151
|
Yang-Hartwich Y, Tedja R, Roberts CM, Goodner-Bingham J, Cardenas C, Gurea M, Sumi NJ, Alvero AB, Glackin CA, Mor G. p53-Pirh2 Complex Promotes Twist1 Degradation and Inhibits EMT. Mol Cancer Res 2018; 17:153-164. [PMID: 30131448 DOI: 10.1158/1541-7786.mcr-18-0238] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/29/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process involved in cancer metastasis and chemoresistance. Twist1 is a key EMT-inducing transcription factor, which is upregulated in multiple types of cancers and has been shown to promote tumor cell invasiveness and support tumor progression. Conversely, p53 is a tumor suppressor gene that is frequently mutated in cancers. This study demonstrates the ability of wild-type (WT) p53 to promote the degradation of Twist1 protein. By forming a complex with Twist1 and the E3 ligase Pirh2, WT p53 promotes the ubiquitination and proteasomal degradation of Twist1, thus inhibiting EMT and maintaining the epithelial phenotype. The ability of p53 to induce Twist1 degradation is abrogated when p53 is mutated. Consequently, the loss of p53-induced Twist1 degradation leads to EMT and the acquisition of a more invasive cancer phenotype.Implication: These data provide new insight into the metastatic process at the molecular level and suggest a signaling pathway that can potentially be used to develop new prognostic markers and therapeutic targets to curtail cancer progression.
Collapse
Affiliation(s)
- Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Roslyn Tedja
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Cai M Roberts
- Department of Stem Cell and Developmental Biology, City of Hope Beckman Research Institute, Duarte, California
| | - Jamie Goodner-Bingham
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Carlos Cardenas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Marta Gurea
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Natalia J Sumi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Ayesha B Alvero
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Carlotta A Glackin
- Department of Stem Cell and Developmental Biology, City of Hope Beckman Research Institute, Duarte, California
| | - Gil Mor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
152
|
Chen SC, Liao TT, Yang MH. Emerging roles of epithelial-mesenchymal transition in hematological malignancies. J Biomed Sci 2018; 25:37. [PMID: 29685144 PMCID: PMC5913878 DOI: 10.1186/s12929-018-0440-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background Epithelial-mesenchymal transition is an important process in embryonic development, fibrosis, and cancer metastasis. During the progression of epithelial cancer, activation of epithelial-mesenchymal transition is tightly associated with metastasis, stemness and drug resistance. However, the role of epithelial-mesenchymal transition in non-epithelial cancer is relatively unclear. Main body Epithelial-mesenchymal transition transcription factors are critical in both myeloid and lymphoid development. Growing evidence indicates their roles in cancer cells to promote leukemia and lymphoma progression. The expression of epithelial-mesenchymal transition transcription factors can cause the differentiation of indolent type to the aggressive type of lymphoma. Their up-regulation confers cancer cells resistant to chemotherapy, tyrosine kinase inhibitors, and radiotherapy. Conversely, the down-regulation of epithelial-mesenchymal transition transcription factors, monoclonal antibodies, induce lymphoma cells apoptosis. Conclusions Epithelial-mesenchymal transition transcription factors are potentially important prognostic or predictive factors and treatment targets for leukemia and lymphoma.
Collapse
Affiliation(s)
- San-Chi Chen
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsai-Tsen Liao
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan.,Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
153
|
Camorani S, Cerchia L, Fedele M, Erba E, D'Incalci M, Crescenzi E. Trabectedin modulates the senescence-associated secretory phenotype and promotes cell death in senescent tumor cells by targeting NF-κB. Oncotarget 2018; 9:19929-19944. [PMID: 29731994 PMCID: PMC5929437 DOI: 10.18632/oncotarget.24961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022] Open
Abstract
Therapy-induced senescence is a major cellular response to chemotherapy in solid tumors. Senescent tumor cells acquire a secretory phenotype, or SASP, and produce pro-inflammatory factors, whose expression is largely under NF-κB transcriptional control. Secreted factors play a positive role in driving antitumor immunity, but also exert negative influences on the microenvironment, and promote tumor growth and metastasis. Moreover, subsets of cancer cells can escape the senescence arrest, driving tumor recurrence after treatments. Hence, removal the senescent tumor cells, or reprogramming of the senescent secretome, have become attractive therapeutic options. The marine drug trabectedin was shown to inhibit the production of pro-inflammatory mediators by tumor-infiltrating immune cells and by myxoid liposarcoma cells. Here, we demonstrate that trabectedin inhibits the SASP, thus limiting the pro-tumoral activities of senescent tumor cells in vitro. We show that trabectedin modulates NF-κB transcriptional activity in senescent tumor cells. This results in disruption of the balance between antiapoptotic and proapoptotic signals, and sensitization of cells to Fas-mediated apoptosis. Further, we found that trabectedin inhibits escape from therapy-induced senescence, at concentrations that do not affect the viability of bulk tumor population. Overall, our data demonstrate that trabectedin has the potential to inhibit multiple detrimental effects of therapy-induced senescence.
Collapse
Affiliation(s)
- Simona Camorani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Monica Fedele
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Eugenio Erba
- Dipartimento di Oncologia, IRCCS Istituto Di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Maurizio D'Incalci
- Dipartimento di Oncologia, IRCCS Istituto Di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Elvira Crescenzi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| |
Collapse
|
154
|
Tang H, Massi D, Hemmings BA, Mandalà M, Hu Z, Wicki A, Xue G. AKT-ions with a TWIST between EMT and MET. Oncotarget 2018; 7:62767-62777. [PMID: 27623213 PMCID: PMC5308764 DOI: 10.18632/oncotarget.11232] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings.
Collapse
Affiliation(s)
- Huifang Tang
- Department of Pharmacology, Zhejiang University School of Basic Medical Sciences, Hangzhou, China
| | - Daniela Massi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Brian A Hemmings
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mario Mandalà
- Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Zhengqiang Hu
- Department of Pharmacology, Zhejiang University School of Basic Medical Sciences, Hangzhou, China
| | - Andreas Wicki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Gongda Xue
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
155
|
Zhang X, Wang X, Xu R, Ji J, Xu Y, Han M, Wei Y, Huang B, Chen A, Zhang Q, Li W, Wang J, Li X, Qiu C. YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J Transl Med 2018; 16:79. [PMID: 29571296 PMCID: PMC5865331 DOI: 10.1186/s12967-018-1451-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Background Radiotherapy constitutes a standard arm of therapy in the multimodal treatment of patients with glioblastoma (GBM). Ironically, studies have recently revealed that radiation can augment malignant progression, by promoting migration and invasion, which make the disease especially difficult to cure. Here, we investigated the anticancer effects of YM155, a purported radiosensitizer, in GBM cell lines. Methods GBM cell lines U251 and U87 were treated with YM155 to assess cytotoxicity and activity of the molecule in vitro. Nude mice were implanted with cells to generate orthotopic xenografts for in vivo studies. Response of cells to treatment was examined using cell viability, immunofluorescence, wound healing, and the Transwell invasion assay. Molecules potentially mediating response were examined through western blot analysis, phospho-kinase arrays, and qPCR. Cells were transfected with siRNA knockdown and gene expression constructs to identify molecular mediators of response. Results YM155 reduced viability of U251 and U87 cells and enhanced radiosensitivity through inhibition of homologous recombination. Besides, YM155 decreased invasion caused by radiation and led to expression changes in molecular markers associated with EMT. STAT3 was one of 10 molecules identified on a phosphokinase array exhibiting significant change in phosphorylation under YM155 treatment. Transfection with STAT3 siRNAs or expression constructs demonstrated that EMT changes were achieved by inhibiting the phosphorylation of STAT3 and were survivin-independent. Finally, combining YM155 and radiation in orthotopic xenografts reduced growth and prolonged overall survival of animals. Conclusions YM155 decreased radiation-induced invasion in GBM cell lines in vitro and in vivo through inhibition of STAT3. Electronic supplementary material The online version of this article (10.1186/s12967-018-1451-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Xuehai Wang
- Department of Otolaryngology, Weihai Municipal Hospital, Weihai, 264200, Shandong, People's Republic of China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.,Department of Neurosurgery, Jining No. 1, People's Hospital, Jining, 272011, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
156
|
Zhang B, Niu W, Dong HY, Liu ML, Luo Y, Li ZC. Hypoxia induces endothelial‑mesenchymal transition in pulmonary vascular remodeling. Int J Mol Med 2018; 42:270-278. [PMID: 29568878 PMCID: PMC5979824 DOI: 10.3892/ijmm.2018.3584] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 03/01/2018] [Indexed: 01/01/2023] Open
Abstract
It is well established that hypoxia induces epithelial-mesenchymal transition in vitro and in vivo. However, the role of hypoxia in endothelial-mesenchymal transition (EndMT), an important process in the pathogenesis of pulmonary hypertension, is not well-characterized. The present study demonstrated a significant downregulation of the endothelial marker CD31 and its co-localization with a mesenchymal marker, α-smooth muscle actin (α-SMA), in the intimal layer of small pulmonary arteries of rats exposed to chronic hypoxia. These results suggest a possible role of hypoxia in inducing EndMT in vivo. Consistent with these observations, pulmonary microvascular endothelial cells (PMVECs) cultured under hypoxic conditions exhibited a significant decrease in CD31 expression, alongside a marked increase in the expression of α-SMA and two other mesenchymal markers, collagen (Col) 1A1 and Col3A1. In addition, hypoxia promoted the proliferation and migration of α-SMA-expressing mesenchymal-like cells, but not of PMVECs. Of note, knockdown of hypoxia-inducible factor 1α (HIF-1α) effectively inhibited hypoxic induction of α-SMA, Col1A1 and the transcription factor Twist1, while rescuing hypoxic suppression of CD31; these results suggest that HIF-1α is essential for hypoxia-induced EndMT and that it serves as an upstream regulator of Twist1. Mechanistically, HIF-1α was identified to bind to the promoter of the Twist1 gene, thus activating Twist1 transcription and regulating EndMT. Collectively, the present results indicate that the HIF-1α/Twist1 pathway has a critical role in mediating the effect of hypoxia-induced EndMT in pulmonary arterial remodeling.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen Niu
- Department of Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hai-Ying Dong
- Department of Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Man-Ling Liu
- Department of Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ying Luo
- Department of Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Chao Li
- Department of Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
157
|
Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16 INK4a inactivation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:39. [PMID: 29482580 PMCID: PMC5828408 DOI: 10.1186/s13046-018-0701-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The preferential use of aerobic glycolysis by tumor cells lead to high accumulation of lactate in tumor microenvironment. Clinical evidence has linked elevated lactate concentration with cancer outcomes. However, the role and molecular mechanisms of lactate in cellular senescence and tumor progression remain elusive. METHODS The function of Snail in lactate-induced EMT in lung cancer cells was explored by wound healing assay and cell invasion assay. The qRT-PCR and dual luciferase reporter assay were performed to investigate how lactate regulates Snail expression. The level of TGF-β1 in culture supernatant of cells was measured by ELISA for its correlation with extracellular levels of lactate. Ras activity assay and SA-β-gal activity assay were established to determine the effect of lactate on oncogene-induced senescence in human lung epithelial cells. ChIP assays were conducted to determine the binding of snail to p16INK4a promoter. Two TCGA data sets (TCGA-LUAD and TCGA-LUSC) were used to explore the correlations between SNAI1 and CDKN2A expression. RESULTS In this study, we showed the invasive and migratory potential of lung cancer cells was significantly enhanced by lactate and was directly linked to snail activity. We also demonstrated that extracellular acidification itself is a direct cause of the increased snail expression and physiologically coupled to LDHA-dependent conversion of pyruvate to lactate. Mechanistically, lactate exerts its central function in induction of snail and EMT by directly remodeling ECM and releasing activated TGF-β1. We also demonstrated that Snail help premalignant cells to escape the oncogene-induced senescence by directly targeting and inhibiting p16INK4a expression. CONCLUSIONS Our study extends the understanding of EMT in tumorigenesis by uncovering the role of snail in cellular senescence. This study also reveals lactate may be a potent tumor-promoting factor and provides the basis for the development of lactate-targeted therapy.
