151
|
|
152
|
Anti-Breast Cancer Activity of Latroeggtoxin-V Mined from the Transcriptome of Spider Latrodectus tredecimguttatus Eggs. Toxins (Basel) 2018; 10:toxins10110451. [PMID: 30400202 PMCID: PMC6266733 DOI: 10.3390/toxins10110451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
As a black widow spider, Latrodectus tredecimguttatus has poisonous components not only in venomous glands but also in eggs. Our previous work had carried out a transcriptome analysis of the spider eggs in an attempt to probe into the molecular basis of the egg toxicity. A proteinaceous toxin, named Latroeggtoxin-V, was mined from the identified transcriptome. In this study, the gene of Latroeggtoxin-V was cloned and heterologously expressed, and the anticancer activity of the recombinant Latroeggtoxin-V (rLatroeggtoxin-V) was characterized. Activity assay found that rLatroeggtoxin-V could selectively act on breast cancer line MDA-MB-231 cells, not only arresting their cell cycle, inhibiting their proliferation and migration, but also inducing their apoptosis. Bioinformatics analysis suggested that Latroeggtoxin-V belongs to the ATPase inhibitor protein family and the further activity assay showed that the rLatroeggtoxin-V inhibited the activity of the Na+/K+-ATPase in MDA-MB-231 cells in a concentration-dependent manner, suggesting that the anticancer activity of Latroeggtoxin-V is based on its affecting the ion transport and receptor functions of Na+/K+-ATPase. The present work not only laid the foundation for the utilization of Latroeggtoxin-V in the anticancer drug development and the related fields, but also provided a new paradigm for exploration of the proteinaceous toxins under the direction of transcriptomics and bioinformatics.
Collapse
|
153
|
Nyström L, Malmsten M. Membrane interactions and cell selectivity of amphiphilic anticancer peptides. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
154
|
Kozlovskiy A, Zdorovets M, Kadyrzhanov K, Korolkov I, Rusakov V, Nikolaevich L, Fesenko O, Budnyk O, Yakimchuk D, Shumskaya A, Kaniukov E. FeCo nanotubes: possible tool for targeted delivery of drugs and proteins. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0889-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
155
|
Dubovskii PV, Efremov RG. The role of hydrophobic /hydrophilic balance in the activity of structurally flexible vs. rigid cytolytic polypeptides and analogs developed on their basis. Expert Rev Proteomics 2018; 15:873-886. [PMID: 30328726 DOI: 10.1080/14789450.2018.1537786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Being important representatives of various proteomes, membrane-active cationic peptides (CPs) are attractive objects as lead compounds in the design of new antibacterial, anticancer, antifungal, and antiviral molecules. Numerous CPs are found in insect and snake venoms, where many of them reveal cytolytic properties. Due to advances in omics technologies, the number of such peptides is growing dramatically. Areas covered: To understand structure-function relationships for CPs in a living cell, detailed analysis of their hydrophobic/hydrophilic properties is indispensable. We consider two structural classes of membrane-active CPs: latarcins (Ltc) from spider and cardiotoxins (CTXs) from snake venoms. While the former are void off disulfide bonds and conformationally flexible, the latter are structurally rigid and cross-linked with disulfide bonds. In order to elucidate structure-activity relationships behind their antibacterial, anticancer, and hemolytic effects, the properties of these polypeptides are considered on a side-by-side basis. Expert commentary: An ever-increasing number of venom-derived membrane-active polypeptides require new methods for identification of their functional propensities and sequence-based design of novel pharmacological substances. We address these issues considering a number of the designed peptides, based either on Ltc or CTX sequences. Experimental and computer modeling techniques required for these purposes are delineated.
Collapse
Affiliation(s)
- Peter V Dubovskii
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , Russia
| | - Roman G Efremov
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , Russia.,b Moscow Institute of Physics and Technology , Dolgoprudnyi , Russian Federation.,c National Research University Higher School of Economics , Moscow , Russia
| |
Collapse
|
156
|
Jalaei J, Layeghi-Ghalehsoukhteh S, Hosseini A, Fazeli M. Antibacterial effects of gold nanoparticles functionalized with the extracted peptide from Vespa orientalis wasp venom. J Pept Sci 2018; 24:e3124. [PMID: 30358026 DOI: 10.1002/psc.3124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 01/13/2023]
Abstract
The development of novel antimicrobial strategies is necessary because of the escalation of multidrug-resistant pathogens. Recently, antimicrobial peptides and their combination with nanoparticles were regarded as a promising tool to target drug-resistant pathogens. Herein, we evaluated antimicrobial efficacy of a peptide extracted from Vespa orientalis wasp venom and also its conjugation with gold nanoparticles. Nanoparticle conjugation measurement was done by evaluating the absorbance changes of the surface plasmon resonance band of gold nanoparticles at 555 nm. A significant increase in the antibacterial activity against gram negative and positive bacteria was obtained when the extracted peptide conjugated with gold nanoparticles. Finally, the results show that this new peptide-AuNps has the high practical potential for antibacterial activity and may provide an alternative therapy for bacterial infection.
Collapse
Affiliation(s)
- Jafar Jalaei
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Arsalan Hosseini
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Fazeli
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
157
|
An IL13Rα2 peptide exhibits therapeutic activity against metastatic colorectal cancer. Br J Cancer 2018; 119:940-949. [PMID: 30318506 PMCID: PMC6203792 DOI: 10.1038/s41416-018-0259-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/07/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022] Open
Abstract
Background Interleukin 13 receptor α2 (IL13Rα2) is overexpressed in metastatic colorectal cancer. Here, we have developed novel strategies to block IL-13 binding to IL13Rα2 in order to reduce metastatic spread. Methods Synthetic IL13Rα2 D1 peptide (GSETWKTIITKN) was tested for the inhibition of IL-13 binding to IL13Rα2 using ELISA and different cellular assays. Peptide blocking effects on different cell signalling mediators were determined by western blot. An enantiomer version of the peptide (D-D1) was prepared to avoid proteolytic digestion. Nude mice were used for tumour growth and survival analysis after treatment with IL13Rα2 peptides. Results IL13Rα2 D1 peptide inhibited migration, invasion, and proliferation in metastatic colorectal and glioblastoma cancer cells treated with IL-13. Residues 82K, 83T, 85I and 86T were essential for blocking IL-13. IL13Rα2 peptide abolished ligand-mediated receptor internalisation and degradation, and substantially decreased IL-13 signalling capacity through IL13Rα2 to activate the FAK, PI3K/AKT and Src pathways as well as MT1-MMP expression. In addition, D1 significantly inhibited IL-13-mediated STAT6 activation through IL13Rα1. Nude mice treated with the enantiomer D-D1 peptide showed a remarkable survival increase. Conclusions We propose that the D-D1 peptide from IL13Rα2 represents a promising therapeutic agent to inhibit metastatic progression in colorectal cancer and, likely, other solid tumours.
