151
|
PbMYB120 Negatively Regulates Anthocyanin Accumulation in Pear. Int J Mol Sci 2020; 21:ijms21041528. [PMID: 32102306 PMCID: PMC7073189 DOI: 10.3390/ijms21041528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 11/17/2022] Open
Abstract
Subgroup 4 R2R3 MYBs play vital roles in the regulation of anthocyanin biosynthesis. However, there is limited knowledge regarding the functions of MYB repressors in pear (Pyrus × bretschneideri). Here, PbMYB120 was identified as a potential regulator of anthocyanin biosynthesis. A phylogenetic analysis revealed that PbMYB120 was clustered into the FaMYB1-like clade of the subgroup 4 R2R3 MYBs. PbMYB120 was expressed higher in red peels than in green peels in five pear cultivars. PbMYB120 expression was positively correlated with anthocyanin accumulation. However, the transient overexpression of PbMYB120 led to the inhibition of anthocyanin accumulation and PbUFGT1 expression. Promoter binding and activation assays indicated that PbMYB120 binds to the promoter of PbUFGT1 and represses the promoter’s activity. Thus, the inhibition of anthocyanin accumulation by PbMYB120 may be correlated with the repression of PbUFGT1. Furthermore, during anthocyanin induction, the expression levels of anthocyanin activators and PbMYB120 were upregulated. This study demonstrated that PbMYB120 was highly expressed in pear tissues having higher anthocyanin accumulations but acted as a repressor in the regulation of anthocyanin accumulation. PbMYB120 may work coordinately with anthocyanin activators and serve as a balancer of anthocyanin accumulation.
Collapse
|
152
|
Purple corn (Zea mays L.) pericarp hydroalcoholic extracts obtained by conventional processes at atmospheric pressure and by processes at high pressure. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00009-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
153
|
Shang Y, Wei W, Zhang P, Ye BC. Engineering Yarrowia lipolytica for Enhanced Production of Arbutin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1364-1372. [PMID: 31903751 DOI: 10.1021/acs.jafc.9b07151] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arbutin, a glycoside, is derived from the leaves of several plants, including wheat, pear, and bearberry plants, and has a significant role in the treatment of melanoma, cystitis, and cough. Here, we aimed to modify Yarrowia lipolytica to produce arbutin. To construct the arbutin synthetic pathway in Y. lipolytica, three genes (chorismate pyruvate-lyase (UbiC), 4-hydroxybenzoate 1-hydroxylase (MNX1), and hydroquinone glucosyltransferase (AS)) were codon-optimized and heterologously expressed. To maximize arbutin production, seven arbutin-biosynthesis molecular targets were overexpressed, and we found that the individual strengthening of DHS1 and DHS2 led to an 8.9- and 7.8-fold improvement in arbutin yield, respectively. Through optimization, a maximum arbutin titer of 8.6 ± 0.7 g/L was achieved using the finally engineered strain, po1f-At09. Overall, this is the first report of heterologous arbutin synthesis in Y. lipolytica at a high titer. Furthermore, this work opens a possibility for the overproduction of shikimate pathway derivatives in Y. lipolytica.
Collapse
Affiliation(s)
- Yanzhe Shang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
- School of Chemistry and Chemical Engineering , Shihezi University , Xinjiang 832000 , China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| |
Collapse
|
154
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
155
|
Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, açai is one of the most important fruits present in the world. Several studies have demonstrated its high content in phenolic compounds and anthocyanins. Both of them are responsible of interesting properties of the fruit such as anti-inflammatory, antioxidant or anticancer. In the present study, two optimized pressurized liquid extraction (PLE) methods have been developed for the extraction of anthocyanins and total phenolic compounds from açai. A full factorial design (Box–Behnken design) with six variables (solvent composition (25–75% methanol-in-water), temperature (50–100 °C), pressure (100–200 atm), purge time (30–90 s), pH (2–7) and flushing (50–150%)) were employed. The percentage of methanol in the extraction solvent was proven to be the most significant variable for the extraction of anthocyanins. In the case of total phenolic compounds, the extraction temperature was the most influential variable. The developed methods showed high precision, with relative standard deviations (RSD) of less than 5%. The applicability of the methods was successfully evaluated in real samples. In conclusion, two rapid and reliable PLE extraction methods to be used for laboratories and industries to determine anthocyanins and total phenolic compounds in açai and its derived products were developed in this work.
Collapse
|
156
|
Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants (Basel) 2020; 9:antiox9020097. [PMID: 31979214 PMCID: PMC7070715 DOI: 10.3390/antiox9020097] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
The current trend for substituting synthetic compounds with natural ones in the design and production of functional and healthy foods has increased the research interest about natural colorants. Although coloring agents from plant origin are already used in the food and beverage industry, the market and consumer demands for novel and diverse food products are increasing and new plant sources are explored. Fresh vegetables are considered a good source of such compounds, especially when considering the great color diversity that exists among the various species or even the cultivars within the same species. In the present review we aim to present the most common species of colored vegetables, focusing on leafy and fruit vegetables, as well as on vegetables where other plant parts are commercially used, with special attention to blue color. The compounds that are responsible for the uncommon colors will be also presented and their beneficial health effects and antioxidant properties will be unraveled.
Collapse
|
157
|
Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020; 10:biom10010105. [PMID: 31936288 PMCID: PMC7022462 DOI: 10.3390/biom10010105] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevailing global health disease with a high incidence rate which varies by region. It is a huge economic burden on health care providers. GI cancer affects different organs in the body such as the gastric organs, colon, esophagus, intestine, and pancreas. Internal and external factors like smoking, obesity, urbanization, genetic mutations, and prevalence of Helicobacter pylori and Hepatitis B and Hepatitis C viral infections could increase the risk of GI cancer. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in fruits, grains, and vegetables. Consumption of phytochemicals may protect against chronic diseases like cardiovascular disease, neurodegenerative disease, and cancer. Multiple studies have assessed the chemoprotective effect of selected phytochemicals in GI cancer, offering support to their potential towards reducing the pathogenesis of the disease. The aim of this review was to summarize the current knowledge addressing the anti-cancerous effects of selected dietary phytochemicals on GI cancer and their molecular activities on selected mechanisms, i.e., nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), detoxification enzymes, adenosine monophosphate activated protein kinase (AMPK), wingless-related integration site/β-catenin (wingless-related integration site (Wnt) β-catenin, cell apoptosis, phosphoinositide 3-kinases (PI3K)/ protein kinase B AKT/ mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK). In this review phytochemicals were classified into four main categories: (i) carotenoids, including lutein, lycopene, and β-carotene; (ii) proanthocyanidins, including quercetin and ellagic acid; (iii) organosulfur compounds, including allicin, allyl propyl disulphide, asparagusic acid, and sulforaphane; and (iv) other phytochemicals including pectin, curcumins, p-coumaric acid and ferulic acid. Overall, phytochemicals improve cancer prognosis through the downregulation of β-catenin phosphorylation, therefore enhancing apoptosis, and upregulation of the AMPK pathway, which supports cellular homeostasis. Nevertheless, more studies are needed to provide a better understanding of the mechanism of cancer treatment using phytochemicals and possible side effects associated with this approach.
Collapse
|
158
|
Ribera-Fonseca A, Jiménez D, Leal P, Riquelme I, Roa JC, Alberdi M, Peek RM, Reyes-Díaz M. The Anti-Proliferative and Anti-Invasive Effect of Leaf Extracts of Blueberry Plants Treated with Methyl Jasmonate on Human Gastric Cancer In Vitro Is Related to Their Antioxidant Properties. Antioxidants (Basel) 2020; 9:antiox9010045. [PMID: 31948009 PMCID: PMC7023271 DOI: 10.3390/antiox9010045] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is the third main cause of cancerous tumors in humans in Chile. It is well-accepted that a diet rich in antioxidant plants could help in fighting cancer. Blueberry is a fruit crop with a high content of antioxidants. Methyl jasmonate (MeJA) is a phytohormone involved in plant defenses under stress conditions. The exogenous application of MeJA can improve the antioxidant properties in plants. We studied in vitro and in vivo anticancer action on human gastric cancer (cell line AGS) and the antioxidant properties of extracts from blueberry plants untreated and treated with MeJA. The results demonstrated that leaf extracts displayed a higher inhibition of cancer cell viability as well as greater antioxidant properties compared to fruit extracts. Besides, MeJA applications to plants improved the antioxidant properties of leaf extracts (mainly anthocyanins), increasing their inhibition levels on cell viability and migration. It is noteworthy that leaf extract from MeJA-treated plants significantly decreased cancer cell migration and expression of gastric cancer-related proteins, mainly related to the mitogen-activating protein kinase (MAPK) pathway. Interestingly, in all cases the anticancer and antioxidant properties of leaf extracts were strongly related. Despite highlighted outcomes, in vivo results did not indicate significant differences in Helicobacter pylori colonization nor inflammation levels in Mongolian gerbils unfed and fed with blueberry leaf extract. Our findings demonstrated that MeJA increased antioxidant compounds, mainly anthocyanins, and decreased the viability and migration capacity of AGS cells. In addition, leaf extracts from MeJA-treated plants were also able to decrease the expression of gastric cancer-related proteins. Our outcomes also revealed that the anthocyanin-rich fraction of blueberry leaf extracts showed higher in vitro antiproliferative and anti-invasive effects than the crude leaf extracts. However, it is still uncertain whether the leaf extracts rich in anthocyanins of blueberry plants are capable of exerting a chemopreventive or chemoprotective effect against gastric cancer on an in vivo model.