Collapse
|
158
|
Duan Y, He Q, Yue K, Si H, Wang J, Zhou X, Wang X. Hypoxia induced Bcl-2/Twist1 complex promotes tumor cell invasion in oral squamous cell carcinoma. Oncotarget 2018; 8:7729-7739. [PMID: 28032603 PMCID: PMC5352356 DOI: 10.18632/oncotarget.13890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Bcl-2 and Twist1 can be coactivated by hypoxia in hepatocellular carcinoma to promote tumor cell metastasis and vasculogenic mimicry, but their function in oral squamous cell carcinoma (OSCC) remains undefined. We employed a cohort of 82 cases of OSCC samples to examine the coexpression of Bcl-2 and Twist1 by immunohistochemistry and demonstrate the interaction between Bcl-2 and Twist1 by coimmunoprecipitation. Bcl-2 and Twist1 overexpression was associated with a poor pathological grade and tumor prognosis, and the two factors functions as a complex. Knocking down Bcl-2/Twist1 inhibited cell migration, decreased cell invasion and inversed cell epithelial-mesenchymal transition (EMT) procession. An animal model derived from the Tca8113 cell line was used to further validate the role of Bcl-2/Twist1 depletion in suppressing tumor EMT and growth. In conclusion, Bcl-2/Twist1 complex can be treated as a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yuansheng Duan
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Qinghua He
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Kai Yue
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Haishan Si
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Jiaxin Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Xuan Zhou
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Xudong Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| |
Collapse
|
159
|
Wu MH, Huang PH, Hsieh M, Tsai CH, Chen HT, Tang CH. Endothelin-1 promotes epithelial-mesenchymal transition in human chondrosarcoma cells by repressing miR-300. Oncotarget 2018; 7:70232-70246. [PMID: 27602960 PMCID: PMC5342549 DOI: 10.18632/oncotarget.11835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022] Open
Abstract
Chondrosarcoma is a malignant tumor of mesenchymal origin predominantly composed of cartilage-producing cells. This type of bone cancer is extremely resistant to radiotherapy and chemotherapy. Surgical resection is the primary treatment, but is often difficult and not always practical for metastatic disease, so more effective treatments are needed. In particular, it would be helpful to identify molecular markers as targets for therapeutic intervention. Endothelin-1 (ET-1), a potent vasoconstrictor, has been shown to enhance chondrosarcoma angiogenesis and metastasis. We report that ET-1 promotes epithelial–mesenchymal transition (EMT) in human chondrosarcoma cells. EMT is a key pathological event in cancer progression, during which epithelial cells lose their junctions and apical-basal polarity and adopt an invasive phenotype. Our study verifies that ET-1 induces the EMT phenotype in chondrosarcoma cells via the AMP-activated protein kinase (AMPK) pathway. In addition, we show that ET-1 increases EMT by repressing miR-300, which plays an important role in EMT-enhanced tumor metastasis. We also show that miR-300 directly targets Twist, which in turn results in a negative regulation of EMT. We found a highly positive correlation between ET-1 and Twist expression levels as well as tumor stage in chondrosarcoma patient specimens. Therefore, ET-1 may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Min-Huan Wu
- Physical Education Office, Tunghai University, Taichung, Taiwan.,Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung, Taiwan
| | - Pei-Han Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Mingli Hsieh
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
160
|
Min S, Song EAC, Oyelakin A, Gluck C, Smalley K, Romano RA. Functional characterization and genomic studies of a novel murine submandibular gland epithelial cell line. PLoS One 2018; 13:e0192775. [PMID: 29462154 PMCID: PMC5819789 DOI: 10.1371/journal.pone.0192775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/30/2018] [Indexed: 01/10/2023] Open
Abstract
A better understanding of the normal and diseased biology of salivary glands (SG) has been hampered, in part, due to difficulties in cultivating and maintaining salivary epithelial cells. Towards this end, we have generated a mouse salivary gland epithelial cell (mSGc) culture system that is well-suited for the molecular characterization of SG cells and their differentiation program. We demonstrate that mSGc can be maintained for multiple passages without a loss of proliferation potential, readily form 3D-spheroids and importantly express a panel of well-established salivary gland epithelial cell markers. Moreover, mSGc 3D-spheroids also exhibit functional maturation as evident by robust agonist-induced intracellular calcium signaling. Finally, transcriptomic characterization of mSGc by RNA-seq and hierarchical clustering analysis with adult organ RNA-seq datasets reveal that mSGc retain most of the molecular attributes of adult mouse salivary gland. This well-characterized mouse salivary gland cell line will fill a critical void in the field by offering a valuable resource to examine various mechanistic aspects of mouse salivary gland biology.
Collapse
Affiliation(s)
- Sangwon Min
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Eun-Ah Christine Song
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Akinsola Oyelakin
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Christian Gluck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Kirsten Smalley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
161
|
Li M, Zhang X, Xu X, Wu J, Hu K, Guo X, Zhang P. Clinicopathological and prognostic significance of Twist overexpression in NSCLC. Oncotarget 2018; 9:14642-14651. [PMID: 29581870 PMCID: PMC5865696 DOI: 10.18632/oncotarget.24489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023] Open
Abstract
Several studies were conducted to explore the prognostic significance of Twist in non-small cell lung cancer (NSCLC), however, contradictory results in different studies were reported. To this end, we presented a systematic review aiming to summarize the prognostic significance of Twist in patients with NSCLC. 5 studies involving a total of 572 patients were identified. The result indicated that high Twist expression was significantly associated with a worse overall survival (OS) (hazard ratio (HR) = 2.19, 95% confidence interval (95% CI) = 1.64–2.94, p < 0.001; I2 = 0.0%, fixed effect), recurrence-free survival (RFS) (HR = 2.476, 95% CI = 1.728–3.547, p < 0.001; I2 = 0.0%, fixed effect) and lymph node or other metastasis (odds rate (OR) = 0.419, 95% CI = 0.259–0.679, P < 0.001, fixed effect). Subgroup analysis revealed that the expression of Twist in Chinese patients might be more closely associated with the prognosis of NSCLC than in American patients. Overall, these results indicated that Twist over-expression in patients with NSCLC might be related to poor prognosis and serves as an unfavorable predictor of poor clinicopathological prognosis factor.
Collapse
Affiliation(s)
- Meng Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xing Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqing Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jiubin Wu
- Department of Traumatology and Orthopedics, First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Kaiwen Hu
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuwei Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peitong Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
162
|
Campbell K, Lebreton G, Franch-Marro X, Casanova J. Differential roles of the Drosophila EMT-inducing transcription factors Snail and Serpent in driving primary tumour growth. PLoS Genet 2018; 14:e1007167. [PMID: 29420531 PMCID: PMC5821384 DOI: 10.1371/journal.pgen.1007167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/21/2018] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
Several transcription factors have been identified that activate an epithelial-to-mesenchymal transition (EMT), which endows cells with the capacity to break through basement membranes and migrate away from their site of origin. A key program in development, in recent years it has been shown to be a crucial driver of tumour invasion and metastasis. However, several of these EMT-inducing transcription factors are often expressed long before the initiation of the invasion-metastasis cascade as well as in non-invasive tumours. Increasing evidence suggests that they may promote primary tumour growth, but their precise role in this process remains to be elucidated. To investigate this issue we have focused our studies on two Drosophila transcription factors, the classic EMT inducer Snail and the Drosophila orthologue of hGATAs4/6, Serpent, which drives an alternative mechanism of EMT; both Snail and GATA are specifically expressed in a number of human cancers, particularly at the invasive front and in metastasis. Thus, we recreated conditions of Snail and of Serpent high expression in the fly imaginal wing disc and analysed their effect. While either Snail or Serpent induced a profound loss of epithelial polarity and tissue organisation, Serpent but not Snail also induced an increase in the size of wing discs. Furthermore, the Serpent-induced tumour-like tissues were able to grow extensively when transplanted into the abdomen of adult hosts. We found the differences between Snail and Serpent to correlate with the genetic program they elicit; while activation of either results in an increase in the expression of Yorki target genes, Serpent additionally activates the Ras signalling pathway. These results provide insight into how transcription factors that induce EMT can also promote primary tumour growth, and how in some cases such as GATA factors a ‘multi hit’ effect may be achieved through the aberrant activation of just a single gene. Many cancer cells acquire abnormal motility behaviour leading to metastasis, the main cause of cancer related deaths. In many cancers, transcription factors capable of inducing motile migratory cell behaviours, so-called EMT transcription factors, are found highly expressed. However, the expression of these genes is not restricted to metastatic invasive cancers; they are often found in benign tumours, or in tumours long before they show any sign of metastasis. This observation motivated us to ask if they may play a role in driving primary tumour growth. Our results show that the Drosophila EMT-inducers Snail and Serpent are both capable of driving overproliferation. However, Snail overproliferation is accompanied by a decrease in cell size as well as cell death, and consequently the tissue does not increase in size. Serpent also drives cell proliferation but this occurs together with an increase in cell size, but not cell death, thus having a profound effect on the overall size of the tissue. We show that both Snail and Serpent trigger activation of the Yorki pathway and in addition Serpent, but not Snail, also triggers activation of the Ras pathway. These results provide insight into how activation of some EMT-inducing genes can also promote primary tumour growth.
Collapse
Affiliation(s)
- Kyra Campbell
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- * E-mail: (KC); (JC)
| | - Gaëlle Lebreton
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Functional Genomics and Evolution, Department Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- * E-mail: (KC); (JC)
| |
Collapse
|
163
|
Yi Y, Wang Z, Sun Y, Chen J, Zhang B, Wu M, Li T, Hu L, Zeng J. The EMT-related transcription factor snail up-regulates FAPα in malignant melanoma cells. Exp Cell Res 2018; 364:160-167. [PMID: 29410133 DOI: 10.1016/j.yexcr.2018.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
FAPα is a cell surface serine protease, mainly expressed in tumor stromal fibroblasts in more than 90% of human epithelial carcinomas. Due to its almost no expression in normal tissues and its tumor-promoting effects, FAPα has been studied as a novel potential target for antitumor therapy. However, the regulation mechanism on FAPα expression is poorly understood. In this study, we found that overexpression of snail significantly increased the mRNA and protein expression levels of FAPα in malignant melanoma B16 and SK-MEL-28 cells. Overexpression of snail increased FAPα promoter activity remarkably. Snail could directly bind to FAPα promoter to regulate FAPα expression. Moreover, snail expression was positively correlated to FAPα expression in human cutaneous malignant melanoma. Furthermore, knockdown of FAPα markedly reduced snail-induced cell migration. Overall, our findings provide a novel regulation mechanism on FAPα expression and highlight the role of snail/FAPα axis as a novel target for melanoma treatment.
