151
|
Calcium oscillations-coupled conversion of actin travelling waves to standing oscillations. Proc Natl Acad Sci U S A 2013; 110:1339-44. [PMID: 23297209 PMCID: PMC3557052 DOI: 10.1073/pnas.1221538110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dynamic spatial patterns of signaling factors or macromolecular assemblies in the form of oscillations or traveling waves have emerged as important themes in cell physiology. Feedback mechanisms underlying these processes and their modulation by signaling events and reciprocal cross-talks remain poorly understood. Here we show that antigen stimulation of mast cells triggers cyclic changes in the concentration of actin regulatory proteins and actin in the cell cortex that can be manifested in either spatial pattern. Recruitment of FBP17 and active Cdc42 at the plasma membrane, leading to actin polymerization, are involved in both events, whereas calcium oscillations, which correlate with global fluctuations of plasma membrane PI(4,5)P(2), are tightly linked to standing oscillations and counteract wave propagation. These findings demonstrate the occurrence of a calcium-independent oscillator that controls the collective dynamics of factors linking the actin cytoskeleton to the plasma membrane. Coupling between this oscillator and the one underlying global plasma membrane PI(4,5)P2 and calcium oscillations spatially regulates actin dynamics, revealing an unexpected pattern-rendering mechanism underlying plastic changes occurring in the cortical region of the cell.
Collapse
|
152
|
Goh SL, Wang Q, Byrnes LJ, Sondermann H. Versatile membrane deformation potential of activated pacsin. PLoS One 2012; 7:e51628. [PMID: 23236520 PMCID: PMC3517540 DOI: 10.1371/journal.pone.0051628] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022] Open
Abstract
Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro. Full-length pacsin isoform 1 (pacsin-1) has reduced activity compared to its isolated F-BAR domain, implicating an inhibitory role for its C-terminal Src homology 3 (SH3) domain. Here we show that the autoinhibitory, intramolecular interactions in pacsin-1 can be released upon binding to the entire proline-rich domain (PRD) of dynamin-1, resulting in potent membrane deformation activity that is distinct from the isolated F-BAR domain. Most strikingly, we observe the generation of small, homogenous vesicles with the activated protein complex under certain experimental conditions. In addition, liposomes prepared with different methods yield distinct membrane deformation morphologies of BAR domain proteins and apparent activation barriers to pacsin-1's activity. Theoretical free energy calculations suggest bimodality of the protein-membrane system as a possible source for the different outcomes, which could account for the coexistence of energetically equivalent membrane structures induced by BAR domain-containing proteins in vitro. Taken together, our results suggest a versatile role for pacsin-1 in sculpting cellular membranes that is likely dependent both on protein structure and membrane properties.
Collapse
Affiliation(s)
- Shih Lin Goh
- Department of Molecular Medicine, Cornell University, Ithaca, New York, United States of America
| | - Qi Wang
- Department of Molecular Medicine, Cornell University, Ithaca, New York, United States of America
| | - Laura J. Byrnes
- Department of Molecular Medicine, Cornell University, Ithaca, New York, United States of America
| | - Holger Sondermann
- Department of Molecular Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
153
|
Chitu V, Nacu V, Charles JF, Henne WM, McMahon HT, Nandi S, Ketchum H, Harris R, Nakamura MC, Stanley ER. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts. Blood 2012; 120:3126-35. [PMID: 22923495 PMCID: PMC3471520 DOI: 10.1182/blood-2012-04-425595] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/07/2012] [Indexed: 12/11/2022] Open
Abstract
Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)-dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Zhu C, Das SL, Baumgart T. Nonlinear sorting, curvature generation, and crowding of endophilin N-BAR on tubular membranes. Biophys J 2012; 102:1837-45. [PMID: 22768939 DOI: 10.1016/j.bpj.2012.03.039] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/10/2012] [Accepted: 03/20/2012] [Indexed: 11/19/2022] Open
Abstract
The curvature of biological membranes is controlled by membrane-bound proteins. For example, during endocytosis, the sorting of membrane components, vesicle budding, and fission from the plasma membrane are mediated by adaptor and accessory proteins. Endophilin is a peripherally binding membrane protein that functions as an endocytic accessory protein. Endophilin's membrane tubulation capacity is well known. However, to understand the thermodynamic and mechanical aspects of endophilin function, experimental measurements need to be compared to quantitative theoretical models. We present measurements of curvature sorting and curvature generation of the endophilin A1 N-BAR domain on tubular membranes pulled from giant unilamellar vesicles. At low concentration, endophilin functions primarily as a membrane curvature sensor; at high concentrations, it also generates curvature. We determine the spontaneous curvature induced by endophilin and observe sigmoidal curvature/composition coupling isotherms that saturate at high membrane tensions and protein solution concentrations. The observation of saturation is supported by a strong dependence of lateral diffusion coefficients on protein density on the tether membrane. We develop a nonlinear curvature/composition coupling model that captures our experimental observations. Our model predicts a curvature-induced phase transition among two states with varying protein density and membrane curvature. This transition could act as a switch during endocytosis.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
155
|
Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 2012; 37:526-33. [PMID: 23058040 DOI: 10.1016/j.tibs.2012.09.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/26/2023]
Abstract
Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the Bin/amphiphysin/Rvs (BAR) domain proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR domain proteins sense, stabilize, and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent.
Collapse
|
156
|
Ward KE, Ropa JP, Adu-Gyamfi E, Stahelin RV. C2 domain membrane penetration by group IVA cytosolic phospholipase A₂ induces membrane curvature changes. J Lipid Res 2012; 53:2656-66. [PMID: 22991194 DOI: 10.1194/jlr.m030718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)α) is an 85 kDa enzyme that regulates the release of arachidonic acid (AA) from the sn-2 position of membrane phospholipids. It is well established that cPLA(2)α binds zwitterionic lipids such as phosphatidylcholine in a Ca(2+)-dependent manner through its N-terminal C2 domain, which regulates its translocation to cellular membranes. In addition to its role in AA synthesis, it has been shown that cPLA(2)α promotes tubulation and vesiculation of the Golgi and regulates trafficking of endosomes. Additionally, the isolated C2 domain of cPLA(2)α is able to reconstitute Fc receptor-mediated phagocytosis, suggesting that C2 domain membrane binding is sufficient for phagosome formation. These reported activities of cPLA(2)α and its C2 domain require changes in membrane structure, but the ability of the C2 domain to promote changes in membrane shape has not been reported. Here we demonstrate that the C2 domain of cPLA(2)α is able to induce membrane curvature changes to lipid vesicles, giant unilamellar vesicles, and membrane sheets. Biophysical assays combined with mutagenesis of C2 domain residues involved in membrane penetration demonstrate that membrane insertion by the C2 domain is required for membrane deformation, suggesting that C2 domain-induced membrane structural changes may be an important step in signaling pathways mediated by cPLA(2)α.
