151
|
Lee JS, Padmanabhan A, Shin J, Zhu S, Guo F, Kanki JP, Epstein JA, Look AT. Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene. Hum Mol Genet 2010; 19:4643-53. [PMID: 20858602 DOI: 10.1093/hmg/ddq395] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurofibromatosis type 1 is the most commonly inherited human cancer predisposition syndrome. Neurofibromin (NF1) gene mutations lead to increased risk of neurofibromas, schwannomas, low grade, pilocytic optic pathway gliomas, as well as malignant peripheral nerve sheath tumors and glioblastomas. Despite the evidence for NF1 tumor suppressor function in glial cell tumors, the mechanisms underlying transformation remain poorly understood. In this report, we used morpholinos to knockdown the two nf1 orthologs in zebrafish and show that oligodendrocyte progenitor cell (OPC) numbers are increased in the developing spinal cord, whereas neurons are unaffected. The increased OPC numbers in nf1 morphants resulted from increased proliferation, as detected by increased BrdU labeling, whereas TUNEL staining for apoptotic cells was unaffected. This phenotype could be rescued by the forced expression of the GTPase-activating protein (GAP)-related domain of human NF1. In addition, the in vivo analysis of OPC migration following nf1 loss using time-lapse microscopy demonstrated that olig2-EGFP(+) OPCs exhibit enhanced cell migration within the developing spinal cord. OPCs pause intermittently as they migrate, and in nf1 knockdown animals, they covered greater distances due to a decrease in average pause duration, rather than an increase in velocity while in motion. Interestingly, nf1 knockdown also leads to an increase in ERK signaling, principally in the neurons of the spinal cord. Together, these results show that negative regulation of the Ras pathway through the GAP activity of NF1 limits OPC proliferation and motility during development, providing insight into the oncogenic mechanisms through which NF1 loss contributes to human glial tumors.
Collapse
Affiliation(s)
- Jeong-Soo Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Despite major refinements in cancer therapy drugs, our progress at increasing the cure rates of most cancers has been hampered by high relapse rates. A possible biological explanation of the high frequency of relapse and resistance to currently available drugs has been provided by the cancer stem cell (CSC) proposition. Basically, the CSC theory hypothesizes the presence of a hierarchically organized, relatively rare population of cells that is responsible for tumor initiation, self-renewal and maintenance, mutation accumulation and therapy resistance. Since first postulated by John Dick, multiple reports have provided support for this hypothesis by isolating (more or less) rare cell populations, where the ability to initiate tumors in vivo has been demonstrated. Most progress and stronger data supporting this theory are found predominantly in myelogenous leukemias, whose study has benefited from over half-a-century progress in our understanding of the normal hierarchical organization of hematopoiesis. This review, however, also analyzes the advancement in the quantitative and functional analysis of solid tumor stem cells and in the analysis of the tumor microenvironment as specialized, nurturing niches for CSCs. Overall, this review intends to briefly summarize most of the evidences that support the CSC theory and the apparent contradictions, if not skepticism from the scientific community, about its validity for all forms of cancer, or alternatively on just a few cancers initiated by a limited number of somatic or germinal mutations.
Collapse
Affiliation(s)
- Amitava Sengupta
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
153
|
Adameyko I, Lallemend F. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes. Cell Mol Life Sci 2010; 67:3037-55. [PMID: 20454996 PMCID: PMC11115498 DOI: 10.1007/s00018-010-0390-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 12/12/2022]
Abstract
Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.