Collapse
Affiliation(s)
- Alejandra Ribera-Fonseca
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 4811230, Chile; (D.J.); (M.A.)
| | - Danae Jiménez
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 4811230, Chile; (D.J.); (M.A.)
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Avenida Alemania 0458, 4th Floor, P.O. Box 54-D, Temuco 4810296, Chile;
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4180101, Chile;
| | - Juan Carlos Roa
- Department of Pathology, UC Centre for Investigational Oncology (CITO), Advanced Centre for Chronic Diseases (ACCDis), The Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile;
| | - Miren Alberdi
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 4811230, Chile; (D.J.); (M.A.)
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0252, USA;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-0252, USA
| | - Marjorie Reyes-Díaz
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 4811230, Chile; (D.J.); (M.A.)
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 4811230, Chile
- Correspondence: ; Tel.: +56-45-2325421
| |
Collapse
|
159
|
Phan ADT, Williams BA, Netzel G, Mikkelsen D, D'Arcy BR, Gidley MJ. Independent fermentation and metabolism of dietary polyphenols associated with a plant cell wall model. Food Funct 2020; 11:2218-2230. [DOI: 10.1039/c9fo02987g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The metabolic pathways of polyphenol degradation are not influenced by the presence of plant cell walls during in vitro fermentation, but co-fermentation of cell walls may lead to faster microbial metabolism of polyphenols.
Collapse
Affiliation(s)
- A. D. T. Phan
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - B. A. Williams
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - G. Netzel
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - D. Mikkelsen
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - B. R. D'Arcy
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - M. J. Gidley
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|
160
|
Bilberry anthocyanins as agents to address oxidative stress. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
161
|
Abdel-Shafi S, Al-Mohammadi AR, Sitohy M, Mosa B, Ismaiel A, Enan G, Osman A. Antimicrobial Activity and Chemical Constitution of the Crude, Phenolic-Rich Extracts of Hibiscus sabdariffa, Brassica oleracea and Beta vulgaris. Molecules 2019; 24:E4280. [PMID: 31771271 PMCID: PMC6930538 DOI: 10.3390/molecules24234280] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
Crude, phenolic-rich extracts (CPREs) were isolated from different sources, such as Hibiscus sabdariffa (H. sabdariffa), Brassica oleracea var. capitata f. rubra (B. oleracea) and Beta vulgaris (B. vulgaris) and characterized. These CPREs showed potential antibacterial and antifungal activities. H. sabdariffa CPRE (HCPRE) is the most potent, as it inhibited all tested bacteria and fungi. Total anthocyanins content (TAC), total phenolic content (TPC) and total flavonoid content (TFC) were estimated in all three CPREs. H. sabdariffa contained 4.2 mg/100 g TAC, 2000 mg/100 g of TPC and 430 mg/100 g of TFC in a dry weight sample. GC-MS analysis of HCPRE showed 10 different active compounds that have antimicrobial effects against pathogenic bacteria and fungi, especially alcoholic compounds, triazine derivatives and esters. Scanning and transmission electron microscopy images of Staphylococcus aureus DSM 1104 and Klebsiella pneumonia ATCC 43816 treated with HCPRE (50 μg/mL) exhibited signs of asymmetric, wrinkled exterior surfaces, cell deformations and loss of cell shapes; and adherence of lysed cell content led to cell clumping, malformations, blisters, cell depressions and diminished cell numbers. This indicates death of bacterial cells and loss of cell contents. Aspergillus ochraceus EMCC516 (A. ochraceus, when treated with 100 μg/mL of HCPRE showed irregular cell organelles and cell vacuolation.
Collapse
Affiliation(s)
- Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (B.M.); (A.I.); (G.E.)
| | | | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.S.); (A.O.)
| | - Basma Mosa
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (B.M.); (A.I.); (G.E.)
| | - Ahmed Ismaiel
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (B.M.); (A.I.); (G.E.)
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (B.M.); (A.I.); (G.E.)
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.S.); (A.O.)
| |
Collapse
|
162
|
Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front Pharmacol 2019; 10:1207. [PMID: 31787892 PMCID: PMC6856223 DOI: 10.3389/fphar.2019.01207] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
As the leading cause of death worldwide, viruses significantly affect global health. Despite the rapid progress in human healthcare, there are few viricidal and antiviral therapies that are efficient enough. The rapid emergence of resistance, and high costs, as well as the related side effects of synthetic antiviral drugs, raise the need to identify novel, effective, and safe alternatives against viral diseases. Nature has been of the most exceptional help and source of inspiration for developing novel multi-target antiviral compounds, affecting several steps of the viral life cycle and host proteins. For that matter and due to safety and efficacy limitations, as well as high resistance rate of conventional therapies, hundreds of natural molecules are preferred over the synthetic drugs. Besides, natural antiviral agents have shown acceptable antiviral value in both preclinical and clinical trials.This is the first review regarding molecular and cellular pathways of the virus life cycle, treatment strategies, and therapeutic targets of several viral diseases with a particular focus on anthocyanins as promising natural compounds for significant antiviral enhancements. Clinical applications and the need to develop nano-formulation of anthocyanins in drug delivery systems are also considered.
Collapse
Affiliation(s)
- Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
163
|
Anthocyanins from Hibiscus syriacus L. Inhibit Melanogenesis by Activating the ERK Signaling Pathway. Biomolecules 2019; 9:biom9110645. [PMID: 31653006 PMCID: PMC6920888 DOI: 10.3390/biom9110645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Hibiscus syriacus L. exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus L. has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus L. varieties Pulsae and Paektanshim (PS and PTS) inhibit melanin biogenesis. B16F10 cells and zebrafish larvae were exposed to PS and PTS in the presence or absence of α-melanocyte-stimulating hormone (α-MSH), and melanin contents accompanied by its regulating genes and proteins were analyzed. PS and PTS moderately downregulated mushroom tyrosinase activity in vitro, but significantly decreased extracellular and intracellular melanin production in B16F10 cells, and inhibited α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. PS and PTS also attenuated pigmentation in α-MSH-stimulated zebrafish larvae. Furthermore, PS and PTS activated the phosphorylation of extracellular signal-regulated kinase (ERK), whereas PD98059, a specific ERK inhibitor, completely reversed PS- and PTS-mediated anti-melanogenic activity in B16F10 cells and zebrafish larvae, which indicates that PS- and PTS-mediated anti-melanogenic activity is due to ERK activation. Moreover, chromatography data showed that PS and PTS possessed 17 identical anthocyanins as a negative regulator of ERK. These findings suggested that anthocyanins from PS and PTS inhibited melanogenesis in vitro and in vivo by activating the ERK signaling pathway.
Collapse
|
164
|
Mazzoni L, Giampieri F, Alvarez Suarez JM, Gasparrini M, Mezzetti B, Forbes Hernandez TY, Battino MA. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food Funct 2019; 10:7103-7120. [PMID: 31621765 DOI: 10.1039/c9fo01721f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was the evaluation of the effects of strawberry anthocyanin extract treatment on two in vitro models of murine breast cancer cell lines, in an attempt to detect a specific pathway (AMP-activated protein kinase or AMPK) through which strawberries exert their anticancer activity. The anticancer activity of purified anthocyanin extracts from an Alba cultivar on two murine cancer cell lines, N202/1A (with high levels of the HER2/neu oncogene) and N202/1E (with low levels of the HER2/neu oncogene), was evaluated after 48 and 72 h of treatment. The cell viability and apoptosis, intracellular ROS rates, and cell oxidative damage were assessed. Western blot assays were performed to analyze the expression of several proteins related to apoptosis, autophagy, metastasis, the oxidative status, mitochondrial functionality, and the AMPK pathway. This study demonstrated that the anthocyanin extract of Alba strawberry shows an antiproliferative effect on cancer cells, through the induction of apoptosis and oxidative stress, by stimulating different molecular pathways. This study is one of the first studies that have tried to deepen the understanding of a candidate pathway for the explanation of the effects of strawberry on cancer cells. A relationship between the AMPK pathway and the anticancer effects of strawberries was demonstrated.