Collapse
Affiliation(s)
- Yanmei Yi
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.
| | - Zhaotong Wang
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Junhu Chen
- Department of Biological Products Surveillance and Evaluation, Institute of Biological Products and Materia Medica, Guangzhou 510440, Guangdong, China
| | - Biao Zhang
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Minhua Wu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Tianyu Li
- Department of Surgery, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Li Hu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jun Zeng
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| |
Collapse
|
164
|
Izadpanah MH, Abbaszadegan MR, Fahim Y, Forghanifard MM. Ectopic expression of TWIST1 upregulates the stemness marker OCT4 in the esophageal squamous cell carcinoma cell line KYSE30. Cell Mol Biol Lett 2017; 22:33. [PMID: 29299035 PMCID: PMC5747156 DOI: 10.1186/s11658-017-0065-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Background The transcription factor TWIST1 plays an important role in the epithelial–mesenchymal transition (EMT) process and in the migration, invasion and metastasis of cancer cells. OCT4, which is a homeobox transcription factor, has an important role in the self-renewal potential of cancer cells. Our aim here is to elucidate impact of ectopic expression of TWIST1 on OCT4 gene expression in esophageal squamous cell carcinoma (ESCC). Methods The ESCC line was KYSE30. GP293T cells were transfected with purf-IRES-GFP and pGP plasmids to produce recombinant viral particles. A semi-confluent KYSE30 culture was transduced with the prepared retroviral particles. mRNA extraction and cDNA synthesis were performed from normal KYSE30 cells and those ectopically expressing TWIST1. Expressional analysis of TWIST1 and OCT4 were performed with relative comparative real-time PCR. Results Ectopic expression of TWIST1 in KYSE30 cells was related to its significant overexpression: nearly nine-fold higher in GFP-hTWIST1 KYSE-30 cells than in control GFP cells. This induced expression of TWIST1 caused significant upregulation of OCT4 in GFP-hTWIST1 KYSE-30 cells: nearly eight-fold higher. In silico analysis predicted the correlation of TWIST1 and OCT4 through ETS2. Conclusions Overexpressed TWIST1 can be correlated with upregulation of the cancer stem cell marker OCT4 and the protein may play critical regulatory role in OCT4 gene expression. Since OCT4 is involved in the self-renewal process, the results may suggest a new linkage between TWIST1 and OCT4 in the cell biology of ESCC, highlighting the probable role of TWIST1 in inducing self-renewal.
Collapse
Affiliation(s)
- Mohammad Hossein Izadpanah
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Fahim
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan Branch, Islamic Azad University, P.O.Box: 3671639998, Cheshmeh-Ali Boulevard, Sa'dei square, Damghan, Islamic Republic of Iran
| |
Collapse
|
165
|
Fedorova MS, Snezhkina AV, Pudova EA, Abramov IS, Lipatova AV, Kharitonov SL, Sadritdinova AF, Nyushko KM, Klimina KM, Belyakov MM, Slavnova EN, Melnikova NV, Chernichenko MA, Sidorov DV, Kiseleva MV, Kaprin AD, Alekseev BY, Dmitriev AA, Kudryavtseva AV. Upregulation of NETO2 gene in colorectal cancer. BMC Genet 2017; 18:117. [PMID: 29297384 PMCID: PMC5751543 DOI: 10.1186/s12863-017-0581-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuropilin and tolloid-like 2 (NETO2) is a single-pass transmembrane protein that has been shown primarily implicated in neuron-specific processes. Upregulation of NETO2 gene was also detected in several cancer types. In colorectal cancer (CRC), it was associated with tumor progression, invasion, and metastasis, and seems to be involved in epithelial-mesenchymal transition (EMT). However, the mechanism of NETO2 action is still poorly understood. RESULTS We have revealed significant increase in the expression of NETO2 gene and deregulation of eight EMT-related genes in CRC. Four of them were upregulated (TWIST1, SNAIL1, LEF1, and FOXA2); the mRNA levels of other genes (FOXA1, BMP2, BMP5, and SMAD7) were decreased. Expression of NETO2 gene was weakly correlated with that of genes involved in the EMT process. CONCLUSIONS We found considerable NETO2 upregulation, but no significant correlation between the expression of NETO2 and EMT-related genes in CRC. Thus, NETO2 may be involved in CRC progression, but is not directly associated with EMT.
Collapse
Affiliation(s)
- Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S. Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey L. Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill M. Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya M. Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M. Belyakov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena N. Slavnova
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Chernichenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V. Sidorov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y. Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
166
|
Caramel J, Ligier M, Puisieux A. Pleiotropic Roles for ZEB1 in Cancer. Cancer Res 2017; 78:30-35. [PMID: 29254997 DOI: 10.1158/0008-5472.can-17-2476] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
ZEB1 is a prime element of a network of transcription factors that controls epithelial-to-mesenchymal transition (EMT), a reversible embryonic transdifferentiation program that allows partial or complete transition from an epithelial to a mesenchymal state. Aberrant expression of ZEB1 has been reported in a variety of human cancers, where it is generally believed to foster migration, invasion, and metastasis. Over the past few years, in vitro and in vivo observations have highlighted unsuspected intrinsic oncogenic functions of ZEB1 that impact tumorigenesis from its earliest stages. Located downstream of regulatory processes that integrate microenvironmental signals and directly implicated in feedback loops controlled by miRNAs, ZEB1 appears to be a central switch that determines cell fate. Its expression fosters malignant transformation through the mitigation of critical oncosuppressive pathways and through the conferment of stemness properties. ZEB1 is also a key determinant of cell plasticity, endowing cells with the capacity to withstand an aberrant mitogenic activity, with a profound impact on the genetic history of tumorigenesis, and to adapt to the multiple constraints encountered over the course of tumor development. Cancer Res; 78(1); 30-35. ©2017 AACR.
Collapse
Affiliation(s)
- Julie Caramel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Maud Ligier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Alain Puisieux
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France. .,LabEx DEVweCAN, Université de Lyon, Lyon, France
| |
Collapse
|
167
|
Yin J, Wang L, Zhu JM, Yu Q, Xue RY, Fang Y, Zhang YA, Chen YJ, Liu TT, Dong L, Shen XZ. Prp19 facilitates invasion of hepatocellular carcinoma via p38 mitogen-activated protein kinase/twist1 pathway. Oncotarget 2017; 7:21939-51. [PMID: 26959880 PMCID: PMC5008335 DOI: 10.18632/oncotarget.7877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/20/2016] [Indexed: 12/18/2022] Open
Abstract
Pre-mRNA processing factor 19 (Prp19) is involved in many cellular events including pre-mRNA processing and DNA damage response. However, the pathological role of Prp19 in hepatocellular carcinoma (HCC) is still elusive. Here, we reported that Prp19 was increased in most HCC tissues and HCC cell lines, and its overexpression in HCC tissues was positively correlated with vascular invasion, tumor capsule breakthrough and poor prognosis. Prp19 potentiated migratory and invasive abilities of HCC cells in vitro and in vivo. Furthermore Prp19 facilitated Twist1-induced epithelial-mesenchymal transition. Mechanistic insights revealed that Prp19 directly binded with TGF-β-activated kinase1 (TAK1) and promoted the activation of p38 mitogen-activated protein kinase (MAPK), preventing Twist1 from degradation. Finally Prp19/p38 MAPK/Twist1 axis was attested in nude mice xenografts and HCC patient specimens. This work implies that the gain of Prp19 is a critical event during the progression of HCC, making it a promising target for malignancies with aberrant Prp19 expression.
Collapse
Affiliation(s)
- Jie Yin
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Lan Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ji-Min Zhu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qian Yu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ru-Yi Xue
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ying Fang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yi-An Zhang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
168
|
Mikheev AM, Mikheeva SA, Tokita M, Severs LJ, Rostomily RC. Twist1 mediated regulation of glioma tumorigenicity is dependent on mode of mouse neural progenitor transformation. Oncotarget 2017; 8:107716-107729. [PMID: 29296200 PMCID: PMC5746102 DOI: 10.18632/oncotarget.22593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Twist1 is a master regulator of epithelial mesenchymal transition and carcinoma metastasis. Twist1 has also been associated with increased malignancy of human glioma. However, the impact of inhibiting Twist1 on tumorigenicity has not been characterized in glioma models in the context of different oncogenic transformation paradigms. Here we used an orthotopic mouse glioma model of transplanted transformed neural progenitor cells (NPCs) to demonstrate the effects of Twist1 loss of function on tumorigenicity. Decreased tumorigenicity was observed after shRNA mediated Twist knockdown in HPV E6/7 Ha-RasV12 transformed NPCs and Cre mediated Twist1 deletion in Twist1 fl/fl NPCs transformed by p53 knockdown and Ha-RasV12 expression. By contrast, Twist1 deletion had no effect on tumorigenicity of NPCs transformed by co-expression of Akt and Ha-RasV12. We demonstrated a dramatic off-target effect of Twist1 deletion with constitutive Cre expression, which was completely reversed when Twist1 deletion was achieved by transient administration of recombinant Cre protein. Together these findings demonstrate that the function of Twist1 in these models is highly dependent on specific oncogenic contexts of NPC transformation. Therefore, the driver mutational context in which Twist1 functions may need to be taken into account when evaluating mechanisms of action and developing therapeutic approaches to target Twist1 in human gliomas.
Collapse
Affiliation(s)
- Andrei M. Mikheev
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Svetlana A. Mikheeva
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Mari Tokita
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Liza J. Severs
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Robert C. Rostomily
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
169
|
Zhu Y, Zhang B, Gong A, Fu H, Zhang X, Shi H, Sun Y, Wu L, Pan Z, Mao F, Zhu W, Qian H, Xu W. Anti-cancer drug 3,3'-diindolylmethane activates Wnt4 signaling to enhance gastric cancer cell stemness and tumorigenesis. Oncotarget 2017; 7:16311-24. [PMID: 26918831 PMCID: PMC4941316 DOI: 10.18632/oncotarget.7684] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022] Open
Abstract
As a natural health supplement, 3,3′-diindolylmethane (DIM) is proposed as a preventive and chemotherapeutic agent for cancer by inhibiting cell proliferation and inducing cell apoptosis. However, we found that in contrary to high level of DIM (30 μM), low level of DIM (1 μM and 10 μM) obviously promoted gastric cancer cell growth and migration. In addition, we found that low level of DIM increased the expression of stemness factors and enhanced the pluripotency of gastric cancer cells. Low level of DIM promoted gastric cancer progression by inducing the PORCN-dependent secretion of Wnt4 and the activation of β-catenin signaling. Wnt4 knockdown reversed the effects of low level of DIM on gastric cancer cells. The results of in vivo studies showed that gastric cancer cells treated with low level of DIM (1 μM) grew faster and expressed higher level of Wnt4 than control cells. Taken together, our findings indicate that low level of DIM activates autocrine Wnt4 signaling to enhance the progression of gastric cancer, which may suggest an adverse aspect of DIM in cancer therapy. Our findings will provide a new aspect for the safety of DIM in its clinical application.
