151
|
Wu C, Zhong R, Sun X, Shi J. PSME2 identifies immune-hot tumors in breast cancer and associates with well therapeutic response to immunotherapy. Front Genet 2022; 13:1071270. [PMID: 36583022 PMCID: PMC9793949 DOI: 10.3389/fgene.2022.1071270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BrCa) is a heterogeneous disease, which leads to unsatisfactory prognosis in females worldwide. Previous studies have proved that tumor immune microenvironment (TIME) plays crucial roles in oncogenesis, progression, and therapeutic resistance in Breast cancer. However, biomarkers related to TIME features have not been fully discovered. Proteasome activator complex subunit 2 (PSME2) is a member of proteasome activator subunit gene family, which is critical to protein degradation mediated by the proteasome. In the current research, we comprehensively analyzed the expression and immuno-correlations of Proteasome activator complex subunit 2 in Breast cancer. Proteasome activator complex subunit 2 was significantly upregulated in tumor tissues but associated with well prognosis. In addition, Proteasome activator complex subunit 2 was overexpressed in HER2-positive Breast cancer but not related to other clinicopathological features. Interestingly, Proteasome activator complex subunit 2 was positively related to immune-related processes and identified immuno-hot TIME in Breast cancer. Specifically, Proteasome activator complex subunit 2 was positively correlated with immunomodulators, tumor-infiltrating immune cells (TIICs), immune checkpoints, and tumor mutation burden (TMB) levels. Moreover, the positive correlation between Proteasome activator complex subunit 2 and PD-L1 expression was confirmed in a tissue microarray (TMA) cohort. Furthermore, in an immunotherapy cohort of Breast cancer, patients with pathological complete response (pCR) expressed higher Proteasome activator complex subunit 2 compared with those with non-pathological complete response. In conclusion, Proteasome activator complex subunit 2 is upregulated in tumor tissues and correlated with the immuno-hot tumor immune microenvironment, which can be a novel biomarker for the recognition of tumor immune microenvironment features and immunotherapeutic response in Breast cancer.
Collapse
Affiliation(s)
- Cen Wu
- Department of General Surgery, Rudong County People’s Hospital, Nantong, China
| | - Ren Zhong
- Department of General Surgery, Rudong County People’s Hospital, Nantong, China
| | - Xiaofei Sun
- Department of General Surgery, Rudong County People’s Hospital, Nantong, China
| | - Jiajie Shi
- Departments of Breast Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
152
|
Jiang X, Qian Z, Chen Y, Zhou T, Zhao C, Yin Y. CMTM7 recognizes an immune-hot tumor microenvironment and predicts therapeutic response of immunotherapy in breast cancer well. Front Genet 2022; 13:1051269. [PMID: 36568362 PMCID: PMC9770089 DOI: 10.3389/fgene.2022.1051269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BRCA) is a complex disease that leads to major mortalities and unsatisfactory clinical outcomes among women worldwide. CKLF-like MARVEL transmembrane domain-containing 7 (CMTM7) is a potential tumor suppressor and regulator of PD-L1, which has been found as a functional signature in considerable oncogenesis, progression, and therapeutic resistance via deletion and downregulation. In this research, triple-negative breast cancer (BRCA), a molecular subtype having a lower response to endocrinotherapy but a higher response to chemotherapy and immunotherapy, showed higher transcriptional levels of CMTM7. Moreover, CMTM7 positively correlated with immunomodulators, tumor-infiltrating immune cells (TIICs), and immune checkpoints in many independent datasets. Furthermore, in an immunotherapy cohort of BRCA, patients with high CMTM7 expression were more sensitive to immunotherapy, and the therapeutic predictive value of CMTM7 is higher than that of PD-1 and PD-L1. To sum up, CMTM7 correlated with an inflamed tumor microenvironment and identified immune-hot tumors, which can be a novel biomarker for the recognition of immunological characteristics and an immunotherapeutic response in BRCA.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Pathology, Wuxi Maternity and Child Health Hospital, Wuxi, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, China
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Hospital, Wuxi, China
| | - Tao Zhou
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Hospital, Wuxi, China
| | - Can Zhao
- Department of Galactophore, Wuxi Maternity and Child Health Hospital, Wuxi, China,*Correspondence: Can Zhao, ; Yongxiang Yin,
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternity and Child Health Hospital, Wuxi, China,*Correspondence: Can Zhao, ; Yongxiang Yin,
| |
Collapse
|
153
|
Lin YY, Gao HF, Yang X, Zhu T, Zheng XX, Ji F, Zhang LL, Yang CQ, Yang M, Li JQ, Cheng MY, Wang K. Neoadjuvant therapy in triple-negative breast cancer: A systematic review and network meta-analysis. Breast 2022; 66:126-135. [PMID: 36265208 PMCID: PMC9587342 DOI: 10.1016/j.breast.2022.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Evidence for the preferred neoadjuvant therapy regimen in triple-negative breast cancer (TNBC) is not yet established. METHODS Literature search was conducted from inception to February 12, 2022. Phase 2 and 3 randomized controlled trials (RCTs) investigating neoadjuvant therapy for TNBC were eligible. The primary outcome was pathologic complete response (pCR); the secondary outcomes were all-cause treatment discontinuation, disease-free survival or event-free survival (DFS/EFS), and overall survival. Odd ratios (OR) with 95% credible intervals (CrI) were used to estimate binary outcomes; hazard ratios (HR) with 95% CrI were used to estimate time-to-event outcomes. Bayesian network meta-analysis was implemented for each endpoint. Sensitivity analysis and network meta-regression were done. RESULTS 41 RCTs (N = 7109 TNBC patients) were eligible. Compared with anthracycline- and taxane-based chemotherapy (ChT), PD-1 inhibitor plus platinum plus anthracycline- and taxane-based ChT was associated with a significant increased pCR rate (OR 3.95; 95% CrI 1.81-9.44) and a higher risk of premature treatment discontinuation (3.25; 1.26-8.29). Compared with dose-dense anthracycline- and taxane-based ChT, the combined treatment was not associated with significantly improved pCR (OR 2.57; 95% CrI 0.69-9.92). In terms of time-to-event outcomes, PD-1 inhibitor plus platinum plus anthracycline- and taxane-based ChT was associated with significantly improved DFS/EFS (HR 0.42; 95% CrI 0.19-0.81). CONCLUSIONS PD-1 inhibitor plus platinum and anthracycline- and taxane-based ChT was currently the most efficacious regimen for pCR and DFS/EFS improvement in TNBC. The choice of chemotherapy backbone, optimization of patient selection with close follow-up and proactive symptomatic managements are essential to the antitumor activity of PD-1 inhibitor.
Collapse
Affiliation(s)
- Ying-Yi Lin
- Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Hong-Fei Gao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xin Yang
- Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Anesthesiology, the First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Teng Zhu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xing-Xing Zheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China; Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fei Ji
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Liu-Lu Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Ci-Qiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jie-Qing Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Min-Yi Cheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Kun Wang
- Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
154
|
Lv Y, Bai Z, Wang X, Liu J, Li Y, Zhang X, Shan Y. Comprehensive evaluation of breast cancer immunotherapy and tumor microenvironment characterization based on interleukin genes-related risk model. Sci Rep 2022; 12:20524. [PMID: 36443508 PMCID: PMC9705306 DOI: 10.1038/s41598-022-25059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Breast cancer (BRCA) is the most prevalent malignancy and the leading cause of death in women. Interleukin (IL) genes are critical in tumor initiation and control. Nevertheless, the prognosis value of the IL in BRCA remains unclear. We collected data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and 94 IL genes were identified from GeneCard. Based on the random forest (RF), least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox regression analysis, we constructed an IL signature. GSE22219, GSE25065, and GSE21653 were derived as validation sets. The expression differences in the tumor microenvironment (TME), immunotherapy, and chemosensitivity of BRCA between the high- and low-risk groups were evaluated. Overall, 21 IL genes were selected to construct an IL risk model, of which IL18BP, IL17D, and IL23A were the first time identified as prognostic genes in BRCA. IL score could distinguish BRCA patients with inferior outcomes, and AUC of it was 0.70, 0.76, and 0.72 for 1-,3- and 5- years, respectively, which was also verified in GSE22219, GSE25065, and GSE21653 cohorts. Meanwhile, compared to luminal A and luminal B, HER2-positive and TNBC had significantly higher IL score. Besides, the high-risk group had a significantly higher prevalence of TP53 and TTN but a lower prevalence of PIK3CA, as well as higher tumor mutation burden (TMB) and neoantigen level. High- and low-risk groups exhibited notable differences in immunomodulators and tumor infiltrates immune cells (TIICs), and the high-risk group had significantly lower Tumor Immune Dysfunction and Exclusion (TIDE) score. Additionally, the high-risk group has more responders to immune or anti-HER2 combination therapy, whereas the low-risk group has higher sensitivity to docetaxel and paclitaxel. Consequently, we constructed a reliable risk model based on the IL genes, which can provide more information on both the risk stratification and personalizing management strategies for BRCA.
Collapse
Affiliation(s)
- Yalei Lv
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, China
| | - Zihe Bai
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, China
| | - Xiaoyan Wang
- The Fifth Ward of Medical Oncology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Jiayin Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, China
| | - Yuntao Li
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Zhang
- Department of Epidemiology and Statistics, Hebei Medical University, Shijiazhuang, China
| | - Yujie Shan
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, China.
