure. The entire analysis is performed in a portable, fully automated instrument. We evaluate the quantitative capabilities of the system by analyzing Mycobacterium tuberculosis genomic DNA from both spiked saliva and serum samples, and demonstrate excellent analytical accuracy and specificity. This SIDAO system provides a promising diagnostic platform for quantitative nucleic acid testing at the point-of-care. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Haowen Yang
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Zhu Chen
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiaobao Cao
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Sa-1-dong 1271, Ansan, 15588, South Korea
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland.
| | - Philip D Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Nongyue He
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
157
|
Kahyo T, Sugimura H. Digital Polymerase Chain Reaction Assay for the Genetic Variation in a Sporadic Familial Adenomatous Polyposis Patient Using the Chip-in-a-tube Format. J Vis Exp 2018. [PMID: 30176028 PMCID: PMC6128215 DOI: 10.3791/58199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The quantitative analysis of human genetic variation is crucial for understanding the molecular characteristics of serious medical conditions, such as tumors. Because digital polymerase chain reactions (PCR) enable the precise quantification of DNA copy number variants, they are becoming an essential tool for detecting rare genetic variations, such as drug-resistant mutations. It is expected that molecular diagnoses using digital PCR (dPCR) will be available in clinical practice in the near future; thus, how to efficiently conduct dPCR with human genetic material is a hot topic. Here, we introduce a method to detect Adenomatous polyposis coli (APC) somatic mosaicism using dPCR with the chip-in-a-tube format, which allows eight dPCR reactions to be simultaneously conducted. Care should be taken when filling and sealing the reaction mixture on the chips. This article demonstrates how to avoid the over- and underestimation of positive partitions. Furthermore, we present a simple procedure for collecting the dPCR product from the partitions on the chips, which can then be used to confirm the specific amplification. We hope that this methods report will help promote the dPCR with the chip-in-a-tube method in genetic research.
Collapse
Affiliation(s)
- Tomoaki Kahyo
- Department of Tumor Pathology, Hamamatsu University School of Medicine;
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine
| |
Collapse
|
158
|
Hung MS, Chen CP. Laser-induced heating for in situ DNA replication and detection in microchannels. IET Nanobiotechnol 2018; 12:841-845. [PMID: 30104460 DOI: 10.1049/iet-nbt.2017.0302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study proposes a method for in situ local deoxyribonucleic acid (DNA) replication and detection in a long DNA strand through laser-induced heating and strong avidin-biotin binding. To achieve the target DNA replication, dielectrophoresis was generated to stretch and immobilise DNA strands on both ends of the electrode. Subsequently, local DNA sequences were replicated using thermal cycles generated by laser-induced heating. Replicated double-stranded DNA products were captured in situ on a solid surface and detected using the fluorescence intensity of quantum dots (Qdots). The results revealed that after six laser-induced thermal cycles, the replicated local DNA sequence could be detected by analysing the difference between Qdot fluorescent intensity before and after replication. The proposed method is expected to improve the efficiency of biosample gene sequence analysis.
Collapse
Affiliation(s)
- Min-Sheng Hung
- Department of Biomechatronic Engineering, National Chiayi University, No. 300 Syuefu Road, Chiayi City 60004, Taiwan.
| | - Chih-Pin Chen
- High Power Opto Incorporation, No. 8, Keyuan 3rd Rd, Xitun Dist., Taichung City 40763, Taiwan
| |
Collapse
|
159
|
Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018; 184:15-28. [PMID: 29395034 DOI: 10.1016/j.actatropica.2018.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
Abstract
The detection and characterization of genotypes and sub genotypes of Cryptosporidium and Giardia is essential for their enumeration, surveillance, prevention, and control. Different diagnostic methods are available for the analysis of Cryptosporidium and Giardia including conventional phenotypic tools that face major limitations in the specific diagnosis of these protozoan parasites. The substantial advancement in the development of genetic signature based molecular tools for the quantification, diagnosis and genetic variation analysis has increased the understanding of the epidemiology and preventive measures of related infections. The conventional methods such as microscopy, antibody and enzyme based approaches, offer better detection results when combined with advanced molecular methods. Gene based approaches increase the precision of identification, for example, many signatures detected in environmental matrices represent species/genotype that are not infectious to humans. This review summarizes the available methods and the advantages and limitations of advance detection techniques like nucleic acid-based approaches for the detection of viable oocysts and cysts of Cryptosporidium and Giardia along with the conventional and widely accepted detection techniques like microscopy, antibody and enzyme based ones. This technical article also encourages the wide application of molecular methods in genetic characterization of distinct species of Cryptosporidium and Giardia, to adopt necessary preventive measures with reliable identification and mapping the source of contamination.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
160
|
Abstract
Droplet microfluidic systems have evolved as fluidic platforms that use much less sample volume and provide high throughput for biochemical analysis compared to conventional microfluidic devices. The variety of droplet fluidic applications triggered several detection techniques to be applied for analysis of droplets. In this review, we focus on label-free droplet detection techniques that were adapted to various droplet microfluidic platforms. We provide a classification of most commonly used droplet platform technologies. Then we discuss the examples of various label-free droplet detection schemes implemented for these platforms. While providing the research landscape for label-free droplet detection methods, we aim to highlight the strengths and shortcomings of each droplet platform so that a more targeted approach can be taken by researchers when selecting a droplet platform and a detection scheme for any given application.