Collapse
Affiliation(s)
- Igor Adameyko
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| | - Francois Lallemend
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| |
Collapse
|
154
|
Staser K, Yang FC, Clapp DW. Mast cells and the neurofibroma microenvironment. Blood 2010; 116:157-64. [PMID: 20233971 PMCID: PMC2910605 DOI: 10.1182/blood-2009-09-242875] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/12/2009] [Indexed: 12/24/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is the most common genetic disorder with a predisposition to malignancy and affects 1 in 3500 persons worldwide. NF1 is caused by a mutation in the NF1 tumor suppressor gene that encodes the protein neurofibromin. Patients with NF1 have cutaneous, diffuse, and plexiform neurofibromas, tumors comprised primarily of Schwann cells, blood vessels, fibroblasts, and mast cells. Studies from human and murine models that closely recapitulate human plexiform neurofibroma formation indicate that tumorigenesis necessitates NF1 loss of heterozygosity in the Schwann cell. In addition, our most recent studies with bone marrow transplantation and pharmacologic experiments implicate haploinsufficiency of Nf1 (Nf1(+/-)) and c-kit signaling in the hematopoietic system as required and sufficient for tumor progression. Here, we review recent studies implicating the hematopoietic system in plexiform neurofibroma genesis, delineate the physiology of stem cell factor-dependent hematopoietic cells and their contribution to the neurofibroma microenvironment, and highlight the application of this research toward the first successful, targeted medical treatment of a patient with a nonresectable and debilitating neurofibroma. Finally, we emphasize the importance of the tumor microenvironment hypothesis, asserting that tumorigenic cells in the neurofibroma do not arise and grow in isolation.
Collapse
Affiliation(s)
- Karl Staser
- Department of Biochemistry, and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
155
|
Staser K, Yang FC, Clapp DW. Plexiform neurofibroma genesis: questions of Nf1 gene dose and hyperactive mast cells. Curr Opin Hematol 2010; 17:287-93. [PMID: 20571392 PMCID: PMC3539783 DOI: 10.1097/moh.0b013e328339511b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Tumorigenic cells can co-opt normal functions of nonmalignant hematopoietic cells, promoting tumor progression. Recent mouse and human studies indicate that mast cells underpin inflammation in the plexiform neurofibroma microenvironment of neurofibromatosis type 1. In this model, Nf1 homozygous-deficient Schwann cells recruit hyperactive mast cells, promoting tumorigenesis. Here, we discuss the importance of Nf1 gene dosage, delineate hematopoietic contributions to the plexiform neurofibroma microenvironment, and highlight applications to human treatment. RECENT FINDINGS Previous studies found that plexiform neurofibroma formation in a mouse model requires biallelic loss of Nf1 in Schwann cells and an Nf1 heterozygous cellular background. Now, transplantation and pharmacological experiments have indicated that tumor formation specifically requires Nf1 heterozygosity of c-kit-dependent bone marrow. SUMMARY Neurofibromatosis type 1 results from autosomal dominant mutations of the NF1 tumor suppressor gene. Although unpredictable second-hit mutations in the remaining NF1 allele precede local manifestations such as tumor formation, human and mouse data indicate that NF1/Nf1 gene haploinsufficiency modulates cellular physiology and disease pathogeneses. In particular, Nf1 haplo insufficient mast cells demonstrate multiple gain-in-functions, and mast cells permeate neurofibroma tissue. Transplantation experiments have shown that these aberrant mast cells critically underpin the tumor microenvironment. Using these findings, clinicians have medically treated a patient with a debilitating plexiform neurofibroma.
Collapse
Affiliation(s)
- Karl Staser
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
156
|
Turbyville TJ, Gürsel DB, Tuskan RG, Walrath JC, Lipschultz CA, Lockett SJ, Wiemer DF, Beutler JA, Reilly KM. Schweinfurthin A selectively inhibits proliferation and Rho signaling in glioma and neurofibromatosis type 1 tumor cells in a NF1-GRD-dependent manner. Mol Cancer Ther 2010; 9:1234-43. [PMID: 20442305 PMCID: PMC3268685 DOI: 10.1158/1535-7163.mct-09-0834] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neurofibromatosis type 1 (NF1) is the most common genetic disease affecting the nervous system. Patients typically develop many tumors over their lifetime, leading to increased morbidity and mortality. The NF1 gene, mutated in NF1, is also commonly mutated in sporadic glioblastoma multiforme (GBM). Because both NF1 and GBM are currently incurable, new therapeutic approaches are clearly needed. Natural products represent an opportunity to develop new therapies, as they have been evolutionarily selected to play targeted roles in organisms. Schweinfurthin A is a prenylated stilbene natural product that has previously shown specific inhibitory activity against brain and hematopoietic tumor lines. We show that patient-derived GBM and NF1 malignant peripheral nerve sheath tumor (MPNST) lines, as well as tumor lines derived from the Nf1-/+;Trp53-/+ (NPcis) mouse model of astrocytoma and MPNST are highly sensitive to inhibition by schweinfurthin A and its synthetic analogs. In contrast, primary mouse astrocytes are resistant to the growth inhibitory effects of schweinfurthin A, suggesting that schweinfurthin A may act specifically on tumor cells. Stable transfection of the GTPase-activating protein related domain of Nf1 into Nf1-/-;Trp53-/- astrocytoma cells confers resistance to schweinfurthin A. In addition, the profound effect of schweinfurthin A on dynamic reorganization of the actin cytoskeleton led us to discover that schweinfurthin A inhibits growth factor-stimulated Rho signaling. In summary, we have identified a class of small molecules that specifically inhibit growth of cells from both central and peripheral nervous system tumors and seem to act on NF1-deficient cells through cytoskeletal reorganization correlating to changes in Rho signaling.