Collapse
Affiliation(s)
- Katherine E Ward
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA
| | | | | | | |
Collapse
|
157
|
Abstract
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.
Collapse
Affiliation(s)
- Yasunori Saheki
- Department of Cell Biology, Howard Hughes Medical Institute and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
158
|
Yoon Y, Zhang X, Cho W. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by Bin/amphiphysin/Rvs (BAR) domains. J Biol Chem 2012; 287:34078-90. [PMID: 22888025 DOI: 10.1074/jbc.m112.372789] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular proteins containing Bin/amphiphysin/Rvs (BAR) domains play a key role in clathrin-mediated endocytosis. Despite extensive structural and functional studies of BAR domains, it is still unknown how exactly these domains interact with the plasma membrane containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) and whether they function by a universal mechanism or by different mechanisms. Here we report that PtdIns(4,5)P(2) specifically induces partial membrane penetration of the N-terminal amphiphilic α-helix (H(0)) of two representative N-BAR domains from Drosophila amphiphysin (dAmp-BAR) and rat endophilin A1 (EndoA1-BAR). Our quantitative fluorescence imaging analysis shows that PtdIns(4,5)P(2)-dependent membrane penetration of H(0) is important for self-association of membrane-bound dAmp-BAR and EndoA1-BAR and their membrane deformation activity. EndoA1-BAR behaves differently from dAmp-BAR because the former has an additional amphiphilic α-helix that penetrates the membrane in a PtdIns(4,5)P(2)-independent manner. Depletion of PtdIns(4,5)P(2) from the plasma membrane of HEK293 cells abrogated the membrane deforming activity of EndoA1-BAR and dAmp-BAR. Collectively, these studies suggest that the local PtdIns(4,5)P(2) concentration in the plasma membrane may regulate the membrane interaction and deformation by N-BAR domain-containing proteins during clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Youngdae Yoon
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
159
|
Brand J, Smith ESJ, Schwefel D, Lapatsina L, Poole K, Omerbašić D, Kozlenkov A, Behlke J, Lewin GR, Daumke O. A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO J 2012; 31:3635-46. [PMID: 22850675 PMCID: PMC3433786 DOI: 10.1038/emboj.2012.203] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/06/2012] [Indexed: 12/14/2022] Open
Abstract
Stomatins govern membrane trafficking and ion channel activity. The banana-shaped stomatin-domain dimmers oligomerize into a cylindrical structure. A dynamic hydrophobic pocket at the concave side of the dimer mediates repression of acid-sensing ion channel 3 (ASIC3) activity. Stomatin proteins oligomerize at membranes and have been implicated in ion channel regulation and membrane trafficking. To obtain mechanistic insights into their function, we determined three crystal structures of the conserved stomatin domain of mouse stomatin that assembles into a banana-shaped dimer. We show that dimerization is crucial for the repression of acid-sensing ion channel 3 (ASIC3) activity. A hydrophobic pocket at the inside of the concave surface is open in the presence of an internal peptide ligand and closes in the absence of this ligand, and we demonstrate a function of this pocket in the inhibition of ASIC3 activity. In one crystal form, stomatin assembles via two conserved surfaces into a cylindrical oligomer, and these oligomerization surfaces are also essential for the inhibition of ASIC3-mediated currents. The assembly mode of stomatin uncovered in this study might serve as a model to understand oligomerization processes of related membrane-remodelling proteins, such as flotillin and prohibitin.
Collapse
Affiliation(s)
- Janko Brand
- Max-Delbrück Center for Molecular Medicine, Crystallography Department, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Tang X, Germain BS, Lee WL. A novel patch assembly domain in Num1 mediates dynein anchoring at the cortex during spindle positioning. ACTA ACUST UNITED AC 2012; 196:743-56. [PMID: 22431751 PMCID: PMC3308694 DOI: 10.1083/jcb.201112017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During mitosis in budding yeast, cortically anchored dynein generates pulling forces on astral microtubules to position the mitotic spindle across the mother-bud neck. The attachment molecule Num1 is required for dynein anchoring at the cell membrane, but how Num1 assembles into stationary cortical patches and interacts with dynein is unknown. We show that an N-terminal Bin/Amphiphysin/Rvs (BAR)-like domain in Num1 mediates the assembly of morphologically distinct patches and its interaction with dynein for spindle translocation into the bud. We name this domain patch assembly domain (PA; residues 1-303), as it was both necessary and sufficient for the formation of functional dynein-anchoring patches when it was attached to a pleckstrin homology domain or a CAAX motif. Distinct point mutations targeting the predicted BAR-like PA domain differentially disrupted patch assembly, dynein anchoring, and mitochondrial attachment functions of Num1. We also show that the PA domain is an elongated dimer and discuss the mechanism by which it drives patch assembly.