Collapse
Affiliation(s)
- Yanhua Zhu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China.,Department of Clinical Laboratory, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, P. R. China
| | - Bin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Aihua Gong
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Hailong Fu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Xu Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Hui Shi
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Yaoxiang Sun
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Lijun Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Zhaoji Pan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Fei Mao
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Wei Zhu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, The Affiliated Hospital, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| |
Collapse
|
170
|
Rasti A, Madjd Z, Abolhasani M, Mehrazma M, Janani L, Saeednejad Zanjani L, Asgari M. Cytoplasmic expression of Twist1, an EMT-related transcription factor, is associated with higher grades renal cell carcinomas and worse progression-free survival in clear cell renal cell carcinoma. Clin Exp Med 2017; 18:177-190. [PMID: 29204790 DOI: 10.1007/s10238-017-0481-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/19/2017] [Indexed: 12/17/2022]
Abstract
Twist1 is a key transcription factor, which confers tumor cells with cancer stem cell (CSC)-like characteristics and enhances epithelial-mesenchymal transition in pathological conditions including tumor malignancy and metastasis. This study aimed to evaluate the expression patterns and clinical significance of Twist1 in renal cell carcinoma (RCC). The cytoplasmic and nuclear expression of Twist1 were examined in 252 well-defined renal tumor tissues, including 173 (68.7%) clear cell renal cell carcinomas (ccRCC), 45 (17.9%) papillary renal cell carcinomas (pRCC) and 34 (13.5%) chromophobe renal cell carcinoma, by immunohistochemistry on a tissue microarray. The association between expression of this marker and clinicopathologic parameters and survival outcomes were then analyzed. Twist1 was mainly localized to the cytoplasm of tumor cells (98.8%). Increased cytoplasmic expression of Twist1 was associated with higher grade tumors (P = 0.045), renal vein invasion (P = 0.031) and microvascular invasion (P = 0.044) in RCC. It was positively correlated with higher grade tumors (P = 0.026), shorter progression-free survival time (P = 0.027) in patients with ccRCC, and also with higher stage in pRCC patients (P = 0.036). Significantly higher cytoplasmic expression levels of Twist1 were found in ccRCC and pRCC subtypes, due to their more aggressive tumor behavior. Increased cytoplasmic expression of Twist1 had a critical role in worse prognosis in ccRCC. These findings suggest that cytoplasmic, rather than nuclear expression of Twist1 can be considered as a prognostic and therapeutic marker for targeted therapy of RCC, especially for ccRCC patients.
Collapse
Affiliation(s)
- Arezoo Rasti
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abolhasani
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran. .,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran.
| | - Mitra Mehrazma
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran
| | - Mojgan Asgari
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| |
Collapse
|
171
|
Cancer-associated S100P protein binds and inactivates p53, permits therapy-induced senescence and supports chemoresistance. Oncotarget 2017; 7:22508-22. [PMID: 26967060 PMCID: PMC5008377 DOI: 10.18632/oncotarget.7999] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/20/2016] [Indexed: 11/25/2022] Open
Abstract
S100P belongs to the S100 family of calcium-binding proteins regulating diverse cellular processes. Certain S100 family members (S100A4 and S100B) are associated with cancer and used as biomarkers of metastatic phenotype. Also S100P is abnormally expressed in tumors and implicated in migration-invasion, survival, and response to therapy. Here we show that S100P binds the tumor suppressor protein p53 as well as its negative regulator HDM2, and that this interaction perturbs the p53-HDM2 binding and increases the p53 level. Paradoxically, the S100P-induced p53 is unable to activate its transcriptional targets hdm2, p21WAF, and bax following the DNA damage. This appears to be related to reduced phosphorylation of serine residues in both N-terminal and C-terminal regions of the p53 molecule. Furthermore, the S100P expression results in lower levels of pro-apoptotic proteins, in reduced cell death response to cytotoxic treatments, followed by stimulation of therapy-induced senescence and increased clonogenic survival. Conversely, the S100P silencing suppresses the ability of cancer cells to survive the DNA damage and form colonies. Thus, we propose that the oncogenic role of S100P involves binding and inactivation of p53, which leads to aberrant DNA damage responses linked with senescence and escape to proliferation. Thereby, the S100P protein may contribute to the outgrowth of aggressive tumor cells resistant to cytotoxic therapy and promote cancer progression.
Collapse
|
172
|
Targeting Metastasis with Snake Toxins: Molecular Mechanisms. Toxins (Basel) 2017; 9:toxins9120390. [PMID: 29189742 PMCID: PMC5744110 DOI: 10.3390/toxins9120390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Metastasis involves the migration of cancer cells from a primary tumor to invade and establish secondary tumors in distant organs, and it is the main cause for cancer-related deaths. Currently, the conventional cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. This highlights the need to find new anti-metastatic drugs. Toxins isolated from snake venoms are a natural source of potentially useful molecular scaffolds to obtain agents with anti-migratory and anti-invasive effects in cancer cells. While there is greater evidence concerning the mechanisms of cell death induction of several snake toxin classes on cancer cells; only a reduced number of toxin classes have been reported on (i.e., disintegrins/disintegrin-like proteins, C-type lectin-like proteins, C-type lectins, serinproteases, cardiotoxins, snake venom cystatins) as inhibitors of adhesion, migration, and invasion of cancer cells. Here, we discuss the anti-metastatic mechanisms of snake toxins, distinguishing three targets, which involve (1) inhibition of extracellular matrix components-dependent adhesion and migration, (2) inhibition of epithelial-mesenchymal transition, and (3) inhibition of migration by alterations in the actin/cytoskeleton network.
Collapse
|
173
|
Natsuizaka M, Whelan KA, Kagawa S, Tanaka K, Giroux V, Chandramouleeswaran PM, Long A, Sahu V, Darling DS, Que J, Yang Y, Katz JP, Wileyto EP, Basu D, Kita Y, Natsugoe S, Naganuma S, Klein-Szanto AJ, Diehl JA, Bass AJ, Wong KK, Rustgi AK, Nakagawa H. Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat Commun 2017; 8:1758. [PMID: 29170450 PMCID: PMC5700926 DOI: 10.1038/s41467-017-01500-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Notch1 transactivates Notch3 to drive terminal differentiation in stratified squamous epithelia. Notch1 and other Notch receptor paralogs cooperate to act as a tumor suppressor in squamous cell carcinomas (SCCs). However, Notch1 can be stochastically activated to promote carcinogenesis in murine models of SCC. Activated form of Notch1 promotes xenograft tumor growth when expressed ectopically. Here, we demonstrate that Notch1 activation and epithelial–mesenchymal transition (EMT) are coupled to promote SCC tumor initiation in concert with transforming growth factor (TGF)-β present in the tumor microenvironment. We find that TGFβ activates the transcription factor ZEB1 to repress Notch3, thereby limiting terminal differentiation. Concurrently, TGFβ drives Notch1-mediated EMT to generate tumor initiating cells characterized by high CD44 expression. Moreover, Notch1 is activated in a small subset of SCC cells at the invasive tumor front and predicts for poor prognosis of esophageal SCC, shedding light upon the tumor promoting oncogenic aspect of Notch1 in SCC. Notch receptors can exert different roles in cancer. In this manuscript, the authors reveal that Notch1 activation and EMT promote tumor initiation and cancer cell heterogeneity in squamous cell carcinoma, while the repression of Notch3 by ZEB1 limits Notch1-induced differentiation, permitting Notch1-mediated EMT.
Collapse
Affiliation(s)
- Mitsuteru Natsuizaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan
| | - Kelly A Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shingo Kagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, 260-0856, Japan
| | - Koji Tanaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Surgery, Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Veronique Giroux
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Prasanna M Chandramouleeswaran
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Apple Long
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Varun Sahu
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jianwen Que
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, 10032, USA
| | - Yizeng Yang
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan P Katz
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - E Paul Wileyto
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Devraj Basu
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Nankoku-shi, Kochi, 783-8505, Japan
| | - Andres J Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Adam J Bass
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Kwok-Kin Wong
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA. .,Division of Hematology and Medical Oncology, New York University, New York, NY, 10016, USA.
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hiroshi Nakagawa
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
174
|
Yang H, Hu H, Gou Y, Hu Y, Li H, Zhao H, Wang B, Li P, Zhang Z. Combined detection of Twist1, Snail1 and squamous cell carcinoma antigen for the prognostic evaluation of invasion and metastasis in cervical squamous cell carcinoma. Int J Clin Oncol 2017; 23:321-328. [PMID: 29101499 DOI: 10.1007/s10147-017-1210-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/17/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cervical cancer is one of the most common malignant tumours of the female reproductive system, ranking second only to breast cancer in morbidity worldwide. Essential features of the progression of cervical cancer are invasion and metastasis, which are closely related to disease prognosis and mortality rate. At the present time there is no effective method to evaluate cancer invasion and metastasis before surgery. Here we report our study on molecular changes in biopsy tissue for the prognostic evaluation of cancer invasion and metastasis. PATIENTS AND METHODS Expression of the epithelial-mesenchymal transition-inducing transcription factors Twist1 and Snail1 was detected by immunohistochemistry in 32 normal, 36 low-grade squamous intraepithelial neoplasia (LSIL), 54 high-grade squamous intraepithelial neoplasia (HSIL) and 320 cervical squamous cell carcinoma (CSCC) samples. The correlation between the expression of Twist1, Snail1 and squamous cell carcinoma antigen (SCCA) in CSCC tissues and clinical pathology results was evaluated. A transwell migration and invasion assay was used to explore the roles of Twist1 and Snail1 in the invasion of cancer cells. Lymph node metastasis and lymphovascular space invasion (LVSI) rates for the following groups were analysed: SCCA(+) group, Twist1(+) group, Snail1(+) group, Twist1(+)Snail1(+)group, Twist1(+)SCCA(+)group, Snail1(+)SCCA(+)group and Twist1(+)Snail1(+)SCCA(+) group. RESULTS The expression of Twist1 and Snail1 was significantly upregulated in HSIL and CSCC (p < 0.05). Twist1 and Snail1 expression levels were associated with LVSI, lymph node metastasis and histological grade (p < 0.05) but not with age or FIGO stage (p > 0.05). The expression of SCCA was associated with LVSI, lymph node metastasis, FIGO stage and histological grade (p < 0.05) but not with age (p > 0.05). Twist1 was an independent factor contributing to the invasion ability of cervical cancer cells. In addition, the positive rate of lymph node metastasis and LVSI was higher in the Twist1(+)Snail1(+)SCCA(+) group than in the SCCA(+) group, Twist1(+) group and Snail1(+) group, respectively (p < 0.05). CONCLUSION Combined detection of Twist1 and Snail1 in SCCA-positive biopsy specimens may be a potential method for evaluating the invasion and metastasis of CSCC prior to surgery.