| |
Collapse
|
155
|
Zhang Y, Wang J, Hu T, Wang H, Long M, Liang B. Adverse Events of PD-1 or PD-L1 Inhibitors in Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Life (Basel) 2022; 12:1990. [PMID: 36556355 PMCID: PMC9787874 DOI: 10.3390/life12121990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: This study aimed to develop a comprehensive understanding of the treatment-related adverse events when using PD-1 or PD-L1 inhibitors in triple-negative breast cancer (TNBC). (2) Methods: We conducted a meta-analysis of Phase II/III randomized clinical trials. Studies were searched for using PubMed, Embase, and Cochrane Library from 1 March 1980 till 30 June 2022. Data on adverse events were mainly extracted from ClinicalTrials.gov and published articles. A generalized linear mixed model with the logit transformation was employed to obtain the overall incidence of adverse events across all studies. For serious adverse events with low incidences, the Peto method was used to calculate the odds ratio (OR) and 95% confidence interval (95%CI) in the PD-1 or PD-L1 inhibitors groups compared to the control groups. (3) Results: Nine studies were included in the meta-analysis, including a total of 2941 TNBC patients treated with PD-1 or PD-L1 inhibitors (including atezolizumab, pembrolizumab and durvalumab) and 2339 patients in the control groups. Chemotherapy alone was the control group in all studies. The average incidences of all serious immune-related adverse events of interest (hypothyroidism, hyperthyroidism, pneumonitis, pruritus, rash) were less than 1%, except for adrenal insufficiency (1.70%, 95%CI: 0.50-5.61%) in the PD-1 or PD-L1 groups. PD-1 or PD-L1 inhibitors significantly increased the risk of serious pneumonitis (OR = 2.52, 95%CI: 1.02-6.26), hypothyroidism (OR = 5.92, 95%CI: 1.22-28.86), alanine aminotransferase (ALT) elevation (OR = 1.66, 95%CI: 1.12-2.45), and adrenal insufficiency (OR = 18.81, 95%CI: 3.42-103.40). For non-serious adverse events, the patients treated with PD-1 or PD-L1 inhibitors had higher risk of aspartate aminotransferase (AST) elevation (OR =1.26, 95%CI: 1.02-1.57), hypothyroidism (OR = 3.63, 95%CI: 2.92-4.51), pruritus (OR = 1.84, 95%CI: 1.30-2.59), rash (OR = 1.29, 95%CI: 1.08-1.55), and fever (OR = 1.77, 95%CI: 1.13-2.77), compared with chemotherapy alone. (4) Conclusions: The incidence of serious immune-related adverse events in PD-1 or PD-L1 inhibitors groups is low but significantly higher than in chemotherapy groups. When using PD-1 or PD-L1 inhibitors for the treatment of TNBC, serious pneumonitis, hypothyroidism, ALT elevation, and adrenal insufficiency should be considered. Non-serious adverse events, such as AST elevation, rash, and fever, should also be taken into consideration.
Collapse
Affiliation(s)
- Yixi Zhang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jingyuan Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Taobo Hu
- Department of Breast Surgery, Peking University People’s Hospital, Beijing 100044, China
| | - Huina Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Mengping Long
- Department of Pathology, Peking University Cancer Hospital, Beijing 100083, China
| | - Baosheng Liang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
156
|
Zhang C, Li Y, Qian J, Zhu Z, Huang C, He Z, Zhou L, Gong Y. Identification of a claudin-low subtype in clear cell renal cell carcinoma with implications for the evaluation of clinical outcomes and treatment efficacy. Front Immunol 2022; 13:1020729. [PMID: 36479115 PMCID: PMC9719924 DOI: 10.3389/fimmu.2022.1020729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background In bladder and breast cancer, the claudin-low subtype is widely identified, revealing a distinct tumor microenvironment (TME) and immunological feature. Although we have previously identified individual claudin members as prognostic biomarkers in clear cell renal cell carcinoma (ccRCC), the existence of an intrinsic claudin-low subtype and its interplay with TME and clinical outcomes remains unclear. Methods Transcriptomic and clinical data from The Cancer Genome Atlas (TCGA)- kidney clear cell carcinoma (KIRC) cohort and E-MTAB-1980 were derived as the training and validation cohorts, respectively. In addition, GSE40435, GSE53757, International Cancer Genome Consortium (ICGC) datasets, and RNA-sequencing data from local ccRCC patients were utilized as validation cohorts for claudin clustering based on silhouette scores. Using weighted correlation network analysis (WGCNA) and multiple machine learning algorithms, including least absolute shrinkage and selection operator (LASSO), CoxBoost, and random forest, we constructed a claudin-TME related (CTR) risk signature. Furthermore, the CTR associated genomic characteristics, immunity, and treatment sensitivity were evaluated. Results A claudin-low phenotype was identified and associated with an inferior survival and distinct TME and cancer immunity characteristics. Based on its interaction with TME, a risk signature was developed with robust prognostic prediction accuracy. Moreover, we found its association with a claudin-low, stem-like phenotype and advanced clinicopathological features. Intriguingly, it was also effective in kidney chromophobe and renal papillary cell carcinoma. The high CTR group exhibited genomic characteristics similar to those of claudin-low phenotype, including increased chromosomal instability (such as deletions at 9p) and risk genomic alterations (especially BAP1 and SETD2). In addition, a higher abundance of CD8 T cells and overexpression of immune checkpoints, such as LAG3, CTLA4 and PDCD1, were identified in the high CTR group. Notably, ccRCC patients with high CTR were potentially more sensitive to immune checkpoint inhibitors; their counterparts could have more clinical benefits when treated with antiangiogenic drugs, mTOR, or HIF inhibitors. Conclusion We comprehensively evaluated the expression features of claudin genes and identified a claudin-low phenotype in ccRCC. In addition, its related signature could robustly predict the prognosis and provide guide for personalizing management strategies.
Collapse
Affiliation(s)
- Cuijian Zhang
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,National Urological Cancer Center, Peking University First Hospital, Beijing, China
| | - Yifan Li
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,National Urological Cancer Center, Peking University First Hospital, Beijing, China
| | - Jinqin Qian
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,National Urological Cancer Center, Peking University First Hospital, Beijing, China
| | - Zhenpeng Zhu
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,National Urological Cancer Center, Peking University First Hospital, Beijing, China
| | - Cong Huang
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,National Urological Cancer Center, Peking University First Hospital, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,National Urological Cancer Center, Peking University First Hospital, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,National Urological Cancer Center, Peking University First Hospital, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,National Urological Cancer Center, Peking University First Hospital, Beijing, China,*Correspondence: Yanqing Gong,
| |
Collapse
|
157
|
Uliano J, Nicolò E, Corvaja C, Taurelli Salimbeni B, Trapani D, Curigliano G. Combination immunotherapy strategies for triple-negative breast cancer: current progress and barriers within the pharmacological landscape. Expert Rev Clin Pharmacol 2022; 15:1399-1413. [DOI: 10.1080/17512433.2022.2142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jacopo Uliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carla Corvaja
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Clinical and Molecular Medicine, Oncology Unit, “La Sapienza” University of RomeAzienda Ospedaliera Sant’Andrea, Rome, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Medical Oncology, Medical Oncology Dana Farber Cancer Institute, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
158
|
Varma R, Wright M, Abraham J, Kruse M. Immune checkpoint inhibition in early-stage triple-negative breast cancer. Expert Rev Anticancer Ther 2022; 22:1225-1238. [PMID: 36278877 DOI: 10.1080/14737140.2022.2139240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Breast cancer cells can evade immune recognition by upregulating programmed death-ligand 1 (PD-L1) leading to decreased T cell function. Anti-PD-1 agents, like pembrolizumab, and anti-PD-L1 agents, such as atezolizumab and durvalumab, in combination with chemotherapy were found to have efficacy in metastatic triple-negative breast cancer (TNBC). With sub-optimal long-term outcomes in early-stage TNBC, this combination of immune checkpoint inhibition with chemotherapy was subsequently investigated. A robust immune microenvironment and extensive tumor antigen exposure in early-stage breast cancer is believed to facilitate response to checkpoint inhibitors. AREAS COVERED This review focuses on studies that assess the role of neoadjuvant immune checkpoint inhibition along with chemotherapy. The results of key phase I, II and III trials using checkpoint inhibitors in early-stage breast cancer (ESBC) are reviewed along with foundational data from metastatic TNBC, including the role of biomarkers in predicting response to immunotherapy. EXPERT OPINION Despite a clear role for neoadjuvant immune checkpoint inhibition in TNBC, many questions remain. The benefit of these agents in the neoadjuvant versus adjuvant setting is unclear and immune-related toxicity is a major concern. Additional studies are needed to elucidate which immune checkpoint inhibitor is most efficacious and best tolerated in early-stage TNBC.
Collapse
Affiliation(s)
- Revati Varma
- Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Matthew Wright
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, Ohio, United States
| | - Jame Abraham
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, Ohio, United States
| | - Megan Kruse
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, Ohio, United States
| |
Collapse
|
159
|
Liang Q, Xu Z, Liu Y, Peng B, Cai Y, Liu W, Yan Y. NR2F1 Regulates TGF-β1-Mediated Epithelial-Mesenchymal Transition Affecting Platinum Sensitivity and Immune Response in Ovarian Cancer. Cancers (Basel) 2022; 14:4639. [PMID: 36230565 PMCID: PMC9563458 DOI: 10.3390/cancers14194639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism underlying platinum resistance in ovarian cancer (OC) remains unclear. We used bioinformatic analyses to screen differentially expressed genes responsible for platinum resistance and explore NR2F1's correlation with prognostic implication and OC staging. Moreover, Gene-set enrichment analysis (GSEA) and Gene Ontology (GO) analyses were used for pathway analysis. Epithelial-mesenchymal transition (EMT) properties, invasion, and migration capacities were analyzed by biochemical methods. The association between NR2F1 and cancer-associated fibroblast (CAF) infiltration and immunotherapeutic responses were also researched. A total of 13 co-upregulated genes and one co-downregulated gene were obtained. Among them, NR2F1 revealed the highest correlation with a poor prognosis and positively correlated with OC staging. GSEA and GO analysis suggested the induction of EMT via TGFβ-1 might be a possible mechanism that NR2F1 participates in resistance. In vitro experiments showed that NR2F1 knockdown did not affect cell proliferation, but suppressed cell invasion and migration with or without cisplatin treatment through the EMT pathway. We also found that NR2F1 could regulate TGF-β1 signaling, and treating with TGF-β1 could reverse these effects. Additionally, NR2F1 was predominantly associated with immunosuppressive CAF infiltration, which might cause a poor response to immune check blockades. In conclusion, NR2F1 regulates TGF-β1-mediated EMT affecting platinum sensitivity and immune response in OC patients.
Collapse
Affiliation(s)
- Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
160
|
Vu SH, Vetrivel P, Kim J, Lee MS. Cancer Resistance to Immunotherapy: Molecular Mechanisms and Tackling Strategies. Int J Mol Sci 2022; 23:10906. [PMID: 36142818 PMCID: PMC9513751 DOI: 10.3390/ijms231810906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer immunotherapy has fundamentally altered cancer treatment; however, its efficacy is limited to a subset of patients in most clinical settings. The immune system plays a key role in cancer progression from tumor initiation to the metastatic state. Throughout the treatment course, communications between the immune cells in the tumor microenvironment and the immune macroenvironment, as well as interactions between the immune system and cancer cells, are dynamic and constantly evolving. To improve the clinical benefit for patients who do not respond completely to immunotherapy, the molecular mechanisms of resistance to immunotherapy must be elucidated in order to develop effective strategies to overcome resistance. In an attempt to improve and update the current understanding of the molecular mechanisms that hinder immunotherapy, we discuss the molecular mechanisms of cancer resistance to immunotherapy and the available treatment strategies.