Collapse
|
158
|
Jian C, Zhang P, Ma J, Jian S, Zhang Q, Liu B, Liang S, Liu M, Zeng Y, Liu Z. The Roles of Fatty-Acid Modification in the Activity of the Anticancer Peptide R-Lycosin-I. Mol Pharm 2018; 15:4612-4620. [DOI: 10.1021/acs.molpharmaceut.8b00605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
159
|
Glu residues of βDELSEED-motif are essential for peptide binding in Escherichia coli ATP synthase. Int J Biol Macromol 2018; 116:977-982. [DOI: 10.1016/j.ijbiomac.2018.05.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022]
|
160
|
Identification of a Novel Anticancer Oligopeptide from Perilla frutescens (L.) Britt. and Its Enhanced Anticancer Effect by Targeted Nanoparticles In Vitro. INT J POLYM SCI 2018. [DOI: 10.1155/2018/1782734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective. Perilla frutescens (L.) Brittis is a dietary herbal medicine and has anticancer effect. However, little is known about its anticancer peptides. This study is aimed at identifying cytotoxic oligopeptides which are loaded by a drug delivery system, to explore its anticancer application. Methods. The oligopeptides were isolated from enzymatic hydrolysates of Perilla seed crude protein by using ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). The structure of the oligopeptide was determined using a peptide sequencer, and its anticancer effect was examined by the MTT assay. PSO (Perilla seed oligopeptide), the most potent anticancer oligopeptide, was loaded by chitosan nanoparticles (NPs) modified by hyaluronic acid (HA). Then, the particle size, zeta potential, encapsulation efficiency (EE), drug loading efficiency (LE), the cumulative release rates of NPs, and its cytotoxic effect on cancer cells were investigated. Results. Three fractions were isolated by the chromatography assay. The third fraction has a broad-spectrum and the strongest anticancer effect. This fraction was further purified and identified as SGPVGLW with a molecular weight of 715 Da and named as PSO. Then, PSO was loaded by HA-conjugated chitosan to prepare HA/PSO/C NPs, which had a uniform size of 216.7 nm, a zeta potential of 35.4 mV, an EE of 38.7%, and an LE of 24.3%. HA/PSO/C NPs had a slow release rate in vitro, with cumulative release reaching to 81.1%. Compared with free PSO, HA/PSO/C NPs showed notably enhanced cytotoxicity and had the strongest potency to human glioma cell line U251. Conclusion. This study demonstrated that PSO, a novel oligopeptide from Perilla seeds, has a broad-spectrum anticancer effect and could be encapsulated by NPs, which enhanced tumor targeting cytotoxicity with obvious controlled release. Our study indicates that Perilla seeds are valuable for anticancer peptide development.
Collapse
|
161
|
Cong Y, Qiao ZY, Wang H. Molecular Self-Assembly Constructed in Physiological Conditions for Cancer Diagnosis and Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yong Cong
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|
162
|
Wada H, Shimizu A, Osada T, Tanaka Y, Fukaya S, Sasaki E. Development of a novel immunoproteasome digestion assay for synthetic long peptide vaccine design. PLoS One 2018; 13:e0199249. [PMID: 29969453 PMCID: PMC6029771 DOI: 10.1371/journal.pone.0199249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Recently, many autologous tumor antigens have been examined for their potential use in cancer immunotherapy. However, the success of cancer vaccines in clinical trials has been limited, partly because of the limitations of using single, short peptides in most attempts. With this in mind, we aimed to develop multivalent synthetic long peptide (SLP) vaccines containing multiple cytotoxic T-lymphocyte (CTL) epitopes. However, to confirm whether a multivalent vaccine can induce an individual epitope-specific CTL, the only viable screening strategies currently available are interferon-gamma (IFN-μ enzyme-linked immunospot (ELISPOT) assays using human peripheral blood mononuclear cells, or expensive human leukocyte antigen (HLA)-expressing mice. In this report, we evaluated the use of our developed murine-20S immunoproteasome (i20S) digestion assay, and found that it could predict the results of IFN-μ ELISPOT assays. Importantly, the murine-i20S digestion assay not only predicted CTL induction, but also antitumor activity in an HLA-expressing mouse model. We conclude that the murine-i20S digestion assay is an extremely useful tool for the development of “all functional” multivalent SLP vaccines.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Enzyme-Linked Immunospot Assay
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Immunoassay
- Immunotherapy, Active/methods
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Lymphocyte Activation/drug effects
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/prevention & control
- Mice
- Mice, Transgenic
- Peptides/chemical synthesis
- Peptides/immunology
- Peptides/pharmacology
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Transgenes
- Tumor Burden/drug effects
- Vaccines, Subunit
Collapse
Affiliation(s)
- Hiroshi Wada
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Atsushi Shimizu
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
| | - Toshihiro Osada
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
| | - Yuki Tanaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
| | - Satoshi Fukaya
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
| | - Eiji Sasaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
163
|
Chaichana C, Khamwut A, Jaresitthikunchai J, Phaonakrop N, Ratanapo S, Roytrakul S, T-Thienprasert NP. A Novel Anti-cancer Peptide Extracted from Gynura pseudochina Rhizome: Cytotoxicity Dependent on Disulfide Bond Formation. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9726-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
164
|
Truong DH, Tran TTP, Nguyen HT, Phung CD, Pham TT, Yong CS, Kim JO, Tran TH. Modulating T-cell-based cancer immunotherapy via particulate systems. J Drug Target 2018; 27:145-163. [PMID: 29741964 DOI: 10.1080/1061186x.2018.1474360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunotherapy holds tremendous promise for improving cancer treatment in which an appropriate stimulator may naturally trigger the immune system to control cancer. Up-to-date, adoptive T-cell therapy has received two new FDA approvals that provide great hope for some cancer patient groups. Nevertheless, expense and safety-related issues require further study to obtain insight into targets for efficient immunotherapy. The development of material science was largely responsible for providing a promising horizon to strengthen immunoengineering. In this review, we focus on T-cell characteristics in the context of the immune system against cancer and discuss several approaches of exploiting engineered particles to manipulate the responses of T cells and the tumour microenvironment.