Collapse
|
161
|
Zulak KG, Cox BA, Tucker MA, Oliver RP, Lopez-Ruiz FJ. Improved Detection and Monitoring of Fungicide Resistance in Blumeria graminis f. sp. hordei With High-Throughput Genotype Quantification by Digital PCR. Front Microbiol 2018; 9:706. [PMID: 29706938 PMCID: PMC5908980 DOI: 10.3389/fmicb.2018.00706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023] Open
Abstract
The increased occurrence of triazole fungicide resistant strains of Blumeria graminis f. sp. hordei (Bgh) is an economic concern for the barley industry in Australia and elsewhere. High levels of resistance to triazoles in the field are caused by two separate point mutations in the Cyp51 gene, Y136F and S509T. Early detection of these mutations arising in pathogen field populations is important as this allows time for changes in fungicide practices to be adopted, thus mitigating potential yield losses due to fungicide failure and preventing the resistance from becoming dominant. A digital PCR (dPCR) assay has been developed for the detection and quantification of the Y136F and S509T mutations in the Bgh Cyp51 gene. Mutation levels were quantifiable as low as 0.2% in genomic DNA extractions and field samples. This assay was applied to the high throughput screening of Bgh field and bait trial samples from barley growing regions across Australia in the 2015 and 2016 growing seasons and identified the S509T mutation for the first time in the Eastern states of Australia. This is the first report on the use of digital PCR technology for fungicide resistance detection and monitoring in agriculture. Here we describe the potential application of dPCR for the screening of fungicide resistance mutations in a network of specifically designed bait trials. The combination of these two tools constitute an early warning system for the development of fungicide resistance that allows for the timely adjustment of management practices.
Collapse
Affiliation(s)
- Katherine G Zulak
- The Fungicide Resistance Group, Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Belinda A Cox
- The Fungicide Resistance Group, Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Madeline A Tucker
- The Fungicide Resistance Group, Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Francisco J Lopez-Ruiz
- The Fungicide Resistance Group, Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
162
|
Ven K, Vanspauwen B, Pérez-Ruiz E, Leirs K, Decrop D, Gerstmans H, Spasic D, Lammertyn J. Target Confinement in Small Reaction Volumes Using Microfluidic Technologies: A Smart Approach for Single-Entity Detection and Analysis. ACS Sens 2018; 3:264-284. [PMID: 29363316 DOI: 10.1021/acssensors.7b00873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the last decades, the study of cells, nucleic acid molecules, and proteins has evolved from ensemble measurements to so-called single-entity studies. The latter offers huge benefits, not only as biological research tools to examine heterogeneities among individual entities within a population, but also as biosensing tools for medical diagnostics, which can reach the ultimate sensitivity by detecting single targets. Whereas various techniques for single-entity detection have been reported, this review focuses on microfluidic systems that physically confine single targets in small reaction volumes. We categorize these techniques as droplet-, microchamber-, and nanostructure-based and provide an overview of their implementation for studying single cells, nucleic acids, and proteins. We furthermore reflect on the advantages and limitations of these techniques and highlight future opportunities in the field.