Collapse
Affiliation(s)
- Son Hai Vu
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City 72308, Vietnam
- Cellular Heterogeneity Research Center, Department of Biological Science, Sookmyung Women’s University, Seoul 04310, Korea
| | - Preethi Vetrivel
- Department of Pharmacy, National University of Singapore, Singapore 117643, Singapore
| | - Jongmin Kim
- Cellular Heterogeneity Research Center, Department of Biological Science, Sookmyung Women’s University, Seoul 04310, Korea
| | - Myeong-Sok Lee
- Cellular Heterogeneity Research Center, Department of Biological Science, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
161
|
Zhang J, Xia Y, Zhou X, Yu H, Tan Y, Du Y, Zhang Q, Wu Y. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol 2022; 13:977660. [PMID: 36188535 PMCID: PMC9523914 DOI: 10.3389/fphar.2022.977660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant subtype of breast cancer (BC) with vicious behaviors. TNBC is usually associated with relatively poor clinical outcomes, earlier recurrence, and high propensity for visceral metastases than other BC types. TNBC has been increasingly recognized to constitute a very molecular heterogeneous subtype, which may offer additional therapeutic opportunities due to newly discovered cancer-causing drivers and targets. At present, there are multiple novel targeted therapeutic drugs in preclinical researches, clinical trial designs, and clinical practices, such as platinum drugs, poly ADP-ribose polymerase (PARP) inhibitors, immunocheckpoint inhibitors, androgen receptor inhibitors as well as PI3K/AKT/mTOR targeted inhibitors. These personalized, single, or combinational therapies based on molecular heterogeneity are currently showing positive results. The scope of this review is to highlight the latest knowledge about these potential TNBC therapeutic drugs, which will provide comprehensive insights into the personalized therapeutic strategies and options for combating TNBC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Yu Xia
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Zhou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
162
|
Zhang T, Wang Y, Shi C, Liu X, Lv S, Wang X, Li W. Pancreatic injury following immune checkpoint inhibitors: A systematic review and meta-analysis. Front Pharmacol 2022; 13:955701. [PMID: 36133806 PMCID: PMC9483178 DOI: 10.3389/fphar.2022.955701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Pancreatic injury (pancreatitis, amylase/lipase elevation) is a rare adverse event of immune checkpoint inhibitors (ICIs). With the high number of clinical studies on ICIs, the incidence and characteristics of associated pancreatic injury (PI) need to be reevaluated. Methods: A systematic review and meta-analysis was conducted to assess the incidence of PI in cancer patients who received ICIs in randomized controlled trials (RCTs). PubMed, Embase, the ASCO, ESMO, and AACR conference proceedings before 1 April 2022, were investigated for relevant research. Results: 50 RCTs involving 35,223 patients were included. The incidence of ICIs-PI was 2.22% (95% CI = 1.94%–2.53%). The incidence of PI was 3.76% (95% CI = 1.84–7.67%) when combining two ICIs, which was higher than single ICIs [2.25% (95% CI = 1.91–2.65%)]. The ICIs were ranked from high to low based on PI incidence: PD-L1 inhibitors 3.01% (95% CI = 1.86–4.87%), CTLA-4 inhibitors 2.92% (95% CI = 0.99–8.65%) and PD-1 Inhibitor 2% (95% CI = 1.67–2.39%). The ICI with the highest rate of PI was pembrolizumab 7.23.% (95% CI = 1.69–30.89%). In addition, the incidence of severe ICIs-PI was 2.08% (95% CI = 1.76–2.46%); and the incidence of severe PI was 2.32% (95% CI = 1.76–3.06%) when combining two ICIs, which was higher than single ICI [1.95% (95% CI = 1.58–2.41%)]. The ICIs were ranked from high to low according to the incidence of severe PI: PD-L1 inhibitors 3.1% (95% CI = 1.7–5.64%), CTLA-4 inhibitors 2.69% (95% CI = 0.76–9.49%), PD-1 inhibitors 1.80% (95% CI = 1.41–2.29%). Conclusion: Treatment with multiple ICIs result in a higher incidence of PI compared to single ICIs, irrespective of the grade of pancreatic injury. The incidence of PI caused by PD-L1 inhibitors is higher than that of CTLA-4 inhibitors and PD-1 Inhibitor, and Pembrolizumab has the highest rate of ICIs-PI. Although the incidence of ICIs-PI is not high, they are usually severe (≥ grade 3 events).
Collapse
Affiliation(s)
- Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunhui Shi
- Department of Medical Oncology, Baoji Hospital of Traditional Chinese Medicine, Baoji, China
| | - Xiaochun Liu
- Department of Medical Oncology, Baoji Hospital of Traditional Chinese Medicine, Baoji, China
| | - Shangbin Lv
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Weihong Li,
| |
Collapse
|
163
|
PARP Inhibitors for Breast Cancer: Germline BRCA1/2 and Beyond. Cancers (Basel) 2022; 14:cancers14174332. [PMID: 36077867 PMCID: PMC9454726 DOI: 10.3390/cancers14174332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Poly-adenosine diphosphate ribose polymerase (PARP) inhibitors (PARPi) are effective against tumors with mutations in DNA repair genes, most commonly in the BRCA1 and BRCA2 genes. Because these tumors are unable to repair their DNA, PARPi have been used to target DNA repair pathways and are useful in the treatment of breast cancers with some of these alterations. There are two FDA-approved PARPi for patients with breast cancer—olaparib and talazoparib. The data on olaparib and talazoparib in the treatment of breast cancer are summarized in this review, and we also explore potential future applications of PARPi beyond inherited BRCA mutations. Abstract Poly-adenosine diphosphate ribose polymerase (PARP) inhibitors (PARPi) are approved for BRCA1/2 carriers with HER2-negative breast cancer in the adjuvant setting with a high risk of recurrence as well as the metastatic setting. However, the indications for PARPi are broader for patients with other cancer types (e.g., prostate and ovarian cancer), involving additional biomarkers (e.g., ATM, PALB2, and CHEK) and genomic instability scores. Herein, we summarize the data on PARPi and breast cancer and discuss their use beyond BRCA carriers.
Collapse
|
164
|
Fountzilas E, Tsimberidou AM, Vo HH, Kurzrock R. Clinical trial design in the era of precision medicine. Genome Med 2022; 14:101. [PMID: 36045401 PMCID: PMC9428375 DOI: 10.1186/s13073-022-01102-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Recent rapid biotechnological breakthroughs have led to the identification of complex and unique molecular features that drive malignancies. Precision medicine has exploited next-generation sequencing and matched targeted therapy/immunotherapy deployment to successfully transform the outlook for several fatal cancers. Tumor and liquid biopsy genomic profiling and transcriptomic, immunomic, and proteomic interrogation can now all be leveraged to optimize therapy. Multiple new trial designs, including basket and umbrella trials, master platform trials, and N-of-1 patient-centric studies, are beginning to supplant standard phase I, II, and III protocols, allowing for accelerated drug evaluation and approval and molecular-based individualized treatment. Furthermore, real-world data, as well as exploitation of digital apps and structured observational registries, and the utilization of machine learning and/or artificial intelligence, may further accelerate knowledge acquisition. Overall, clinical trials have evolved, shifting from tumor type-centered to gene-directed and histology-agnostic trials, with innovative adaptive designs and personalized combination treatment strategies tailored to individual biomarker profiles. Some, but not all, novel trials now demonstrate that matched therapy correlates with superior outcomes compared to non-matched therapy across tumor types and in specific cancers. To further improve the precision medicine paradigm, the strategy of matching drugs to patients based on molecular features should be implemented earlier in the disease course, and cancers should have comprehensive multi-omic (genomics, transcriptomics, proteomics, immunomic) tumor profiling. To overcome cancer complexity, moving from drug-centric to patient-centric individualized combination therapy is critical. This review focuses on the design, advantages, limitations, and challenges of a spectrum of clinical trial designs in the era of precision oncology.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Hospital, Thessaloniki, Greece
- European University Cyprus, Limassol, Cyprus
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
165
|
Overexpression of CDCP1 is Associated with Poor Prognosis and Enhanced Immune Checkpoints Expressions in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1469354. [PMID: 36090897 PMCID: PMC9452972 DOI: 10.1155/2022/1469354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
CUB-domain containing protein 1 (CDCP1) is a transmembrane protein acting as an effector of SRC family kinases, which play an oncogenic role in multiple human cancers. However, its clinical and immune correlations in breast cancer (BrCa) have not been explored. To define the expression, prognostic value, and potential molecular role of CDCP1 in BrCa, multiple public datasets, and an in-house cohort were used. Compared with paratumor tissue, CDCP1 was remarkably upregulated in the tumor tissues at both mRNA and protein levels. In the in-house cohort, CDCP1 protein expression was related to several clinicopathological parameters, including age, ER status, PR status, molecular type, and survival status. Kaplan–Meier analysis and Cox regression analysis exhibited that CDCP1 was an important prognostic biomarker in BrCa. In addition, enrichment analysis uncovered that CDCP1 was not only involved in multiple oncogenic pathways, but correlated with overexpression of immune checkpoints. Overall, we reported that increased expression of CDCP1 is a favorable prognostic factor in patients with BrCa. In addition, the correlations between CDCP1 and immune checkpoints provide a novel insight into the adjuvant treatment for immune checkpoint blockade via targeting CDCP1.
Collapse
|
166
|
PD-L1 protein expression in relation to recurrence score values in early-stage ER + breast cancer. Breast Cancer Res Treat 2022; 196:221-227. [PMID: 36028784 DOI: 10.1007/s10549-022-06712-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE We assessed associations between PD-L1 protein expression, RS, tumor grade, and stromal tumor-infiltrating lymphocyte (TIL) count in early-stage ER + cancers. METHODS FFPE tissue blocks of 213 patients with RS in 2012-2017 were identified. PD-L1 immunohistochemistry was performed with SP142 assay, cases with ≥ 1% tumor-infiltrating immune cell positivity in the tumor area were considered PD-L1 + . TIL scores were determined following the international TIL counting guidelines. PD-L1 expression positivity rates were compared across RS (< 11, 11-25, > 25) and TIL categories (< 10%, 10-29%, > 30%), and tumor grade using Wilcoxon and Chi-square tests. Multivariate analysis was performed using logistic regression. RESULTS PD-L1 and TIL results were available for 201 and 203 patients. Overall, 53% of cases were PD-L1 +. PD-L1 expression was higher among cases with RS > 25, versus RS < 11 (p = 0.00019) and RS 11-25 (p = 0.0017). PD-L1 positivity also correlated with TIL score, tumor grade, and tumor size. Among cancers with TIL > 30%, 92% were PD-L1 + versus 44% PD-L1 + among TIL < 10% (p = 2.8 × 10-6). Grade 3 cancers had higher PD-L1 positivity (79% PD-L1 +) versus grade 2 (49% PD-L1 +) or 1 tumors (48% PD-L1 +) (p = 0.00047). T2 and T3 tumors had more frequent PD-L1 positivity (67% and 83%, respectively) versus T1 cancers (46%) (p = 0.008). In multivariate analysis, only TIL and RS remained as independent predictors of PD-L1 positivity. CONCLUSION PD-L1 expression is significantly more frequent and higher in larger tumors (T2, T3), grade 3 cancers, and in cancers with RS > 25. PD-L1 expression also correlates with TIL score.