Collapse
Affiliation(s)
- Duy Hieu Truong
- a Institute of Research and Development, Duy Tan University , Da Nang , Vietnam
| | - Thi Thu Phuong Tran
- b The Institute of Molecular Genetics of Montpellier, CNRS , Montpellier , France
| | - Hanh Thuy Nguyen
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Cao Dai Phung
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Tung Thanh Pham
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Chul Soon Yong
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Jong Oh Kim
- c College of Pharmacy , Yeungnam University , Gyeongsan , Republic of Korea
| | - Tuan Hiep Tran
- d Department for Management of Science and Technology Development , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,e Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
165
|
Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Arch Pharm Res 2018; 41:594-616. [PMID: 29804279 DOI: 10.1007/s12272-018-1038-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
Cancer is a leading cause of death worldwide. Despite many advances in the field of cancer therapy, an effective cure is yet to be found. As a more potent alternative for the conventional small molecule anti-cancer drugs, pro-apoptotic peptides have emerged as a new class of anticancer agents. By interaction with certain members in the apoptotic pathways, they could effectively kill tumor cells. However, there remain bottleneck challenges for clinical application of these pro-apoptotic peptides in cancer therapy. In this review, we will overview the developed pro-apoptotic peptides and outline the widely adopted molecular-based and nanoparticle-based strategies to enhance their anti-tumor effects.
Collapse
|
166
|
Hydrogen Sulfide Alleviates Lipopolysaccharide-Induced Diaphragm Dysfunction in Rats by Reducing Apoptosis and Inflammation through ROS/MAPK and TLR4/NF- κB Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9647809. [PMID: 29977458 PMCID: PMC5994286 DOI: 10.1155/2018/9647809] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/11/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022]
Abstract
Diaphragm dysfunction is an important clinical problem worldwide. Hydrogen sulfide (H2S) is involved in many physiological and pathological processes in mammals. However, the effect and mechanism of H2S in diaphragm dysfunction have not been fully elucidated. In this study, we detected that the level of H2S was decreased in lipopolysaccharide- (LPS-) treated L6 cells. Treatment with H2S increased the proliferation and viability of LPS-treated L6 cells. We found that H2S decreased reactive oxygen species- (ROS-) induced apoptosis through the mitogen-activated protein kinase (MAPK) signaling pathway in LPS-treated L6 cells. Administration of H2S alleviated LPS-induced inflammation by mediating the toll-like receptor-4 (TLR-4)/nuclear factor-kappa B (NF-κB) signaling pathway in L6 cells. Furthermore, H2S improved diaphragmatic function and structure through the reduction of inflammation and apoptosis in the diaphragm of septic rats. In conclusion, these findings indicate that H2S ameliorates LPS-induced diaphragm dysfunction in rats by reducing apoptosis and inflammation through ROS/MAPK and TLR4/NF-κB signaling pathways. Novel slow-releasing H2S donors can be designed and applied for the treatment of diaphragm dysfunction.
Collapse
|
167
|
Mansur AAP, Carvalho SM, Lobato ZIP, Leite MDF, Cunha ADS, Mansur HS. Design and Development of Polysaccharide-Doxorubicin-Peptide Bioconjugates for Dual Synergistic Effects of Integrin-Targeted and Cell-Penetrating Peptides for Cancer Chemotherapy. Bioconjug Chem 2018; 29:1973-2000. [DOI: 10.1021/acs.bioconjchem.8b00208] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
168
|
Wu DD, Gao YR, Li T, Wang DY, Lu D, Liu SY, Hong Y, Ning HB, Liu JP, Shang J, Shi JF, Wei JS, Ji XY. PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways. BMC Cancer 2018; 18:499. [PMID: 29716528 PMCID: PMC5930684 DOI: 10.1186/s12885-018-4391-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/17/2018] [Indexed: 12/25/2022] Open
Abstract
Background PEST-containing nuclear protein (PCNP), a novel nuclear protein, is involved in cell proliferation and tumorigenesis. However, the precise mechanism of action of PCNP in the process of tumor growth has not yet been fully elucidated. Methods ShRNA knockdown and overexpression of PCNP were performed in human neuroblastoma cells. Tumorigenic and metastatic effects of PCNP were examined by tumor growth, migration, and invasion assays in vitro, as well as xenograft tumor assay in vivo. Results PCNP over-expression decreased the proliferation, migration, and invasion of human neuroblastoma cells and down-regulation of PCNP showed reverse effects. PCNP over-expression increased protein expressions of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and cleaved poly adenosine diphosphate-ribose polymerase, as well as ratios of B-cell lymphoma-2 (Bcl-2)-associated X protein/Bcl-2 and Bcl-2-associated death promoter/B-cell lymphoma-extra large in human neuroblastoma cells, however PCNP knockdown exhibited reverse trends. PCNP over-expression increased phosphorylations of extracellular signal-regulated protein kinase 1/2, p38, c-Jun N-terminal kinase, as well as decreased phosphorylations of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), nevertheless PCNP knockdown exhibited opposite effects. Furthermore, PCNP over-expression significantly reduced the growth of human neuroblastoma xenograft tumors by down-regulating angiogenesis, whereas PCNP knockdown markedly promoted the growth of human neuroblastoma xenograft tumors through up-regulation of angiogenesis. Conclusions PCNP mediates the proliferation, migration, and invasion of human neuroblastoma cells through mitogen-activated protein kinase and PI3K/AKT/mTOR signaling pathways, implying that PCNP is a therapeutic target for patients with neuroblastoma.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Ying-Ran Gao
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Da-Yong Wang
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Dan Lu
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Shi-Yu Liu
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Ya Hong
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Hui-Bin Ning
- Henan Provincial People's Hospital Affiliated to Henan University, Zhengzhou, 450003, Henan, China
| | - Jun-Ping Liu
- Henan Provincial People's Hospital Affiliated to Henan University, Zhengzhou, 450003, Henan, China
| | - Jia Shang
- Henan Provincial People's Hospital Affiliated to Henan University, Zhengzhou, 450003, Henan, China
| | - Jun-Feng Shi
- Nanyang Nanshi Hospital Affiliated to Henan University, Nanyang, 473003, Henan, China
| | - Jian-She Wei
- Brain Research Laboratory, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China. .,Nanyang Nanshi Hospital Affiliated to Henan University, Nanyang, 473003, Henan, China.
