151
|
Nakano M, Fukami T, Gotoh S, Nakajima M. A-to-I RNA Editing Up-regulates Human Dihydrofolate Reductase in Breast Cancer. J Biol Chem 2017; 292:4873-4884. [PMID: 28188287 DOI: 10.1074/jbc.m117.775684] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/02/2017] [Indexed: 12/15/2022] Open
Abstract
Dihydrofolate reductase (DHFR) plays a key role in folate metabolism and is a target molecule of methotrexate. An increase in the cellular expression level of DHFR is one of the mechanisms of tumor resistance to methotrexate. The present study investigated the possibility that adenosine-to-inosine RNA editing, which causes nucleotide conversion by adenosine deaminase acting on RNA (ADAR) enzymes, might modulate DHFR expression. In human breast adenocarcinoma-derived MCF-7 cells, 26 RNA editing sites were identified in the 3'-UTR of DHFR. Knockdown of ADAR1 decreased the RNA editing levels of DHFR and resulted in a decrease in the DHFR mRNA and protein levels, indicating that ADAR1 up-regulates DHFR expression. Using a computational analysis, miR-25-3p and miR-125a-3p were predicted to bind to the non-edited 3'-UTR of DHFR but not to the edited sequence. The decrease in DHFR expression by the knockdown of ADAR1 was restored by transfection of antisense oligonucleotides for these miRNAs, suggesting that RNA editing mediated up-regulation of DHFR requires the function of these miRNAs. Interestingly, we observed that the knockdown of ADAR1 decreased cell viability and increased the sensitivity of MCF-7 cells to methotrexate. ADAR1 expression levels and the RNA editing levels in the 3'-UTR of DHFR in breast cancer tissues were higher than those in adjacent normal tissues. Collectively, the present study demonstrated that ADAR1 positively regulates the expression of DHFR by editing the miR-25-3p and miR-125a-3p binding sites in the 3'-UTR of DHFR, enhancing cellular proliferation and resistance to methotrexate.
Collapse
Affiliation(s)
- Masataka Nakano
- From the Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- From the Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Saki Gotoh
- From the Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- From the Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
152
|
Abstract
Modification of RNA is essential for properly expressing the repertoire of RNA transcripts necessary for both cell type and developmental specific functions. RNA modifications serve to dynamically re-wire and fine-tune the genetic information carried by an invariable genome. One important type of RNA modification is RNA editing and the most common and well-studied type of RNA editing is the hydrolytic deamination of adenosine to inosine. Inosine is a biological mimic of guanosine; therefore, when RNA is reverse transcribed, inosine is recognized as guanosine by the reverse transcriptase and a cytidine is incorporated into the complementary DNA (cDNA) strand. During PCR amplification, guanosines pair with the newly incorporated cytidines. As a result, the adenosine-to-inosine (A-to-I) editing events are recognized as adenosine to guanosine changes when comparing the sequences of the genomic DNA to the cDNA. This chapter describes the methods for extracting endogenous RNA for subsequent analyses of A-to-I RNA editing using reverse transcriptase-based approaches. We discuss techniques for the detection of A-to-I RNA editing events in messenger RNA (mRNA), including analyzing editing levels at specific adenosines within the total pool of mRNA versus analyzing editing patterns that occur in individual transcripts and a method for detecting editing events across the entire transcriptome. The detection of RNA editing events and editing levels can be used to better understand normal biological processes and disease states.