Collapse
Affiliation(s)
- Thomas J. Turbyville
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
- Optical Microscopy and Image Analysis Laboratory SAIC-Frederick, NCI-Frederick, Frederick, MD 21702
| | - Demirkan B. Gürsel
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Robert G. Tuskan
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Jessica C. Walrath
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Claudia A. Lipschultz
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Stephen J. Lockett
- Optical Microscopy and Image Analysis Laboratory SAIC-Frederick, NCI-Frederick, Frederick, MD 21702
| | - David F. Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - John A. Beutler
- Molecular Targets Development Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| | - Karlyne M. Reilly
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
157
|
Lancaster E, Elman LB, Scherer SS. A patient with neurofibromatosis type 1 and Charcot-Marie-Tooth disease type 1B. Muscle Nerve 2010; 41:555-8. [PMID: 19918771 DOI: 10.1002/mus.21546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe a patient with both neurofibromatosis type 1 and Charcot-Marie-Tooth disease type 1B. Although one might expect an overwhelming tumor burden due to the combination of these two disorders, the two mutations did not appear to interact.
Collapse
Affiliation(s)
- Eric Lancaster
- Department of Neurology, University of Pennsylvania Medical Center, 3400 Spruce Street, 3W Gates Neurology, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
158
|
Miller SJ, Jessen WJ, Mehta T, Hardiman A, Sites E, Kaiser S, Jegga AG, Li H, Upadhyaya M, Giovannini M, Muir D, Wallace MR, Lopez E, Serra E, Nielsen GP, Lazaro C, Stemmer-Rachamimov A, Page G, Aronow BJ, Ratner N. Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med 2010; 1:236-48. [PMID: 20049725 PMCID: PMC3378132 DOI: 10.1002/emmm.200900027] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Understanding the biological pathways critical for common neurofibromatosis type 1 (NF1) peripheral nerve tumours is essential, as there is a lack of tumour biomarkers, prognostic factors and therapeutics. We used gene expression profiling to define transcriptional changes between primary normal Schwann cells (n = 10), NF1-derived primary benign neurofibroma Schwann cells (NFSCs) (n = 22), malignant peripheral nerve sheath tumour (MPNST) cell lines (n = 13), benign neurofibromas (NF) (n = 26) and MPNST (n = 6). Dermal and plexiform NFs were indistinguishable. A prominent theme in the analysis was aberrant differentiation. NFs repressed gene programs normally active in Schwann cell precursors and immature Schwann cells. MPNST signatures strongly differed; genes up-regulated in sarcomas were significantly enriched for genes activated in neural crest cells. We validated the differential expression of 82 genes including the neural crest transcription factor SOX9 and SOX9 predicted targets. SOX9 immunoreactivity was robust in NF and MPSNT tissue sections and targeting SOX9 – strongly expressed in NF1-related tumours – caused MPNST cell death. SOX9 is a biomarker of NF and MPNST, and possibly a therapeutic target in NF1.