Collapse
|
167
|
Garufi G, Carbognin L, Schettini F, Seguí E, Di Leone A, Franco A, Paris I, Scambia G, Tortora G, Fabi A. Updated Neoadjuvant Treatment Landscape for Early Triple Negative Breast Cancer: Immunotherapy, Potential Predictive Biomarkers, and Novel Agents. Cancers (Basel) 2022; 14:cancers14174064. [PMID: 36077601 PMCID: PMC9454536 DOI: 10.3390/cancers14174064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In recent years, several agents have been tested in randomized clinical trials in addition to anthracycline and taxane-based neoadjuvant chemotherapy (NACT) in early-stage triple-negative breast cancer (TNBC) to improve pathological complete response rate and, ultimately, survival outcome. Platinum agents, immune checkpoint inhibitors (ICIs), and PARP-inhibitors are the most extensively studied, while established predictors of their efficacy are lacking. Based on the biological features of TNBC, the purpose of this review is to provide an overview of the role of platinum agents, immunotherapy, and novel target therapies in the neoadjuvant setting. Moreover, based on safety issues and financial costs, we provide an overview of potential biomarkers associated with increased likelihood of benefit from the addition of platinum, ICIs, and novel target therapies to NACT. Abstract Triple-negative breast cancer (TNBC) is characterized by the absence of hormone receptor and HER2 expression, and therefore a lack of therapeutic targets. Anthracyclines and taxane-based neoadjuvant chemotherapy have historically been the cornerstone of treatment of early TNBC. However, genomic and transcriptomic analyses have suggested that TNBCs include various subtypes, characterized by peculiar genomic drivers and potential therapeutic targets. Therefore, several efforts have been made to expand the therapeutic landscape of early TNBC, leading to the introduction of platinum and immunomodulatory agents into the neoadjuvant setting. This review provides a comprehensive overview of the currently available evidence regarding platinum agents and immune-checkpoint-inhibitors for the neoadjuvant treatment of TNBC, as well as the novel target therapies that are currently being evaluated in this setting. Taking into account the economic issues and the side effects of the expanding therapeutic options, we focus on the potential efficacy biomarkers of the emerging therapies, in order to select the best therapeutic strategy for each specific patient.
Collapse
Affiliation(s)
- Giovanna Garufi
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
- Correspondence: (G.G.); (A.F.)
| | - Luisa Carbognin
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
- Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Elia Seguí
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
| | - Alba Di Leone
- Breast Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Antonio Franco
- Breast Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Ida Paris
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Giovanni Scambia
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Giampaolo Tortora
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Alessandra Fabi
- Unit of Precision Medicine in Senology, Department of Woman and Child Health and Public Health, Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Roma, Italy
- Correspondence: (G.G.); (A.F.)
| |
Collapse
|
168
|
Bonadio RC, Tarantino P, Testa L, Punie K, Pernas S, Barrios C, Curigliano G, Tolaney SM, Barroso-Sousa R. Management of patients with early-stage triple-negative breast cancer following pembrolizumab-based neoadjuvant therapy: What are the evidences? Cancer Treat Rev 2022; 110:102459. [PMID: 35998514 DOI: 10.1016/j.ctrv.2022.102459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
New therapy options have changed the treatment landscape of early-stage triple-negative breast cancer (TNBC) in recent years. Most patients are candidates for neoadjuvant chemotherapy, which helps to downstage the tumor and tailor adjuvant systemic therapy based on pathologic response. Capecitabine, pembrolizumab, and olaparib have been incorporated into the armamentarium of adjuvant treatment for selected patients. The KEYNOTE-522 trial, that demonstrated the benefit of pembrolizumab, given in addition to neoadjuvant chemotherapy and adjuvantly after surgery, represented a paradigm shift for early-stage TNBC treatment. Pembrolizumab was continued in the adjuvant setting irrespective of response to neoadjuvant therapy, and other adjuvant therapies were not administered in the trial. Many questions were then raised on the selection of adjuvant therapy regimens for patients with residual disease (RD). Prior to the routine use of immune-checkpoint inhibitors (ICI), the value of adjuvant capecitabine for patients with RD after neoadjuvant polychemotherapy was demonstrated. Given the poor prognosis of some patients with RD after neoadjuvant chemo-immunotherapy, while the survival advantage of adding capecitabine during the adjuvant phase of pembrolizumab is unknown, it does appear safe and can be considered. Regarding patients harboring germline BRCA mutations with RD after neoadjuvant ICI-containing regimens, the combination of olaparib with pembrolizumab can be an option based on existing safety data.
Collapse
Affiliation(s)
- Renata Colombo Bonadio
- Instituto D'Or de Pesquisa e Ensino (IDOR), São Paulo, Brazil; Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Paolo Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; European Institute of Oncology, IRCCS
| | - Laura Testa
- Instituto D'Or de Pesquisa e Ensino (IDOR), São Paulo, Brazil; Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Sonia Pernas
- Catalan Institute of Oncology; IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Carlos Barrios
- Latin American Cooperative Oncology Group (LACOG), Grupo Oncoclínicas, Porto Alegre, Brazil
| | | | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Romualdo Barroso-Sousa
- Oncology Center, Hospital Sirio-Libanes, Brasília, Brazil; DASA Oncology, Brasília, Brazil.
| |
Collapse
|
169
|
Comparative biomarker analysis of PALOMA-2/3 trials for palbociclib. NPJ Precis Oncol 2022; 6:56. [PMID: 35974168 PMCID: PMC9381541 DOI: 10.1038/s41698-022-00297-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
While cyclin-dependent kinase 4/6 (CDK4/6) inhibitors, including palbociclib, combined with endocrine therapy (ET), are becoming the standard-of-care for hormone receptor-positive/human epidermal growth factor receptor 2‒negative metastatic breast cancer, further mechanistic insights are needed to maximize benefit from the treatment regimen. Herein, we conducted a systematic comparative analysis of gene expression/progression-free survival relationship from two phase 3 trials (PALOMA-2 [first-line] and PALOMA-3 [≥second-line]). In the ET-only arm, there was no inter-therapy line correlation. However, adding palbociclib resulted in concordant biomarkers independent of initial ET responsiveness, with shared sensitivity genes enriched in estrogen response and resistance genes over-represented by mTORC1 signaling and G2/M checkpoint. Biomarker patterns from the combination arm resembled patterns observed in ET in advanced treatment-naive patients, especially patients likely to be endocrine-responsive. Our findings suggest palbociclib may recondition endocrine-resistant tumors to ET, and may guide optimal therapeutic sequencing by partnering CDK4/6 inhibitors with different ETs. Pfizer (NCT01740427; NCT01942135).
Collapse
|
170
|
Pinilla K, Drewett LM, Lucey R, Abraham JE. Precision Breast Cancer Medicine: Early Stage Triple Negative Breast Cancer-A Review of Molecular Characterisation, Therapeutic Targets and Future Trends. Front Oncol 2022; 12:866889. [PMID: 36003779 PMCID: PMC9393396 DOI: 10.3389/fonc.2022.866889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Personalised approaches to the management of all solid tumours are increasing rapidly, along with wider accessibility for clinicians. Advances in tumour characterisation and targeted therapies have placed triple-negative breast cancers (TNBC) at the forefront of this approach. TNBC is a highly heterogeneous disease with various histopathological features and is driven by distinct molecular alterations. The ability to tailor individualised and effective treatments for each patient is of particular importance in this group due to the high risk of distant recurrence and death. The mainstay of treatment across all subtypes of TNBC has historically been cytotoxic chemotherapy, which is often associated with off-target tissue toxicity and drug resistance. Neoadjuvant chemotherapy is commonly used as it allows close monitoring of early treatment response and provides valuable prognostic information. Patients who achieve a complete pathological response after neoadjuvant chemotherapy are known to have significantly improved long-term outcomes. Conversely, poor responders face a higher risk of relapse and death. The identification of those subgroups that are more likely to benefit from breakthroughs in the personalised approach is a challenge of the current era where several targeted therapies are available. This review presents an overview of contemporary practice, and promising future trends in the management of early TNBC. Platinum chemotherapy, DNA damage response (DDR) inhibitors, immune checkpoint inhibitors, inhibitors of the PI3K-AKT-mTOR, and androgen receptor (AR) pathways are some of the increasingly studied therapies which will be reviewed. We will also discuss the growing evidence for less-developed agents and predictive biomarkers that are likely to contribute to the forthcoming advances in this field. Finally, we will propose a framework for the personalised management of TNBC based upon the integration of clinico-pathological and molecular features to ensure that long-term outcomes are optimised.
Collapse
Affiliation(s)
- Karen Pinilla
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lynsey M. Drewett
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rebecca Lucey
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jean E. Abraham
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
171
|
Howard FM, Pearson AT, Nanda R. Clinical trials of immunotherapy in triple-negative breast cancer. Breast Cancer Res Treat 2022; 195:1-15. [PMID: 35834065 PMCID: PMC9338129 DOI: 10.1007/s10549-022-06665-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Immunotherapy has started to transform the treatment of triple-negative breast cancer (TNBC), in part due to the unique immunogenicity of this breast cancer subtype. This review summarizes clinical studies of immunotherapy in advanced and early-stage TNBC. FINDINGS Initial studies of checkpoint blockade monotherapy demonstrated occasional responses, especially in patients with untreated programmed death-ligand 1 (PD-L1) positive advanced TNBC, but failed to confirm a survival advantage over chemotherapy. Nonetheless, pembrolizumab monotherapy has tumor agnostic approval for microsatellite instability-high or high tumor mutational burden cancers, and thus can be considered for select patients with advanced TNBC. Combination chemoimmunotherapy approaches have been more successful, and pembrolizumab is approved for PD-L1 positive advanced TNBC in combination with chemotherapy. This success has been translated to the curative setting, where pembrolizumab is now approved in combination with neoadjuvant chemotherapy for high-risk early-stage TNBC. CONCLUSION Immunotherapy has been a welcome addition to the growing armamentarium for TNBC, but responses remain limited to a subset of patients. Innovative strategies are under investigation in an attempt to induce immune responses in resistant tumors-with regimens incorporating small-molecule inhibitors, novel immune checkpoint targets, and intratumoral injections that directly alter the tumor microenvironment. As the focus shifts toward the use of immunotherapy for early-stage TNBC, it will be critical to identify those who derive the most benefit from treatment, given the potential for irreversible autoimmune toxicity and the lack of predictive accuracy of PD-L1 expression in the early-stage setting.