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004, Henan, China. .,Henan Provincial People's Hospital Affiliated to Henan University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
169
|
Qi GB, Gao YJ, Wang L, Wang H. Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703444. [PMID: 29460400 DOI: 10.1002/adma.201703444] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Indexed: 05/22/2023]
Abstract
Peptide-based materials are one of the most important biomaterials, with diverse structures and functionalities. Over the past few decades, a self-assembly strategy is introduced to construct peptide-based nanomaterials, which can form well-controlled superstructures with high stability and multivalent effect. More recently, peptide-based functional biomaterials are widely utilized in clinical applications. However, there is no comprehensive review article that summarizes this growing area, from fundamental research to clinic translation. In this review, the recent progress of peptide-based materials, from molecular building block peptides and self-assembly driving forces, to biomedical and clinical applications is systematically summarized. Ex situ and in situ constructed nanomaterials based on functional peptides are presented. The advantages of intelligent in situ construction of peptide-based nanomaterials in vivo are emphasized, including construction strategy, nanostructure modulation, and biomedical effects. This review highlights the importance of self-assembled peptide nanostructures for nanomedicine and can facilitate further knowledge and understanding of these nanosystems toward clinical translation.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
170
|
Yang L, Liu H, Long M, Wang X, Lin F, Gao Z, Zhang H. Peptide SA12 inhibits proliferation of breast cancer cell lines MCF-7 and MDA-MB-231 through G0/G1 phase cell cycle arrest. Onco Targets Ther 2018; 11:2409-2417. [PMID: 29750041 PMCID: PMC5935185 DOI: 10.2147/ott.s154337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Targeted therapies have been proven as promising in the treatment of breast cancer and have improved survival and quality of life in advanced breast cancer. We previously identified a novel peptide SA12 which showed significant activity in the inhibition of proliferation and induction of apoptosis in SKBr-3 cells. Methods The present study investigated the potential antitumor role of SA12 in breast cancer cell lines MDA-MB-231 and MCF-7 through Cell Counting Kit-8 assay and colony formation assay, and examined the cell cycle distribution using flow cytometry analysis. Furthermore, the expression of cell cycle-related genes cyclin D1, CDK4, and tumor suppressor gene p16 were examined by real-time polymerase chain reaction and Western blot to explore the molecular mechanism. Results We determined that peptide SA12 suppressed the proliferation of MDA-MB-231 and MCF-7 cell lines through the G0/G1 phase cell cycle arrest. Moreover, the expressions of cell cycle-associated genes cyclin D1 and CDK4 were downregulated and the expression of tumor suppressor gene p16 was upregulated after treatment with SA12. MECP2 was required for the enhanced expression of p16 gene induced by SA12, which further inhibits CDK4/CDK6 activation and arrests the cell cycle progression from G0/G1 to S phase. Conclusion We concluded that SA-12 inhibits the proliferation of MCF-7 and MDA-MB-231 cells through G0/G1 cell cycle arrest. Cell cycle related genes cyclin D1, CDK4, and p16 participate in the process, and MECP2 is essential for the enhanced expression of p16 gene induced by SA-12.
Collapse
Affiliation(s)
- Longfei Yang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Huanran Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Min Long
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xi Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Lin
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhaowei Gao
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
171
|
Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Crit Rev Food Sci Nutr 2018; 59:1949-1975. [DOI: 10.1080/10408398.2018.1434480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Domancar Orona-Tamayo
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - María Elena Valverde
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| |
Collapse
|
172
|
Inamoto I, Shin JA. Peptide therapeutics that directly target transcription factors. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ichiro Inamoto
- Department of Chemistry; University of Toronto, 3359 Mississauga Road; Mississauga Ontario L5L 1C6 Canada
| | - Jumi A. Shin
- Department of Chemistry; University of Toronto, 3359 Mississauga Road; Mississauga Ontario L5L 1C6 Canada
| |
Collapse
|
173
|
The Hippo pathway as a drug target in gastric cancer. Cancer Lett 2018; 420:14-25. [PMID: 29408652 DOI: 10.1016/j.canlet.2018.01.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023]
Abstract
The Hippo tumor suppressor pathway is critical for balancing cellular differentiation and proliferation in response to cell-cell contact, mechanical signals and diffusible signals such as lysophosphatidic acid. Hippo pathway signaling is frequently dysregulated in gastric cancer (GC), as well as many other kinds of solid tumors, contributing to multiple aspects of malignant progression including unchecked cell division and metastasis. Considering the importance of this Hippo pathway in cancer, its pharmacological disruption may be of huge benefit in the fight against this disease. In this review, we summarize the components of the Hippo pathway, its crosstalk with other major oncogenic signaling pathways, common mechanisms of its dysregulation, as well as potential therapeutic approaches of targeting this pathway for cancer treatment, specifically in a GC context.