Collapse
Affiliation(s)
- Luca Mazzoni
- Department of Agricultural, Food and Environmental Sciences - Università Politecnica delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche - Università Politecnica delle Marche, Via Ruggeri, 60130, Ancona, Italy.
| | - Jose Miguel Alvarez Suarez
- Facultad de Ingeniería y Ciencias Aplicadas. Grupo de Investigación en Biotecnología Aplicada a Biomedicina, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences - Università Politecnica delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences - Università Politecnica delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Tamara Yuliett Forbes Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, 32004 Ourense, Spain.
| | - Maurizio Antonio Battino
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche - Università Politecnica delle Marche, Via Ruggeri, 60130, Ancona, Italy. and Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, 32004 Ourense, Spain. and College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
165
|
In Vivo Effects of Polymerized Anthocyanin from Grape Skin on Benign Prostatic Hyperplasia. Nutrients 2019; 11:nu11102444. [PMID: 31615010 PMCID: PMC6835789 DOI: 10.3390/nu11102444] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common chronic disease of the urinary system among elderly men. Especially, the metabolic imbalance of androgen in elderly men is one of the leading causes of BPH. Dihydrotestosterone (DHT) and converted testosterone by 5-α reductase type 2 (5AR2), binding with androgen receptor (AR), affect prostate proliferation and growth. In BPH, levels of androgen signaling-related protein expression are shown highly. Androgen signaling induces the overexpression of prostate-specific antigen (PSA) and cell proliferation factor such as proliferating cell nuclear antigen (PCNA) and cyclin D1. Grape skin anthocyanins are well known for their antioxidative, anti-cancer, anti-diabetes, anti-inflammatory, antimicrobial, and anti-aging activities. Polymerized anthocyanin (PA) downregulated the expression of androgen signaling-related proteins such as 5AR2, AR, and PSA in LNCaP cell lines. Furthermore, we investigated the effects on PA in testosterone propionate-induced BPH rat experiments. The oral administration of PA decreased the prostate weight in rats with TP-induced BPH. PA decreased the AR, 5AR2, SRC1, PSA, PCNA, and cyclin D1 expression in prostate tissues and the serum DHT levels, ameliorated the BPH-mediated increase of Bcl-2 expression, and increased the Bax expression. These results suggest that PA may be a potential natural therapeutic agent for BPH treatment.
Collapse
|
166
|
Pinakin DJ, Kumar V, Suri S, Sharma R, Kaushal M. Nutraceutical potential of tree flowers: A comprehensive review on biochemical profile, health benefits, and utilization. Food Res Int 2019; 127:108724. [PMID: 31882088 DOI: 10.1016/j.foodres.2019.108724] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022]
Abstract
A numerous types of tree flowers are present in nature and few of them such as Rhdodendron, Bauhinia, Mahua, Gulmohar, Palash, Sesbania, Woodfordia, Simbal, etc. are being utilized traditionally as food and medicine by the localities of India. These flowers are rich in phytochemical (flavonoids, anthocyanins, phenolic acids, carotenoids, tannins, saponins) and possessing numerous health benefits (antioxidant activity, anti-inflammation, anti-cancer activity, anti-diabetic activity, hepatoprotective activity). However, because of the low availability (i.e. short blooming period and at limited places) and poor post-harvest life, these flowers are commonly utilized by the local people as food and medicines during their respective flowering times only. A few attempts have been made toward the utilization of some tree flowers (Mahduca longifolia, Rhododendron arboretum), but others are still unexplored and need to be exploited to achieve food and nutritional security as well increase the opportunity of employment and improvement in the socio-economic status of the local tribes. Therefore, to achieve this, the present review was aimed to review and document the status of common edible tree flowers, their phytochemicals potential and, health benefits as well as their utilization as food and medicines.
Collapse
Affiliation(s)
- Dave Jaydeep Pinakin
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vikas Kumar
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sheenam Suri
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rakesh Sharma
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India
| | - Manisha Kaushal
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India
| |
Collapse
|
167
|
Alvarez Gaona IJ, Fanzone M, Sari S, Assof M, Pérez D, Chirife J, Zamora MC. Spray-dried Ancellotta red wine: natural colorant with potential for food applications. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03375-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
168
|
Red-jambo peel extract shows antiproliferative activity against HepG2 human hepatoma cells. Food Res Int 2019; 124:93-100. [DOI: 10.1016/j.foodres.2018.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022]
|
169
|
Cheshmazar N, Dastmalchi S, Terao M, Garattini E, Hamzeh-Mivehroud M. Aldehyde oxidase at the crossroad of metabolism and preclinical screening. Drug Metab Rev 2019; 51:428-452. [DOI: 10.1080/03602532.2019.1667379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Narges Cheshmazar
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
170
|
Biro A, Markovich A, Homoki JR, Szőllősi E, Hegedűs C, Tarapcsák S, Lukács J, Stündl L, Remenyik J. Anthocyanin-Rich Sour Cherry Extract Attenuates the Lipopolysaccharide-Induced Endothelial Inflammatory Response. Molecules 2019; 24:molecules24193427. [PMID: 31546579 PMCID: PMC6804180 DOI: 10.3390/molecules24193427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 01/25/2023] Open
Abstract
The anthocyanin content of Hungarian sour cherry is remarkable based on our preliminary investigations. Nutraceutical and pharmaceutical effects of anthocyanins have been extensively studied. The objective of this work was to investigate the the effect of purified sour cherry extract using human umbilical cord vein endothelial cells (HUVECs) as the inflammatory model. HUVECs were isolated by enzymatic digestion and characterized by flow cytometry. The optimal concentration range of sour cherry extract was selected based on MTT, apoptosis, and necrosis assays. Cells were divided into three groups, incubating with M199 medium as control, or with lipopolysaccharide (LPS) or with LPS plus anthocyanin extract (ACE). The effect of sour cherry extract on oxidative stress, pro-inflammatory factors, and arachidonic pathway was investigated. An amount of 50 μg/mL ACE (ACE50) was able to increase the level of glutathione and decrease the ROS, thereby improving the unbalanced redox status in inflammation. ACE50 lowered pro-inflammatory cytokine levels including Interleukin-6 (IL-6), regulated on activation, normal T cell expressed and secreted (RANTES), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor alpha (TNF-α). ACE50 affected the arachidonic acid pathway by reducing the LPS-induced enzyme expression (cyclooxygenase-1, cyclooxygenase-2, and prostacyclin synthase). The extract under investigation seems to have a pleiotropic effect including anti-oxidative, anti-inflammatory, hemostatic, and vasoactive effects. Our results indicate that purified sour cherry extract could reduce the LPS-induced inflammatory response, thereby improving endothelial dysfunction.
Collapse
Affiliation(s)
- Attila Biro
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Arnold Markovich
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Judit Rita Homoki
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Erzsébet Szőllősi
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Csaba Hegedűs
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - János Lukács
- Department of Obstetrics and Gynaecology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - László Stündl
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Judit Remenyik
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
171
|
Phytochemicals in Daucus carota and Their Health Benefits-Review Article. Foods 2019; 8:foods8090424. [PMID: 31546950 PMCID: PMC6770766 DOI: 10.3390/foods8090424] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Carrots are a multi-nutritional food source. They are an important root vegetable, rich in natural bioactive compounds, which are recognised for their nutraceutical effects and health benefits. This review summarises the occurrence, biosynthesis, factors affecting concentration, and health benefits of phytochemicals found in Daucus carota. Two hundred and fifty-five articles including original research papers, books, and book chapters were analysed, of which one hundred and thirty articles (most relevant to the topic) were selected for writing the review article. The four types of phytochemicals found in carrots, namely phenolics, carotenoids, polyacetylenes, and ascorbic acid, were summarised. These chemicals aid in the risk reduction of cancer and cardiovascular diseases due to their antioxidant, anti-inflammatory, plasma lipid modification, and anti-tumour properties. Numerous factors influence the amount and type of phytochemicals present in carrots. Genotype (colour differences) plays an important role; high contents of α and β-carotene are present in orange carrots, lutein in yellow carrots, lycopene in red carrots, anthocyanins in the root of purple carrots, and phenolic compounds abound in black carrots. Carotenoids range between 3.2 mg/kg and 170 mg/kg, while vitamin C varies from 21 mg/kg to 775 mg/kg between cultivars. Growth temperatures of carrots influence the level of the sugars, carotenoids, and volatile compounds, so that growing in cool conditions results in a higher yield and quality of carrots, while higher temperatures would increase terpene synthesis, resulting in carrots with a bitter taste. It is worthwhile to investigate the cultivation of different genotypes under various environmental conditions to increase levels of phytochemicals and enhance the nutritional value of carrot, along with the valorisation of carrot by-products.