Collapse
|
153
|
Chan THM, Qamra A, Tan KT, Guo J, Yang H, Qi L, Lin JS, Ng VHE, Song Y, Hong H, Tay ST, Liu Y, Lee J, Rha SY, Zhu F, So JBY, Teh BT, Yeoh KG, Rozen S, Tenen DG, Tan P, Chen L. ADAR-Mediated RNA Editing Predicts Progression and Prognosis of Gastric Cancer. Gastroenterology 2016; 151:637-650.e10. [PMID: 27373511 PMCID: PMC8286172 DOI: 10.1053/j.gastro.2016.06.043] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUD & AIMS Gastric cancer (GC) is the third leading cause of global cancer mortality. Adenosine-to-inosine RNA editing is a recently described novel epigenetic mechanism involving sequence alterations at the RNA but not DNA level, primarily mediated by ADAR (adenosine deaminase that act on RNA) enzymes. Emerging evidence suggests a role for RNA editing and ADARs in cancer, however, the relationship between RNA editing and GC development and progression remains unknown. METHODS In this study, we leveraged on the next-generation sequencing transcriptomics to demarcate the GC RNA editing landscape and the role of ADARs in this deadly malignancy. RESULTS Relative to normal gastric tissues, almost all GCs displayed a clear RNA misediting phenotype with ADAR1/2 dysregulation arising from the genomic gain and loss of the ADAR1 and ADAR2 gene in primary GCs, respectively. Clinically, patients with GCs exhibiting ADAR1/2 imbalance demonstrated extremely poor prognoses in multiple independent cohorts. Functionally, we demonstrate in vitro and in vivo that ADAR-mediated RNA misediting is closely associated with GC pathogenesis, with ADAR1 and ADAR2 playing reciprocal oncogenic and tumor suppressive roles through their catalytic deaminase domains, respectively. Using an exemplary target gene PODXL (podocalyxin-like), we demonstrate that the ADAR2-regulated recoding editing at codon 241 (His to Arg) confers a loss-of-function phenotype that neutralizes the tumorigenic ability of the unedited PODXL. CONCLUSIONS Our study highlights a major role for RNA editing in GC disease and progression, an observation potentially missed by previous next-generation sequencing analyses of GC focused on DNA alterations alone. Our findings also suggest new GC therapeutic opportunities through ADAR1 enzymatic inhibition or the potential restoration of ADAR2 activity.
Collapse
Affiliation(s)
- Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Aditi Qamra
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kar Tong Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jing Guo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lihua Qi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jaymie Siqi Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Huiqi Hong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Graduate Medical School, Singapore
| | - Yujing Liu
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Graduate Medical School, Singapore,Singapore–Massachusetts Institute of Technology Alliance, Singapore
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sun Yong Rha
- Yonsei Cancer Center, Seodaemun-gu, Seoul, South Korea
| | - Feng Zhu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jimmy Bok Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bin Tean Teh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Cancer and Stem Cell Biology Program, Duke–National University of Singapore Graduate Medical School, Singapore,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Steve Rozen
- Cancer and Stem Cell Biology Program, Duke–National University of Singapore Graduate Medical School, Singapore,Centre for Computational Biology, Duke–National University of Singapore Graduate Medical School, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore; Genome Institute of Singapore, Singapore.
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
154
|
Blanc V, Davidson NO. RNA Editing: Another Level of Somatic Mutagenic Activity in Gastric Cancer. Gastroenterology 2016; 151:584-7. [PMID: 27590792 DOI: 10.1053/j.gastro.2016.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri.
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
155
|
Qiu S, Li W, Xiong H, Liu D, Bai Y, Wu K, Zhang X, Yang H, Ma K, Hou Y, Li B. Single-cell RNA sequencing reveals dynamic changes in A-to-I RNA editome during early human embryogenesis. BMC Genomics 2016; 17:766. [PMID: 27687780 PMCID: PMC5043600 DOI: 10.1186/s12864-016-3115-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A-to-I RNA-editing mediated by ADAR (adenosine deaminase acting on RNA) enzymes that converts adenosine to inosine in RNA sequence can generate mutations and alter gene regulation in metazoans. Previous studies have shown that A-to-I RNA-editing plays vital roles in mouse embryogenesis. However, the RNA-editing activities in early human embryonic development have not been investigated. RESULTS Here, we characterized genome-wide A-to-I RNA-editing activities during human early embryogenesis by profiling 68 single cells from 29 human embryos spanning from oocyte to morula stages. We demonstrate dynamic changes in genome-wide RNA-editing during early human embryogenesis in a stage-specific fashion. In parallel with ADAR expression level changes, the genome-wide A-to-I RNA-editing levels in cells remained relatively stable until 4-cell stage, but dramatically decreased at 8-cell stage, continually decreased at morula stage. We detected 37 non-synonymously RNA-edited genes, of which 5 were frequently found in cells of multiple embryonic stages. Moreover, we found that A-to-I editings in miRNA-targeted regions of a substantial number of genes preferably occurred in one or two sequential stages. CONCLUSIONS Our single-cell analysis reveals dynamic changes in genome-wide RNA-editing during early human embryogenesis in a stage-specific fashion, and provides important insights into early human embryogenesis.