Collapse
Affiliation(s)
- Shyra J Miller
- Division of Experimental Hematology, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Cardiac and vascular functions of the zebrafish orthologues of the type I neurofibromatosis gene NFI. Proc Natl Acad Sci U S A 2009; 106:22305-10. [PMID: 19966217 DOI: 10.1073/pnas.0901932106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Von Recklinghausen neurofibromatosis is a common autosomal dominant genetic disorder characterized by benign and malignant tumors of neural crest origin. Significant progress in understanding the pathophysiology of this disease has occurred in recent years, largely aided by the development of relevant animal models. Von Recklinghausen neurofibromatosis is caused by mutations in the NF1 gene, which encodes neurofibromin, a large protein that modulates the activity of Ras. Here, we describe the identification and characterization of zebrafish nf1a and nf1b, orthologues of NF1, and show neural crest and cardiovascular defects resulting from morpholino knockdown, including vascular and cardiac valvular abnormalities. Development of a zebrafish model of von Recklinghausen neurofibromatosis will allow for structure-function analysis and genetic screens in this tractable vertebrate system.
Collapse
|
160
|
Eckert JM, Byer SJ, Clodfelder-Miller BJ, Carroll SL. Neuregulin-1 beta and neuregulin-1 alpha differentially affect the migration and invasion of malignant peripheral nerve sheath tumor cells. Glia 2009; 57:1501-20. [PMID: 19306381 PMCID: PMC2744852 DOI: 10.1002/glia.20866] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are the most common malignancy associated with neurofibromatosis Type 1 (NF1). These Schwann cell lineage-derived sarcomas aggressively invade adjacent nerve and soft tissue, frequently precluding surgical resection. Little is known regarding the mechanisms underlying this invasive behavior. We have shown that MPNSTs express neuregulin-1 (NRG-1) beta isoforms, which promote Schwann cell migration during development, and NRG-1 alpha isoforms, whose effects on Schwann cells are poorly understood. Hypothesizing that NRG-1 beta and/or NRG-1 alpha promote MPNST invasion, we found that NRG-1 beta promoted MPNST migration in a substrate-specific manner, markedly enhancing migration on laminin but not on collagen type I or fibronectin. The NRG-1 receptors erbB3 and erbB4 were present in MPNST invadopodia (processes mediating invasion), partially colocalized with focal adhesion kinase and the laminin receptor beta(1)-integrin and coimmunoprecipitated with beta(1)-integrin. NRG-1 beta stimulated human and murine MPNST cell migration and invasion in a concentration-dependent manner in three-dimensional migration assays, acting as a chemotactic factor. Both baseline and NRG-1 beta-induced migration were erbB-dependent and required the action of MEK 1/2, SAPK/JNK, PI-3 kinase, Src family kinases and ROCK-I/II. In contrast, NRG-1 alpha had no effect on the migration and invasion of some MPNST lines and inhibited the migration of others. While NRG-1 beta potently and persistently activated Erk 1/2, SAPK/JNK, Akt and Src family kinases, NRG-1 alpha did not activate Akt and activated these other kinases with kinetics distinct from those evident in NRG-1 beta-stimulated cells. These findings suggest that NRG-1 beta enhances MPNST migration and that NRG-1 beta and NRG-1 alpha differentially modulate this process.
Collapse
Affiliation(s)
- Jenell M Eckert
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | | | | | |
Collapse
|
161
|
Neurofibromatosis type 1. J Am Acad Dermatol 2009; 61:1-14; quiz 15-6. [PMID: 19539839 DOI: 10.1016/j.jaad.2008.12.051] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/09/2008] [Accepted: 12/31/2008] [Indexed: 02/07/2023]
Abstract
UNLABELLED Neurofibromatosis type 1 (NF1) is an autosomal dominant, multisystem disorder affecting approximately 1 in 3500 people. Significant advances in the understanding of the pathophysiology of NF1 have been made in the last decade. While no medical therapies for NF1 are currently available, trials are ongoing to discover and test medical treatments for the various manifestations of NF1, primarily plexiform neurofibromas, learning disabilities, and optic pathway gliomas. In addition, mutational analysis has become available on a clinical basis and is useful for diagnostic confirmation in individuals who do not fulfill diagnostic criteria or when a prenatal diagnosis is desired. There are several disorders that may share overlapping features with NF1; in 2007, a disorder with cutaneous findings similar to NF1 was described. This paper addresses the dermatologist's role in diagnosis and management of NF1 and describes the variety of cutaneous and extracutaneous findings in NF1 to which the dermatologist may be exposed. LEARNING OBJECTIVES After completing this learning activity, participants should be able to discuss the indications and limitations of genetic testing in neurofibromatosis type 1, distinguish common and uncommon cutaneous findings, and recognize the dermatologist's role in diagnosis and management.