Collapse
|
172
|
Zhang S, Zhang A, Wu X, Zhu Z, Yang Z, Zhu Y, Zha D. Transcriptome analysis revealed expression of genes related to anthocyanin biosynthesis in eggplant (Solanum melongena L.) under high-temperature stress. BMC PLANT BIOLOGY 2019; 19:387. [PMID: 31492114 PMCID: PMC6729041 DOI: 10.1186/s12870-019-1960-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 08/01/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Anthocyanin synthesis is affected by many factors, among which temperature is an important environmental factor. Eggplant is usually exposed to high temperatures during the cultivation season in Shanghai, China. Therefore,RNA -seq analysis was used to determine the effects of high-temperature stress on gene expression in the anthocyanin biosynthetic pathway of eggplant (Solanum melongena L.). RESULTS We tested the heat-resistant cultivar 'Tewangda'. The plants were incubated at 38 °C and 45 °C, and the suitable temperature for eggplant growth was used as a control. The treatment times were 3 h and 6 h. The skin of the eggplant was taken for transcriptome sequencing, qRT-PCR assays and bioinformatic analysis. The results showed that 770 genes were differentially expressed between different treatments. Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses identified 16 genes related to anthocyanin biosynthesis, among which CHSB was upregulated. Other genes, including BHLH62, MYB380, CHI3, CHI, CCOAOMT, AN3, ACT-2, HST, 5MA-T1, CYP75A2, ANT17, RT, PAL2, and anthocyanin 5-aromatic acyltransferase were downregulated. In addition, the Myb family transcription factor PHL11 was upregulated in the CK 3 h vs 45 °C 3 h, CK 3 h vs 38 °C 3 h, and CK 6 h vs 38 °C 6 h comparisons, and the transcription factor bHLH35 was upregulated in the CK 3 h vs 38 °C 3 h and CK 6 h vs 38 °C 6 h comparisons. CONCLUSION These results indicated that high temperature will downregulate most of the genes in the anthocyanin biosynthetic pathway of eggplant. Our data have a reference value for the heat resistance mechanism of eggplant and can provide directions for molecular breeding of heat-resistant germplasm with anthocyanin content in eggplant.
Collapse
Affiliation(s)
- Shengmei Zhang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Aidong Zhang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Xuexia Wu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Zongwen Zhu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Zuofen Yang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| | - Yuelin Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dingshi Zha
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403 China
| |
Collapse
|
173
|
Chariyakornkul A, Punvittayagul C, Taya S, Wongpoomchai R. Inhibitory effect of purple rice husk extract on AFB 1-induced micronucleus formation in rat liver through modulation of xenobiotic metabolizing enzymes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:237. [PMID: 31481128 PMCID: PMC6724366 DOI: 10.1186/s12906-019-2647-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
Background Rice husk, a waste material produced during milling, contains numerous phytochemicals that may be sources of cancer chemopreventive agents. Various biological activities of white and colored rice husk have been reported. However, there are few comparative studies of the cancer chemopreventive effects of white and colored rice husk. Methods This study investigated the cancer chemopreventive activities of two different colors of rice husk using in vitro and in vivo models. A bacterial mutation assay using Salmonella typhimurium strains TA98 and TA100 was performed; enzyme induction activity in murine hepatoma cells was measured, and a liver micronucleus test was performed in male Wistar rats. Results The white rice husk (WRHE) and purple rice husk (PRHE) extracts were not mutagenic in Salmonella typhimurium TA98 or TA100 in the presence or absence of metabolic activation. However, the extracts exhibited antimutagenicity against aflatoxin B1 (AFB1) and 2-amino-3,4 dimethylimidazo[4,5-f]quinolone (MeIQ) in a Salmonella mutation assay. The extracts also induced anticarcinogenic enzyme activity in a murine Hepa1c1c7 hepatoma cell line. Interestingly, PRHE but not WRHE exhibited antigenotoxicity in the rat liver micronucleus test. PRHE significantly decreased the number of micronucleated hepatocytes in AFB1-initiated rats. PRHE contained higher amounts of phenolic compounds and vitamin E than WRHE in both tocopherols and tocotrienols as well as polyphenol such as cyanidin-3-glucoside, protocatechuic acid and vanillic acid. Furthermore, PRHE increased CYP1A1 and 1A2 activities while decreasing CYP3A2 activity in the livers of AFB1-treated rats. PRHE also enhanced various detoxifying enzyme activities, including glutathione S-transferase, NAD(P)H quinone oxidoreductase and heme oxygenase. Conclusions PRHE showed potent cancer chemopreventive activity in a rat liver micronucleus assay through modulation of phase I and II xenobiotic metabolizing enzymes involved in AFB1 metabolism. Vitamin E and phenolic compounds may be candidate antimutagens in purple rice husk. Electronic supplementary material The online version of this article (10.1186/s12906-019-2647-9) contains supplementary material, which is available to authorized users.
Collapse
|
174
|
Herrera-Sotero MY, Cruz-Hernández CD, Oliart-Ros RM, Chávez-Servia JL, Guzmán-Gerónimo RI, González-Covarrubias V, Cruz-Burgos M, Rodríguez-Dorantes M. Anthocyanins of Blue Corn and Tortilla Arrest Cell Cycle and Induce Apoptosis on Breast and Prostate Cancer Cells. Nutr Cancer 2019; 72:768-777. [DOI: 10.1080/01635581.2019.1654529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mónica Y. Herrera-Sotero
- Food Research and Development Unit (UNIDA), Tecnológico Nacional de México/IT Veracruz, Veracruz, México
| | | | - Rosa M. Oliart-Ros
- Food Research and Development Unit (UNIDA), Tecnológico Nacional de México/IT Veracruz, Veracruz, México
| | - José L. Chávez-Servia
- Interdisciplinary Research Center for Integrated Regional Development, Oaxaca Unit, National Polytechnic Institute, Oaxaca, México
| | | | | | - Marian Cruz-Burgos
- Oncogenomics Laboratory, National Institute of Genomic Medicine, CDMX, México
| | | |
Collapse
|
175
|
Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease. Antioxidants (Basel) 2019; 8:antiox8090333. [PMID: 31443476 PMCID: PMC6770078 DOI: 10.3390/antiox8090333] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are characterized by the death of neurons within specific regions of the brain or spinal cord. While the etiology of many neurodegenerative diseases remains elusive, several factors are thought to contribute to the neurodegenerative process, such as oxidative and nitrosative stress, excitotoxicity, endoplasmic reticulum stress, protein aggregation, and neuroinflammation. These processes culminate in the death of vulnerable neuronal populations, which manifests symptomatically as cognitive and/or motor impairments. Until recently, most treatments for these disorders have targeted single aspects of disease pathology; however, this strategy has proved largely ineffective, and focus has now turned towards therapeutics which target multiple aspects underlying neurodegeneration. Anthocyanins are unique flavonoid compounds that have been shown to modulate several of the factors contributing to neuronal death, and interest in their use as therapeutics for neurodegeneration has grown in recent years. Additionally, due to observations that the bioavailability of anthocyanins is low relative to that of their metabolites, it has been proposed that anthocyanin metabolites may play a significant part in mediating the beneficial effects of an anthocyanin-rich diet. Thus, in this review, we will explore the evidence evaluating the neuroprotective and therapeutic potential of anthocyanins and their common metabolites for treating neurodegenerative diseases.
Collapse
|
176
|
Lin Z, Zhang L, Zhou J, Zheng J. Silencing Smad4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial‑mesenchymal transition. Mol Med Rep 2019; 20:3735-3745. [PMID: 31485652 PMCID: PMC6755154 DOI: 10.3892/mmr.2019.10597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Abstract
The aberrant expression of tumor suppressor Smad4 often occurs in colorectal cancer (CRC), and this phenomenon is believed to be associated with drug resistance. The present study aimed to investigate the effects of Smad4 on the sensitivity of CRC cells to cetuximab, and the possible mechanism underlying such an effect. A total of 629 colorectal adenocarcinoma cases were downloaded from The Cancer Genome Atlas (TCGA) database, and a Smad4 mutation rate of ~21% was demonstrated among the cases. Low expression of Smad4 was present in CRC tissues analyzed by TCGA and in four CRC cell lines, as determined by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Cell Counting kit‑8 (CCK‑8) was used to measure the effects of different concentrations of cetuximab on SW480 cell viability at 24 and 48 h. The results demonstrated that treatment of SW480 cells with 20 µg/ml cetuximab for 48 h markedly reduced cell viability. In addition, plasmids were transfected into SW480 cells to induce Smad4 silencing or overexpression. Silencing Smad4 attenuated the sensitivity of SW480 CRC cells to cetuximab; this effect was reflected in increased cell viability and slightly increased migration and invasion, as determined by CCK‑8, wound scratch and Transwell analyses. RT‑qPCR and western blotting was performed to assess the expression levels of apoptosis‑ and epithelial‑mesenchymal transition (EMT)‑related genes. Silencing Smad4 partly reversed the effects of cetuximab on the mRNA and protein expression levels of vimentin, Bax/Bcl‑2 and E‑cadherin. However, Smad4 overexpression enhanced SW480 cell sensitivity to cetuximab. In conclusion, Smad4 may serve a vital role in the sensitivity of CRC cells to chemotherapeutic drugs by promoting EMT.