Collapse
|
174
|
Shi H, Zhang B, Liu S, Tan C, Tan Y, Jiang Y. A New Strategy Involving the Use of Peptides and Graphene Oxide for Fluorescence Turn-on Detection of Proteins. SENSORS (BASEL, SWITZERLAND) 2018; 18:E385. [PMID: 29382136 PMCID: PMC5855184 DOI: 10.3390/s18020385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
The detection of proteins is of great biological significance as disease biomarkers in early diagnosis, prognosis tracking and therapeutic evaluation. Thus, we developed a simple, sensitive and universal protein-sensing platform based on peptide and graphene oxide (GO). The design consists of a fluorophore (TAMRA, TAM), a peptide containing eight arginines and peptide ligand that could recognize the target protein, and GO used as a quencher. To demonstrate the feasible use of the sensor for target detection, Bcl-xL was evaluated as the model target. The sensor was proved to be sensitive and applied for the detection of the target proteins in buffer, 2% serum and living cells.
Collapse
Affiliation(s)
- Huan Shi
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Bibo Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Shuwen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Chunyan Tan
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Ying Tan
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Yuyang Jiang
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
175
|
Zamani P, Momtazi‐Borojeni AA, Nik ME, Oskuee RK, Sahebkar A. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy. J Cell Physiol 2018; 233:5189-5199. [DOI: 10.1002/jcp.26361] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/29/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Parvin Zamani
- BuAli Research InstituteStudent Research CommitteeDepartment of Medical BiotechnologyNanotechnology Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amir Abbas Momtazi‐Borojeni
- BuAli Research InstituteStudent Research CommitteeDepartment of Medical BiotechnologyNanotechnology Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Maryam Ebrahimi Nik
- Student Research CommitteeFaculty of PharmacyDepartment of NanotechnologyMashhad University of Medical SciencesMashhadIran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research CenterMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
176
|
Prodrug-embedded angiogenic vessel-targeting nanoparticle: A positive feedback amplifier in hypoxia-induced chemo-photo therapy. Biomaterials 2017; 144:188-198. [DOI: 10.1016/j.biomaterials.2017.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022]
|
177
|
Nawaz IM, Chiodelli P, Rezzola S, Paganini G, Corsini M, Lodola A, Di Ianni A, Mor M, Presta M. N-tert-butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe (BOC2) inhibits the angiogenic activity of heparin-binding growth factors. Angiogenesis 2017; 21:47-59. [PMID: 29030736 DOI: 10.1007/s10456-017-9581-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/08/2017] [Indexed: 12/20/2022]
Abstract
The peptides N-tert-butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe (BOC2) and BOC-Met-Leu-Phe (BOC1) are widely used antagonists of formyl peptide receptors (FPRs), BOC2 acting as an FPR1/FPR2 antagonist whereas BOC1 inhibits FPR1 only. Extensive investigations have been performed by using these FPR antagonists as a tool to assess the role of FPRs in physiological and pathological conditions. Based on previous observations from our laboratory, we assessed the possibility that BOC2 may exert also a direct inhibitory effect on the angiogenic activity of vascular endothelial growth factor-A (VEGF-A). Our data demonstrate that BOC2, but not BOC1, inhibits the angiogenic activity of heparin-binding VEGF-A165 with no effect on the activity of the non-heparin-binding VEGF-A121 isoform. Endothelial cell-based bioassays, surface plasmon resonance analysis, and computer modeling indicate that BOC2 may interact with the heparin-binding domain of VEGF-A165, thus competing for heparin interaction and preventing the binding of VEGF-A165 to tyrosine kinase receptor VEGFR2, its phosphorylation and downstream signaling. In addition, BOC2 inhibits the interaction of a variety of heparin-binding angiogenic growth factors with heparin, including fibroblast growth factor 2 (FGF2) whose angiogenic activity is blocked by the compound. Accordingly, BOC2 suppresses the angiogenic potential of human tumor cell lines that co-express VEGF-A and FGF2. Thus, BOC2 appears to act as a novel multi-heparin-binding growth factor antagonist. These findings caution about the interpretation of FPR-focusing experimental data obtained with this compound and set the basis for the design of novel BOC2-derived, FPR independent multi-target angiogenesis inhibitors.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Paganini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
178
|
The first report of cases of pet dogs with naturally occurring cancer treated with the antitumor peptide CIGB-552. Res Vet Sci 2017; 114:502-510. [DOI: 10.1016/j.rvsc.2017.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 01/13/2023]
|
179
|
Khodabakhsh F, Norouzian D, Vaziri B, Ahangari Cohan R, Sardari S, Mahboudi F, Behdani M, Mansouri K, Mehdizadeh A. Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1402-1414. [PMID: 28841807 DOI: 10.1080/21691401.2017.1369426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD analysis revealed an increment in random coil structure of the PASylated protein in comparison to native one without any change in charge state or binding kinetic parameters of nanobody assessed by isoelectric focusing and surface plasmon resonance measurements, respectively. In vitro biological activities of nanobody were not affected by coupling of the PAS sequence. In contrast, the terminal half-life was significantly increased by a factor of 14 for the nanobody-PAS after single dose IV injection to the mice. Our study demonstrated that the control of size in the design of small therapeutic proteins has a promising effect on the stability and solubility, in addition to their physiochemical and pharmacokinetic properties. The designed new anti-VEGFA nanobody could promise a better therapeutic agent with a long administration intervals and lower dose, which in turn leads to a better patient compliance. Size adjustment of an anti-VEGF nanobody at the nanoscale by the attachment of a natural PAS polymer remarkably improves physicochemical properties, as well as a pharmacokinetic profile without any change in biological activity of the miniaturized antibody.