Collapse
|
162
|
Abstract
Mounting evidence suggests that stem/progenitor cells may be the cells of origin for many tumor types. In this issue of Cell Stem Cell, Le et al. (2009) demonstrate that skin-derived precursors (SKPs) can initiate dermal neurofibromas and highlight the importance of the microenvironment in the formation of this complex tumor.
Collapse
Affiliation(s)
- Zachary S Morris
- Massachusetts General Hospital Center for Cancer Research and Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
163
|
Le LQ, Shipman T, Burns DK, Parada LF. Cell of origin and microenvironment contribution for NF1-associated dermal neurofibromas. Cell Stem Cell 2009; 4:453-63. [PMID: 19427294 DOI: 10.1016/j.stem.2009.03.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 02/04/2009] [Accepted: 03/30/2009] [Indexed: 01/09/2023]
Abstract
The tumor predisposition disorder neurofibromatosis type I (NF1) is one of the most common genetic disorders of the nervous system. It is caused by mutations in the Nf1 tumor-suppressor gene, which encodes a GTPase-activating protein (GAP) that negatively regulates p21-RAS. Development of malignant nerve tumors and neurofibromas occurs frequently in NF1. However, little is known about the molecular mechanisms mediating the initiation and progression of these complex tumors, or the identity of the specific cell type that gives rise to dermal or cutaneous neurofibromas. In this study, we identify a population of stem/progenitor cells residing in the dermis termed skin-derived precursors (SKPs) that, through loss of Nf1, form neurofibromas. We propose that SKPs, or their derivatives, are the cell of origin of dermal neurofibroma. We also provide evidence that additional signals from nonneoplastic cells in the tumor microenvironment play essential roles in neurofibromagenesis.
Collapse
Affiliation(s)
- Lu Q Le
- Department of Developmental Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | | | | | | |
Collapse
|
164
|
Parrinello S, Lloyd AC. Neurofibroma development in NF1 – insights into tumour initiation. Trends Cell Biol 2009; 19:395-403. [DOI: 10.1016/j.tcb.2009.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/22/2009] [Accepted: 05/22/2009] [Indexed: 12/31/2022]
|
165
|
Parrinello S, Noon LA, Harrisingh MC, Wingfield Digby P, Rosenberg LH, Cremona CA, Echave P, Flanagan AM, Parada LF, Lloyd AC. NF1 loss disrupts Schwann cell-axonal interactions: a novel role for semaphorin 4F. Genes Dev 2009; 22:3335-48. [PMID: 19056885 DOI: 10.1101/gad.490608] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neurofibromatosis type 1 (NF1) patients develop neurofibromas, tumors of Schwann cell origin, as a result of loss of the Ras-GAP neurofibromin. In normal nerves, Schwann cells are found tightly associated with axons, while loss of axonal contact is a frequent and important early event in neurofibroma development. However, the molecular basis of this physical interaction or how it is disrupted in cancer remains unclear. Here we show that loss of neurofibromin in Schwann cells is sufficient to disrupt Schwann cell/axonal interactions via up-regulation of the Ras/Raf/ERK signaling pathway. Importantly, we identify down-regulation of semaphorin 4F (Sema4F) as the molecular mechanism responsible for the Ras-mediated loss of interactions. In heterotypic cocultures, Sema4F knockdown induced Schwann cell proliferation by relieving axonal contact-inhibitory signals, providing a mechanism through which loss of axonal contact contributes to tumorigenesis. Importantly, Sema4F levels were strongly reduced in a panel of human neurofibromas, confirming the relevance of these findings to the human disease. This work identifies a novel role for the guidance-molecules semaphorins in the mediation of Schwann cell/axonal interactions, and provides a molecular mechanism by which heterotypic cell-cell contacts control cell proliferation and suppress tumorigenesis. Finally, it provides a new approach for the development of therapies for NF1.