Collapse
Affiliation(s)
- Xianying Tang
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
161
|
External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane. Nat Cell Biol 2012; 14:874-81. [PMID: 22750946 PMCID: PMC3519285 DOI: 10.1038/ncb2533] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 05/30/2012] [Indexed: 12/18/2022]
Abstract
Many of the more than 20 mammalian proteins with N-BAR domains1-2 control cell architecture3 and endocytosis4-5 by associating with curved sections of the plasma membrane (PM)6. It is not well understood whether N-BAR proteins are recruited directly by processes that mechanically curve the PM or indirectly by PM-associated adaptor proteins that recruit proteins with N-BAR domains that then induce membrane curvature. Here, we show that externally-induced inward deformation of the PM by cone-shaped nanostructures (Nanocones) and internally-induced inward deformation by contracting actin cables both trigger recruitment of isolated N-BAR domains to the curved PM. Markedly, live-cell imaging in adherent cells showed selective recruitment of full length N-BAR proteins and isolated N-BAR domains to PM sub-regions above Nanocone stripes. Electron microscopy confirmed that N-BAR domains are recruited to local membrane sites curved by Nanocones. We further showed that N-BAR domains are periodically recruited to curved PM sites during local lamellipodia retraction in the front of migrating cells. Recruitment required Myosin II-generated force applied to PM connected actin cables. Together, our study shows that N-BAR domains can be directly recruited to the PM by external push or internal pull forces that locally curve the PM.
Collapse
|
162
|
Koch D, Westermann M, Kessels MM, Qualmann B. Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. Histochem Cell Biol 2012; 138:215-30. [DOI: 10.1007/s00418-012-0945-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
|
163
|
Mim C, Cui H, Gawronski-Salerno JA, Frost A, Lyman E, Voth GA, Unger VM. Structural basis of membrane bending by the N-BAR protein endophilin. Cell 2012; 149:137-45. [PMID: 22464326 DOI: 10.1016/j.cell.2012.01.048] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 07/29/2011] [Accepted: 01/25/2012] [Indexed: 10/28/2022]
Abstract
Functioning as key players in cellular regulation of membrane curvature, BAR domain proteins bend bilayers and recruit interaction partners through poorly understood mechanisms. Using electron cryomicroscopy, we present reconstructions of full-length endophilin and its N-terminal N-BAR domain in their membrane-bound state. Endophilin lattices expose large areas of membrane surface and are held together by promiscuous interactions between endophilin's amphipathic N-terminal helices. Coarse-grained molecular dynamics simulations reveal that endophilin lattices are highly dynamic and that the N-terminal helices are required for formation of a stable and regular scaffold. Furthermore, endophilin accommodates different curvatures through a quantized addition or removal of endophilin dimers, which in some cases causes dimerization of endophilin's SH3 domains, suggesting that the spatial presentation of SH3 domains, rather than affinity, governs the recruitment of downstream interaction partners.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Molecular Biosciences, Northwestern University, 2205 Campus Drive, Evanston, IL 60208, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Tanaka M, Critchley K, Matsunaga T, Evans SD, Staniland SS. Fabrication of lipid tubules with embedded quantum dots by membrane tubulation protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1590-1595. [PMID: 22422568 DOI: 10.1002/smll.201102446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/13/2011] [Indexed: 05/31/2023]
Abstract
The first one-dimensional (1D) assembly of low-toxicity CuInS(2) /ZnS quantum dots (QDs) embedded in lipid nanotubules, formed from liposomes using the Amphiphysin-BAR (Bin-Amphiphysin-Rvs domain of human amphiphysin) protein to elongate the structure, is reported. The QD-containing lipid nanotubules display a high aspect ratio of ≈500:1 (≈40 nm diameter and 20 μm length) and are stable for more than 20 h. Furthermore, this methodology is extended to the assembly of various nanoparticle species within 1D lipid nanotubules, and includes materials such as CdSe and Au. Encapsulation within the hydrophobic core of the bilayer makes these materials highly biocompatible. The developed methodology and materials with these unique characteristics could be useful for various applications in nanobiotechnology and nanomedicine.
Collapse
Affiliation(s)
- Masayoshi Tanaka
- School of Physics and Astronomy, University of Leeds, Leeds, UK.
| | | | | | | | | |
Collapse
|
165
|
Bai X, Meng G, Luo M, Zheng X. Rigidity of wedge loop in PACSIN 3 protein is a key factor in dictating diameters of tubules. J Biol Chem 2012; 287:22387-96. [PMID: 22573331 DOI: 10.1074/jbc.m112.358960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BAR (Bin/amphiphysin/Rvs) domain-containing proteins participate in cellular membrane remodeling. The F-BAR proteins normally generate low curvature tubules. However, in the PACSIN subfamily, the F-BAR domain from PACSIN 1 and 2 can induce both high and low curvature tubules. We found that unlike PACSIN 1 and 2, PACSIN 3 could only induce low curvature tubules. To elucidate the key factors that dictate the tubule curvature, crystal structures of all three PACSIN F-BAR domains were determined. A novel type of lateral interaction mediated by a wedge loop is observed between the F-BAR neighboring dimers. Comparisons of the structures of PACSIN 3 with PACSIN 1 and 2 indicate that the wedge loop of PACSIN 3 is more rigid, which influences the lateral interactions between assembled dimers. We further identified the residues that affect the rigidity of the loop by mutagenesis and determined the structures of two PACSIN 3 wedge loop mutants. Our results suggest that the rigidity-mediated conformations of the wedge loop correlate well with the various crystal packing modes and membrane tubulations. Thus, the rigidity of the wedge loop is a key factor in dictating tubule diameters.
Collapse
Affiliation(s)
- Xiaoyun Bai
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
166
|
Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, Jin WL, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 2012; 149:923-35. [PMID: 22559944 DOI: 10.1016/j.cell.2012.03.034] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 12/28/2022]
Abstract
Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development.
Collapse
Affiliation(s)
- Cécile Charrier
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Oh E, Robinson I. Barfly: sculpting membranes at the Drosophila neuromuscular junction. Dev Neurobiol 2012; 72:33-56. [PMID: 21630471 DOI: 10.1002/dneu.20923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of a cell to change the shape of its membranes is intrinsic to many cellular functions. Proteins that can alter or recognize curved membrane structures and those that can act to recruit other proteins which stabilize the membrane curvature are likely to be essential in cell functions. The BAR (Bin, amphiphysin, RVS167 homology) domain is a protein domain that can either induce lipidic membranes to curve or can sense curved membranes. BAR domains are found in several proteins at neuronal synapses. We will review BAR domain structure and the role that BAR domain containing proteins play in regulating the morphology and function of the Drosophila neuromuscular junction. In flies the BAR domain containing proteins, endophilin and syndapin affect synaptic vesicle endocytosis, whereas CIP4, dRich, nervous wreck and syndapin affect synaptic morphology. We will review the growing evidence implicating mutations in BAR domain containing proteins being the cause of human pathologies.