Collapse
Affiliation(s)
- Frederick M Howard
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA.
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| | - Rita Nanda
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| |
Collapse
|
172
|
Zheng D, Hou X, Yu J, He X. Combinatorial Strategies With PD-1/PD-L1 Immune Checkpoint Blockade for Breast Cancer Therapy: Mechanisms and Clinical Outcomes. Front Pharmacol 2022; 13:928369. [PMID: 35935874 PMCID: PMC9355550 DOI: 10.3389/fphar.2022.928369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
As an emerging antitumor strategy, immune checkpoint therapy is one of the most promising anticancer therapies due to its long response duration. Antibodies against the programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) axis have been extensively applied to various cancers and have demonstrated unprecedented efficacy. Nevertheless, a poor response to monotherapy with anti-PD-1/PD-L1 has been observed in metastatic breast cancer. Combination therapy with other standard treatments is expected to overcome this limitation of PD-1/PD-L1 blockade in the treatment of breast cancer. In the present review, we first illustrate the biological functions of PD-1/PD-L1 and their role in maintaining immune homeostasis as well as protecting against immune-mediated tissue damage in a variety of microenvironments. Several combination therapy strategies for the combination of PD-1/PD-L1 blockade with standard treatment modalities have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including chemotherapy, radiotherapy, targeted therapy, antiangiogenic therapy, and other immunotherapies. The corresponding clinical trials provide valuable estimates of treatment effects. Notably, several combination options significantly improve the response and efficacy of PD-1/PD-L1 blockade. This review provides a PD-1/PD-L1 clinical trial landscape survey in breast cancer to guide the development of more effective and less toxic combination therapies.
Collapse
Affiliation(s)
- Dan Zheng
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaolin Hou
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiujing He
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- *Correspondence: Xiujing He,
| |
Collapse
|
173
|
Risk of Rash in PD-1 or PD-L1-Related Cancer Clinical Trials: A Systematic Review and Meta-Analysis. JOURNAL OF ONCOLOGY 2022; 2022:4976032. [PMID: 35898927 PMCID: PMC9313907 DOI: 10.1155/2022/4976032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
Background Given that immune-related rash was the most frequently reported PD-1 or PD-L1-related skin toxicity, this systematic review and meta-analysis were conducted to elucidate its incidence risk. Methods The meta-analysis was carried out according to the PRISMA guidelines. The random effect model was used in the process of all analyses. Skin rash of all grades and grades 3–5 were calculated and gathered in the final comprehensive analyses. Results The study included 86 clinical trials classified into 15 groups. Compared with chemotherapy, PD-1 or PD-L1 inhibitors significantly strengthened the risk of developing rash across all grades (OR = 1.66, 95% CI: [1.31, 2.11]; p < 0.0001). This trend was significantly stronger when the control group was placebo (OR = 2.62, 95% CI: [1.88, 3.65]; p < 0.00001). Similar results were observed when PD-1 or PD-L1 inhibitors were given together with chemotherapy (OR = 1.87, 95% CI: [1.59, 2.20]; p < 0.00001), even in patients with grades 3–5. As with other combination therapies, the risk of developing rash for all grades was enhanced when PD-1 or PD-L1 was given together with chemotherapy as the second-line option (OR = 2.98, 95% CI: [1.87, 4.75]; p=0.05). No statistically significant differences could be found in skin rash between the PD-1 and PD-L1-related subgroups. Conclusion Whether PD-1 or PD-L1 inhibitors were given alone or together with others, the risk of developing rash would be enhanced. Furthermore, the risk of developing rash appeared to be higher when PD-1 or PD-L1 inhibitors together with other antitumor drugs were given as the second-line options. No statistically significant results of developing rash between PD-1 and PD-L1 subgroups were obtained owing to the participation of PD-1 or PD-L1 inhibitors.
Collapse
|
174
|
Vathiotis IA, Trontzas I, Gavrielatou N, Gomatou G, Syrigos NK, Kotteas EA. Immune Checkpoint Blockade in Hormone Receptor-Positive Breast Cancer: Resistance Mechanisms and Future Perspectives. Clin Breast Cancer 2022; 22:642-649. [PMID: 35906130 DOI: 10.1016/j.clbc.2022.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/21/2022] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
Anti-programmed cell death protein 1 immunotherapy has been incorporated in the treatment algorithm of triple-negative breast cancer (TNBC). However, clinical trial results for patients with hormone receptor (HR)-positive disease appear less compelling. HR-positive tumors exhibit lower levels of programmed death-ligand 1 expression in comparison with their triple-negative counterparts. Moreover, signaling through estrogen receptor alters the immune microenvironment, rendering such tumors immunologically "cold." To explain differential responses to immune checkpoint blockade, this review interrogates differences between HR-positive and TNBC. Starting from distinct genomic features, we further present disparities concerning the tumor microenvironment and finally, we summarize early-phase clinical trial results on promising novel immunotherapy combinations.
Collapse
Affiliation(s)
- Ioannis A Vathiotis
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece; Department of Pathology, Yale University School of Medicine, New Haven, CT.
| | - Ioannis Trontzas
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Niki Gavrielatou
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Georgia Gomatou
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Nikolaos K Syrigos
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Elias A Kotteas
- Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Attica, Greece
| |
Collapse
|
175
|
Giugliano F, Valenza C, Tarantino P, Curigliano G. Immunotherapy for triple negative breast cancer: How can pathologic responses to experimental drugs in early-stage disease be enhanced? Expert Opin Investig Drugs 2022; 31:855-874. [PMID: 35762248 DOI: 10.1080/13543784.2022.2095260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The treatment landscape of early triple negative breast cancer (TNBC) has recently expanded after the Food and Drug Administration (FDA) approval of pembrolizumab in combination with neoadjuvant chemotherapy. The addition of this immune checkpoint inhibitor (ICI) has shown to significantly increased pathological complete response (pCR) rate and event free survival (EFS) in the KEYNOTE-522 phase 3 trial. Several additional studies are ongoing with the goal of further improving outcomes and achieving an optimal integration of ICIs in the treatment of TNBC. AREAS COVERED : The article examines pCR and survival rates in TNBC. It appraises clinical trials investigating neoadjuvant ICIs for TNBC and the improvement of pCR rates (biomarker-driven escalation of treatment, optimization of chemotherapy backbone and addition of locoregional treatments or innovative agents). Insights on the role of pCR as surrogate endpoint and the possibility of enhancing pCR rates for women affected by early TNBC are offered. EXPERT OPINION : The pharmacopoeia of early TNBC is growing and becoming more heterogeneous with the advent of ICIs; to enhance the clinical benefit of patients, it is necessary to develop response endpoints that consider the mechanism of action of experimental drugs, to optimize patient selection through validated biomarkers, and to compare the most promising treatment strategies in randomized clinical trials.
Collapse
Affiliation(s)
- Federica Giugliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Paolo Tarantino
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy.,Breast Oncology Center, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| |
Collapse
|
176
|
Wolf DM, Yau C, Wulfkuhle J, Brown-Swigart L, Gallagher RI, Lee PRE, Zhu Z, Magbanua MJ, Sayaman R, O'Grady N, Basu A, Delson A, Coppé JP, Lu R, Braun J, Asare SM, Sit L, Matthews JB, Perlmutter J, Hylton N, Liu MC, Pohlmann P, Symmans WF, Rugo HS, Isaacs C, DeMichele AM, Yee D, Berry DA, Pusztai L, Petricoin EF, Hirst GL, Esserman LJ, van 't Veer LJ. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies. Cancer Cell 2022; 40:609-623.e6. [PMID: 35623341 PMCID: PMC9426306 DOI: 10.1016/j.ccell.2022.05.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 12/26/2022]
Abstract
Using pre-treatment gene expression, protein/phosphoprotein, and clinical data from the I-SPY2 neoadjuvant platform trial (NCT01042379), we create alternative breast cancer subtypes incorporating tumor biology beyond clinical hormone receptor (HR) and human epidermal growth factor receptor-2 (HER2) status to better predict drug responses. We assess the predictive performance of mechanism-of-action biomarkers from ∼990 patients treated with 10 regimens targeting diverse biology. We explore >11 subtyping schemas and identify treatment-subtype pairs maximizing the pathologic complete response (pCR) rate over the population. The best performing schemas incorporate Immune, DNA repair, and HER2/Luminal phenotypes. Subsequent treatment allocation increases the overall pCR rate to 63% from 51% using HR/HER2-based treatment selection. pCR gains from reclassification and improved patient selection are highest in HR+ subsets (>15%). As new treatments are introduced, the subtyping schema determines the minimum response needed to show efficacy. This data platform provides an unprecedented resource and supports the usage of response-based subtypes to guide future treatment prioritization.
Collapse
Affiliation(s)
- Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA.
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Pei Rong Evelyn Lee
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Zelos Zhu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark J Magbanua
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Rosalyn Sayaman
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Nicholas O'Grady
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amrita Basu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy Delson
- Breast Science Advocacy Core, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jean Philippe Coppé
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Ruixiao Lu
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Jerome Braun
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Laura Sit
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey B Matthews
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Nola Hylton
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minetta C Liu
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula Pohlmann
- MedStar Georgetown University Hospital, Georgetown University, Washington, DC 20057, USA
| | - W Fraser Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hope S Rugo
- Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Angela M DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Yee
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Lajos Pusztai
- Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Gillian L Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA.
| |
Collapse
|
177
|
Denkert C, Loibl S. Response-based molecular subtyping-emergence of the third generation of breast cancer subtypes. Cancer Cell 2022; 40:592-594. [PMID: 35700705 DOI: 10.1016/j.ccell.2022.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The therapeutic landscape of breast cancer is becoming increasingly complex. In this issue of Cancer Cell, Wolf et al. present a breast cancer classification scheme that allows for better prediction of treatment response and can be continuously adapted to guide prioritization of new treatments.