Collapse
Affiliation(s)
- Farnaz Khodabakhsh
- a Department of Nanobiotechnology , Advanced Technology Group, Pasteur Institute of Iran , Tehran , Iran.,b Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Dariush Norouzian
- a Department of Nanobiotechnology , Advanced Technology Group, Pasteur Institute of Iran , Tehran , Iran
| | - Behrouz Vaziri
- b Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Reza Ahangari Cohan
- a Department of Nanobiotechnology , Advanced Technology Group, Pasteur Institute of Iran , Tehran , Iran
| | - Soroush Sardari
- c Drug Design and Bioinformatics Unit, Department of Medical Biotechnology , Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Fereidoun Mahboudi
- b Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Mahdi Behdani
- d Venom & Biotherapeutics Molecules Laboratory , Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Kamran Mansouri
- e Medical Biology Research Center, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Ardavan Mehdizadeh
- f Department of Civil Engineering , Sharif University of Technology , Tehran , Iran
| |
Collapse
|
180
|
Zarei O, Benvenuti S, Ustun-Alkan F, Hamzeh-Mivehroud M, Dastmalchi S. Identification of a RON tyrosine kinase receptor binding peptide using phage display technique and computational modeling of its binding mode. J Mol Model 2017; 23:267. [DOI: 10.1007/s00894-017-3437-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
|
181
|
Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells. Sci Rep 2017; 7:8293. [PMID: 28811617 PMCID: PMC5557901 DOI: 10.1038/s41598-017-08963-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023] Open
Abstract
Cell surface binding and internalization are critical for the specific targeting and biofunctions of some cationic antimicrobial peptides (CAPs) with anticancer activities. However, the detailed cellular process for CAPs interacting with cancer cells and the exact molecular basis for their anticancer effects are still far from being fully understood. In the present study, we examined the cell surface binding, uptaking and anti-cancer activity of L-K6, a lysine/leucine-rich CAP, in human MCF-7 breast cancer cells. We found that L-K6 preferentially interact with MCF-7 cells. This tumor-targeting property of L-K6 might be partially due to its interactions with the surface exposed and negatively charged phosphatidylserine. Subsequently, L-K6 could internalize into MCF-7 cells mainly through a clathrin-independent macropinocytosis, without significant cell surface disruption. Finally, the internalized L-K6 induced a dramatic nuclear damage and MCF-7 cell death, without significant cytoskeleton disruption and mitochondrial impairment. This cytotoxicity of L-K6 against MCF-7 cancer cells could be further confirmed by using a mouse xenograft model. In summary, all these findings outlined the cellular process and cytotoxicity of L-K6 in MCF-7 cancer cells, and might help understand the complicated interactions between CAPs and cancer cells.
Collapse
|
182
|
Protein-Protein Interaction Modulators for Epigenetic Therapies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:65-84. [PMID: 29413000 DOI: 10.1016/bs.apcsb.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Targeting protein-protein interactions (PPIs) is becoming an attractive approach for drug discovery. This is particularly true for difficult or emerging targets, such as epitargets that may be elusive to drugs that fall into the traditional chemical space. The chemical nature of the PPIs makes attractive the use of peptides or peptidomimetics to selectively modulate such interactions. Despite the fact peptide-based drug discovery has been challenging, the use of peptides as leads compounds for drug discovery is still a valid strategy. This chapter discusses the current status of PPIs in epigenetic drug discovery. A special emphasis is made on peptides and peptide-like compounds as potential drug candidates.
Collapse
|
183
|
Li Y, Li W, Bao W, Liu B, Li D, Jiang Y, Wei W, Ren F. Bioinspired peptosomes with programmed stimuli-responses for sequential drug release and high-performance anticancer therapy. NANOSCALE 2017; 9:9317-9324. [PMID: 28426067 DOI: 10.1039/c7nr00598a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Combination therapy with enhanced therapeutic and antimetastatic efficacy has become promising for cancer treatment. There is an urgent need to design a co-delivery system to sequentially release the drug pair at desired locations that can increase the intra-tumoral drug concentration and reduce the side effects. Inspired by virus architecture and function, herein, we developed a peptosome (PS)-based co-delivery system, PePm/PS/Curcumin (Cur), for the sequential release of the therapeutic peptide Pe and chemodrug Cur. PS was formed by the self-assembly of amphiphilic α-lactalbumin peptides obtained from enzymatic partial hydrolysis. Then, PS was self-cross-linked with disulfide bonds utilizing their endogenous thiol groups. The system is responsive to multiple tumor microenvironments and releases the drugs at specific tumor locations. First, after PS accumulation in tumor tissue via the EPR effect, the linkage peptide Pm in PS can be cleaved by matrix metalloproteinases (MMP) enzymatic hydrolysis. Pe can stay on the cell surface and antagonize the ErbB-2 receptor expression on the tumor cells. Moreover, the positively charged nature of remaining Mal-PS/Cur facilitates tumor cell internalization and induces a subsequent proton-sponge effect for lysosomal escape. Finally, Cur is released in the cytoplasm via a reduction-induced PS disassembly due to the high level of intracellular GSH. Both the in vitro and in vivo results exhibited an enhanced antitumor and antimetastatic efficacy of this system.
Collapse
Affiliation(s)
- Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Hydrogen sulfide acts as a double-edged sword in human hepatocellular carcinoma cells through EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. Sci Rep 2017; 7:5134. [PMID: 28698660 PMCID: PMC5506015 DOI: 10.1038/s41598-017-05457-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 05/31/2017] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) is involved in cancer biological processes. However, there are several controversies concerning the role of H2S in cancer development and progression. In this study, we found that the growth and migration of hepatocellular carcinoma (HCC) cells were enhanced by 10–100 μM NaHS and dose-dependently inhibited by 600–1000 μM NaHS. The apoptotic levels were reduced by 25–100 μM NaHS but increased by 400–1000 μM NaHS in HCC cells. After treatment with 25–50 μM NaHS, the protein levels of p-EGFR, p-ERK, MMP-2, and p-AKT were increased, whereas the levels of PTEN and the ratio of BAX/BCL-2 were down-regulated. Administration of 800–1000 μM NaHS showed opposite effects on these protein levels in HCC cells. However, H2S showed no effects on the growth, migration, apoptosis, and the protein levels of the EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways in L02 cells. Furthermore, 25–100 μM NaHS promoted HCC tumor growth and blood vessel formation, while 800–1000 μM NaHS inhibited angiogenesis and tumor growth with no obvious systemic toxicity. These results indicate that H2S acts as a double-edged sword in HCC cells through EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. Novel H2S donors could be designed and applied for further antitumor research.