Collapse
Affiliation(s)
- Eugene Oh
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
168
|
Coutinho-Budd J, Ghukasyan V, Zylka MJ, Polleux F. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently. J Cell Sci 2012; 125:3390-401. [PMID: 22467852 DOI: 10.1242/jcs.098962] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis.
Collapse
Affiliation(s)
- Jaeda Coutinho-Budd
- Neurobiology Curriculum University of North Carolina, Chapel Hill, NC 27599-7250, USA
| | | | | | | |
Collapse
|
169
|
Shin HW, Takatsu H, Nakayama K. Mechanisms of membrane curvature generation in membrane traffic. MEMBRANES 2012; 2:118-33. [PMID: 24957965 PMCID: PMC4021884 DOI: 10.3390/membranes2010118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022]
Abstract
During the vesicular trafficking process, cellular membranes undergo dynamic morphological changes, in particular at the vesicle generation and fusion steps. Changes in membrane shape are regulated by small GTPases, coat proteins and other accessory proteins, such as BAR domain-containing proteins. In addition, membrane deformation entails changes in the lipid composition as well as asymmetric distribution of lipids over the two leaflets of the membrane bilayer. Given that P4-ATPases, which catalyze unidirectional flipping of lipid molecules from the exoplasmic to the cytoplasmic leaflets of the bilayer, are crucial for the trafficking of proteins in the secretory and endocytic pathways, changes in the lipid composition are involved in the vesicular trafficking process. Membrane remodeling is under complex regulation that involves the composition and distribution of lipids as well as assembly of proteins.
Collapse
Affiliation(s)
- Hye-Won Shin
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroyuki Takatsu
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
170
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
171
|
The F-BAR protein CIP4 inhibits neurite formation by producing lamellipodial protrusions. Curr Biol 2012; 22:494-501. [PMID: 22361215 DOI: 10.1016/j.cub.2012.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/22/2011] [Accepted: 01/19/2012] [Indexed: 02/01/2023]
Abstract
Neurite formation is a seminal event in the early development of neurons. However, little is known about the mechanisms by which neurons form neurites. F-BAR proteins function in sensing and inducing membrane curvature. Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family, regulates endocytosis in a variety of cell types. However, there is little data on how CIP4 functions in neurons. Here we show that CIP4 plays a novel role in neuronal development by inhibiting neurite formation. Remarkably, CIP4 exerts this effect not through endocytosis, but by producing lamellipodial protrusions. In primary cortical neurons CIP4 is concentrated specifically at the tips of extending lamellipodia and filopodia, instead of endosomes as in other cell types. Overexpression of CIP4 results in lamellipodial protrusions around the cell body, subsequently delaying neurite formation and enlarging growth cones. These effects depend on the F-BAR and SH3 domains of CIP4 and on its ability to multimerize. Conversely, cortical neurons from CIP4-null mice initiate neurites twice as fast as controls. This is the first study to demonstrate that an F-BAR protein functions differently in neuronal versus nonneuronal cells and induces lamellipodial protrusions instead of invaginations or filopodia-like structures.
Collapse
|
172
|
Phosphorylation of syndapin I F-BAR domain at two helix-capping motifs regulates membrane tubulation. Proc Natl Acad Sci U S A 2012; 109:3760-5. [PMID: 22355135 DOI: 10.1073/pnas.1108294109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Syndapin I (PACSIN 1) is a synaptically enriched membrane tubulating protein that plays important roles in activity-dependent bulk endocytosis and neuronal morphogenesis. While syndapin I is an in vitro phosphoprotein, it is not known to be phosphorylated in neurons. Here, we report the identification of two phosphorylation sites, S76 and T181, of syndapin I from nerve terminals. Both residues are located at the N-terminal helix-capping motifs (N-Cap) of different α-helices in the F-BAR domain, important for F-BAR homodimer curvature and dimer-dimer filament assembly, respectively. Phospho-mimetic mutations of these residues regulate lipid-binding and tubulation both in vitro and in cells. Neither phosphosite regulated syndapin I function in activity-dependent bulk endocytosis. Rather, T181 phosphorylation was developmentally regulated and inhibited syndapin I function in neuronal morphogenesis. This suggests a novel mechanism for phosphorylation control of an F-BAR function through the regulation of α-helix interactions and stability within the folded F-BAR domain.
Collapse
|
173
|
Suetsugu S, Gautreau A. Synergistic BAR-NPF interactions in actin-driven membrane remodeling. Trends Cell Biol 2012; 22:141-50. [PMID: 22306177 DOI: 10.1016/j.tcb.2012.01.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
Cell and organelle shape can profoundly influence proper cellular function. In recent years, two machineries have emerged as major regulators of membrane shape: Bin-Amphiphysin-Rvs161/167 (BAR) domain-containing proteins, which induce membrane invaginations or protrusions, and nucleation promoting factors (NPFs), which activate the Arp2/3 complex and are thus responsible for the generation of branched actin networks that push on membranes. Several BAR-NPF interactions have been shown to induce various types of protrusions, such as lamellipodia or filopodia, or invaginations, including trafficking organelles such as caveolae, endosomes and clathrin-coated pits (CCPs). This review focuses on how collaboration between these two interacting machineries, which emerges as a unified mechanism of membrane remodeling, accounts for such a variety of membrane shapes.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1, Yayoi, Tokyo, 113-0032, Japan.
| | | |
Collapse
|
174
|
Bai X, Meng G, Zheng X. Cloning, purification, crystallization and preliminary X-ray diffraction analysis of mouse PACSIN 3 protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:159-62. [PMID: 22297988 DOI: 10.1107/s1744309111049116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/17/2011] [Indexed: 11/10/2022]
Abstract
PACSIN-family proteins are cytoplasmic proteins that have vesicle-transport, membrane-dynamics, actin-reorganization and microtubule activities. Here, the N-terminal F-BAR domain of mouse PACSIN 3, which contains 341 amino acids, was successfully cloned, purified and crystallized. The crystal of PACSIN 3 (1-341) diffracted to 2.6 Å resolution and belonged to space group P2(1), with unit-cell parameters a = 46.9, b = 54.7, c = 193.7 Å, α = 90, β = 96.9, γ = 90°. These data should provide further information on PACSIN-family protein structures.