Collapse
Affiliation(s)
- Si Qiu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Wenhui Li
- BGI-Shenzhen, Shenzhen, 518103, China
| | | | | | - Yali Bai
- BGI-Shenzhen, Shenzhen, 518103, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, 518103, China
- Department of Biology, University of Copenhagen, Copenhagen, 1599, Denmark
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518103, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310008, China
| | - Kun Ma
- BGI-Shenzhen, Shenzhen, 518103, China.
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, 518103, China.
- Department of Biology, University of Copenhagen, Copenhagen, 1599, Denmark.
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518103, China.
- BGI-Forensics, Shenzhen, 518083, China.
| |
Collapse
|
156
|
Ferreira PG, Oti M, Barann M, Wieland T, Ezquina S, Friedländer MR, Rivas MA, Esteve-Codina A, Rosenstiel P, Strom TM, Lappalainen T, Guigó R, Sammeth M. Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing. Sci Rep 2016; 6:32406. [PMID: 27617755 PMCID: PMC5019111 DOI: 10.1038/srep32406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing-alternative splice sites, introns, and cleavage sites-which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts.
Collapse
Affiliation(s)
- Pedro G. Ferreira
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Instituto de Investigação e Inovação em Saúde, (i3S) Universidade do Porto, 4200-625 Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-625 Porto, Portugal
| | - Martin Oti
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Matthias Barann
- Institute of Clinical Molecular Biology, Christians-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Suzana Ezquina
- Center for Human Genome and Stem-cell research (HUG-CELL), University of São Paulo (USP), 05508090 São Paulo, Brazil
| | - Marc R. Friedländer
- Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Manuel A. Rivas
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Anna Esteve-Codina
- Centre Nacional d’Anàlisi Genòmica, 08028 Barcelona, Catalonia, Spain
- Center for Research in Agricultural Genomics (CRAG), Autonome University of Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christians-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Tuuli Lappalainen
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), 08003 Barcelona, Catalonia, Spain
| | - Michael Sammeth
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
- National Center of Scientific Computing (LNCC), 2233-6000 Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
157
|
Movassagh M, Alomran N, Mudvari P, Dede M, Dede C, Kowsari K, Restrepo P, Cauley E, Bahl S, Li M, Waterhouse W, Tsaneva-Atanasova K, Edwards N, Horvath A. RNA2DNAlign: nucleotide resolution allele asymmetries through quantitative assessment of RNA and DNA paired sequencing data. Nucleic Acids Res 2016; 44:e161. [PMID: 27576531 PMCID: PMC5159535 DOI: 10.1093/nar/gkw757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022] Open
Abstract
We introduce RNA2DNAlign, a computational framework for quantitative assessment of allele counts across paired RNA and DNA sequencing datasets. RNA2DNAlign is based on quantitation of the relative abundance of variant and reference read counts, followed by binomial tests for genotype and allelic status at SNV positions between compatible sequences. RNA2DNAlign detects positions with differential allele distribution, suggesting asymmetries due to regulatory/structural events. Based on the type of asymmetry, RNA2DNAlign outlines positions likely to be implicated in RNA editing, allele-specific expression or loss, somatic mutagenesis or loss-of-heterozygosity (the first three also in a tumor-specific setting). We applied RNA2DNAlign on 360 matching normal and tumor exomes and transcriptomes from 90 breast cancer patients from TCGA. Under high-confidence settings, RNA2DNAlign identified 2038 distinct SNV sites associated with one of the aforementioned asymetries, the majority of which have not been linked to functionality before. The performance assessment shows very high specificity and sensitivity, due to the corroboration of signals across multiple matching datasets. RNA2DNAlign is freely available from http://github.com/HorvathLab/NGS as a self-contained binary package for 64-bit Linux systems.