Collapse
Affiliation(s)
- Carsten Denkert
- Institute of Pathology, Philipps University Marburg and University Hospital Marburg (UKGM), Marburg, Germany.
| | - Sibylle Loibl
- German Breast Group and University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
178
|
Blenman KRM, Marczyk M, Karn T, Qing T, Li X, Gunasekharan V, Yaghoobi V, Bai Y, Ibrahim EY, Park T, Silber A, Wolf DM, Reisenbichler E, Denkert C, Sinn BV, Rozenblit M, Foldi J, Rimm DL, Loibl S, Pusztai L. Predictive Markers of Response to Neoadjuvant Durvalumab with Nab-Paclitaxel and Dose-Dense Doxorubicin/Cyclophosphamide in Basal-Like Triple-Negative Breast Cancer. Clin Cancer Res 2022; 28:2587-2597. [PMID: 35377948 PMCID: PMC9464605 DOI: 10.1158/1078-0432.ccr-21-3215] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE We examined gene expression, germline variant, and somatic mutation features associated with pathologic response to neoadjuvant durvalumab plus chemotherapy in basal-like triple-negative breast cancer (bTNBC). EXPERIMENTAL DESIGN Germline and somatic whole-exome DNA and RNA sequencing, programmed death ligand 1 (PD-L1) IHC, and stromal tumor-infiltrating lymphocyte scoring were performed on 57 patients. We validated our results using 162 patients from the GeparNuevo randomized trial. RESULTS Gene set enrichment analysis showed that pathways involved in immunity (adaptive, humoral, innate), JAK-STAT signaling, cancer drivers, cell cycle, apoptosis, and DNA repair were enriched in cases with pathologic complete response (pCR), whereas epithelial-mesenchymal transition, extracellular matrix, and TGFβ pathways were enriched in cases with residual disease (RD). Immune-rich bTNBC with RD was enriched in CCL-3, -4, -5, -8, -23, CXCL-1, -3, -6, -10, and IL1, -23, -27, -34, and had higher expression of macrophage markers compared with immune-rich cancers with pCR that were enriched in IFNγ, IL2, -12, -21, chemokines CXCL-9, -13, CXCR5, and activated T- and B-cell markers (GZMB, CD79A). In the validation cohort, an immune-rich five-gene signature showed higher expression in pCR cases in the durvalumab arm (P = 0.040) but not in the placebo arm (P = 0.923) or in immune-poor cancers. Independent of immune markers, tumor mutation burden was higher, and PI3K, DNA damage repair, MAPK, and WNT/β-catenin signaling pathways were enriched in germline and somatic mutations in cases with pCR. CONCLUSIONS The TGFβ pathway is associated with immune-poor phenotype and RD in bTNBC. Among immune-rich bTNBC RD, macrophage/neutrophil chemoattractants dominate the cytokine milieu, and IFNγ and activated B cells and T cells dominate immune-rich cancers with pCR.
Collapse
Affiliation(s)
- Kim RM Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Michal Marczyk
- Yale Cancer Center, Yale University, New Haven, CT, USA
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | | | - Tao Qing
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Xiaotong Li
- Department of Computational Biology & Bioinformatics, Biological & Biomedical Sciences, Yale University, New Haven, CT, USA
| | - Vignesh Gunasekharan
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Vesal Yaghoobi
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Yalai Bai
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Eiman Y Ibrahim
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Tristen Park
- Department of Surgery, Yale University, New Haven, CT, USA
| | - Andrea Silber
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | | | | | | | - Mariya Rozenblit
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Julia Foldi
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - David L Rimm
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University, New Haven, CT, USA
| | | | - Lajos Pusztai
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
179
|
Dixon-Douglas J, Loibl S, Denkert C, Telli M, Loi S. Integrating Immunotherapy Into the Treatment Landscape for Patients With Triple-Negative Breast Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35649211 DOI: 10.1200/edbk_351186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive histologic subtype of breast cancer for which, until recently, treatment options have been limited to chemotherapy. In recent years, an improved understanding of the importance of tumor-infiltrating lymphocytes and the tumor microenvironment in TNBC has led to investigation of immune checkpoint inhibitors for treatment. There is now evidence from several randomized controlled trials that supports the addition of immune checkpoint inhibitors to first-line treatment of advanced TNBC and to neoadjuvant chemotherapy for stage II-III TNBC. In parallel, the PARP inhibitors have emerged as a targeted therapy option for patients with HER2-negative breast cancer harboring mutations in BRCA1, BRCA2, and PALB2. Here, we review the recent clinical trials that inform the integration of immune checkpoint inhibitors into treatments for TNBC and discuss ongoing challenges-including patient selection, management of resistance to post-checkpoint inhibitor therapy, and combining immunotherapy with targeted therapies, including PARP inhibitors.
Collapse
Affiliation(s)
- Julia Dixon-Douglas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sibylle Loibl
- Goethe University Frankfurt, Germany.,Centre for Haematology and Oncology, Bethanein, Frankfurt, Germany.,German Breast Group, Neu-Isenburg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-Universität Marburg and University Hospital of Giessen and Marburg, Marburg, Germany
| | - Melinda Telli
- Division of Medical Oncology, Stanford University School of Medicine, Stanford, CA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
180
|
Howard FM, Villamar D, He G, Pearson AT, Nanda R. The emerging role of immune checkpoint inhibitors for the treatment of breast cancer. Expert Opin Investig Drugs 2022; 31:531-548. [PMID: 34569400 PMCID: PMC8995399 DOI: 10.1080/13543784.2022.1986002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer has traditionally been viewed as immunogenically 'cold,' but two immune checkpoint inhibitors have been approved in combination with chemotherapy for PD-L1 positive advanced triple-negative breast cancer (TNBC), and pembrolizumab was also recently approved for early stage TNBC. As the landscape is rapidly evolving, a comprehensive review of checkpoint inhibitors in breast cancer is needed to aid clinicians in selecting appropriate candidates for therapy, and to highlight ongoing promising studies in this area and topics in need of further investigation. AREA COVERED This review summarizes the latest evidence from completed and ongoing trials of immune checkpoint inhibitors. Ongoing studies were identified using a search of ClinicalTrials.gov with the term 'breast cancer' along with specific checkpoint inhibitor agents. EXPERT OPINION A number of novel combination strategies are under investigation to enhance response and overcome resistance to immunotherapy, with promising preliminary data from checkpoint inhibitors targeting TIGIT, combinations with small molecule inhibitors such as lenvatinib, and injectable agents directly influencing the immune microenvironment. As immunotherapy enters into the curative setting, biomarkers predictive of immunotherapy benefit are needed, as PD-L1 status has not been a helpful discriminator in completed trials in early-stage breast cancer.
Collapse
Affiliation(s)
| | - Dario Villamar
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gong He
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Rita Nanda
- Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
181
|
Fang D, Li Y, Li Y, Chen Y, Huang Q, Luo Z, Chen J, Li Y, Wu Z, Huang Y, Ma Y. Identification of immune-related biomarkers for predicting neoadjuvant chemotherapy sensitivity in HER2 negative breast cancer via bioinformatics analysis. Gland Surg 2022; 11:1026-1036. [PMID: 35800743 PMCID: PMC9253195 DOI: 10.21037/gs-22-234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/01/2022] [Indexed: 09/16/2023]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) is an important treatment for breast cancer (BC) patients. However, due to the lack of specific therapeutic targets, only 1/3 of human epidermal growth factor receptor 2 (HER2)-negative patients reach pathological complete response (pCR). Therefore, there is an urgent need to identify novel biomarkers to distinguish and predict NAC sensitive in BC patients. METHODS The GSE163882 dataset, containing 159 BC patients treated with NAC, was downloaded from the Gene Expression Omnibus (GEO) database. Patients with pathological complete response (pCR) and those with residual disease (RD) were compared to obtain the differentially expressed genes (DEGs). Functional enrichment analyses were conducted on these DEGs. Then, we intersect the DEGs and immune-related genes to obtain the hub immune biomarkers, and then use the linear fitting model ("glm" package) to construct a prediction model composed of 9 immune biomarkers. Finally, the single sample gene set enrichment analysis (ssGSEA) algorithm was used to analyze immune cell invasion in BC patients, and the correlation between immune cell content and immune gene expression levels was analyzed. RESULTS Nine immune-related biomarkers were obtained in the intersection of DEGs and immune-related genes. Compared with RD patients, CXCL9, CXCL10, CXCL11, CXCL13, GZMB, IDO1, and LYZ were highly expressed in pCR patients, while CXCL14 and ESR1 were lowly expressed in pCR patients. After linear fitting of the multi-gene expression model, the area under the curve (AUC) value of the ROC curve diagnosis of pCR patients was 0.844. Immunoinfiltration analysis showed that compared with RD patients, 15 of the 28 immune cell types examined showed high-infiltration in pCR patients, including activated CD8 T cells, effector memory CD8 T cells, and activated CD4 T cells. CONCLUSIONS This investigation ultimately identified 9 immune-related biomarkers as potential tools for assessing the sensitivity of NAC in HER2-negative BC patients. These biomarkers have great potential for predicting pCR BC patients.
Collapse
Affiliation(s)
- Dalang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanting Li
- Department of Glandular Surgery, the People’s Hospital of Baise, Baise, China
| | - Yanghong Li
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yongcheng Chen
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qianfang Huang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhizhai Luo
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinghua Chen
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yingjin Li
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zaizhi Wu
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yuanlu Huang
- Department of Glandular Surgery, the People’s Hospital of Baise, Baise, China
| | - Yanfei Ma
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
182
|
HLX11, a Proposed Pertuzumab Biosimilar: Pharmacokinetics, Immunogenicity, and Safety Profiles Compared to Three Reference Biologic Products (US-, EU-, and CN-Approved Pertuzumab) Administered to Healthy Male Subjects. BioDrugs 2022; 36:393-409. [PMID: 35594017 PMCID: PMC9148872 DOI: 10.1007/s40259-022-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Background Pertuzumab is a humanized monoclonal antibody for the treatment of breast cancer. HLX11 is a biosimilar of pertuzumab developed by Shanghai Henlius Biotech, Inc. We conducted a bioequivalence study for HLX11 and pertuzumab (United States [US]-, European Union [EU]-, and China [CN]-approved products). Objectives This study compared the biosimilarity in pharmacokinetics (PK), safety, and immunogenicity between HLX11 and reference pertuzumab (approved in the US, the EU, and CN) in healthy Chinese male participants after a single infusion and further characterized the PK profile of HLX11. Methods Eligible individuals were randomized 1:1:1:1 to receive a single dose of 420 mg HLX11, US-, EU-, or CN-pertuzumab via intravenous infusion over 60 min. The primary endpoints were maximum serum drug concentration (Cmax), area under the serum concentration–time curve (AUC) from time 0 to time of the last quantifiable concentration (AUC0–t), and AUC from time 0 to infinity (AUC0–∞). PK bioequivalence was established if the 90% confidence intervals (CIs) of the geometric mean ratios of the primary endpoints were between 80.0 and 125.0%. Secondary endpoints included other PK parameters, safety, and immunogenicity. Results A total of 160 participants were enrolled and randomly assigned to each group (n = 40 per group). The 90% CIs of the geometric mean ratios of the primary endpoints were all within the prespecified equivalence margins (HLX11 vs. pertuzumab [US-, EU-, CN-approved products]: Cmax 97.03–115.06%, 91.39–109.80%, 94.53–110.65%; AUC0–t 87.65–99.68%, 87.07–100.79%, 86.29–101.09%; AUC0–∞ 87.66–99.90%, 87.54–101.05%, 89.23–103.20%). The incidence of adverse drug reactions was comparable across the four groups. The presence of anti-drug antibodies or neutralizing antibodies had no obvious effect on PK. Conclusion The PK, safety, and immunogenicity of HLX11 were highly similar to those of reference pertuzumab (US-, EU-, CN-approved products). The established bioequivalence supports further clinical trials of HLX11 in cancer treatment. Trial Registration This study was registered with ClinicalTrials.gov (NCT04411550) and Chinadrugtrials.org.cn (CTR20200618). Supplementary Information The online version contains supplementary material available at 10.1007/s40259-022-00534-w.