Collapse
Affiliation(s)
- Xiaoyun Bai
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | | | | |
Collapse
|
175
|
Ferguson SM, De Camilli P. Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 2012; 13:75-88. [PMID: 22233676 DOI: 10.1038/nrm3266] [Citation(s) in RCA: 718] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamin, the founding member of a family of dynamin-like proteins (DLPs) implicated in membrane remodelling, has a critical role in endocytic membrane fission events. The use of complementary approaches, including live-cell imaging, cell-free studies, X-ray crystallography and genetic studies in mice, has greatly advanced our understanding of the mechanisms by which dynamin acts, its essential roles in cell physiology and the specific function of different dynamin isoforms. In addition, several connections between dynamin and human disease have also emerged, highlighting specific contributions of this GTPase to the physiology of different tissues.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | |
Collapse
|
176
|
Ammendrup-Johnsen I, Thorsen TS, Gether U, Madsen KL. Serine 77 in the PDZ domain of PICK1 is a protein kinase Cα phosphorylation site regulated by lipid membrane binding. Biochemistry 2012; 51:586-96. [PMID: 22129425 DOI: 10.1021/bi2014689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing the activity of PICK1 itself. Here we show that PICK1 is a substrate in vitro both for PKCα (protein kinase Cα), as previously shown, and for CaMKIIα (Ca(2+)-calmodulin-dependent protein kinase IIα). By mutation of predicted phosphorylation sites, we identify Ser77 in the PDZ domain as a major phosphorylation site for PKCα. Mutation of Ser77 reduced the level of PKCα-mediated phosphorylation ~50%, whereas no reduction was observed upon mutation of seven other predicted sites. Addition of lipid vesicles increased the level of phosphorylation of Ser77 10-fold, indicating that lipid binding is critical for optimal phosphorylation. Binding of PKCα to the PICK1 PDZ domain was not required for phosphorylation, but a PDZ domain peptide ligand reduced the overall level of phosphorylation ~30%. The phosphomimic S77D reduced the extent of cytosolic clustering of eYFP-PICK1 in COS7 cells and thereby conceivably its lipid binding and/or polymerization capacity. We propose that PICK1 is phosphorylated at Ser77 by PKCα preferentially when bound to membrane vesicles and that this phosphorylation in turn modulates its cellular distribution.
Collapse
Affiliation(s)
- Ina Ammendrup-Johnsen
- Molecular Neuropharmacology Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
177
|
Abstract
The endo-lysosomal system is an interconnected tubulo-vesicular network that acts as a sorting station to process and distribute internalised cargo. This network accepts cargoes from both the plasma membrane and the biosynthetic pathway, and directs these cargos either towards the lysosome for degradation, the peri-nuclear recycling endosome for return to the cell surface, or to the trans-Golgi network. These intracellular membranes are variously enriched in different phosphoinositides that help to shape compartmental identity. These lipids act to localise a number of phosphoinositide-binding proteins that function as sorting machineries to regulate endosomal cargo sorting. Herein we discuss regulation of these machineries by phosphoinositides and explore how phosphoinositide-switching contributes toward sorting decisions made at this platform.
Collapse
Affiliation(s)
- Peter J Cullen
- Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, BS8 1TD, Bristol, United Kingdom,
| | | |
Collapse
|
178
|
Abstract
Synaptic transmission is amongst the most sophisticated and tightly controlled biological phenomena in higher eukaryotes. In the past few decades, tremendous progress has been made in our understanding of the molecular mechanisms underlying multiple facets of neurotransmission, both pre- and postsynaptically. Brought under the spotlight by pioneer studies in the areas of secretion and signal transduction, phosphoinositides and their metabolizing enzymes have been increasingly recognized as key protagonists in fundamental aspects of neurotransmission. Not surprisingly, dysregulation of phosphoinositide metabolism has also been implicated in synaptic malfunction associated with a variety of brain disorders. In the present chapter, we summarize current knowledge on the role of phosphoinositides at the neuronal synapse and highlight some of the outstanding questions in this research field.
Collapse
Affiliation(s)
- Samuel G Frere
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, P&S 12-420C, 10032, New York, USA
| | | | | |
Collapse
|
179
|
Synaptic Plasticity Regulated by Protein–Protein Interactions and Posttranslational Modifications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:1-43. [DOI: 10.1016/b978-0-12-394308-8.00001-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
180
|
Cullen PJ, Korswagen HC. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 2011; 14:29-37. [PMID: 22193161 PMCID: PMC3613977 DOI: 10.1038/ncb2374] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sorting nexins are a large family of evolutionarily conserved phosphoinositide-binding proteins that have fundamental roles in orchestrating cargo sorting through the membranous maze that is the endosomal network. One ancient group of complexes that contain sorting nexins is the retromer. Here we discuss how retromer complexes regulate endosomal sorting, and describe how this is generating exciting new insight into the central role played by endosomal sorting in development and homeostasis of normal tissues.
Collapse
Affiliation(s)
- Peter J. Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, U.K
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
181
|
Moravcevic K, Oxley CL, Lemmon MA. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 2011; 20:15-27. [PMID: 22193136 DOI: 10.1016/j.str.2011.11.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022]
Abstract
Regulated relocalization of signaling and trafficking proteins is crucial for the control of many cellular processes and is driven by a series of domains that respond to alterations at membrane surfaces. The first examples of these domains--conditional peripheral membrane proteins--included C1, C2, PH, PX, and FYVE domains, which specifically recognize single tightly regulated membrane components such as diacylglycerol or phosphoinositides. The structural basis for this recognition is now well understood. Efforts to identify additional domains with similar functions that bind other targets (or participate in unexplained cellular processes) have not yielded many more examples of specific phospholipid-binding domains. Instead, most of the recently discovered conditional peripheral membrane proteins bind multiple targets (each with limited specificity), relying on coincidence detection and/or recognizing broader physical properties of the membrane such as charge or curvature. This broader range of recognition modes presents significant methodological challenges for a full structural understanding.