Collapse
Affiliation(s)
- Zhenlv Lin
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lin Zhang
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Junfeng Zhou
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jiantao Zheng
- Department of Surgical Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
177
|
Eskra JN, Dodge A, Schlicht MJ, Bosland MC. Effects of Black Raspberries and Their Constituents on Rat Prostate Carcinogenesis and Human Prostate Cancer Cell Growth In Vitro. Nutr Cancer 2019; 72:672-685. [PMID: 31402717 DOI: 10.1080/01635581.2019.1650943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Prostate cancer patients often use dietary supplements, such as black raspberries, which are a rich source of compounds with antioxidant and anticancer activity, particularly on gastrointestinal cancers. Feeding black raspberries inhibited mammary cancer induction in rats and growth of cancer cells in nude mice, indicating systemic bioavailability of bioactive compounds. We tested whether feeding black raspberries and its constituents would inhibit prostate cancer development. However, we did not find preventive effects in two rat prostate carcinogenesis models, even though the berry anthocyanin metabolite protocatechuic acid was detectable in their prostates. Black raspberry extract, the anthocyanin cyanidin-3-rutinoside and protocatechuic acid did not inhibit prostate cancer cell growth in vitro, but ellagic acid and its urolithin A metabolite did at high concentrations. Prostate cancer cell migration was not affected by these agents nor was growth in soft agar, except that ellagic acid reduced colony formation at physiological concentrations and protocatechuic acid at high concentrations. Low bioavailability of bioactive berry compounds and metabolites may limit exposure of tissues such as the prostate, since we found that cyanidin-3-rutinoside was not bioavailable to prostate cancer cells, but its aglycone cyanidin was and inhibited their growth. Thus, black raspberries are unlikely to prevent prostate cancer.
Collapse
Affiliation(s)
- Jillian N Eskra
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Alaina Dodge
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael J Schlicht
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
178
|
Mazewski C, Kim MS, Gonzalez de Mejia E. Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico. Sci Rep 2019; 9:11560. [PMID: 31399602 PMCID: PMC6689002 DOI: 10.1038/s41598-019-47903-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
The objective was to assess anti-progression and stimulatory immune response effects among anthocyanins (ANC) and their metabolites on human colorectal cancer cells in vitro and in silico. Pure phenolics including delphinidin-3-O-glucoside (D3G) and its metabolites, delphinidin (DC) and gallic acid (GA), were tested alone or in combination, on HCT-116 and HT-29 human colorectal cancer cells (100-600 µg/mL). HCT-116 and HT-29 50% inhibition concentrations (µg/mL) were 396 ± 23 and 329 ± 17 for D3G; 242 ± 16 and >600 for DC; and 154 ± 5 and 81 ± 5 for GA, respectively. Using molecular docking, cyanidin-3-O-glucoside (C3G) showed the highest potential to inhibit immune checkpoints: programmed cell death protein-1 (PD-1) (-6.8 kcal/mol) and programmed death-ligand-1 (PD-L1) (-9.6 kcal/mol). C3G, D3G, DC, GA, and D3G-rich extracts decreased PD-L1 protein expression in HCT-116 cells. C3G decreased PD-L1 fluorescence intensity by 39%. ANC decreased PD-1 expression in peripheral blood mononuclear cells in monoculture by 41% and 55%, and co-culture with HCT-116 and HT-29 cells by 39% and 26% (C3G) and 50% and 51% (D3G), respectively. D3G and C3G, abundant in plant foods, showed potential for binding with and inhibiting immune checkpoints, PD-1 and PD-L1, which can activate immune response in the tumor microenvironment and induce cancer cell death.
Collapse
Affiliation(s)
- Candice Mazewski
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, USA
| | - Morgan Sanha Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, USA
| | | |
Collapse
|
179
|
Giuffrè AM, Louadj L, Rizzo P, De Salvo E, Sicari V. The Influence of Film and Storage on the Phenolic and Antioxidant Properties of Red Raspberries ( Rubus idaeus L.) cv. Erika. Antioxidants (Basel) 2019; 8:E254. [PMID: 31366095 PMCID: PMC6719043 DOI: 10.3390/antiox8080254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
In this paper, the effect of the packaging material and storage method on red raspberries produced at Reggio Calabria (Italy) was studied. For this purpose, the fruits were stored immediately after harvest in different conditions: in the fridge at 1 °C and in the freezer at -20 °C, using different packaging materials, two new patented films (nanoactive A) and (nanoactive B), one common packaging film (polyethylene terephthalate), and other fruits were left without any packaging material. Chemical parameters were analysed at harvest to have the initial characteristics without any conditioned storage and to distinguish the post-harvest effect on the fruits, then daily for storage in the fridge and monthly for storage in the freezer. The aims of our project were first to determine the qualitative characterization of these red raspberries, the optimization of their shelf-life during time in the fridge or freezer, using the different types of packaging materials and finally to highlight the usefulness of the new patented packaging materials. Nanoactive A film showed the best shelf-life in the fridge, and after 14 days the values, given as mg/100 g fresh weight, were: total phenolics (166.70), monomeric anthocyanin content (50.82), flavonoids (24.64), ascorbic acid (32.42), and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay (95.93).
Collapse
Affiliation(s)
- Angelo Maria Giuffrè
- Dipartimento AGRARIA-Università degli Studi "Mediterranea" di Reggio Calabria, Contrada Melissari, 89124 Reggio Calabria, Italy.
| | - Lamia Louadj
- Dipartimento AGRARIA-Università degli Studi "Mediterranea" di Reggio Calabria, Contrada Melissari, 89124 Reggio Calabria, Italy
| | - Paola Rizzo
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Emanuela De Salvo
- Dipartimento AGRARIA-Università degli Studi "Mediterranea" di Reggio Calabria, Contrada Melissari, 89124 Reggio Calabria, Italy
| | - Vincenzo Sicari
- Dipartimento AGRARIA-Università degli Studi "Mediterranea" di Reggio Calabria, Contrada Melissari, 89124 Reggio Calabria, Italy
| |
Collapse
|
180
|
Rajan VK, Ragi C, Muraleedharan K. A computational exploration into the structure, antioxidant capacity, toxicity and drug-like activity of the anthocyanidin "Petunidin". Heliyon 2019; 5:e02115. [PMID: 32346622 PMCID: PMC7181340 DOI: 10.1016/j.heliyon.2019.e02115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/05/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022] Open
Abstract
A computational investigation on the structure and antioxidant property of a natural food colorant Petunidin (PT) was performed under DFT/B3LYP/6-31+ G (d, p). PT has a drug score of +0.804 which indicates its drug-like nature. The antioxidant property of PT was well explained by HAT mechanism and it has been found that the electron releasing substituents decreases the BDE value. PT has lowest BDE value at C3 position and is confirmed by the lowest pKa value, high atomic charge and lowest bond order. PT easily donates the hydrogen atom and exists in the deprotonated form in blood as the pKa value at C3 is less than the pH value of blood. PT shows no violation to Lipinski's rule of 5 indicating its nature as an orally admissible drug. More over PT has considerable bioactivity against nuclear receptor ligand while it shows only moderate activity towards GPCR and ion channel modulator. Also it shows moderate activity as an enzyme inhibitor and protease inhibitor but shows considerable activity as a kinase inhibitor. PT is non toxic in nature and all these factors favor its use as a potential antioxidant and a drug.
Collapse
Affiliation(s)
- Vijisha K. Rajan
- Department of Chemistry, University of Calicut, Malappuram, 673635, India
| | - C. Ragi
- Department of Chemistry, University of Calicut, Malappuram, 673635, India
| | - K. Muraleedharan
- Department of Chemistry, University of Calicut, Malappuram, 673635, India
| |
Collapse
|
181
|
Su X, Griffin J, Xu J, Ouyang P, Zhao Z, Wang W. Identification and quantification of anthocyanins in purple-fleshed sweet potato leaves. Heliyon 2019; 5:e01964. [PMID: 31338456 PMCID: PMC6626274 DOI: 10.1016/j.heliyon.2019.e01964] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/23/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023] Open
Abstract
As phytochemical-enriched edible greens, sweet potato (Ipomoea batatas L.) leaves have become popular. However, the profile and content of phytochemicals in sweet potato leaves are mostly unknown. We previously bred a purple-fleshed sweet potato P40 that demonstrated cancer prevention due to high levels of anthocyanins in the tuberous roots. The objectives of this study were to identify and quantify anthocyanins in P40 leaves when compared with the white-fleshed Bonita and orange-fleshed Beauregard. The mature leaves of P40 at 6-week vine stage were collected and extracted for anthocyanin analysis by HPLC-MS/MS. Fourteen anthocyanins, including a novel anthocyanin (peonidin 3-caffeoyl-p-coumaryl sophoroside-5-glucoside), were identified and quantitated. The contents of anthocyanins in P40 leaves (32.7 ± 2.9 mg/kg DW) were much lower than that in the root (13,100 ± 70 mg/kg DW). Furthermore, anthocyanin contents in P40 leaves were even lesser than those of the orange-fleshed Beauregard (334 ± 60.9 mg/kg DW) and white-fleshed Bonita (563 ± 50.4 mg/kg DW). Total phenolic contents as measured by Folin-Ciocalteu were 36.8 ± 4.8 mg GAE/g DW in the leaves of P40, but 41.2 ± 5.0 mg GAE/g DW in Beauregard and 46.7 ± 2.1 mg GAE/g DW in Bonita. No anthocyanin was detectable in the stem of these three sweet potato varieties. Taken together, this study reports for the first time the profile and content of anthocyanins in the leaves of three sweet potato varieties with a new anthocyanin identified. The unexpected lower levels of anthocyanins in the purple-fleshed sweet potato leaves when compared with either the counterpart tuberous roots or the control white-fleshed and orange-fleshed sweet potato varieties advanced our existing knowledge and also validated a diverse phenotype of anthocyanin biosynthesis between sweet potato leaves and roots.