Collapse
Affiliation(s)
- Mercedeh Movassagh
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA.,University of Massachusetts Medical School, Graduate School of Biomedical Sciences, Program in Bioinformatics and Integrative Biology, Worcester, MA 01605, USA
| | - Nawaf Alomran
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Prakriti Mudvari
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Merve Dede
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Cem Dede
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Kamran Kowsari
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA.,Department of Computer Science, School of Engineering and applied Science, The George Washington University, Washington, DC 20037, USA
| | - Paula Restrepo
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Edmund Cauley
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | - Sonali Bahl
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | - Muzi Li
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Wesley Waterhouse
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences & EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, EX4 4QJ, UK
| | - Nathan Edwards
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Anelia Horvath
- McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA .,Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
158
|
Wang Z, Lian J, Li Q, Zhang P, Zhou Y, Zhan X, Zhang G. RES-Scanner: a software package for genome-wide identification of RNA-editing sites. Gigascience 2016; 5:37. [PMID: 27538485 PMCID: PMC4989487 DOI: 10.1186/s13742-016-0143-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/04/2016] [Indexed: 12/30/2022] Open
Abstract
Background High-throughput sequencing (HTS) provides a powerful solution for the genome-wide identification of RNA-editing sites. However, it remains a great challenge to distinguish RNA-editing sites from genetic variants and technical artifacts caused by sequencing or read-mapping errors. Results Here we present RES-Scanner, a flexible and efficient software package that detects and annotates RNA-editing sites using matching RNA-seq and DNA-seq data from the same individuals or samples. RES-Scanner allows the use of both raw HTS reads and pre-aligned reads in BAM format as inputs. When inputs are HTS reads, RES-Scanner can invoke the BWA mapper to align reads to the reference genome automatically. To rigorously identify potential false positives resulting from genetic variants, we have equipped RES-Scanner with sophisticated statistical models to infer the reliability of homozygous genotypes called from DNA-seq data. These models are applicable to samples from either single individuals or a pool of multiple individuals if the ploidy information is known. In addition, RES-Scanner implements statistical tests to distinguish genuine RNA-editing sites from sequencing errors, and provides a series of sophisticated filtering options to remove false positives resulting from mapping errors. Finally, RES-Scanner can improve the completeness and accuracy of editing site identification when the data of multiple samples are available. Conclusion RES-Scanner, as a software package written in the Perl programming language, provides a comprehensive solution that addresses read mapping, homozygous genotype calling, de novo RNA-editing site identification and annotation for any species with matching RNA-seq and DNA-seq data. The package is freely available. Electronic supplementary material The online version of this article (doi:10.1186/s13742-016-0143-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zongji Wang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jinmin Lian
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Qiye Li
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China. .,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
| | - Pei Zhang
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yang Zhou
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaoyu Zhan
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China.,College of Life Science and Technology, Jinan University, Guangzhou, 510000, China
| | - Guojie Zhang
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China. .,Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
159
|
Zipeto MA, Court AC, Sadarangani A, Delos Santos NP, Balaian L, Chun HJ, Pineda G, Morris SR, Mason CN, Geron I, Barrett C, Goff DJ, Wall R, Pellecchia M, Minden M, Frazer KA, Marra MA, Crews LA, Jiang Q, Jamieson CHM. ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell 2016; 19:177-191. [PMID: 27292188 PMCID: PMC4975616 DOI: 10.1016/j.stem.2016.05.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022]
Abstract
Post-transcriptional adenosine-to-inosine RNA editing mediated by adenosine deaminase acting on RNA1 (ADAR1) promotes cancer progression and therapeutic resistance. However, ADAR1 editase-dependent mechanisms governing leukemia stem cell (LSC) generation have not been elucidated. In blast crisis chronic myeloid leukemia (BC CML), we show that increased JAK2 signaling and BCR-ABL1 amplification activate ADAR1. In a humanized BC CML mouse model, combined JAK2 and BCR-ABL1 inhibition prevents LSC self-renewal commensurate with ADAR1 downregulation. Lentiviral ADAR1 wild-type, but not an editing-defective ADAR1(E912A) mutant, induces self-renewal gene expression and impairs biogenesis of stem cell regulatory let-7 microRNAs. Combined RNA sequencing, qRT-PCR, CLIP-ADAR1, and pri-let-7 mutagenesis data suggest that ADAR1 promotes LSC generation via let-7 pri-microRNA editing and LIN28B upregulation. A small-molecule tool compound antagonizes ADAR1's effect on LSC self-renewal in stromal co-cultures and restores let-7 biogenesis. Thus, ADAR1 activation represents a unique therapeutic vulnerability in LSCs with active JAK2 signaling.