Collapse
Affiliation(s)
- Katarina Moravcevic
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
182
|
Endris V, Haussmann L, Buss E, Bacon C, Bartsch D, Rappold G. SrGAP3 interacts with lamellipodin at the cell membrane and regulates Rac-dependent cellular protrusions. J Cell Sci 2011; 124:3941-55. [PMID: 22159416 DOI: 10.1242/jcs.077081] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SrGAP3/MEGAP is a member of the Slit-Robo GAP (srGAP) family and is implicated in repulsive axon guidance and neuronal migration through Slit-Robo-mediated signal transduction. Here we describe an inhibitory role of srGAP3 on actin dynamics, specifically on lamellipodia formation. We show that the F-BAR domain localizes srGAP3 to the leading edge of cellular protrusions whereas the SH3 domain is important for focal adhesion targeting. We report on a novel srGAP3 interaction partner, lamellipodin, which localizes with srGAP3 at the leading edge. Live-cell analyses revealed that srGAP3 influences lamellipodin-evoked lamellipodial dynamics. Furthermore, we show that mouse embryonic fibroblasts derived from homozygous srGAP3-knockout embryos display an increased cell area and lamellipodia formation that can be blocked by shRNA-mediated knockdown of lamellipodin.
Collapse
Affiliation(s)
- Volker Endris
- Department of Human Molecular Genetics, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
183
|
Hansen CG, Howard G, Nichols BJ. Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J Cell Sci 2011; 124:2777-85. [PMID: 21807942 DOI: 10.1242/jcs.084319] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The pacsin (also termed syndapin) protein family is well characterised structurally. They contain F-BAR domains associated with the generation or maintenance of membrane curvature. The cell biology of these proteins remains less understood. Here, we initially confirm that EHD2, a protein previously shown biochemically to be present in caveolar fractions and to bind to pacsins, is a caveolar protein. We go on to report that GFP-pacsin 2 can be recruited to caveolae, and that endogenous pacsin 2 partially colocalises with caveolin 1 at the plasma membrane. Analysis of the role of pacsin 2 in caveolar biogenesis using small interfering RNA (siRNA) reveals that loss of pacsin 2 function results in loss of morphologically defined caveolae and accumulation of caveolin proteins within the plasma membrane. Overexpression of the F-BAR domain of pacsin 2 (but not the related F-BAR domains of CIP4 and FBP17) disrupts caveolar morphogenesis or trafficking, implying that pacsin 2 interacts with components required for these processes. We propose that pacsin 2 has an important role in the formation of plasma membrane caveolae.
Collapse
|
184
|
Actin-independent behavior and membrane deformation exhibited by the four-transmembrane protein M6a. PLoS One 2011; 6:e26702. [PMID: 22162747 PMCID: PMC3230579 DOI: 10.1371/journal.pone.0026702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/30/2011] [Indexed: 12/27/2022] Open
Abstract
M6a is a four-transmembrane protein that is abundantly expressed in the nervous system. Previous studies have shown that over-expression of this protein induces various cellular protrusions, such as neurites, filopodia, and dendritic spines. In this detailed characterization of M6a-induced structures, we found their varied and peculiar characteristics. Notably, the M6a-induced protrusions were mostly devoid of actin filaments or microtubules and exhibited free random vibrating motion. Moreover, when an antibody bound to M6a, the membrane-wrapped protrusions were suddenly disrupted, leading to perturbation of the surrounding membrane dynamics involving phosphoinositide signaling. During single-molecule analysis, M6a exhibited cytoskeleton-independent movement and became selectively entrapped along the cell perimeter in an actin-independent manner. These observations highlight the unusual characteristics of M6a, which may have a significant yet unappreciated role in biological systems.
Collapse
|
185
|
Kabaso D, Bobrovska N, Góźdź W, Gov N, Kralj-Iglič V, Veranič P, Iglič A. On the role of membrane anisotropy and BAR proteins in the stability of tubular membrane structures. J Biomech 2011; 45:231-8. [PMID: 22138195 DOI: 10.1016/j.jbiomech.2011.10.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 09/27/2011] [Accepted: 10/31/2011] [Indexed: 01/14/2023]
Abstract
Recent studies have demonstrated that actin filaments are not crucial for the short-term stability of tubular membrane protrusions originating from the cell surface. It has also been demonstrated that prominin nanodomains and curvature inducing I-BAR proteins could account for the stability of the membrane protrusion. Here we constructed an axisymmetric model of a membrane protrusion that excludes actin filaments in order to investigate the contributions of prominin nanodomains (rafts) and I-BAR proteins to the membrane protrusion stability. It was demonstrated that prominin nanodomains and I-BAR proteins can stabilize the membrane protrusion only over a specific range of spontaneous curvature. On the other hand, high spontaneous curvature and/or high density of I-BAR proteins could lead to system instability and to non-uniform contraction in the radial direction of the membrane protrusion. In agreement with previous studies, it was also shown that the isotropic bending energy of lipids is not sufficient to explain the stability of the observed tubular membrane protrusion without actin filaments.
Collapse
Affiliation(s)
- Doron Kabaso
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
186
|
Rao Y, Haucke V. Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Cell Mol Life Sci 2011; 68:3983-93. [PMID: 21769645 PMCID: PMC11114942 DOI: 10.1007/s00018-011-0768-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 01/27/2023]
Abstract
BAR domain superfamily proteins have emerged as central regulators of dynamic membrane remodeling, thereby playing important roles in a wide variety of cellular processes, such as organelle biogenesis, cell division, cell migration, secretion, and endocytosis. Here, we review the mechanistic and structural basis for the membrane curvature-sensing and deforming properties of BAR domain superfamily proteins. Moreover, we summarize the present state of knowledge with respect to their regulation by autoinhibitory mechanisms or posttranslational modifications, and their interactions with other proteins, in particular with GTPases, and with membrane lipids. We postulate that BAR superfamily proteins act as membrane-deforming scaffolds that spatiotemporally orchestrate membrane remodeling.