Collapse
|
183
|
Treatment Efficacy Score - continuous residual cancer burden-based metric to compare neoadjuvant chemotherapy efficacy between randomized trial arms in breast cancer trials. Ann Oncol 2022; 33:814-823. [PMID: 35513244 DOI: 10.1016/j.annonc.2022.04.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/28/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Difference in pathologic complete response (pCR) rate after neoadjuvant chemotherapy does not capture the impact of treatment on down staging of residual cancer in the experimental arm. We developed a method to compare the entire distribution of residual cancer burden (RCB) values between clinical trial arms to better quantify the differences in cytotoxic efficacy of treatments. PATIENTS AND METHODS The Treatment Efficacy Score (TES) reflects the area between the weighted cumulative distribution functions of RCB values from two trial arms. TES is based on a modified Kolmogorov-Smirnov (KS) test with added weight function to capture the importance of high RCB values and uses the area under the difference between two distribution functions as statistical metric. The higher the TES the greater the shift to lower RCB values in the experimental arm. We developed TES from the durvalumab + olaparib arm (n=72) and corresponding controls (n=282) of the I-SPY2 trial. The 11 other experimental arms and control cohorts (n=947) were used as validation sets to assess the performance of TES. We compared TES to KS, Mann-Whitney, and Fisher's exact tests to identify trial arms with higher cytotoxic efficacy and assessed associations with trial arm level survival differences. Significance was assessed with permutation test. RESULTS In the validation set, TES identified arms with higher pCR rate but was more accurate to identify regimens as less effective if treatment did not reduce the frequency of high RCB values, even if pCR rate improved. The correlation between TES and survival was higher than the correlation between pCR rate difference and survival. CONCLUSION TES quantifies the difference between the entire distribution of pathologic responses observed in trial arms and could serve as a better early surrogate to predict trial arm level survival differences than pCR rate difference alone.
Collapse
|
184
|
Targeting nucleotide metabolism: a promising approach to enhance cancer immunotherapy. J Hematol Oncol 2022; 15:45. [PMID: 35477416 PMCID: PMC9044757 DOI: 10.1186/s13045-022-01263-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Targeting nucleotide metabolism can not only inhibit tumor initiation and progression but also exert serious side effects. With in-depth studies of nucleotide metabolism, our understanding of nucleotide metabolism in tumors has revealed their non-proliferative effects on immune escape, indicating the potential effectiveness of nucleotide antimetabolites for enhancing immunotherapy. A growing body of evidence now supports the concept that targeting nucleotide metabolism can increase the antitumor immune response by (1) activating host immune systems via maintaining the concentrations of several important metabolites, such as adenosine and ATP, (2) promoting immunogenicity caused by increased mutability and genomic instability by disrupting the purine and pyrimidine pool, and (3) releasing nucleoside analogs via microbes to regulate immunity. Therapeutic approaches targeting nucleotide metabolism combined with immunotherapy have achieved exciting success in preclinical animal models. Here, we review how dysregulated nucleotide metabolism can promote tumor growth and interact with the host immune system, and we provide future insights into targeting nucleotide metabolism for immunotherapeutic treatment of various malignancies.
Collapse
|
185
|
Carlino F, Diana A, Piccolo A, Ventriglia A, Bruno V, De Santo I, Letizia O, De Vita F, Daniele B, Ciardiello F, Orditura M. Immune-Based Therapy in Triple-Negative Breast Cancer: From Molecular Biology to Clinical Practice. Cancers (Basel) 2022; 14:cancers14092102. [PMID: 35565233 PMCID: PMC9103968 DOI: 10.3390/cancers14092102] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been considered for many years an orphan disease in terms of therapeutic options, with conventional chemotherapy (CT) still representing the mainstay of treatment in the majority of patients. Although breast cancer (BC) has been historically considered a "cold tumor", exciting progress in the genomic field leading to the characterization of the molecular portrait and the immune profile of TNBC has opened the door to novel therapeutic strategies, including Immune Checkpoint Inhibitors (ICIs), Poly ADP-Ribose Polymerase (PARP) inhibitors and Antibody Drug Conjugates (ADCs). In particular, compared to standard CT, the immune-based approach has been demonstrated to improve progression-free survival (PFS) and overall survival (OS) in metastatic PD-L1-positive TNBC and the pathological complete response rate in the early setting, regardless of PD-L1 expression. To date, PD-L1 has been widely used as a predictor of the response to ICIs; however, many patients do not benefit from the addition of immunotherapy. Therefore, PD-L1 is not a reliable predictive biomarker of the response, and its accuracy remains controversial due to the lack of a consensus about the assay, the antibody, and the scoring system to adopt, as well as the spatial and temporal heterogeneity of the PD-L1 status. In the precision medicine era, there is an urgent need to identify more sensitive biomarkers in the BC immune oncology field other than just PD-L1 expression. Through the characterization of the tumor microenvironment (TME), the analysis of peripheral blood and the evaluation of immune gene signatures, novel potential biomarkers have been explored, such as the Tumor Mutational Burden (TMB), Microsatellite Instability/Mismatch Repair Deficiency (MSI/dMMR) status, genomic and epigenomic alterations and tumor-infiltrating lymphocytes (TILs). This review aims to summarize the recent knowledge on BC immunograms and on the biomarkers proposed to support ICI-based therapy in TNBC, as well as to provide an overview of the potential strategies to enhance the immune response in order to overcome the mechanisms of resistance.
Collapse
Affiliation(s)
- Francesca Carlino
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
- Correspondence: ; Tel.: +39-349-5152216
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (A.D.); (B.D.)
| | - Antonio Piccolo
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Anna Ventriglia
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Vincenzo Bruno
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Irene De Santo
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
| | - Ortensio Letizia
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
| | - Ferdinando De Vita
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (A.D.); (B.D.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Michele Orditura
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| |
Collapse
|
186
|
Majorini MT, Colombo MP, Lecis D. Few, but Efficient: The Role of Mast Cells in Breast Cancer and Other Solid Tumors. Cancer Res 2022; 82:1439-1447. [PMID: 35045983 PMCID: PMC9306341 DOI: 10.1158/0008-5472.can-21-3424] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
Abstract
Tumor outcome is determined not only by cancer cell-intrinsic features but also by the interaction between cancer cells and their microenvironment. There is great interest in tumor-infiltrating immune cells, yet mast cells have been less studied. Recent work has highlighted the impact of mast cells on the features and aggressiveness of cancer cells, but the eventual effect of mast cell infiltration is still controversial. Here, we review multifaceted findings regarding the role of mast cells in cancer, with a particular focus on breast cancer, which is further complicated because of its classification into subtypes characterized by different biological features, outcome, and therapeutic strategies.
Collapse
Affiliation(s)
| | - Mario Paolo Colombo
- Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| |
Collapse
|
187
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
188
|
Pérez-Núñez I, Rozalén C, Palomeque JÁ, Sangrador I, Dalmau M, Comerma L, Hernández-Prat A, Casadevall D, Menendez S, Liu DD, Shen M, Berenguer J, Ruiz IR, Peña R, Montañés JC, Albà MM, Bonnin S, Ponomarenko J, Gomis RR, Cejalvo JM, Servitja S, Marzese DM, Morey L, Voorwerk L, Arribas J, Bermejo B, Kok M, Pusztai L, Kang Y, Albanell J, Celià-Terrassa T. LCOR mediates interferon-independent tumor immunogenicity and responsiveness to immune-checkpoint blockade in triple-negative breast cancer. NATURE CANCER 2022; 3:355-370. [PMID: 35301507 DOI: 10.1038/s43018-022-00339-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
Abstract
Ligand-dependent corepressor (LCOR) mediates normal and malignant breast stem cell differentiation. Cancer stem cells (CSCs) generate phenotypic heterogeneity and drive therapy resistance, yet their role in immunotherapy is poorly understood. Here we show that immune-checkpoint blockade (ICB) therapy selects for LCORlow CSCs with reduced antigen processing/presentation machinery (APM) driving immune escape and ICB resistance in triple-negative breast cancer (TNBC). We unveil an unexpected function of LCOR as a master transcriptional activator of APM genes binding to IFN-stimulated response elements (ISREs) in an IFN signaling-independent manner. Through genetic modification of LCOR expression, we demonstrate its central role in modulation of tumor immunogenicity and ICB responsiveness. In TNBC, LCOR associates with ICB clinical response. Importantly, extracellular vesicle (EV) Lcor-messenger RNA therapy in combination with anti-PD-L1 overcame resistance and eradicated breast cancer metastasis in preclinical models. Collectively, these data support LCOR as a promising target for enhancement of ICB efficacy in TNBC, by boosting of tumor APM independently of IFN.
Collapse
Affiliation(s)
- Iván Pérez-Núñez
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Catalina Rozalén
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - José Ángel Palomeque
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Irene Sangrador
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Mariona Dalmau
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Laura Comerma
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Anna Hernández-Prat
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - David Casadevall
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Silvia Menendez
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Daniel Dan Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jordi Berenguer
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Irene Rius Ruiz
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Raul Peña
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - José Carlos Montañés
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Barcelona, Spain
| | - M Mar Albà
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Sarah Bonnin
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Roger R Gomis
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Juan Miguel Cejalvo
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
- Medical Oncology Department, Hospital Clínico Universitario; Medicine Department, Universidad de Valencia, Spain, INCLIVA, Valencia, Spain
| | - Sonia Servitja
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Diego M Marzese
- Fundació Institut d'Investigació Sanitària Illes Balears, Mallorca, Spain
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Leonie Voorwerk
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joaquín Arribas
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Begoña Bermejo
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
- Medical Oncology Department, Hospital Clínico Universitario; Medicine Department, Universidad de Valencia, Spain, INCLIVA, Valencia, Spain
| | - Marleen Kok
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
| | - Joan Albanell
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain.