Collapse
|
185
|
Wu D, Wang J, Wang H, Ji A, Li Y. Protective roles of bioactive peptides during ischemia-reperfusion injury: From bench to bedside. Life Sci 2017; 180:83-92. [PMID: 28527782 DOI: 10.1016/j.lfs.2017.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022]
Abstract
Ischemia-reperfusion (I/R) is a well-known pathological condition which may lead to disability and mortality. I/R injury remains an unresolved and complicated situation in a number of clinical conditions, such as cardiac arrest with successful reanimation, as well as ischemic events in brain and heart. Peptides have many attractive advantages which make them suitable candidate drugs in treating I/R injury, such as low toxicity and immunogenicity, good solubility property, distinct tissue distribution pattern, and favorable pharmacokinetic profile. An increasing number of studies indicate that peptides could protect against I/R injury in many different organs and tissues. Peptides also face several therapeutic challenges that limit their clinical application. In this review, we present the mechanisms of action of peptides in reducing I/R injury, as well as further discuss modification strategies to improve the functional properties of bioactive peptides.
Collapse
Affiliation(s)
- Dongdong Wu
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Jun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Honggang Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
186
|
Tohumeken S, Gunduz N, Demircan MB, Gunay G, Topal AE, Khalily MA, Tekinay T, Dana A, Guler MO, Tekinay AB. A Modular Antigen Presenting Peptide/Oligonucleotide Nanostructure Platform for Inducing Potent Immune Response. ACTA ACUST UNITED AC 2017; 1:e1700015. [DOI: 10.1002/adbi.201700015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/20/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sehmus Tohumeken
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Nuray Gunduz
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - M. Burak Demircan
- Neuroscience Graduate Program; Bilkent University; Ankara 06800 Turkey
| | - Gokhan Gunay
- Neuroscience Graduate Program; Bilkent University; Ankara 06800 Turkey
| | - Ahmet E. Topal
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - M. Aref Khalily
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center; Gazi University; Ankara 06830 Turkey
| | - Aykutlu Dana
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
- Neuroscience Graduate Program; Bilkent University; Ankara 06800 Turkey
| |
Collapse
|
187
|
A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model. PLoS One 2017; 12:e0174707. [PMID: 28358840 PMCID: PMC5373611 DOI: 10.1371/journal.pone.0174707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Oral squamous cell carcinoma is the fifth most common epithelial cancer in the world, and its current clinical treatment has both low efficiency and poor selectivity. Cationic amphipathic peptides have been proposed as new drugs for the treatment of different types of cancer. The main goal of the present work was to determine the potential of LfcinB(20–25)4, a tetrameric peptide based on the core sequence RRWQWR of bovine lactoferricin LfcinB(20–25), for the treatment of OSCC. In brief, OSCC was induced in the buccal pouch of hamsters by applying 7,12-Dimethylbenz(a)anthracene, and tumors were treated with one of the following peptides: LfcinB(20–25)4, LfcinB(20–25), or vehicle (control). Lesions were macroscopically evaluated every two days and both histological and serum IgG assessments were conducted after 5 weeks. The size of the tumors treated with LfcinB(20–25)4 and LfcinB(20–25) was smaller than that of the control group (46.16±4.41 and 33.92±2.74 mm3 versus 88.77±10.61 mm3, respectively). Also, LfcinB(20–25)4 caused acellularity in the parenchymal tumor compared with LfcinB(20–25) and vehicle treatments. Furthermore, our results demonstrated that both LfcinB(20–25)4 and LfcinB(20–25) induced higher degree of apoptosis relative to the untreated tumors (75–86% vs 8%, respectively). Moreover, although the lowest inflammatory response was achieved when LfcinB(20–25)4 was used, this peptide appeared to induce higher levels of IgG antibodies relative to the vehicle and LfcinB(20–25). In addition the cellular damage and selectivity of the LfcinB(20–25)4 peptide was evaluated in vitro. These assays showed that LfcinB(20–25)4 triggers a selective necrotic effect in the carcinoma cell line. Cumulatively, these data indicate that LfcinB(20–25)4 could be considered as a new therapeutic agent for the treatment of OSCC.
Collapse
|
188
|
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24:21. [PMID: 28320393 PMCID: PMC5359827 DOI: 10.1186/s12929-017-0328-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Collapse
Affiliation(s)
- Susan Marqus
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
189
|
Marani MM, Perez LO, de Araujo AR, Plácido A, Sousa CF, Quelemes PV, Oliveira M, Gomes-Alves AG, Pueta M, Gameiro P, Tomás AM, Delerue-Matos C, Eaton P, Camperi SA, Basso NG, de Souza de Almeida Leite JR. Thaulin-1: The first antimicrobial peptide isolated from the skin of a Patagonian frog Pleurodema thaul (Anura: Leptodactylidae: Leiuperinae) with activity against Escherichia coli. Gene 2017; 605:70-80. [DOI: 10.1016/j.gene.2016.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/19/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022]
|
190
|
Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL. Peptides with Dual Antimicrobial and Anticancer Activities. Front Chem 2017; 5:5. [PMID: 28271058 PMCID: PMC5318463 DOI: 10.3389/fchem.2017.00005] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting toward intracellular targets, which increases their success compartively to one-target specific drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials.
Collapse
Affiliation(s)
- Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Osmar N Silva
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande, Brazil
| | - Sônia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Octávio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom BoscoCampo Grande, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de BrasíliaBrasília, Brazil
| |
Collapse
|
191
|
Recombinant Production and Intein-Mediated Purification of an Antimicrobial Peptide, BR2. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9583-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
192
|
Peskova M, Heger Z, Janda P, Adam V, Pekarik V. An enzymatic assay based on luciferase Ebola virus-like particles for evaluation of virolytic activity of antimicrobial peptides. Peptides 2017; 88:87-96. [PMID: 28012857 PMCID: PMC7115697 DOI: 10.1016/j.peptides.2016.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Antimicrobial peptides are currently considered as promising antiviral compounds. Current assays to evaluate the effectivity of peptides against enveloped viruses based on liposomes or hemolysis are encumbered by the artificial nature of liposomes or distinctive membrane composition of used erythrocytes. We propose a novel assay system based on enzymatic Ebola virus-like particles containing sensitive luciferase reporter. The assay was validated with several cationic and anionic peptides and compared with lentivirus inactivation and hemolytic assays. The assay is sensitive and easy to perform in standard biosafety level laboratory with potential for high-throughput screens. The use of virus-like particles in the assay provides a system as closely related to the native viruses as possible eliminating some issues associated with other more artificial set ups. We have identified CAM-W (KWKLWKKIEKWGQGIGAVLKWLTTWL) as a peptide with the greatest antiviral activity against infectious lentiviral vectors and filoviral virus-like particles.