Collapse
Affiliation(s)
- Yijian Rao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Present Address: Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Volker Haucke
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| |
Collapse
|
187
|
Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), a host membrane-deforming protein, is critical for membranous web formation in hepatitis C virus replication. J Virol 2011; 86:1739-49. [PMID: 22130530 DOI: 10.1128/jvi.06001-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) reorganizes intracellular membranes to establish sites of replication. How viral and cellular proteins target, bind, and rearrange specific membranes into the replication factory remains a mystery. We used a lentivirus-based RNA interference (RNAi) screening approach to identify the potential cellular factors that are involved in HCV replication. A protein with membrane-deforming activity, proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), was identified as a potential factor. Knockdown of PSTPIP2 in HCV subgenomic replicon-harboring and HCV-infected cells was associated with the reduction of HCV protein and RNA expression. PSTPIP2 was localized predominantly in detergent-resistant membranes (DRMs), which contain the RNA replication complex. PSTPIP2 knockdown caused a significant reduction of the formation of HCV- and NS4B-induced membranous webs. A PSTPIP2 mutant defective in inducing membrane curvature failed to support HCV replication, confirming that the membrane-deforming ability of PSTPIP2 is essential for HCV replication. Taking these results together, we suggest that PSTPIP2 facilitates membrane alterations and is a key player in the formation of the membranous web, which is the site of the HCV replication complex.
Collapse
|
188
|
Abstract
From the pioneering work of Mabel and Lowell Hokin in the 1950s, the biology of this specific isomer of hexahydroxycyclohexane and its phosphorylated derivatives, in the form of inositol phosphates and phosphoinositides, has expanded to fill virtually every corner of cell biology, whole-organism physiology and development. In the present paper, I give a personal view of the role played by phosphoinositides in regulating the function of the endosomal network, and, in so doing, highlight some of the basic properties through which phosphoinositides regulate cell function.
Collapse
|
189
|
Determinants of endocytic membrane geometry, stability, and scission. Proc Natl Acad Sci U S A 2011; 108:E979-88. [PMID: 22006337 DOI: 10.1073/pnas.1113413108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During endocytic vesicle formation, distinct subdomains along the membrane invagination are specified by different proteins, which bend the membrane and drive scission. Bin-Amphiphysin-Rvs (BAR) and Fer-CIP4 homology-BAR (F-BAR) proteins can induce membrane curvature and have been suggested to facilitate membrane invagination and scission. Two F-BAR proteins, Syp1 and Bzz1, are found at budding yeast endocytic sites. Syp1 arrives early but departs from the endocytic site before formation of deep membrane invaginations and scission. Using genetic, spatiotemporal, and ultrastructural analyses, we demonstrate that Bzz1, the heterodimeric BAR domain protein Rvs161/167, actin polymerization, and the lipid phosphatase Sjl2 cooperate, each through a distinct mechanism, to induce membrane scission in yeast. Additionally, actin assembly and Rvs161/167 cooperate to drive formation of deep invaginations. Finally, we find that Bzz1, acting at the invagination base, stabilizes endocytic sites and functions with Rvs161/167, localized along the tubule, to achieve proper endocytic membrane geometry necessary for efficient scission. Together, our results reveal that dynamic interplay between a lipid phosphatase, actin assembly, and membrane-sculpting proteins leads to proper membrane shaping, tubule stabilization, and scission.
Collapse
|
190
|
Koch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, Stellmacher A, Ahuja R, Grimm J, Schüler S, Müller A, Angenstein F, Ahmed T, Diesler A, Moser M, Tom Dieck S, Spessert R, Boeckers TM, Fässler R, Hübner CA, Balschun D, Gloveli T, Kessels MM, Qualmann B. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J 2011; 30:4955-69. [PMID: 21926968 DOI: 10.1038/emboj.2011.339] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/23/2011] [Indexed: 02/03/2023] Open
Abstract
Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.
Collapse
Affiliation(s)
- Dennis Koch
- Institute of Biochemistry I, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Qualmann B, Koch D, Kessels MM. Let's go bananas: revisiting the endocytic BAR code. EMBO J 2011; 30:3501-15. [PMID: 21878992 DOI: 10.1038/emboj.2011.266] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/27/2022] Open
Abstract
Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved.
Collapse
Affiliation(s)
- Britta Qualmann
- Institute for Biochemistry I, University Hospital Jena-Friedrich Schiller University Jena, Germany.