Collapse
Affiliation(s)
- Xiaoyu Su
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, KS, 66506, USA
| | - Jason Griffin
- Department of Horticulture & Natural Resources, Kansas State University, Manhattan, KS, 66506, USA
| | - Jingwen Xu
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, KS, 66506, USA
| | - Ping Ouyang
- Department of Family and Consumer Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Zhihui Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Weiqun Wang
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
182
|
Yang D, Wang X, Yuan W, Chen Z. Intake of Anthocyanins and Gastric Cancer Risk: A Comprehensive Meta-Analysis on Cohort and Case-Control Studies. J Nutr Sci Vitaminol (Tokyo) 2019; 65:72-81. [PMID: 30814415 DOI: 10.3177/jnsv.65.72] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This meta-analysis aimed to explore the association between anthocyanins intake and the risk of gastric cancer. All the relative articles have been searched in the online databases, including PubMed, EMBASE, Web of Science, and the Cochrane Library until June 11th, 2018. Risk ratios (RRs) or odds ratio (ORs) and their 95% confidence intervals were calculated and pooled through the STATA 12.0. A total of 6 studies were finally selected in the meta-analysis. No significant association was found between total anthocyanins consumption and gastric cancer risk (RR=0.92, 95%CI: 0.81-1.04). Likewise, there was also no significant evidence of the relationship between anthocyanins intake and gastric cancer in tumor site (cardia: RR=0.90, 95%CI: 0.62-1.31; noncardia: RR=0.86, 95%CI: 0.69-1.07) and gender (men: RR=1.02, 95%CI: 0.73-1.40; women: RR=0.80, 95%CI: 0.52-1.23). The dose-response relationship was also not found in this meta-analysis. The Grades of Recommendations Assessment, Development and Evaluation (GRADE) quality in our study was very low. The results of our meta-analysis suggested the intake of anthocyanins had no association with the risk of gastric cancer and further studies are needed.
Collapse
Affiliation(s)
- DeYi Yang
- Department of General Surgery, Xiangya Hospital, Central South University
| | - Xin Wang
- Department of General Surgery, Shijitan Hospital of Capital Medical University
| | - WeiJie Yuan
- Department of General Surgery, Xiangya Hospital, Central South University
| | - ZiHua Chen
- Department of General Surgery, Xiangya Hospital, Central South University
| |
Collapse
|
183
|
Medic N, Tramer F, Passamonti S. Anthocyanins in Colorectal Cancer Prevention. A Systematic Review of the Literature in Search of Molecular Oncotargets. Front Pharmacol 2019; 10:675. [PMID: 31281255 PMCID: PMC6597886 DOI: 10.3389/fphar.2019.00675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer (CRC) is the malignant process that surges in the terminal part of gastrointestinal tract when adenomatous polyps convert to neoplastic cells able to infiltrate the submucosa. Despite the constant progress in applying preventive measures (screening, colonoscopy) and developing new cures (surgical and chemotherapy), CRC is still one of the leading causes of cancer death worldwide. The importance of natural dietary components in CRC prevention has been recognized. Defining the precise role of the diet and its particular molecular moieties in CRC prevention is of constant scientific interest years behind. Anthocyanins (AC), phenolic phytochemicals present in pigmented plants and vegetables, have been reported to have some role in counteracting CRC carcinogenesis. Nonetheless, evidence coming out the pre-clinical, clinical, and epidemiological studies is still controversial. This review is addressing the need to better comprehend the causes of missing data and discrepancies in investigations on the role of dietary AC in modulating CRC carcinogenesis. Methods: We have analyzed the scientific literature, available in PubMed database, according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement methodology for systematic reviews. Subsequently, two selection strategies, with their screening and eligibility criteria, were applied to retain research articles reporting in vitro and in vivo studies aimed at exploring the molecular mechanisms underlying the observed effects of AC in CRC prevention. Results: From the pool of 82 identified publications, we selected 19 articles reporting experimental or observational data on the effect of AC-enriched diets in CRC prevention in humans or murine species. Furthermore, we selected 10 articles reporting about molecular mechanisms of action of pure AC in CRC experimental models. Conclusions: The major outcome of this review is that AC showed essentially no effect in human studies, whereas AC-enriched diets proved to be effective in experimental murine models of CRC. In cell culture tests, AC showed to interfere with cell signaling pathways related to cell growth and differentiation, apoptosis, oxygen stress, and inflammation response. Further molecular characterizations are required to include AC in the panel of disease-modifying agents.
Collapse
|
184
|
Li S, Li W, Wang C, Wu R, Yin R, Kuo HC, Wang L, Kong AN. Pelargonidin reduces the TPA induced transformation of mouse epidermal cells -potential involvement of Nrf2 promoter demethylation. Chem Biol Interact 2019; 309:108701. [PMID: 31181187 DOI: 10.1016/j.cbi.2019.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
Pelargonidin, a well-known natural anthocyanidin found in berries strawberries, blueberries, red radishes and other natural foods, has been found to possess health beneficial effects including anti-cancer effect. Herein, we investigated the effect of pelargonidin on cellular transformation in mouse skin epidermal JB6 (JB6 P+) cells induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Pelargonidin treatment significantly decreased colony formation and suppressed cell viability of JB6 P+ cells. Pelargonidin also induced the anti-oxidant response element (ARE)-luciferase activation in HepG2-C8 cells overexpressing the ARE-luciferase reporter. Knockdown of nuclear factor E2-related factor 2 (Nrf2) in shNrf2 JB6 P+ cells enhanced TPA-induced colony formation and attenuated pelargonidin's blocking effect. Pelargonidin reduced the protein levels of genes encoding methyltransferases (DNMTs) and histone deacetylases (HDACs). Importantly, pelargonidin decreased the DNA methylation in the Nrf2 promoter region of JB6 P+ cells and increased Nrf2 downstream target genes expression, such as NAD(P)H/quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), involved in cellular protection. In summary, our results showed that pelargonidin blocks TPA-induced cell transformation. The possible molecular mechanisms of its potential anti-cancer effects against neoplastic transformation may be attributed to its activation of Nrf2-ARE signaling pathway and its cytoprotective effect.
Collapse
Affiliation(s)
- Shanyi Li
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Wenji Li
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Chao Wang
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ran Yin
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Hsiao-Chen Kuo
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Lujing Wang
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA.
| |
Collapse
|
185
|
Li X, Zhang ZS, Zhang XH, Yang SN, Liu D, Diao CR, Wang H, Zheng FP. Cyanidin inhibits EMT induced by oxaliplatin via targeting the PDK1-PI3K/Akt signaling pathway. Food Funct 2019; 10:592-601. [PMID: 30672917 DOI: 10.1039/c8fo01611a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anthocyanins have been shown to exhibit antitumor activity in several cancers in vitro and in vivo. Oxaliplatin is widely used as an anti-cancer drug. However, a large proportion of patients receiving platinum-based anti-cancer drug treatments will relapse because of metastasis and drug resistance. The aim of this study is to discover an effective anthocyanin that possesses the combinational anti-metastatic effects of oxaliplatin. Our results showed that cyanidin, one of the main constituents of anthocyanins, widely found in black rice, black bean, Hawthorn and other foods, could reverse drug resistance and enhance the effects of oxaliplatin on hepatic cellular cancer (HCC). Cyanidin inhibited migration and reversed EMT biomarker changes induced by low dose OXA. Moreover, 3-phosphoinositide-dependent protein kinase 1 (PDK1) can be considered a potential target and cyanidin significantly increased OXA sensitivity and inhibited the EMT induced by OXA via PI3K/Akt signaling in HCC.
Collapse
Affiliation(s)
- Xiang Li
- School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224051, China.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Liu W, Wang Y, Sun J, Jiang H, Xu H, Wang N, Jiang S, Fang H, Zhang Z, Wang YL, Chen X. MdMYBDL1 employed by MdHY5 increases anthocyanin accumulation via repression of MdMYB16/308 in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:32-40. [PMID: 31128702 DOI: 10.1016/j.plantsci.2019.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/25/2023]
Abstract
Light is an important environmental factor affecting plant growth and development. Additionally, HY5 is a central factor that coordinates light signal transduction and regulates the expression of flower color-related genes. However, there are few reports describing the co-regulation of apple fruit coloration by MdHY5 and MYB transcription factors. In this study, we detected a light-inducible gene, MdMYBDL1, which encodes a MYB-like domain and is homologous to AtMYBD in Arabidopsis thaliana. Moreover, we observed that MdHY5 binds to the G-box element of the MdMYBDL1 promoter to upregulate expression. The overexpression of MdMYBDL1 enhanced anthocyanin accumulation in apple calli and inhibited the expression of MdMYB16 and its homolog, MdMYB308. Furthermore, MdMYB16 can form a dimer with MdMYB308 and functions as a negative regulator of anthocyanin biosynthesis. Interestingly, MdMYB16 and MdMYB308 promoter activities were inhibited by MdMYBDL1 and MdHY5. These findings imply that MdHY5 responds to light signals and functions upstream of different types of MYB transcription factors, ultimately regulating anthocyanin accumulation in apples.