Collapse
Affiliation(s)
- Huilun Yang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,Department of Obstetrics and Gynecology, The First People's Hospital of Yangzhou, Yangzhou, 225000, China
| | - Haiyang Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,Department of Obstetrics and Gynecology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Yanling Gou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yuhong Hu
- Department of Obstetrics and Gynecology, The First Hospital Affiliated to Jiamusi University, Jiamusi, China
| | - Hui Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hongwei Zhao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Beidi Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Peiling Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zongfeng Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
175
|
Zhu Y, Zhang W, Wang P. Smoking and gender modify the effect of TWIST on patient survival in head and neck squamous carcinoma. Oncotarget 2017; 8:85816-85827. [PMID: 29156759 PMCID: PMC5689649 DOI: 10.18632/oncotarget.20682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE TWIST is a critical factor for predicting prognosis in several human cancers. Here, we study the prognostic significance of TWIST1 and TWIST2 in Head and Neck squamous cell carcinoma (HNSCC) as well as interactions of TWISTs with both gender and smoking in patient survival. METHODS upper quartile normalized RNA-seq V2 RSEM values of TWIST1 and TWIST2 expressions were retrieved from a TCGA HNSCC dataset. Kaplan-Meier survival curves were used to assess the associations of TWIST1 and TWIST2 with patient survival, and multivariate Cox proportional hazards regression models were used to estimate the hazards ratios (HRs) and their 95% confidence intervals (CIs). RESULTS Survival analyses showed that high TWIST1 expression was associated with a poor overall survival at a borderline significance level, while a superior but not statistically significant overall survival was observed in high TWIST2 expression. The multivariate Cox proportional hazards regression model showed a significantly elevated risk of death (HR=1.37, p = 0.038) in patients with high TWIST1 compared to low TWIST1, and a borderline significantly decreased risk of death (HR = 0.74, p = 0.055) in patients with high TWIST2 compared to low TWIST2. Further stratification analyses showed that increased risks of death were found significantly in male and borderline significantly in smoker patients with high TWIST1 compared to low one, and a significantly decreased risk of death in non-smoker patients with high TWIST2 compared to low one. CONCLUSIONS TWIST1 and TWIST2 are differentially associated with HNSCC patient survival. Gender and smoking could modify the effect of TWISTs on the risk of death in HNSCC patients.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjuan Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Cancer Genetic Laboratory, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77025, USA
| |
Collapse
|
176
|
Chen S, Wang Y, Zhang L, Su Y, Zhang M, Wang J, Zhang X. Exploration of the mechanism of colorectal cancer metastasis using microarray analysis. Oncol Lett 2017; 14:6671-6677. [PMID: 29163694 PMCID: PMC5691382 DOI: 10.3892/ol.2017.7044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the mechanism of metastasis in colorectal cancer (CRC) using microRNA (miRNA) and mRNA expression profiles. The mRNA and miRNA expression profiles of the GSE2509 and GSE56350 datasets were obtained from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified using the limma software package. The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs. The predicted target genes associated with the DEMs were identified using the miRWalk database and the enrichment analysis was conducted using the clusterProfiler package. The miRNA-gene molecular interaction network was visualized using the Cytoscape software platform. A total of 544 DEGs and 42 DEMs were identified. DEGs were annotated in 320 GO terms and 11 KEGG pathways. Overall, 366 miRNA-gene pairs were identified and the miRNA-gene network was visualized. Furthermore, the predicted target genes were mainly classified in 12 pathways. The results of the present study suggest that fibronectin type III domain-containing 3B, cysteine rich transmembrane BMP regulator 1 and forkhead box J2 may be potential therapeutic and prognostic targets of metastatic CRC. In addition, pathways in cancer, the Wnt signaling pathway and extracellular matrix-receptor interaction may play a critical role in CRC metastasis.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Yan Wang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Lin Zhang
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Yinan Su
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Mingqing Zhang
- Anorectal Diseases Diagnosis and Treatment Center, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Juan Wang
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Xipeng Zhang
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| |
Collapse
|
177
|
Zhao Z, Rahman MA, Chen ZG, Shin DM. Multiple biological functions of Twist1 in various cancers. Oncotarget 2017; 8:20380-20393. [PMID: 28099910 PMCID: PMC5386770 DOI: 10.18632/oncotarget.14608] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/01/2017] [Indexed: 01/05/2023] Open
Abstract
Twist1 is a well-known regulator of transcription during embryonic organogenesis in many species. In humans, Twist1 malfunction was first linked to Saethre-Chotzen syndrome and later identified to play an essential role in tumor initiation, stemness, angiogenesis, invasion, metastasis, and chemo-resistance in a variety of carcinomas, sarcomas, and hematological malignances. In this review, we will first focus on systematically elaborating the diverse pathological functions of Twist1 in various cancers, then delineating the intricate underlying network of molecular mechanisms, based on which we will summarize current therapeutic strategies in cancer treatment that target and modulate Twist1-involved signaling pathways. Most importantly, we will put special emphasis on revealing the independence and interdependency of these multiple biological functions of Twist1, piecing together the whole delicate picture of Twist1's diversified pathological roles in different cancers and providing new perspectives to guide future research.
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States of America.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States of America
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States of America
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States of America
| |
Collapse
|
178
|
β-catenin, Twist and Snail: Transcriptional regulation of EMT in smokers and COPD, and relation to airflow obstruction. Sci Rep 2017; 7:10832. [PMID: 28883453 PMCID: PMC5589881 DOI: 10.1038/s41598-017-11375-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
COPD is characterised by poorly reversible airflow obstruction usually due to cigarette smoking. The transcription factor clusters of β-catenin/Snail1/Twist has been implicated in the process of epithelial mesenchymal transition (EMT), an intermediate between smoking and airway fibrosis, and indeed lung cancer. We have investigated expression of these transcription factors and their "cellular localization" in bronchoscopic airway biopsies from patients with COPD, and in smoking and non-smoking controls. An immune-histochemical study compared cellular protein expression of β-catenin, Snail1 and Twist, in these subject groups in 3 large airways compartment: epithelium (basal region), reticular basement membrane (Rbm) and underlying lamina propria (LP). β-catenin and Snail1 expression was generally high in all subjects throughout the airway wall with marked cytoplasmic to nuclear shift in COPD (P < 0.01). Twist expression was generalised in the epithelium in normal but become more basal and nuclear with smoking (P < 0.05). In addition, β-catenin and Snail1 expression, and to lesser extent of Twist, was related to airflow obstruction and to expression of a canonical EMT biomarker (S100A4). The β-catenin-Snail1-Twist transcription factor cluster is up-regulated and nuclear translocated in smokers and COPD, and their expression is closely related to both EMT activity and airway obstruction.
Collapse
|
179
|
Munhoz de Paula Alves Coelho K, Stall J, Fronza Júnior H, Blasius R, de França PHC. Evaluation of expression of genes CADM1, TWIST1 and CDH1 by immunohistochemestry in melanocytic lesions. Pathol Res Pract 2017; 213:1067-1071. [PMID: 28843749 DOI: 10.1016/j.prp.2017.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/05/2017] [Accepted: 07/28/2017] [Indexed: 01/23/2023]
Abstract
AIM Malignant melanoma is an aggressive disease and its incidence is increasing worldwide. Genetic predisposition and exposure to environmental factors, especially sunlight, are risk factors. Histopathologic distinction between nevi and melanomas can be difficult. It is anticipated that the evaluation of the immunohistochemical expression of some genes could contribute to the differential diagnosis of questionable histologically lesions. The objective of this study was to investigate wether the evaluation of the immunohistochemical expression of genes CADM1, TWIST1 and CDH1 (E-cadherin), that take part in mechanisms of cell adhesion and epithelial-mesenchymal transition, contributes to the differential diagnosis of melanocytic lesions difficult to diagnose. MATERIALS AND METHODS Retrospective cross-sectional study based on immunohistochemistry analysis of samples of 30 dysplastic compound melanocytic nevi, 30 melanomas less than 1.0mm thick and 30 melanomas more than 1.0mm thick, diagnosed between 2013 and 2016. A score was used to evaluate color intensity and percentage of cells stained. RESULT There were significant reductions in the expression of the genes CADM1 and CDH1 in melanomas (below and above 1.00mm of thickness) and in melanomas more than 1.0mm thick, respectively, compared to dysplastic compund melanocytic nevi. There was also lower expression of the genes CADM1 and CDH1 in melanomas greater than 1.0mm thick compared to melanomas less than 1.0mm. The gene TWIST1 showed no significant difference in expression between groups. CONCLUSION These findings allow us to conclude that the immunohistochemical expression of CADM1 has the potential to contribute as an auxiliary tool to the differential diagnosis between nevi and melanomas.
Collapse
Affiliation(s)
- Karina Munhoz de Paula Alves Coelho
- Universidade da Região de Joinville - UNIVILLE, Paulo Malschitzki St, 10, 89219-710, Joinville, Santa Catarina, Brazil; Centro de Diagnósticos Anátomo-Patológicos - CEDAP, Mario Lobo St, 61, 89201-330, Joinville, Santa Catarina, Brazil.
| | - Jaqueline Stall
- Universidade da Região de Joinville - UNIVILLE, Paulo Malschitzki St, 10, 89219-710, Joinville, Santa Catarina, Brazil; Centro de Diagnósticos Anátomo-Patológicos - CEDAP, Mario Lobo St, 61, 89201-330, Joinville, Santa Catarina, Brazil
| | - Hercílio Fronza Júnior
- Centro de Diagnósticos Anátomo-Patológicos - CEDAP, Mario Lobo St, 61, 89201-330, Joinville, Santa Catarina, Brazil
| | - Rodrigo Blasius
- Centro de Diagnósticos Anátomo-Patológicos - CEDAP, Mario Lobo St, 61, 89201-330, Joinville, Santa Catarina, Brazil
| | | |
Collapse
|
180
|
Yochum ZA, Cades J, Mazzacurati L, Neumann NM, Khetarpal SK, Chatterjee S, Wang H, Attar MA, Huang EHB, Chatley SN, Nugent K, Somasundaram A, Engh JA, Ewald AJ, Cho YJ, Rudin CM, Tran PT, Burns TF. A First-in-Class TWIST1 Inhibitor with Activity in Oncogene-Driven Lung Cancer. Mol Cancer Res 2017; 15:1764-1776. [PMID: 28851812 DOI: 10.1158/1541-7786.mcr-17-0298] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
TWIST1, an epithelial-mesenchymal transition (EMT) transcription factor, is critical for oncogene-driven non-small cell lung cancer (NSCLC) tumorigenesis. Given the potential of TWIST1 as a therapeutic target, a chemical-bioinformatic approach using connectivity mapping (CMAP) analysis was used to identify TWIST1 inhibitors. Characterization of the top ranked candidates from the unbiased screen revealed that harmine, a harmala alkaloid, inhibited multiple TWIST1 functions, including single-cell dissemination, suppression of normal branching in 3D epithelial culture, and proliferation of oncogene driver-defined NSCLC cells. Harmine treatment phenocopied genetic loss of TWIST1 by inducing oncogene-induced senescence or apoptosis. Mechanistic investigation revealed that harmine targeted the TWIST1 pathway through its promotion of TWIST1 protein degradation. As dimerization is critical for TWIST1 function and stability, the effect of harmine on specific TWIST1 dimers was examined. TWIST1 and its dimer partners, the E2A proteins, which were found to be required for TWIST1-mediated functions, regulated the stability of the other heterodimeric partner posttranslationally. Harmine preferentially promoted degradation of the TWIST1-E2A heterodimer compared with the TWIST-TWIST1 homodimer, and targeting the TWIST1-E2A heterodimer was required for harmine cytotoxicity. Finally, harmine had activity in both transgenic and patient-derived xenograft mouse models of KRAS-mutant NSCLC. These studies identified harmine as a first-in-class TWIST1 inhibitor with marked anti-tumor activity in oncogene-driven NSCLC including EGFR mutant, KRAS mutant and MET altered NSCLC.Implications: TWIST1 is required for oncogene-driven NSCLC tumorigenesis and EMT; thus, harmine and its analogues/derivatives represent a novel therapeutic strategy to treat oncogene-driven NSCLC as well as other solid tumor malignancies. Mol Cancer Res; 15(12); 1764-76. ©2017 AACR.