Collapse
Affiliation(s)
- Karen Ven
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Vanspauwen
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Elena Pérez-Ruiz
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Karen Leirs
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Deborah Decrop
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans Gerstmans
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Department
of Applied biosciences, Ghent University, Valentyn Vaerwyckweg 1 - building
C, 9000 Gent, Belgium
- Department
of Biosystems, KU Leuven - University of Leuven, Kasteelpark Arenberg
21, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department
of Biosystems, KU Leuven - University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
163
|
Pharo HD, Andresen K, Berg KCG, Lothe RA, Jeanmougin M, Lind GE. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR. Clin Epigenetics 2018; 10:24. [PMID: 29484034 PMCID: PMC5822558 DOI: 10.1186/s13148-018-0456-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/11/2018] [Indexed: 01/09/2023] Open
Abstract
Background Droplet digital PCR (ddPCR) allows absolute quantification of nucleic acids and has potential for improved non-invasive detection of DNA methylation. For increased precision of the methylation analysis, we aimed to develop a robust internal control for use in methylation-specific ddPCR. Methods Two control design approaches were tested: (a) targeting a genomic region shared across members of a gene family and (b) combining multiple assays targeting different pericentromeric loci on different chromosomes. Through analyses of 34 colorectal cancer cell lines, the performance of the control assay candidates was optimized and evaluated, both individually and in various combinations, using the QX200™ droplet digital PCR platform (Bio-Rad). The best-performing control was tested in combination with assays targeting methylated CDO1, SEPT9, and VIM. Results A 4Plex panel consisting of EPHA3, KBTBD4, PLEKHF1, and SYT10 was identified as the best-performing control. The use of the 4Plex for normalization reduced the variability in methylation values, corrected for differences in template amount, and diminished the effect of chromosomal aberrations. Positive Droplet Calling (PoDCall), an R-based algorithm for standardized threshold determination, was developed, ensuring consistency of the ddPCR results. Conclusion Implementation of a robust internal control, i.e., the 4Plex, and an algorithm for automated threshold determination, PoDCall, in methylation-specific ddPCR increase the precision of DNA methylation analysis. Electronic supplementary material The online version of this article (10.1186/s13148-018-0456-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi D Pharo
- 1Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, PO Box 4950, Nydalen, NO-0424 Oslo, Norway.,2KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,3Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,4Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Kim Andresen
- 1Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, PO Box 4950, Nydalen, NO-0424 Oslo, Norway.,2KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,3Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaja C G Berg
- 1Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, PO Box 4950, Nydalen, NO-0424 Oslo, Norway.,2KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,3Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- 1Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, PO Box 4950, Nydalen, NO-0424 Oslo, Norway.,2KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,3Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,4Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Marine Jeanmougin
- 1Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, PO Box 4950, Nydalen, NO-0424 Oslo, Norway.,2KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,3Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guro E Lind
- 1Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, PO Box 4950, Nydalen, NO-0424 Oslo, Norway.,2KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,3Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,4Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
164
|
Sreejith KR, Ooi CH, Dao DV, Nguyen NT. Evaporation dynamics of liquid marbles at elevated temperatures. RSC Adv 2018; 8:15436-15443. [PMID: 35539462 PMCID: PMC9080007 DOI: 10.1039/c8ra02265h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
Study of evaporation dynamics of liquid marbles at elevated temperature is essential to determine the feasibility of liquid marbles to be used as micro compartments for digital polymerase chain reaction (PCR). We have modified an existing theoretical model of evaporation of a liquid droplet and verified its applicability on the evaporation of liquid marbles. The evaporation dynamics of an individual and a group of liquid marbles are analysed. This paper demonstrates that the evaporation dynamics of liquid marbles obeys the theoretical framework for elevated temperatures. The evaporation of a group of liquid marbles are observed as a coupled function of their diameter, their number in a group, the vapour density of the surrounding atmosphere and their spatial distribution. We investigate the evaporation behaviour of a group of liquid marbles at elevated temperature under various conditions.![]()
Collapse
Affiliation(s)
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Australia
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Australia
| |
Collapse
|
165
|
Droplet-based digital PCR system for detection of single-cell level of foodborne pathogens. BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-017-1410-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
166
|
Exploring viral reservoir: The combining approach of cell sorting and droplet digital PCR. Methods 2017; 134-135:98-105. [PMID: 29197654 DOI: 10.1016/j.ymeth.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Combined antiretroviral therapy (cART) blocks different steps of HIV replication and maintains plasma viral RNA at undetectable levels. The virus can remain in long-living cells and create a reservoir where HIV can restart replicating after cART discontinuation. A persistent viral production triggers and maintains a persistent immune activation, which is a well-known feature of chronic HIV infection, and contributes either to precocious aging, or to the increased incidence of morbidity and mortality of HIV positive patients. The new frontier of the treatment of HIV infection is nowadays eradication of the virus from all host cells and tissues. For this reason, it is crucial to have a clear and precise idea of where the virus hides, and which are the cells that keep it silent. Important efforts have been made to improve the detection of viral reservoirs, and new techniques are now giving the opportunity to characterize viral reservoirs. Among these techniques, a strategic approach based upon cell sorting and droplet digital PCR (ddPCR) is opening new horizons and opportunities of research. This review provides an overview of the methods that combine cell sorting and ddPCR for the quantification of HIV DNA in different cell types, and for the detection of its maintenance.