Collapse
Affiliation(s)
- Wenjun Liu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yicheng Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Jingjing Sun
- College of Forestry, Shandong Agricultural University, Tai-An, 271018 Shandong, China
| | - Huiyan Jiang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Haifeng Xu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Nan Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Shenghui Jiang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Hongcheng Fang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Zongying Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yan-Ling Wang
- College of Forestry, Shandong Agricultural University, Tai-An, 271018 Shandong, China.
| | - Xuesen Chen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
187
|
Protective Effects of Micro-Emulsion of Sour Cherry (Prunus cerasus L.) Kernel Extract on Methimazole-Induced Nephrotoxicity in Mice. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.58994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
188
|
Li Q, Singh V, de Mejia EG, Somavat P. Effect of sulfur dioxide and lactic acid in steeping water on the extraction of anthocyanins and bioactives from purple corn pericarp. Cereal Chem 2019. [DOI: 10.1002/cche.10157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qian Li
- Department of Food Science and Human Nutrition University of Illinois at Urbana‐Champaign Urbana Illinois
| | - Vijay Singh
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition University of Illinois at Urbana‐Champaign Urbana Illinois
| | - Pavel Somavat
- School of Earth, Environmental and Marine Sciences University of Texas at Rio Grande Valley Edinburg Texas
| |
Collapse
|
189
|
Xue J, Su F, Meng Y, Guo Y. Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3381-3390. [PMID: 30584804 DOI: 10.1002/jsfa.9555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Red-fleshed apples are a great source of natural colorants and functional food ingredients because of their high anthocyanin content. Generally, anthocyanins are highly unstable after extraction, which limits their wide applications in the food and pharmaceutical industries. This study was aimed at investigating the effects of combining copigmentation with encapsulation on the stability of anthocyanins from red-fleshed apples. In this study, red-fleshed apple anthocyanins were copigmented with caffeic acid, and then the copigmented complexes were encapsulated using gum arabic and maltodextrin using spray drying and freeze drying. RESULTS All anthocyanin microcapsules had high encapsulation efficiencies ranging from 93.84 to 96.85% with mean hydrodynamic diameter smaller than 350 nm. After heating at 80 °C for 2 h, the dispersions of microencapsulated anthocyanins with copigments exhibited the highest absorbance values at λmax (515 nm) (P < 0.05). Light stability experiments demonstrated that the half-life of the red-fleshed apple anthocyanins increased from 5 to 12 days after being treated with copigmentation and encapsulation. The drying methods (spray/freeze drying) did not significantly influence the stability of the microencapsulated anthocyanins. CONCLUSIONS Applying copigmentation and spray-drying encapsulation in tandem has great potential for enhancing the stability of red-fleshed apple anthocyanins. Thus, such anthocyanins with enhanced stability may be increasingly used in the food and pharmaceutical industries as value-added natural food pigments. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Xue
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, PR China
| | - Fan Su
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Yonghong Meng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
| |
Collapse
|
190
|
Zong Y, Zhu X, Liu Z, Xi X, Li G, Cao D, Wei L, Li J, Liu B. Functional MYB transcription factor encoding gene AN2 is associated with anthocyanin biosynthesis in Lycium ruthenicum Murray. BMC PLANT BIOLOGY 2019; 19:169. [PMID: 31035916 PMCID: PMC6489258 DOI: 10.1186/s12870-019-1752-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/31/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lycium ruthenicum Murray is an important economic plant in China and contains higher levels of anthocyanins in its fruits than other Lyciums. However, the genetic mechanism of anthocyanin production in this plant is unknown. RESULTS Based on previous transcriptome analysis, LrAN2 and LbAN2, encoding MYB transcription factors, were isolated from L. ruthenicum and L. barbarum, respectively. Both genes contained two introns, encoded 257 amino acids with two-Aa difference, and carried the unabridged HTH-MYB, MYB-like DNA-binding, and SANT domains. In the phylogenetic trees, LrAN2 and LbAN2 were found to be closely related to NtAN2, which regulates anthocyanin biosynthesis in tobacco. Overexpression of LrAN2 and LbAN2 induced anthocyanin biosynthesis in all tissues of tobacco. The anthocyanin content in the leaves of transgenic lines with LbAN2 was lower than LrAN2. It indicated that the function of LbAN2 was weaker than LrAN2. The AN2 transcript could be detected only in the fruits of L. ruthenicum and increased during fruit development, accompanied by anthocyanin accumulation. In natural population, the alleles LrAN2 and LrAN2 were associated strictly with L. ruthenicum and L. barbarum, respectively. Moreover, an AN2 genetic diversity study suggested that Lyciums with yellow, white, purple, and jujube red fruits were derived from L. ruthenicum. CONCLUSIONS Two AN2 alleles, from L. ruthenicum and L. barbarum, were functional MYB transcriptor regulating anthocyanin biosynthesis. The functional diversity and high expression level of LrAN2 could be the reason for high anthocyanin content in the fruit of L. ruthenicum. Lyciums with yellow, white, purple, and jujube red fruits were derived from L. ruthenicum based on AN2 sequence diversity. The results may be advantageous in identifying new varieties and breeding new cultivars.
Collapse
Affiliation(s)
- Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, 810008 China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, Xining, 800010 China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, 810008 China
| | - Xuebing Zhu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, 810008 China
| | - Zenggen Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, 810008 China
| | - Xinyuan Xi
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, 810008 China
| | - Guomin Li
- College of Biologic and Geographic Sciences, Qinghai Normal University, Qinghai, Xining, 810008 China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, 810008 China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, Xining, 800010 China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, 810008 China
| | - Le Wei
- College of Biologic and Geographic Sciences, Qinghai Normal University, Qinghai, Xining, 810008 China
| | - Jianming Li
- College of Biologic and Geographic Sciences, Qinghai Normal University, Qinghai, Xining, 810008 China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, 810008 China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, 810008 China
| |
Collapse
|
191
|
Gonçalves AC, Bento C, Silva B, Simões M, Silva LR. Nutrients, Bioactive Compounds and Bioactivity: The Health Benefits of Sweet Cherries (Prunus avium L.). CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401313666170925154707] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Sweet cherries are one of the most appreciated fruits worldwide as well as
one of the great sources of several active substances, as phytochemical compounds (carotenoids, serotonin,
melatonin and phenolic compounds) as well as in nutritive compounds (sugars and organic acids).
Accumulating research demonstrate that their supplementation in our daily diet can contradict oxidative
stress, mitigating or even attenuating chronic diseases, as cancerous processes, antiinflammatory-
related disorders, diabetes, and neurological and cardiovascular pathologies. Therefore,
the aims of this review are to present an overview on the effects of sweet cherries as health promotors,
giving emphasis to the health benefits of their bioactive compounds, particularly their antimicrobial,
antioxidant, antidiabetic, anticancer, anti-neurodegeneration, anti-inflammatory and cardiovascular effects.
Methods:
Research and online content about sweet cherry fruits is reviewed. The information available
has been read several times to avoid inconsistencies. In addition, according what we read, original
figures were done and added to facilitate understanding and to enrich the paper.
Results:
In this review, a total of 202 original reports were used. In respect to health benefits, it is possible
to confirm by several studies that, in fact, the consumption of sweet cherries has positive impacts
in human health, owing to their wealthy and vast constitution, particularly in phenolic compounds,
vitamins and carotenoids whose health properties were already documented.
Conclusion:
The findings of this review support the evidence that sweet cherries can be applied in
pharmaceutical and food formulations, since they are able to diminish free radical species and proinflammatory
markers, preventing and/ or ameliorating oxidative-stress disorders.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilha, Portugal
| | - Catarina Bento
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilha, Portugal
| | - Branca Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilha, Portugal
| | - Manuel Simões
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Luís R. Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilha, Portugal
| |
Collapse
|
192
|
Zhang JR, Trossat-Magnin C, Bathany K, Delrot S, Chaudière J. Oxidative Transformation of Leucocyanidin by Anthocyanidin Synthase from Vitis vinifera Leads Only to Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3595-3604. [PMID: 30865451 DOI: 10.1021/acs.jafc.8b06968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anthocyanidin synthase from Vitis vinifera ( VvANS) catalyzes the in vitro transformation of the natural isomer of leucocyanidin, 2 R,3 S,4 S- cis-leucocyanidin, into 2 R,4 S-flavan-3,3,4-triol ([M + H]+, m/ z 323) and quercetin. The C3-hydroxylation product 2 R,4 S-flavan-3,3,4-triol is first produced and its C3,C4-dehydration product is in tautomeric equilibrium with (+)-dihydroquercetin. The latter undergoes a second VvANS-catalyzed C3-hydroxylation leading to a 4-keto-2 R-flavan-3,3-gem-diol which upon dehydration gives quercetin. The unnatural isomer of leucocyanidin, 2 R,3 S,4 R- trans-leucocyanidin, is similarly transformed into quercetin upon C3,C4-dehydration, but unlike 3,4- cis-leucocyanidin, it also undergoes some C2,C3-dehydration followed by an acid-catalyzed hydroxyl group extrusion at C4 to give traces of cyanidin. Overall, the C3,C4- trans isomer of leucocyanidin is transformed into 2 R,4 R-flavan-3,3,4-triol (M + 1, m/ z 323), (+)-DHQ, (-)-epiDHQ, quercetin, and traces of cyanidin. Our data bring the first direct observation of 3,4- cis-leucocyanidin- and 3,4- trans-leucocyanidin-derived 3,3-gem-diols, supporting the idea that the generic function of ANS is to catalyze the C3-hydroxylation of its substrates. No cyanidin is produced with the natural cis isomer of leucocyanidin, and only traces with the unnatural trans isomer, which suggests that anthocyanidin synthase requires other substrate(s) for the in vivo formation of anthocyanidins.