Collapse
Affiliation(s)
- Zachary A Yochum
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica Cades
- Department of Pharmacology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucia Mazzacurati
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Neil M Neumann
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susheel K Khetarpal
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Suman Chatterjee
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Myriam A Attar
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Eric H-B Huang
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Sarah N Chatley
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashwin Somasundaram
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Johnathan A Engh
- Department of Neurological Surgery University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yoon-Jae Cho
- Division of Pediatric Neurology, Oregon Health & Science University, Portland, Oregon
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Timothy F Burns
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
181
|
Yao Y, Zhao K, Yu Z, Ren H, Zhao L, Li Z, Guo Q, Lu N. Wogonoside inhibits invasion and migration through suppressing TRAF2/4 expression in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:103. [PMID: 28774312 PMCID: PMC5543547 DOI: 10.1186/s13046-017-0574-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/27/2017] [Indexed: 01/05/2023]
Abstract
Background Twist1 is involved in tumor initiation and progression, which especially contributes to tumor invasion and metastasis. Wogonoside is the main in-vivo metabolite of wogonin, and it is also a natural product with potential treatment effects against cancer. Methods In this study, we investigated the in-vitro anti-invasion and in-vivo anti-metastasis effects of wogonoside on breast cancer cells and uncovered its underlying mechanism. Results The results showed that wogonoside could suppress the growth and metastasis of breast tumor in the orthotopic model of MDA-MB-231 cells. We found that wogonoside could reduce the overexpression of TNF-α, TRAF2 and TRAF4 in later stage of tumor, and improved tumor microenvironment. Therefore, TNF-α was utilized to induce metastases of breast cancer cell in vitro. Wogonoside could inhibit invasion and migration in TNF-α-induced MDA-MB-231, MDA-MB-435, and BT-474 cells. Mechanically, wogonoside inactivated NF-κB signaling through decreasing the protein expression of TRAF2/4, which further inhibited Twist1 expression. Consequently, wogonoside could down-regulate MMP-9, MMP-2, vimentin and CD44v6 expression in TNF-α-induced MDA-MB-231 and MDA-MB-435 cells. Then, these findings were proved in TNF-α + TGF-β1-induced MCF7 cells. Conclusions Wogonoside might be a potential therapeutic agent for the treatment of tumor metastasis in breast cancer.
Collapse
Affiliation(s)
- Yuyuan Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Kai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhou Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Haochuan Ren
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
182
|
Epithelial-to-Mesenchymal Transition and MicroRNAs in Lung Cancer. Cancers (Basel) 2017; 9:cancers9080101. [PMID: 28771186 PMCID: PMC5575604 DOI: 10.3390/cancers9080101] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Despite major advances, non-small cell lung cancer (NSCLC) remains the major cause of cancer-related death in developed countries. Metastasis and drug resistance are the main factors contributing to relapse and death. Epithelial-to-mesenchymal transition (EMT) is a complex molecular and cellular process involved in tissue remodelling that was extensively studied as an actor of tumour progression, metastasis and drug resistance in many cancer types and in lung cancers. Here we described with an emphasis on NSCLC how the changes in signalling pathways, transcription factors expression or microRNAs that occur in cancer promote EMT. Understanding the biology of EMT will help to define reversing process and treatment strategies. We will see that this complex mechanism is related to inflammation, cell mobility and stem cell features and that it is a dynamic process. The existence of intermediate phenotypes and tumour heterogeneity may be debated in the literature concerning EMT markers, EMT signatures and clinical consequences in NSCLC. However, given the role of EMT in metastasis and in drug resistance the development of EMT inhibitors is an interesting approach to counteract tumour progression and drug resistance. This review describes EMT involvement in cancer with an emphasis on NSCLC and microRNA regulation.
Collapse
|
183
|
Merk H, Messer P, Ardelt MA, Lamb DC, Zahler S, Müller R, Vollmar AM, Pachmayr J. Inhibition of the V-ATPase by Archazolid A: A New Strategy to Inhibit EMT. Mol Cancer Ther 2017; 16:2329-2339. [DOI: 10.1158/1535-7163.mct-17-0129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022]
|
184
|
Abstract
p53 is best identified as a tumor suppressor for its transcriptional control of genes involved in cell cycle progression and apoptosis. Beyond its irrefutable involvement in restraining unchecked cell proliferation, research over the past several years has indicated a requirement for p53 function in sustaining normal development. Here I summarize the role of p53 in embryonic development, with a focus on knowledge gained from p53 loss and overexpression during kidney development. In contrast to its classical role in suppressing proliferative pathways, p53 positively regulates nephron progenitor cell (NPC) renewal. Emerging evidence suggests p53 may control cell fate decisions by preserving energy metabolism homeostasis of progenitors in the nephrogenic niche. Maintaining a critical level of p53 function appears to be a prerequisite for optimal nephron endowment. Defining the molecular networks targeted by p53 in the NPC may well provide new targets not only for regenerative medicine but also for cancer treatment.
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, 1430 Tulane Avenue, SL37, New Orleans, LA, 70112, USA.
| |
Collapse
|
185
|
Yue Z, Zhou Y, Zhao P, Chen Y, Yuan Y, Jing Y, Wang X. p53 Deletion promotes myeloma cells invasion by upregulating miR19a/CXCR5. Leuk Res 2017; 60:115-122. [PMID: 28783539 DOI: 10.1016/j.leukres.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/08/2017] [Accepted: 07/23/2017] [Indexed: 01/07/2023]
Abstract
P53 deletion has been identified as one of the few factors that defined high risk and poor prognosis in MM. It has been reported p53 deletion is associated with resistance to chemotherapy and organ infiltrations of MM. However, p53 deletion in the migration and dissemination of MM cells has not been totally elucidated. In this research, first, we investigated whether p53 is associated with migration of MM cells. We found that p53 regulates the migration of NCI-H929 cells with wild-type p53 but not U266 cells with mutated-type p53. Next, we investigated the related mechanism by which p53 regulates the migration. We found that down-regulation of p53 reduced adhesion of NCI-H929 cells to the BM stroma via decreased expression of E-cadherin and increased EMT-regulating proteins. Further study have identified the miR-19a/CXCR5 pathway as a candidate p53-induced migration mechanism. In conclusion, we have demonstrated for the first time the critical value of p53 deletion in MM cell migration and dissemination, as well as the acquisition of an EMT-like phenotype. Our research provides new insights into the function of p53 in migration of MM and suggests p53/miRNA19a/CXCR5 may provide potentially therapeutic targets for the treatment of myeloma with p53 deletion.
Collapse
Affiliation(s)
- Zhijie Yue
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Yongxia Zhou
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Pan Zhao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Yafang Chen
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Ying Yuan
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Yaoyao Jing
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China
| | - Xiaofang Wang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Cancer Hospital of Tianjin, China.
| |
Collapse
|
186
|
D'Arcangelo D, Tinaburri L, Dellambra E. The Role of p16 INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. Int J Mol Sci 2017; 18:ijms18071591. [PMID: 28737694 PMCID: PMC5536078 DOI: 10.3390/ijms18071591] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a self-renewing tissue. The balance between proliferation and differentiation processes is tightly regulated to ensure the maintenance of the stem cell (SC) population in the epidermis during life. Aging and cancer may be considered related endpoints of accumulating damages within epidermal self-renewing compartment. p16INK4a is a potent inhibitor of the G1/S-phase transition of the cell cycle. p16INK4a governs the processes of SC self-renewal in several tissues and its deregulation may result in aging or tumor development. Keratinocytes are equipped with several epigenetic enzymes and transcription factors that shape the gene expression signatures of different epidermal layers and allow dynamic and coordinated expression changes to finely balance keratinocyte self-renewal and differentiation. These factors converge their activity in the basal layer to repress p16INK4a expression, protecting cells from senescence, and preserving epidermal homeostasis and regeneration. Several stress stimuli may activate p16INK4a expression that orchestrates cell cycle exit and senescence response. In the present review, we discuss the role of p16INK4a regulators in human epidermal SC self-renewal, aging and cancer.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Lavinia Tinaburri
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
187
|
Chen Z, Xu D, Zhang T. Inhibition of proliferation and invasion of hepatocellular carcinoma cells by lncRNA-ASLNC02525 silencing and the mechanism. Int J Oncol 2017; 51:851-858. [PMID: 28713968 DOI: 10.3892/ijo.2017.4069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
One of the most differentially expressed long non-coding RNAs (lncRNAs) that we identified by high throughput screening from liver cancer and para-carcinoma tissues, ASLNC02525, was highly expressed in the tissues and cell lines of liver cancer but not in adjacent tissues or normal hepatic cells. Knockdown of ASLNC02525 in hepatocellular carcinoma cells inhibited the proliferation and invasion. In the process, expression level of transcription factor twist1 (twist‑related protein 1) was reduced, but no change at transcription level was observed. According to bioinformatics analysis, ASLNC02525 may play a crucial role in inactivation of regulation of twist1 by hsa-miRNA-489-3p. The mechanism study revealed that ASLNC02525, as an RNA sponge, broke the negative regulation of twist1 by hsa-miRNA-489-3p, and once ASLNC02525 was silenced, the highly expressed hsa-miRNA‑489-3p regained its regulation on twist1 and inhibited the proliferation and invasion. The importance of this study lies in shedding light on the potential for lncRNAs to become targets for gene therapy, by demonstrating that lncRNAs can suppress tumor inhibiting activity of miRNAs via breaking regulation of some miRNA target genes.
Collapse
Affiliation(s)
- Zi Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Dongwen Xu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
188
|
Karlsson MC, Gonzalez SF, Welin J, Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol 2017; 11:781-791. [PMID: 28590032 PMCID: PMC5496496 DOI: 10.1002/1878-0261.12092] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
It was already in the 18th century when the French surgeon LeDran first noted that breast cancer patients with spread of tumor cells to their axillary lymph nodes had a drastically worse prognosis than patients without spread (LeDran et al., ). Since then, metastatic spread of cancer cells to regional lymph nodes has been established as the most important prognostic factor in many types of cancer (Carter et al., ; Elston and Ellis, ). However, despite its clinical importance, lymph metastasis remains an underexplored area of tumor biology. Fundamental questions, such as when, how, and perhaps most importantly, why tumor cells disseminate through the lymphatic system, remain largely unanswered. Accordingly, no treatment strategies exist that specifically target lymph metastasis. The identification of epithelial-mesenchymal transition (EMT) as a mechanism, which allows cancer cells to dedifferentiate and acquire enhanced migratory and invasive properties, has been a game changer in cancer research. Conceptually, EMT provides an explanation for why epithelial cancers with poor differentiation status are generally more aggressive and prone to metastasize than more differentiated cancers. Inflammatory cytokines, such as TGF-β, which are produced and secreted by tumor-infiltrating immune cells, are potent inducers of EMT. Thus, reactivation of EMT also links cancer-related inflammation to invasive and metastatic disease. Recently, we found that breast cancer cells undergoing TGF-β-induced EMT acquire properties of immune cells allowing them to disseminate in a targeted fashion through the lymphatic system similar to activated dendritic cells during inflammation. Here, we review our current understanding of the mechanisms by which cancer cells spread through the lymphatic system and the links to inflammation and the immune system. We also emphasize how imaging techniques have the potential to further expand our knowledge of the mechanisms of lymph metastasis, and how lymph nodes serve as an interface between cancer and the immune system.