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain.
| | - Toni Celià-Terrassa
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain.
| |
Collapse
|
189
|
Dieci MV, Guarneri V, Tosi A, Bisagni G, Musolino A, Spazzapan S, Moretti G, Vernaci GM, Griguolo G, Giarratano T, Urso L, Schiavi F, Pinato C, Magni G, Lo Mele M, De Salvo GL, Rosato A, Conte P. Neoadjuvant Chemotherapy and Immunotherapy in Luminal B-like Breast Cancer: Results of the Phase II GIADA Trial. Clin Cancer Res 2022; 28:308-317. [PMID: 34667023 PMCID: PMC9401542 DOI: 10.1158/1078-0432.ccr-21-2260] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE The role of immunotherapy in hormone receptor (HR)-positive, HER2-negative breast cancer is underexplored. PATIENTS AND METHODS The neoadjuvant phase II GIADA trial (NCT04659551, EUDRACT 2016-004665-10) enrolled stage II-IIIA premenopausal patients with Luminal B (LumB)-like breast cancer (HR-positive/HER2-negative, Ki67 ≥ 20%, and/or histologic grade 3). Patients received: three 21-day cycles of epirubicin/cyclophosphamide followed by eight 14-day cycles of nivolumab, triptorelin started concomitantly to chemotherapy, and exemestane started concomitantly to nivolumab. Primary endpoint was pathologic complete response (pCR; ypT0/is, ypN0). RESULTS A pCR was achieved by 7/43 patients [16.3%; 95% confidence interval (CI), 7.4-34.9]; the rate of residual cancer burden class 0-I was 25.6%. pCR rate was significantly higher for patients with PAM50 Basal breast cancer (4/8, 50%) as compared with other subtypes (LumA 9.1%; LumB 8.3%; P = 0.017). Tumor-infiltrating lymphocytes (TIL), immune-related gene-expression signatures, and specific immune cell subpopulations by multiplex immunofluorescence were significantly associated with pCR. A combined score of Basal subtype and TILs had an AUC of 0.95 (95% CI, 0.89-1.00) for pCR prediction. According to multiplex immunofluorescence, a switch to a more immune-activated tumor microenvironment occurred following exposure to anthracyclines. Most common grade ≥3 treatment-related adverse events (AE) during nivolumab were γ-glutamyltransferase (16.7%), alanine aminotransferase (16.7%), and aspartate aminotransferase (9.5%) increase. Most common immune-related AEs were endocrinopathies (all grades 1-2; including adrenal insufficiency, n = 1). CONCLUSIONS Luminal B-like breast cancers with a Basal molecular subtype and/or a state of immune activation may respond to sequential anthracyclines and anti-PD-1. Our data generate hypotheses that, if validated, could guide immunotherapy development in this context.
Collapse
Affiliation(s)
- Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Anna Tosi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giancarlo Bisagni
- Department of Oncology and Advanced Technologies, Oncology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simon Spazzapan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Gabriella Moretti
- Department of Oncology and Advanced Technologies, Oncology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Grazia Maria Vernaci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Gaia Griguolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Tommaso Giarratano
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Francesca Schiavi
- UOSD Hereditary Tumors, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Claudia Pinato
- UOSD Hereditary Tumors, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Giovanna Magni
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Marcello Lo Mele
- Department of Pathology, Azienda Ospedale Università Padova, Padova, Italy
| | - Gian Luca De Salvo
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Pierfranco Conte
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| |
Collapse
|
190
|
With Our Powers Combined: Exploring PARP Inhibitors and Immunotherapy. Cancer J 2021; 27:511-520. [PMID: 34904815 DOI: 10.1097/ppo.0000000000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The use of poly(ADP-ribose) polymerase inhibitors and immune checkpoint inhibitor therapies has seen substantial clinical success in oncology therapeutic development. Although multiple agents within these classes have achieved regulatory approval globally-in several malignancies in early and advanced stages-drug resistance remains an issue. Building on preclinical evidence, several early trials and late-phase studies are underway. This review explores the therapeutic potential of combination poly(ADP-ribose) polymerase inhibitors and immune checkpoint inhibitor therapy in solid tumors, including the scientific and therapeutic rationale, available clinical evidence, and considerations for future trial and biomarker development across different malignancies using ovarian and other solid cancer subtypes as key examples.
Collapse
|
191
|
Wu H, Zhu JQ, Xu XF, Xing H, Wang MD, Liang L, Li C, Jia HD, Shen F, Huang DS, Yang T. Biointerfacing Antagonizing T-Cell Inhibitory Nanoparticles Potentiate Hepatocellular Carcinoma Checkpoint Blockade Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105237. [PMID: 34791793 DOI: 10.1002/smll.202105237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen-presenting cells, a biointerfacing antagonizing T-cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T-cell immunoglobulin domain and mucin domain-3 antibodies (anti-TIM-3) as well as PD-L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti-TIM-3 can cooperate with PD-L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti-TIM-3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune-inhibiting microenvironment is effectively applied to PD-L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1-type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor-burden survival.
Collapse
Affiliation(s)
- Han Wu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Jia-Qi Zhu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Lei Liang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hang-Dong Jia
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Dong-Sheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
192
|
Lutfi N, Galindo-Campos MA, Yélamos J. Impact of DNA Damage Response-Targeted Therapies on the Immune Response to Tumours. Cancers (Basel) 2021; 13:6008. [PMID: 34885119 PMCID: PMC8656491 DOI: 10.3390/cancers13236008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
The DNA damage response (DDR) maintains the stability of a genome faced with genotoxic insults (exogenous or endogenous), and aberrations of the DDR are a hallmark of cancer cells. These cancer-specific DDR defects present new therapeutic opportunities, and different compounds that inhibit key components of DDR have been approved for clinical use or are in various stages of clinical trials. Although the therapeutic rationale of these DDR-targeted agents initially focused on their action against tumour cells themselves, these agents might also impact the crosstalk between tumour cells and the immune system, which can facilitate or impede tumour progression. In this review, we summarise recent data on how DDR-targeted agents can affect the interactions between tumour cells and the components of the immune system, both by acting directly on the immune cells themselves and by altering the expression of different molecules and pathways in tumour cells that are critical for their relationship with the immune system. Obtaining an in-depth understanding of the mechanisms behind how DDR-targeted therapies affect the immune system, and their crosstalk with tumour cells, may provide invaluable clues for the rational development of new therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Nura Lutfi
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (N.L.); (M.A.G.-C.)
| | | | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (N.L.); (M.A.G.-C.)
- Immunology Unit, Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| |
Collapse
|
193
|
Di Liello R, Piccirillo MC, Arenare L, Gargiulo P, Schettino C, Gravina A, Perrone F. Master Protocols for Precision Medicine in Oncology: Overcoming Methodology of Randomized Clinical Trials. Life (Basel) 2021; 11:1253. [PMID: 34833129 PMCID: PMC8618758 DOI: 10.3390/life11111253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 01/06/2023] Open
Abstract
Randomized clinical trials are considered the milestones of clinical research in oncology, and guided the development and approval of new compounds so far. In the last few years, however, molecular and genomic profiling led to a change of paradigm in therapeutic algorithms of many cancer types, with the spread of different biomarker-driven therapies (or targeted therapies). This scenario of "personalized medicine" revolutionized therapeutic strategies and the methodology of the supporting clinical research. New clinical trial designs are emerging to answer to the unmet clinical needs related to the development of these targeted therapies, overcoming the "classical" structure of randomized studies. Innovative trial designs able to evaluate more than one treatment in the same group of patients or many groups of patients with the same treatment (or both) are emerging as a possible future standard in clinical trial methodology. These are identified as "master protocols", and include umbrella, basket and platform trials. In this review, we described the main characteristics of these new trial designs, focusing on the opportunities and limitations of their use in the era of personalized medicine.
Collapse
Affiliation(s)
- Raimondo Di Liello
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Napoli, Italy;
| | - Maria Carmela Piccirillo
- Unità Sperimentazioni Cliniche, Istituto Nazionale Tumori—IRCCS Fondazione G. Pascale, Via M. Semmola, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (A.G.); (F.P.)
| | - Laura Arenare
- Unità Sperimentazioni Cliniche, Istituto Nazionale Tumori—IRCCS Fondazione G. Pascale, Via M. Semmola, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (A.G.); (F.P.)
| | - Piera Gargiulo
- Unità Sperimentazioni Cliniche, Istituto Nazionale Tumori—IRCCS Fondazione G. Pascale, Via M. Semmola, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (A.G.); (F.P.)
| | - Clorinda Schettino
- Unità Sperimentazioni Cliniche, Istituto Nazionale Tumori—IRCCS Fondazione G. Pascale, Via M. Semmola, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (A.G.); (F.P.)
| | - Adriano Gravina
- Unità Sperimentazioni Cliniche, Istituto Nazionale Tumori—IRCCS Fondazione G. Pascale, Via M. Semmola, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (A.G.); (F.P.)
| | - Francesco Perrone
- Unità Sperimentazioni Cliniche, Istituto Nazionale Tumori—IRCCS Fondazione G. Pascale, Via M. Semmola, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (A.G.); (F.P.)
| |
Collapse
|
194
|
Perez-Garcia J, Gion M, Cortes J. I-SPY2 platform: New lessons from the olaparib and durvalumab combination in breast cancer treatment. Cancer Cell 2021; 39:902-904. [PMID: 34256905 DOI: 10.1016/j.ccell.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
I-SPY2 platform-based phase II studies in breast cancer might speed up the development of new treatments. In this issue of Cancer Cell, Pusztai et al. report that adding durvalumab and olaparib to standard neoadjuvant chemotherapy significantly increases the pathological complete response rate in patients with HER2-negative breast cancer irrespective of the hormone receptor status.
Collapse
Affiliation(s)
- Jose Perez-Garcia
- Oncology Department, International Breast Cancer Center (IBCC), Quiron Group, Barcelona, Spain; Medica Scientia Innovation Research (MedSIR), Barcelona, Spain; Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ, USA
| | - Maria Gion
- Oncology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | - Javier Cortes
- Oncology Department, International Breast Cancer Center (IBCC), Quiron Group, Barcelona, Spain; Medica Scientia Innovation Research (MedSIR), Barcelona, Spain; Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ, USA; Breast Cancer Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain.
| |
Collapse
|