Collapse
Affiliation(s)
- Jia-Rong Zhang
- Chimie et Biologie des Membranes et des Nano-objets (CBMN, UMR 5248) , Université de Bordeaux , 33615 Pessac , France
| | - Claudine Trossat-Magnin
- Institut des Sciences de la Vigne et du Vin (ISVV, UMR 1287) , Université de Bordeaux , 33140 Villenave d'Ornon , France
| | - Katell Bathany
- Chimie et Biologie des Membranes et des Nano-objets (CBMN, UMR 5248) , Université de Bordeaux , 33615 Pessac , France
| | - Serge Delrot
- Institut des Sciences de la Vigne et du Vin (ISVV, UMR 1287) , Université de Bordeaux , 33140 Villenave d'Ornon , France
| | - Jean Chaudière
- Chimie et Biologie des Membranes et des Nano-objets (CBMN, UMR 5248) , Université de Bordeaux , 33615 Pessac , France
| |
Collapse
|
193
|
Yan C, An G, Zhu T, Zhang W, Zhang L, Peng L, Chen J, Kuang H. Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:895-906. [PMID: 30467611 DOI: 10.1007/s00122-018-3245-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/17/2018] [Indexed: 05/14/2023]
Abstract
Transposon insertion and point mutation independently activated the BoMYB2 gene in three purple cultivars of Brassica oleracea including kale, kohlrabi, and cabbage. Several varieties of B. oleracea have both green and purple cultivars. In this study, the causal genes for the purple traits in kale, kohlrabi and cabbage were cloned using map-based cloning approach. The purple traits in all three varieties were mapped to the same locus as the BoMYB2 gene in cauliflower. Surprisingly, the insertion of Harbinger transposon of BoMYB2 in cauliflower was not found in purple kale, kohlrabi and cabbage. Sequencing of the BoMYB2 gene in purple kale and purple kohlrabi discovered a 7606 bp CACTA-like transposon in its promoter region. Transient assay and promoter activity study showed that the insertion upregulated the expression of the BoMYB2 gene. On the other hand, the activation of the BoMYB2 gene in purple cabbage was caused by point mutation and/or 1-bp insertion in its promoter region. Sequence analysis of the BoMYB2 gene in different varieties suggested that the activating events most likely occurred independently after the divergence of cabbage, cauliflower, and kale/kohlrabi. Our results not only contribute to a better understanding of anthocyanin inheritance in B. oleracea, but also provide useful information for future hybrid breeding of purple cultivars through combination of different functional alleles of the BoMYB2 gene.
Collapse
Affiliation(s)
- Chenghuan Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guanghui An
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ting Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liying Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
194
|
Huang Y, Zhou W. Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion. Food Chem 2019; 278:357-363. [DOI: 10.1016/j.foodchem.2018.11.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/20/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
|
195
|
Blando F, Oomah BD. Sweet and sour cherries: Origin, distribution, nutritional composition and health benefits. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
196
|
The Flavonoid Metabolite 2,4,6-Trihydroxybenzoic Acid Is a CDK Inhibitor and an Anti-Proliferative Agent: A Potential Role in Cancer Prevention. Cancers (Basel) 2019; 11:cancers11030427. [PMID: 30917530 PMCID: PMC6468648 DOI: 10.3390/cancers11030427] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
Flavonoids have emerged as promising compounds capable of preventing colorectal cancer (CRC) due to their anti-oxidant and anti-inflammatory properties. It is hypothesized that the metabolites of flavonoids are primarily responsible for the observed anti-cancer effects owing to the unstable nature of the parent compounds and their degradation by colonic microflora. In this study, we investigated the ability of one metabolite, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) to inhibit Cyclin Dependent Kinase (CDK) activity and cancer cell proliferation. Using in vitro kinase assays, we demonstrated that 2,4,6-THBA dose-dependently inhibited CDKs 1, 2 and 4 and in silico studies identified key amino acids involved in these interactions. Interestingly, no significant CDK inhibition was observed with the structurally related compounds 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) and phloroglucinol, suggesting that orientation of the functional groups and specific amino acid interactions may play a role in inhibition. We showed that cellular uptake of 2,4,6-THBA required the expression of functional SLC5A8, a monocarboxylic acid transporter. Consistent with this, in cells expressing functional SLC5A8, 2,4,6-THBA induced CDK inhibitory proteins p21Cip1 and p27Kip1 and inhibited cell proliferation. These findings, for the first time, suggest that the flavonoid metabolite 2,4,6-THBA may mediate its effects through a CDK- and SLC5A8-dependent pathway contributing to the prevention of CRC.
Collapse
|
197
|
Vishnu VR, Renjith RS, Mukherjee A, Anil SR, Sreekumar J, Jyothi AN. Comparative Study on the Chemical Structure and In Vitro Antiproliferative Activity of Anthocyanins in Purple Root Tubers and Leaves of Sweet Potato ( Ipomoea batatas). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2467-2475. [PMID: 30741542 DOI: 10.1021/acs.jafc.8b05473] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The structure and in vitro antiproliferative activity of anthocyanins in the root tubers of a sweet potato variety cv. Bhu Krishna and the purple leaves of a promising accession S-1467 were studied with the objectives of understanding the structure-activity relationship and comparing the leaf and tuber anthocyanins. The chemical structure of anthocyanins was determined by high-resolution electrospray ionization mass spectrometry analysis. A fluorescence-resonance-energy-transfer-based caspase sensor probe had been used to study the antiproliferative property, and analysis of the cell cycle was performed after staining with propidium iodide and subsequent fluorescence-activated cell sorting. Structurally, the anthocyanins in root tubers were identical to those in leaves, but there was a difference in the proportion of various aglycones present in both. This has led to distinguishable differences in the antiproliferative activity of leaf and tuber anthocyanins to various cancer cells. All nine anthocyanins were found in acylated forms in both tubers and leaves. However, peonidin derivatives were major anthocyanins in tubers (33.98 ± 1.41 mg) as well as leaves (27.68 ± 1.07 mg). The cyanidin derivatives were comparatively higher in leaves (20.55 ± 0.91 mg) than tubers (9.44 ± 0.94 mg). The tuber and leaf anthocyanins exhibited potential antiproliferative properties to MCF-7, HCT-116, and HeLa cancer cells, and the structure of anthocyanins had a critical role in it. The leaf anthocyanins exhibited significantly higher activity against colon and cervical cancer cells, whereas tuber anthocyanins had a slightly greater effect against breast cancer cells.
Collapse
|
198
|
Effect of porous structure and spreading pressure on the storage stability of red onion microcapsules produced by spray freezing into liquid cryogenic and spray drying. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
199
|
Manivannan A, Kim JH, Kim DS, Lee ES, Lee HE. Deciphering the Nutraceutical Potential of Raphanus sativus-A Comprehensive Overview. Nutrients 2019; 11:E402. [PMID: 30769862 PMCID: PMC6412475 DOI: 10.3390/nu11020402] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Raphanus sativus (Radish) belongs to the Brassicaceae family and is a widely consumed root vegetable all around the world. The nutritional and medicinal values of radishes have been proven by several researches. Extracts prepared from the aerial and underground parts of radishes have been used in the treatment of stomach disorders, urinary infections, hepatic inflammation, cardiac disorders and ulcers in folk medicine since the ancient times. The pharmaceutical potential of radishes is attributed to the presence of its beneficial secondary metabolites, such as glucosinolates, polyphenols and isothiocyanates. The present review has focused on the impact of radish extract administration under pathological complications, such as cancer, diabetes, hepatic inflammation and oxidative stress. In addition, a comprehensive view of molecular mechanism behind the regulation of molecular drug targets associated with different types of cancers and diabetes by the bioactive compounds present in the radish extracts have been discussed in detail.
Collapse
Affiliation(s)
- Abinaya Manivannan
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| | - Jin-Hee Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| | - Eun-Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| | - Hye-Eun Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea.
| |
Collapse
|
200
|
Determination of the polyphenolic fraction of Pistacia vera L. kernel extracts by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry detection. Anal Bioanal Chem 2019; 411:4819-4829. [DOI: 10.1007/s00216-019-01649-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
|