Collapse
Affiliation(s)
- Mikael C. Karlsson
- Department of Microbiology, Tumor Biology and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | | | - Josefin Welin
- Department of Microbiology, Tumor Biology and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Jonas Fuxe
- Department of Microbiology, Tumor Biology and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| |
Collapse
|
189
|
Shin S, Im HJ, Kwon YJ, Ye DJ, Baek HS, Kim D, Choi HK, Chun YJ. Human steroid sulfatase induces Wnt/β-catenin signaling and epithelial-mesenchymal transition by upregulating Twist1 and HIF-1α in human prostate and cervical cancer cells. Oncotarget 2017; 8:61604-61617. [PMID: 28977889 PMCID: PMC5617449 DOI: 10.18632/oncotarget.18645] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022] Open
Abstract
Steroid sulfatase (STS) catalyzes the hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate (DHEAS) to their unconjugated biologically active forms. Although STS is considered a therapeutic target for estrogen-dependent diseases, the cellular functions of STS remain unclear. We found that STS induces Wnt/β-catenin s Delete ignaling in PC-3 and HeLa cells. STS increases levels of β-catenin, phospho-β-catenin, and phospho-GSK3β. Enhanced translocation of β-catenin to the nucleus by STS might activate transcription of target genes such as cyclin D1, c-myc, and MMP-7. STS knockdown by siRNA resulted in downregulation of Wnt/β-catenin signaling. β-Catenin/TCF-mediated transcription was also enhanced by STS. STS induced an epithelial-mesenchymal transition (EMT) as it reduced the levels of E-cadherin, whereas levels of mesenchymal markers such as N-cadherin and vimentin were enhanced. We found that STS induced Twist1 expression through HIFα activation as HIF-1α knockdown significantly blocks the ability of STS to induce Twist1 transcription. Furthermore, DHEA, but not DHEAS is capable of inducing Twist1. Treatment with a STS inhibitor prevented STS-mediated Wnt/β-catenin signaling and Twist1 expression. Interestingly, cancer cell migration, invasion, and MMPs expression induced by STS were also inhibited by a STS inhibitor. Taken together, these results suggest that STS induces Wnt/β-catenin signaling and EMT by upregulating Twist1 and HIF-1α. The ability of STS to induce the Wnt/β-catenin signaling and EMT has profound implications on estrogen-mediated carcinogenesis in human cancer cells.
Collapse
Affiliation(s)
- Sangyun Shin
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee-Jung Im
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
190
|
Liao TT, Yang MH. Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Mol Oncol 2017. [PMID: 28649800 PMCID: PMC5496497 DOI: 10.1002/1878-0261.12096] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial‐mesenchymal transition (EMT) is an important process in embryonic development, fibrosis, and cancer metastasis. During cancer progression, the activation of EMT permits cancer cells to acquire migratory, invasive, and stem‐like properties. A growing body of evidence supports the critical link between EMT and cancer stemness. However, contradictory results have indicated that the inhibition of EMT also promotes cancer stemness, and that mesenchymal‐epithelial transition, the reverse process of EMT, is associated with the tumor‐initiating ability required for metastatic colonization. The concept of ‘intermediate‐state EMT’ provides a possible explanation for this conflicting evidence. In addition, recent studies have indicated that the appearance of ‘hybrid’ epithelial‐mesenchymal cells is favorable for the establishment of metastasis. In summary, dynamic changes or plasticity between the epithelial and the mesenchymal states rather than a fixed phenotype is more likely to occur in tumors in the clinical setting. Further studies aimed at validating and consolidating the concept of intermediate‐state EMT and hybrid tumors are needed for the establishment of a comprehensive profile of cancer metastasis.
Collapse
Affiliation(s)
- Tsai-Tsen Liao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taiwan
| |
Collapse
|
191
|
Voon DC, Huang RY, Jackson RA, Thiery JP. The EMT spectrum and therapeutic opportunities. Mol Oncol 2017; 11:878-891. [PMID: 28544151 PMCID: PMC5496500 DOI: 10.1002/1878-0261.12082] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022] Open
Abstract
Carcinomas are phenotypically arrayed along an epithelial–mesenchymal transition (EMT) spectrum, a developmental program currently exploited to understand the acquisition of drug resistance through a re‐routing of growth factor signaling. This review collates the current approaches employed in developing therapeutics against cancer‐associated EMT, and provides an assessment of their respective strengths and drawbacks. We reflect on the close relationship between EMT and chemoresistance against current targeted therapeutics, with a special focus on the epigenetic mechanisms that link these processes. This prompts the hypothesis that carcinoma‐associated EMT shares a common epigenetic pathway to cellular plasticity as somatic cell reprogramming during tissue repair and regeneration. Indeed, their striking resemblance suggests that EMT in carcinoma is a pathological adaptation of an intrinsic program of cellular plasticity that is crucial to tissue homeostasis. We thus propose a revised approach that targets the epigenetic mechanisms underlying pathogenic EMT to arrest cellular plasticity regardless of upstream cancer‐driving mutations.
Collapse
Affiliation(s)
- Dominic C Voon
- Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Ruby Y Huang
- Department of Obstetrics & Gynaecology, National University Hospital, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rebecca A Jackson
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jean P Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Inserm Unit 1186 Comprehensive Cancer Center, Institut Gustave Roussy, Villejuif, France.,CNRS UMR 7057 Matter and Complex Systems, University Paris Denis Diderot, Paris, France
| |
Collapse
|
192
|
Baulida J. Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Mol Oncol 2017; 11:847-859. [PMID: 28544627 PMCID: PMC5496490 DOI: 10.1002/1878-0261.12080] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/03/2023] Open
Abstract
Beyond inducing epithelial‐to‐mesenchymal transcription (EMT), transcriptional factors of the Snail, ZEB and Twist families (EMT‐TFs) control global plasticity programmes affecting cell stemness and fate. Literature addressing the reactivation of these factors in adult tumour cells is very extensive, as they enable cancer cell plasticity and fuel both tumour initiation and metastatic spread. Incipient data reveal that EMT‐TFs are also expressed in fibroblasts, providing these with additional properties. Here, I will review recent reports on the expression of EMT‐TFs in cancer‐associated fibroblasts (CAFs). The new model suggests that EMT‐TFs can be envisioned as essential metastasis and chemoresistance‐promoting molecules, thereby enabling coordinated plasticity programmes in parenchyma and stroma–tumour compartments.
Collapse
Affiliation(s)
- Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| |
Collapse
|
193
|
Zhang X, Cheng Q, Yin H, Yang G. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review). Int J Oncol 2017; 51:18-24. [PMID: 28560457 DOI: 10.3892/ijo.2017.4025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Cellular autophagy and epithelial-mesenchymal transition (EMT) are key events mostly resulted from the interplay of tumor suppressors and oncogenes during cancer progression. The master tumor suppressor p53 may control tumor cell autophagy and EMT through the transcriptional induction of multiple target genes, while the activated oncogene RAS may also play a critical role in regulating mitogenic signaling to tumor cell autophagy and EMT. Although the fundamental functions of p53 and RAS are well understood, the interactive effects of p53 and RAS on autophagy and EMT are still unclear. In this review, we highlight the recent advances in the regulation of autophagy and EMT by p53 and RAS, aiming to explore novel therapeutic targets and biomarkers in cancer treatment and prevention.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Qian Cheng
- Department of Orthopedics, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Huijing Yin
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
194
|
Sciacovelli M, Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J 2017; 284:3132-3144. [PMID: 28444969 DOI: 10.1111/febs.14090] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Several lines of evidence indicate that during transformation epithelial cancer cells can acquire mesenchymal features via a process called epithelial-to-mesenchymal transition (EMT). This process endows cancer cells with increased invasive and migratory capacity, enabling tumour dissemination and metastasis. EMT is associated with a complex metabolic reprogramming, orchestrated by EMT transcription factors, which support the energy requirements of increased motility and growth in harsh environmental conditions. The discovery that mutations in metabolic genes such as FH, SDH and IDH activate EMT provided further evidence that EMT and metabolism are intertwined. In this review, we discuss the role of EMT in cancer and the underpinning metabolic reprogramming. We also put forward the hypothesis that, by altering chromatin structure and function, metabolic pathways engaged by EMT are necessary for its full activation.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, UK
| |
Collapse
|
195
|
Bouard C, Terreux R, Tissier A, Jacqueroud L, Vigneron A, Ansieau S, Puisieux A, Payen L. Destabilization of the TWIST1/E12 complex dimerization following the R154P point-mutation of TWIST1: an in silico approach. BMC STRUCTURAL BIOLOGY 2017; 17:6. [PMID: 28521820 PMCID: PMC5437649 DOI: 10.1186/s12900-017-0076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022]
Abstract
Background The bHLH transcription factor TWIST1 plays a key role in the embryonic development and in tumorigenesis. Some loss-of-function mutations of the TWIST1 gene have been shown to cause an autosomal dominant craniosynostosis, known as the Saethre-Chotzen syndrome (SCS). Although the functional impacts of many TWIST1 mutations have been experimentally reported, little is known on the molecular mechanisms underlying their loss-of-function. In a previous study, we highlighted the predictive value of in silico molecular dynamics (MD) simulations in deciphering the molecular function of TWIST1 residues. Results Here, since the substitution of the arginine 154 amino acid by a glycine residue (R154G) is responsible for the SCS phenotype and the substitution of arginine 154 by a proline experimentally decreases the dimerizing ability of TWIST1, we investigated the molecular impact of this point mutation using MD approaches. Consistently, MD simulations highlighted a clear decrease in the stability of the α-helix during the dimerization of the mutated R154P TWIST1/E12 dimer compared to the wild-type TE complex, which was further confirmed in vitro using immunoassays. Conclusions Our study demonstrates that MD simulations provide a structural explanation for the loss-of-function associated with the SCS TWIST1 mutation and provides a proof of concept of the predictive value of these MD simulations. This in silico methodology could be used to determine reliable pharmacophore sites, leading to the application of docking approaches in order to identify specific inhibitors of TWIST1 complexes. Electronic supplementary material The online version of this article (doi:10.1186/s12900-017-0076-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Raphael Terreux
- Université de Lyon1, ISPB, Lyon, 69008, France.,Pole Rhône-Alpes de Bioinformatique - Lyon Gerland (PRABI-LG), Lyon, 69007, France.,CNRS UMR 5305, Lyon, France
| | - Agnès Tissier
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Laurent Jacqueroud
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Arnaud Vigneron
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Stéphane Ansieau
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France.,Université de Lyon1, ISPB, Lyon, 69008, France.,Institut Universitaire de France, Paris, 75231, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France. .,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France. .,LabEX DEVweCAN, Lyon, France. .,UNIV UMR1052, Lyon, 69008, France. .,Centre Léon Bérard, Lyon, 69373, France. .,Université de Lyon1, ISPB, Lyon, 69008, France. .,Laboratoire de Biochimie et Biologie Moléculaire (CHLS), Hospices Civils de Lyon, Lyon, 69003, France.