| | | | | |
Collapse
|
192
|
Nesterovitch AB, Hoffman MD, Simon M, Petukhov PA, Tharp MD, Glant TT. Mutations in the PSTPIP1 gene and aberrant splicing variants in patients with pyoderma gangrenosum. Clin Exp Dermatol 2011; 36:889-95. [DOI: 10.1111/j.1365-2230.2011.04137.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
193
|
Uezu A, Umeda K, Tsujita K, Suetsugu S, Takenawa T, Nakanishi H. Characterization of the EFC/F-BAR domain protein, FCHO2. Genes Cells 2011; 16:868-78. [PMID: 21762413 DOI: 10.1111/j.1365-2443.2011.01536.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have previously shown that SGIP1α is an endocytic protein specifically expressed in neural tissues. SGIP1α has a lipid-binding domain called the MP domain, which shows no significant homology to any other domains. In this study, we characterized FCHO2, a protein with a high level of homology to SGIP1α. FCHO2 lacks the MP domain but has another lipid-binding domain, the EFC/F-BAR domain. FCHO2 was ubiquitously expressed. The FCHO2 EFC domain bound to phosphatidylserine and phosphoinositides and deformed the plasma membrane and liposomes into narrow tubes. FCHO2 localized to clathrin-coated pits at the plasma membrane and bound to Eps15, an important adaptor protein in clathrin-mediated endocytosis. FCHO2 knockdown reduced transferrin endocytosis. These results suggest that FCHO2 regulates clathrin-mediated endocytosis through its interactions with membranes and Eps15. These properties of FCHO2 are similar to those of SGIP1α. FCHO2 is likely to be a ubiquitous homologue of SGIP1α. We furthermore found that FCHO2 was subjected to monoubiquitination, and gel filtration analysis showed that FCHO2 formed an oligomer. These new properties might also contribute to the role of FCHO2 in clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | |
Collapse
|
194
|
Wakita Y, Kakimoto T, Katoh H, Negishi M. The F-BAR protein Rapostlin regulates dendritic spine formation in hippocampal neurons. J Biol Chem 2011; 286:32672-83. [PMID: 21768103 DOI: 10.1074/jbc.m111.236265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pombe Cdc15 homology proteins, characterized by Fer/CIP4 homology Bin-Amphiphysin-Rvs/extended Fer/CIP4 homology (F-BAR/EFC) domains with membrane invaginating property, play critical roles in a variety of membrane reorganization processes. Among them, Rapostlin/formin-binding protein 17 (FBP17) has attracted increasing attention as a critical coordinator of endocytosis. Here we found that Rapostlin was expressed in the developing rat brain, including the hippocampus, in late developmental stages when accelerated dendritic spine formation and maturation occur. In primary cultured rat hippocampal neurons, knockdown of Rapostlin by shRNA or overexpression of Rapostlin-QQ, an F-BAR domain mutant of Rapostlin that has no ability to induce membrane invagination, led to a significant decrease in spine density. Expression of shRNA-resistant wild-type Rapostlin effectively restored spine density in Rapostlin knockdown neurons, whereas expression of Rapostlin deletion mutants lacking the protein kinase C-related kinase homology region 1 (HR1) or Src homology 3 (SH3) domain did not. In addition, knockdown of Rapostlin or overexpression of Rapostlin-QQ reduced the uptake of transferrin in hippocampal neurons. Knockdown of Rnd2, which binds to the HR1 domain of Rapostlin, also reduced spine density and the transferrin uptake. These results suggest that Rapostlin and Rnd2 cooperatively regulate spine density. Indeed, Rnd2 enhanced the Rapostlin-induced tubular membrane invagination. We conclude that the F-BAR protein Rapostlin, whose activity is regulated by Rnd2, plays a key role in spine formation through the regulation of membrane dynamics.
Collapse
Affiliation(s)
- Yohei Wakita
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
195
|
Ahmed S, Bu W, Lee RTC, Maurer-Stroh S, Goh WI. F-BAR domain proteins: Families and function. Commun Integr Biol 2011; 3:116-21. [PMID: 20585502 DOI: 10.4161/cib.3.2.10808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 12/13/2022] Open
Abstract
The F-BAR domain is emerging as an important player in membrane remodeling pathways. F-BAR domain proteins couple membrane remodeling with actin dynamics associated with endocytic pathways and filopodium formation. Here, we provide a comprehensive analysis of F-BAR domain proteins in terms of their evolutionary relationships and protein function. F-BAR domain containing proteins can be categorized into five subfamilies based on their phylogeny which is consistent with the additional protein domains they possess, for example, RhoGAP domains, Cdc42 binding sites, SH3 domains and tyrosine kinase domains. We derive a protein-protein interaction network suggesting that dynamin1/2, N-WASP, Huntingtin, intersectin and Cdc42 are central nodes influencing F-BAR domain protein function.
Collapse
|
196
|
Baumgart T, Capraro BR, Zhu C, Das SL. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu Rev Phys Chem 2011; 62:483-506. [PMID: 21219150 DOI: 10.1146/annurev.physchem.012809.103450] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research investigating lipid membrane curvature generation and sensing is a rapidly developing frontier in membrane physical chemistry and biophysics. The fast recent progress is based on the discovery of a plethora of proteins involved in coupling membrane shape to cellular membrane function, the design of new quantitative experimental techniques to study aspects of membrane curvature, and the development of analytical theories and simulation techniques that allow a mechanistic interpretation of quantitative measurements. The present review first provides an overview of important classes of membrane proteins for which function is coupled to membrane curvature. We then survey several mechanisms that are assumed to underlie membrane curvature sensing and generation. Finally, we discuss relatively simple thermodynamic/mechanical models that allow quantitative interpretation of experimental observations.
Collapse
Affiliation(s)
- Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
197
|
Fricke R, Gohl C, Bogdan S. The F-BAR protein family Actin' on the membrane. Commun Integr Biol 2011; 3:89-94. [PMID: 20585497 DOI: 10.4161/cib.3.2.10521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022] Open
Abstract
A tight spatio-temporal coordination of the machineries controlling actin dynamics and membrane remodelling is crucial for a huge variety of cellular processes that shape cells into a multicellular organism. Dynamic membrane remodelling is achieved by a functional relationship between proteins that control plasma membrane curvature, membrane fission and nucleation of new actin filaments. The BAR/F-BAR-domain-containing proteins are prime candidates to couple plasma membrane curvature and actin dynamics in different morphogenetic processes. Here, we discuss recent findings on the membrane-shaping proteins of the F-BAR domain subfamily and how they regulate morphogenetic processes in vivo.
Collapse
Affiliation(s)
- Robert Fricke
- Institut für Neurobiologie; Wilhelms-University; Münster; Münster, Germany
| | | | | |
Collapse
|
198
|
Pykäläinen A, Boczkowska M, Zhao H, Saarikangas J, Rebowski G, Jansen M, Hakanen J, Koskela EV, Peränen J, Vihinen H, Jokitalo E, Salminen M, Ikonen E, Dominguez R, Lappalainen P. Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures. Nat Struct Mol Biol 2011; 18:902-7. [PMID: 21743456 DOI: 10.1038/nsmb.2079] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 05/05/2011] [Indexed: 12/16/2022]
Abstract
Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.
Collapse
Affiliation(s)
- Anette Pykäläinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Levtsova OV, Davletov ID, Sokolova OS, Shaitan KV. A molecular dynamics study of the interaction between domain I-BAR of the IRSp53 protein and negatively charged membranes. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911020199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
200
|
Sit ST, Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124:679-83. [PMID: 21321325 DOI: 10.1242/jcs.064964] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Soon-Tuck Sit
- sGSK Group, A-Star Neuroscience Research Partnership, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | | |
Collapse
|