Collapse
|
167
|
|
168
|
Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacid and rolling circle amplification. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2522-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
169
|
Liu W, Ren Y, Tao Y, Yao B, Li Y. Simulation analysis of rectifying microfluidic mixing with field-effect-tunable electrothermal induced flow. Electrophoresis 2017; 39:779-793. [DOI: 10.1002/elps.201700234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Weiyu Liu
- School of Electronics and Control Engineering; Chang'an University; Xi'an P. R. China
| | - Yukun Ren
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
- State Key Laboratory of Robotics and System; Harbin Institute of Technology; Harbin P. R. China
| | - Ye Tao
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
| | - Bobin Yao
- School of Electronics and Control Engineering; Chang'an University; Xi'an P. R. China
| | - You Li
- School of Electronics and Control Engineering; Chang'an University; Xi'an P. R. China
| |
Collapse
|
170
|
Zhang L, Ding B, Chen Q, Feng Q, Lin L, Sun J. Point-of-care-testing of nucleic acids by microfluidics. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
171
|
Mohammed MA. The Significance of Vitamin D Receptor Gene Polymorphisms for Susceptibility to Hepatocellular Carcinoma in Subjects Infected with Hepatitis C Virus. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/ghoa.2017.07.00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
172
|
Weng JH, Chen LC. Confocal epifluorescence sensor with an arc-shaped aperture for slide-based PCR quantification. Biosens Bioelectron 2017; 100:71-78. [PMID: 28863326 DOI: 10.1016/j.bios.2017.08.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022]
Abstract
The increasing needs of point-of-care diagnostics, quarantine of epidemic pathogens, and prevention of terrorism's bio-attacks have promised the future of portable real-time quantitative polymerase chain reaction (qPCR) sensors. This work aims at developing a highly sensitive and low-cost light emitting diode (LED)-based epifluorescence sensor module for qPCR sensor development and relevant bioassay applications. Inspired by the light stop design and dark-field detection of microscopes, this paper first reports a compact confocal LED epifluorescence sensor using a light stop with an arc-shaped aperture for enhancing the flexibility of quick DNA and PCR detection. The sensor features the advantages of the dichroic mirror-free and confocal (shared-focus) characteristics, which benefits size reduction and minimal optics used. It also allows extension to integrate with in situ real-time PCR thermal cycling since the sample slide is placed apart from the epi-sensing module. The epifluorescence sensor can detect as low as sub-ng/μL standard DNA and 101 copies of Salmonella typhimurium InvA gene sequences (cloned in E. coli and after 30-cycle PCR) with SYBR® Green I from non-purified culture samples, having highly sensitive and specific signal responses comparable with that of a commercial qPCR instrument.
Collapse
Affiliation(s)
- Jui-Hong Weng
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Lin-Chi Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
173
|
Transcriptome Profiling in Human Diseases: New Advances and Perspectives. Int J Mol Sci 2017; 18:ijms18081652. [PMID: 28758927 PMCID: PMC5578042 DOI: 10.3390/ijms18081652] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decades, transcriptome profiling has been one of the most utilized approaches to investigate human diseases at the molecular level. Through expression studies, many molecular biomarkers and therapeutic targets have been found for several human pathologies. This number is continuously increasing thanks to total RNA sequencing. Indeed, this new technology has completely revolutionized transcriptome analysis allowing the quantification of gene expression levels and allele-specific expression in a single experiment, as well as to identify novel genes, splice isoforms, fusion transcripts, and to investigate the world of non-coding RNA at an unprecedented level. RNA sequencing has also been employed in important projects, like ENCODE (Encyclopedia of the regulatory elements) and TCGA (The Cancer Genome Atlas), to provide a snapshot of the transcriptome of dozens of cell lines and thousands of primary tumor specimens. Moreover, these studies have also paved the way to the development of data integration approaches in order to facilitate management and analysis of data and to identify novel disease markers and molecular targets to use in the clinics. In this scenario, several ongoing clinical trials utilize transcriptome profiling through RNA sequencing strategies as an important instrument in the diagnosis of numerous human pathologies.