| |
Collapse
|
196
|
Nayak D, Kumar A, Chakraborty S, Rasool RU, Amin H, Katoch A, Gopinath V, Mahajan V, Zilla MK, Rah B, Gandhi SG, Ali A, Kumar LD, Goswami A. Inhibition of Twist1-mediated invasion by Chk2 promotes premature senescence in p53-defective cancer cells. Cell Death Differ 2017; 24:1275-1287. [PMID: 28498365 DOI: 10.1038/cdd.2017.70] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Twist1, a basic helix-loop-helix transcription factor is implicated as a key mediator of epithelial-mesenchymal transition (EMT) and metastatic dissemination in p53-deficient cancer cells. On the other hand, checkpoint kinase 2 (Chk2), a major cell cycle regulatory protein provides a barrier to tumorigenesis due to DNA damage response by preserving genomic stability of the cells. Here we demonstrate that Chk2 induction proficiently abrogates invasion, cell scattering and invadopodia formation ability of p53-mutated invasive cells by suppressing Twist1, indicating Chk2 confers vital role in metastasis prevention. In addition, ectopic Chk2, as well as its (Chk2) induction by natural podophyllotoxin analog, 4'-demethyl-deoxypodophyllotoxin glucoside (4DPG), strongly restrain Twist1 activity along with other mesenchymal markers, for example, ZEB-1, vimentin and Snail1, whereas the epithelial markers such as E-cadherin and TIMP-1 expression augmented robustly. However, downregulation of endogenous Chk2 by siRNA as well as Chk2 selective inhibitor PV1019 implies that 4DPG-mediated inhibition of Twist1 is Chk2-dependent. Further, mechanistic studies unveil that Chk2 negatively regulates Twist1 promoter activity and it (Chk2) interacts steadily with Snail1 protein to curb EMT. Strikingly, Chk2 overexpression triggers premature senescence in these cells with distinctive increase in senescence-associated β-galactosidase (SA-β-gal) activity, G2/M cell cycle arrest and induction of senescence-specific marker p21waf1/Cip1. Importantly, stable knockdown of Twist1 by shRNA markedly augments p21 expression, its nuclear accumulation, senescence-associated heterochromatin foci (SAHF) and amplifies the number of SA-β-gal-positive cells. Moreover, our in vivo studies also validate that 4DPG treatment significantly abrogates tumor growth as well as metastatic lung nodules formation by elevating the level of phospho-Chk2, Chk2 and suppressing Twist1 activity in mouse mammary carcinoma model. In a nutshell, this report conceives a novel strategy of Twist1 suppression through Chk2 induction, which prevents metastatic dissemination and promotes premature senescence in p53-defective invasive cancer cells.
Collapse
Affiliation(s)
- Debasis Nayak
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Anmol Kumar
- Cancer Biology, CSIR-Centre for Cellular &Molecular Biology, Hyderabad 500007, India
| | - Souneek Chakraborty
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Reyaz Ur Rasool
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Hina Amin
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Archana Katoch
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Veena Gopinath
- Cancer Biology, CSIR-Centre for Cellular &Molecular Biology, Hyderabad 500007, India
| | - Vidushi Mahajan
- Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Mahesh K Zilla
- Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Bilal Rah
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sumit G Gandhi
- Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Asif Ali
- Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular &Molecular Biology, Hyderabad 500007, India
| | - Anindya Goswami
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific &Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
197
|
Jacqueroud L, Bouard C, Richard G, Payen L, Devouassoux-Shisheboran M, Spicer DB, Caramel J, Collin G, Puisieux A, Tissier A, Ansieau S. The Heterodimeric TWIST1-E12 Complex Drives the Oncogenic Potential of TWIST1 in Human Mammary Epithelial Cells. Neoplasia 2017; 18:317-327. [PMID: 27237323 PMCID: PMC4887617 DOI: 10.1016/j.neo.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022] Open
Abstract
The TWIST1 embryonic transcription factor displays biphasic functions during the course of carcinogenesis. It facilitates the escape of cells from oncogene-induced fail-safe programs (senescence, apoptosis) and their consequent neoplastic transformation. Additionally, it promotes the epithelial-to-mesenchymal transition and the initiation of the metastatic spread of cancer cells. Interestingly, cancer cells recurrently remain dependent on TWIST1 for their survival and/or proliferation, making TWIST1 their Achilles’ heel. TWIST1 has been reported to form either homodimeric or heterodimeric complexes mainly in association with the E bHLH class I proteins. These complexes display distinct, sometimes even antagonistic, functions during development and unequal prometastatic functions in prostate cancer cells. Using a tethered dimer strategy, we successively assessed the ability of TWIST1 dimers to cooperate with an activated version of RAS in human mammary epithelial cell transformation, to provide mice with the ability to spontaneously develop breast tumors, and lastly to maintain a senescence program at a latent state in several breast cancer cell lines. We demonstrate that the TWIST1-E12 complex, unlike the homodimer, is an oncogenic form of TWIST1 in mammary epithelial cells and that efficient binding of both partners is a prerequisite for its activity. The detection of the heterodimer in human premalignant lesions by a proximity ligation assay, at a stage preceding the initiation of the metastatic cascade, is coherent with such an oncogenic function. TWIST1-E protein heterodimeric complexes may thus constitute the main active forms of TWIST1 with regard to senescence inhibition over the time course of breast tumorigenesis.
Collapse
Affiliation(s)
- Laurent Jacqueroud
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Geoffrey Richard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Mojgan Devouassoux-Shisheboran
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France; Hospices Civils de Lyon, Lyon, France; Hôpital de la Croix-Rousse, Lyon, France
| | - Douglas B Spicer
- Center for Molecular Medicine, Main Medical Center Research Institute, Scarborough, ME, USA
| | - Julie Caramel
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France
| | - Guillaume Collin
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France; Institut Universitaire de France, Paris, France
| | - Agnès Tissier
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Stéphane Ansieau
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France.
| |
Collapse
|
198
|
Liu YR, Liang L, Zhao JM, Zhang Y, Zhang M, Zhong WL, Zhang Q, Wei JJ, Li M, Yuan J, Chen S, Zong SM, Liu HJ, Meng J, Qin Y, Sun B, Yang L, Zhou HG, Sun T, Yang C. Twist1 confers multidrug resistance in colon cancer through upregulation of ATP-binding cassette transporters. Oncotarget 2017; 8:52901-52912. [PMID: 28881781 PMCID: PMC5581080 DOI: 10.18632/oncotarget.17548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/30/2017] [Indexed: 01/07/2023] Open
Abstract
Multidrug resistance is a major problem in colon cancer treatment. However, its molecular mechanisms remain unclear. Recently, the epithelial-mesenchymal transition (EMT) in anticancer drug resistance has attracted increasing attention. This study investigated whether vincristine treatment induces EMT and promotes multidrug resistance in colon cancer. The result showed that vincristine treatment increases the expression of several ATP-binding cassette transporters in invasive human colon adenocarcinoma cell line (HCT-8). Vincristine-resistant HCT-8 cells (HCT-8/V) acquire a mesenchymal phenotype, and thus its migratory and invasive ability are increased both in vitro and in vivo. The master transcriptional factors of EMT, especially Twist1, were significantly increased in the HCT-8/V cell line. Moreover, the ectopic expression of Twist1 increased the chemoresistance of HCT-8 cells to vincristine and increased the expression levels and promoter activities of ABCB1 and ABCC1. Furthermore, Twist1 silencing reverses the EMT phenotype, enhances the chemosensitivity of HCT-8/ V cells to anticancer agents in vitro and in vivo, and downregulates the expression of ABCB1 and ABCC1. Twist1-mediated promotion of ABCB1 and ABCC1 expression levels plays an important role in the drug resistance of colon cancer cells.
Collapse
Affiliation(s)
- Yan-Rong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Lan Liang
- Tianjin GoalGen Biotechnology Co., Ltd., Tianjin, China
| | - Jian Min Zhao
- Pathology Department, Shun Yi District Hospital, Beijing, China
| | - Yang Zhang
- Department of Anesthesiology, Tianjin 4th Center Hospital, Tianjin, China
| | - Min Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Wei-Long Zhong
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Qiang Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jun-Jie Wei
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Meng Li
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jie Yuan
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shu-Min Zong
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Hui-Juan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing Meng
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yuan Qin
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Bo Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Lan Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hong-Gang Zhou
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Cheng Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
199
|
Twist1/Dnmt3a and miR186 establish a regulatory circuit that controls inflammation-associated prostate cancer progression. Oncogenesis 2017; 6:e315. [PMID: 28394356 PMCID: PMC5520493 DOI: 10.1038/oncsis.2017.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/16/2017] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
Increasing evidences suggest that inflammatory microenvironment has a crucial role in prostate cancer (PCa) progression; however, the underlying mechanisms are unclear. Here, we used the inflammation-associated prostate cellular transformation model to screen out a crucial microRNA, miR186, which was significantly downregulated in the transformed cells and effectively rescued the transformed phenotype. On stimulation of inflammatory cytokines, the activated nuclear factor kappa B (NF-κB)/p65 was able to induce miR186 expression through binding to its promoter in non-transformed cells, whereas this pathway was lost in transformed cells. Interestingly, Twist1, which is a reported downstream target of miR186, was responsible for the loss of NF-κB/p65-miR186 pathway. Twist1 downregulated miR186 expression in a novel negative feedback loop binding to the E-box and simultaneously recruiting Dnmt3a, which facilitated the site-specific CpG methylation of the miR186 promoter, thereby blocked the transcriptional activity of NF-κB/p65 and the responsiveness of miR186 to inflammatory signals. The high level of Twist1 triggered this feedback loop that underlies the epigenetic switch, which was essential for maintaining transformed and advanced PCa state. Finally, our clinical data confirmed that the CpG methylation and miR186 expression levels were closely related with inflammation-associated human PCa progression.
Collapse
|
200
|
A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat Med 2017; 23:568-578. [PMID: 28394329 DOI: 10.1038/nm.4323] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/13/2017] [Indexed: 12/30/2022]
Abstract
Chromosomal instability (CIN), a feature of most adult neoplasms from their early stages onward, is a driver of tumorigenesis. However, several malignancy subtypes, including some triple-negative breast cancers, display a paucity of genomic aberrations, thus suggesting that tumor development may occur in the absence of CIN. Here we show that the differentiation status of normal human mammary epithelial cells dictates cell behavior after an oncogenic event and predetermines the genetic routes toward malignancy. Whereas oncogene induction in differentiated cells induces massive DNA damage, mammary stem cells are resistant, owing to a preemptive program driven by the transcription factor ZEB1 and the methionine sulfoxide reductase MSRB3. The prevention of oncogene-induced DNA damage precludes induction of the oncosuppressive p53-dependent DNA-damage response, thereby increasing stem cells' intrinsic susceptibility to malignant transformation. In accord with this model, a subclass of breast neoplasms exhibit unique pathological features, including high ZEB1 expression, a low frequency of TP53 mutations and low CIN.
Collapse
|