Collapse
Affiliation(s)
- Marie Peskova
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czechia.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University, 613 00 Brno, Czechia; Central European Institute of Technology (CEITEC), Brno University of Technology, 616 00 Brno, Czechia.
| | - Petr Janda
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czechia.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University, 613 00 Brno, Czechia; Central European Institute of Technology (CEITEC), Brno University of Technology, 616 00 Brno, Czechia.
| | - Vladimir Pekarik
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czechia; Institute of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czechia.
| |
Collapse
|
193
|
Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Med Chem 2017; 9:199-221. [PMID: 28111982 DOI: 10.4155/fmc-2016-0189] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Short peptides have many advantages, such as low molecular weight, selectivity for a specific target, organelles or cells with minimal toxicity. We describe properties of short peptides, which interfere with communication networks in tumor cells and within microenvironment of malignant gliomas, the most common brain tumors. We focus on ligand/receptor axes and intracellular signaling pathways critical for gliomagenesis that could be targeted with interfering peptides. We review structures and efficacy of organelle-specific and cell-penetrating peptides and describe diverse chemical modifications increasing proteolytic stability and protecting synthetic peptides against degradation. We report results of application of short peptides in glioma therapy clinical trials, their rises and falls. The most advanced examples of therapeutics such as short interfering peptides combined with cell-penetrating peptides that show good effectiveness in disease models are presented. It is foreseen that identification of peptides with better clinical properties may improve their success rates in clinical trials.
Collapse
|
194
|
Balandin SV, Emelianova AA, Kalashnikova MB, Kokryakov VN, Shamova OV, Ovchinnikova TV. Molecular mechanisms of antitumor effect of natural antimicrobial peptides. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
195
|
Zhang P, Ma J, Yan Y, Chen B, Liu B, Jian C, Zhu B, Liang S, Zeng Y, Liu Z. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org Biomol Chem 2017; 15:9379-9388. [DOI: 10.1039/c7ob02233f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, arginine modification rendered Lycosin-I with higher anticancer activity, penetrability, and dissemination ability against solid tumor cells due to the optimized physicochemical properties and high serum stability.
Collapse
|
196
|
Abstract
In the past few years, small peptides having anticancer properties have emerged as a potential avenue for cancer therapy. Compared to current anti-cancer chemotherapeutic drugs (or small molecules), anticancer peptides (ACPs) have numerous advantageous properties, such as high specificity, low production cost, high tumor penetration, ease of synthesis and modification. However, in wet lab setups, identification and characterization of novel ACPs is a time-consuming and labor-intensive process. Therefore, in silico designing of anticancer peptides is beneficial, prior to their synthesis and characterization. This approach is less time consuming and more cost-effective. In this chapter, we discuss a web-based tool, AntiCP (http://crdd.osdd.net/raghava/anticp/), for designing ACPs.
Collapse
|
197
|
Chionis K, Krikorian D, Koukkou AI, Sakarellos-Daitsiotis M, Panou-Pomonis E. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin. J Pept Sci 2016; 22:731-736. [DOI: 10.1002/psc.2939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Kostas Chionis
- Department of Chemistry; University of Ioannina; 45110 Ioannina Greece
| | | | | | | | | |
Collapse
|
198
|
Wanjale MV, Kumar GSV. Peptides as a therapeutic avenue for nanocarrier-aided targeting of glioma. Expert Opin Drug Deliv 2016; 14:811-824. [PMID: 27690671 DOI: 10.1080/17425247.2017.1242574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Very few successful interventions have been possible in glioma therapy owing to its aggressive nature as well as its hindrance of targeted therapy together with the limited access afforded by the blood-brain barrier (BBB). With the advent of nanotechnology based delivery vehicles such as micelles, dendrimers, polymer-based nanoparticles and nanogels, the breach of the BBB has been facilitated. However, there remains the issue of targeted therapy for glioma cells. Peptide-mediated surface modification of nanocarriers serves this purpose, extending the ability to target glioma further than the enhanced permeability and retention effect. Areas covered: Here we have tried to re-establish the significance of peptides that could be used in various ways for treating glioma. Peptide-embellished nanocarriers used to deliver anticancer drugs; nucleic acids (siRNA, miRNA); micelles or dendrimers grafted with immunogenic glioma-derived peptides used for stimulating active immunity in vaccine therapy, glioma targets for cell penetrating peptides and homing to specific receptors are reviewed. Expert opinion: Peptides have multifunctional potential in targeting, BBB and cell penetration, and can serve as antagonists of various ligands and agonists of particular over-expressed receptors as discussed in this review. Using peptides in targeted personalized therapy would be one step forward and may offer new avenues for glioma therapeutics.
Collapse
Affiliation(s)
- Mrunal Vitthal Wanjale
- a Chemical Biology, Nano Drug Delivery Systems, Bio-Innovation Center (BIC) , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| | - G S Vinod Kumar
- a Chemical Biology, Nano Drug Delivery Systems, Bio-Innovation Center (BIC) , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| |
Collapse
|
199
|
GL-9 peptide regulates gene expression of CD44 cancer marker and pro-inflammatory cytokine TNF-α in human lung epithelial adenocarcinoma cell line (A549). Mol Cell Biochem 2016; 423:141-149. [DOI: 10.1007/s11010-016-2832-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/23/2016] [Indexed: 01/30/2023]
|
200
|
Mohanram H, Bhattacharjya S. Salt-resistant short antimicrobial peptides. Biopolymers 2016; 106:345-56. [DOI: 10.1002/bip.22819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Harini Mohanram
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551
| | - Surajit Bhattacharjya
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551
| |
Collapse
|