Collapse
|
174
|
Herring E, Kanaoka S, Tremblay É, Beaulieu JF. Droplet digital PCR for quantification of ITGA6 in a stool mRNA assay for the detection of colorectal cancers. World J Gastroenterol 2017; 23:2891-2898. [PMID: 28522907 PMCID: PMC5413784 DOI: 10.3748/wjg.v23.i16.2891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/14/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the use of droplet digital polymerase chain reaction (ddPCR) for detecting host mRNA markers in stools as a non-invasive test for colorectal cancer screening.
METHODS ddPCR and quantitative PCR were compared side by side for their performance in the detection of ITGA6 and ITGA6A transcripts in stool samples obtained from patients with various types of colorectal lesions (advanced adenomas and stage II-IV colorectal cancers) and control (patients displaying no pathological findings) using duplex TaqMan reactions for both methods. ITGA6 and ITGA6A were chosen for this proof-of-concept study based on their relative medium and low abundance in stool samples, respectively, as established in a previous study.
RESULTS We found that the ddPCR and qPCR methods performed equally well in this TaqMan duplex assay for the detection of ITGA6 and ITGA6A transcripts in stools of patients with colorectal lesions. For ITGA6, receiver operating characteristic (ROC) curve analysis showed comparable areas under the curve of 0.91 (P < 0.0001) and 0.89-0.90 (P < 0.0001) for the prediction of advanced adenomas and colorectal cancers, respectively. ITGA6A, which was detected at very low levels in control patients, was found to be significantly elevated (over 40 times) in stage II and III colorectal cancers (P < 0.0002). Comparison of the two sets of data revealed a strong correlation of the copy numbers obtained by ddPCR and qPCR for both ITGA6 and ITGA6A.
CONCLUSION We found that ITGA6 and ITGA6A detection in stools of patients with colorectal cancers with ddPCR is comparable to that of qPCR using TaqMan assays.
Collapse
|
175
|
Yelleswarapu VR, Jeong HH, Yadavali S, Issadore D. Ultra-high throughput detection (1 million droplets per second) of fluorescent droplets using a cell phone camera and time domain encoded optofluidics. LAB ON A CHIP 2017; 17:1083-1094. [PMID: 28225099 DOI: 10.1039/c6lc01489e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Droplet-based assays-in which ultra-sensitive molecular measurements are made by performing millions of parallel experiments in picoliter droplets-have generated enormous enthusiasm due to their single molecule resolution and robustness to reaction conditions. These assays have great untapped potential for point of care diagnostics but are currently confined to laboratory settings due to the instrumentation necessary to serially generate, control, and measure tens of millions of droplets. To address this challenge, we have developed the microdroplet megascale detector (μMD) that can generate and detect the fluorescence of millions of droplets per second (1000× faster than conventional approaches) using only a conventional cell phone camera. The key innovation of our approach is borrowed from the telecommunications industry, wherein we modulate the excitation light with a pseudorandom sequence that enables individual droplets to be resolved that would otherwise overlap due to the limited frame rate of digital cameras. Using this approach, the μMD measures droplets at a rate of 106 droplets per sec (ϕ = 166 mL h-1) in 120 parallel microfluidic channels and achieves a limit of detection LOD = 1 μM Rhodamine dye, sufficient for typical droplet based assays. We incorporate this new droplet detection technology with our previously reported parallelized droplet production strategy, incorporating 200 parallel droplet makers and only one set of continuous and droplet phase inputs and one output line. By miniaturizing and integrating droplet based diagnostics into a handheld format, the μMD platform can translate ultra-sensitive droplet based assays into a self-contained platform for practical use in clinical and industrial settings.
Collapse
Affiliation(s)
- Venkata R Yelleswarapu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Heon-Ho Jeong
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sagar Yadavali
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA. and Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|