Collapse
Affiliation(s)
- Simona Parrinello
- MRC Laboratory for Molecular Cell Biology, Department of Cell and Developmental Biology and the UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
Neurofibromas are benign tumors of peripheral nerve that occur sporadically or in patients with the autosomal dominant tumor predisposition syndrome neurofibromatosis type 1 (NF1). Multiple neurofibroma subtypes exist which differ in their site of occurrence, their association with NF1, and their tendency to undergo transformation to become malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with NF1. Most NF1 patients carry a constitutional mutation of the NF1 tumor suppressor gene. Neurofibromas develop in these patients when an unknown cell type in the Schwann cell lineage loses its remaining functional NF1 gene and initiates a complex series of interactions with other cell types; these interactions may be influenced by aberrant expression of growth factors and growth factor receptors and the action of modifier genes. Cells within certain neurofibroma subtypes subsequently accumulate additional mutations affecting the p19(ARF)-MDM2-TP53 and p16INK4A-Rb signaling cascades, mutations of other as yet unidentified genes, and amplification of growth factor receptor genes, resulting in their transformation into MPNSTs. These observations have been validated using a variety of transgenic and knockout mouse models that recapitulate neurofibroma and MPNST pathogenesis. A new generation of mouse models is also providing important new insights into the identity of the cell type in the Schwann cell lineage that gives rise to neurofibromas. Our improving understanding of the mechanisms underlying the pathogenesis of neurofibromas and MPNSTs raises intriguing new questions about the origin and pathogenesis of these neoplasms and establishes models for the development of new therapies targeting these neoplasms.
Collapse
Affiliation(s)
- Steven L Carroll
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA.
| | | |
Collapse
|
167
|
Williams JP, Wu J, Johansson G, Rizvi TA, Miller SC, Geiger H, Malik P, Li W, Mukouyama YS, Cancelas JA, Ratner N. Nf1 mutation expands an EGFR-dependent peripheral nerve progenitor that confers neurofibroma tumorigenic potential. Cell Stem Cell 2008; 3:658-69. [PMID: 19041782 PMCID: PMC3487385 DOI: 10.1016/j.stem.2008.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 09/09/2008] [Accepted: 10/03/2008] [Indexed: 01/22/2023]
Abstract
Defining growth factor requirements for progenitors facilitates their characterization and amplification. We characterize a peripheral nervous system embryonic dorsal root ganglion progenitor population using in vitro clonal sphere-formation assays. Cells differentiate into glial cells, smooth muscle/fibroblast (SM/Fb)-like cells, and neurons. Genetic and pharmacologic tools revealed that sphere formation requires signaling from the EGFR tyrosine kinase. Nf1 loss of function amplifies this progenitor pool, which becomes hypersensitive to growth factors and confers tumorigenesis. DhhCre;Nf1(fl/fl) mouse neurofibromas contain a progenitor population with similar growth requirements, potential, and marker expression. In humans, NF1 mutation predisposes to benign neurofibromas, incurable peripheral nerve tumors. Prospective identification of human EGFR(+);P75(+) neurofibroma cells enriched EGF-dependent sphere-forming cells. Neurofibroma spheres contain glial-like progenitors that differentiate into neurons and SM/Fb-like cells in vitro and form benign neurofibroma-like lesions in nude mice. We suggest that expansion of an EGFR-expressing early glial progenitor contributes to neurofibroma formation.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Genetic Predisposition to Disease/genetics
- Humans
- Male
- Mice
- Mice, Knockout
- Mice, Nude
- Mutation/genetics
- Neurofibromatoses/genetics
- Neurofibromatoses/metabolism
- Neurofibromatoses/physiopathology
- Neurofibromin 1/genetics
- Neurofibromin 1/metabolism
- Peripheral Nerves/cytology
- Peripheral Nerves/metabolism
- Peripheral Nerves/physiopathology
- Sensory Receptor Cells/cytology
- Sensory Receptor Cells/metabolism
- Spheroids, Cellular/cytology
- Spheroids, Cellular/metabolism
- Stem Cells/cytology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Jon P. Williams
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Gunnar Johansson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Shyra C. Miller
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Wenling Li
- Laboratory of Developmental Biology, Genetics, and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoh-suke Mukouyama
- Laboratory of Developmental Biology, Genetics, and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
- Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229-7013, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| |
Collapse
|
168
|
Reuss DE, Deimling AV. Biomarkers for malignant peripheral nerve sheath tumours. ACTA ACUST UNITED AC 2008; 2:801-11. [DOI: 10.1517/17530059.2.7.801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|