Collapse
Affiliation(s)
- Maria Anna Zipeto
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angela C Court
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anil Sadarangani
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathaniel P Delos Santos
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Larisa Balaian
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Jung Chun
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Gabriel Pineda
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sheldon R Morris
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cayla N Mason
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ifat Geron
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian Barrett
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel J Goff
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Russell Wall
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurizio Pellecchia
- School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Mark Minden
- Princess Margaret Hospital, Toronto, ON M5G 2M9, Canada
| | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Leslie A Crews
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Catriona H M Jamieson
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
160
|
Harjanto D, Papamarkou T, Oates CJ, Rayon-Estrada V, Papavasiliou FN, Papavasiliou A. RNA editing generates cellular subsets with diverse sequence within populations. Nat Commun 2016; 7:12145. [PMID: 27418407 PMCID: PMC4947178 DOI: 10.1038/ncomms12145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022] Open
Abstract
RNA editing is a mutational mechanism that specifically alters the nucleotide content in transcribed RNA. However, editing rates vary widely, and could result from equivalent editing amongst individual cells, or represent an average of variable editing within a population. Here we present a hierarchical Bayesian model that quantifies the variance of editing rates at specific sites using RNA-seq data from both single cells, and a cognate bulk sample to distinguish between these two possibilities. The model predicts high variance for specific edited sites in murine macrophages and dendritic cells, findings that we validated experimentally by using targeted amplification of specific editable transcripts from single cells. The model also predicts changes in variance in editing rates for specific sites in dendritic cells during the course of LPS stimulation. Our data demonstrate substantial variance in editing signatures amongst single cells, supporting the notion that RNA editing generates diversity within cellular populations. RNA editing rate detected from bulk RNA-seq data can vary widely. Here, by constructing a hierarchical Bayesian model, the authors report substantial variance in editing signatures detected by RNA-seq data from both single cells and a cognate bulk sample.
Collapse
Affiliation(s)
- Dewi Harjanto
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York 10065, USA
| | - Theodore Papamarkou
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, UK
| | - Chris J Oates
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Violeta Rayon-Estrada
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York 10065, USA
| | - F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
161
|
Hajnic M, Ruiter AD, Polyansky AA, Zagrovic B. Inosine Nucleobase Acts as Guanine in Interactions with Protein Side Chains. J Am Chem Soc 2016; 138:5519-22. [PMID: 27093234 DOI: 10.1021/jacs.6b02417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A central intermediate in purine catabolism, the inosine nucleobase hypoxanthine is also one of the most abundant modified nucleobases in RNA and plays key roles in the regulation of gene expression and determination of cell fate. It is known that hypoxanthine acts as guanine when interacting with other nucleobases and base pairs most favorably with cytosine. However, its preferences when it comes to interactions with amino acids remain unknown. Here we present for the first time the absolute binding free energies and the associated interaction modes between hypoxanthine and all standard, non-glycyl/non-prolyl amino acid side chain analogs as derived from molecular dynamics simulations and umbrella sampling in high- and low-dielectric environments. We illustrate the biological relevance of the derived affinities by providing a quantitative explanation for the specificity of hypoxanthine-guanine phosphoribosyltransferase, a key enzyme in the purine salvage pathway. Our results demonstrate that in its affinities for protein side chains, hypoxanthine closely matches guanine, much more so than its precursor adenine.
Collapse
Affiliation(s)
- Matea Hajnic
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna , Campus Vienna Biocenter 5, Vienna A-1030, Austria
| | - Anita de Ruiter
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna , Campus Vienna Biocenter 5, Vienna A-1030, Austria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna , Campus Vienna Biocenter 5, Vienna A-1030, Austria
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna , Campus Vienna Biocenter 5, Vienna A-1030, Austria
| |
Collapse
|
162
|
Licht K, Jantsch MF. Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J Cell Biol 2016; 213:15-22. [PMID: 27044895 PMCID: PMC4828693 DOI: 10.1083/jcb.201511041] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
Advances in next-generation sequencing and mass spectrometry have revealed widespread messenger RNA modifications and RNA editing, with dramatic effects on mammalian transcriptomes. Factors introducing, deleting, or interpreting specific modifications have been identified, and analogous with epigenetic terminology, have been designated "writers," "erasers," and "readers." Such modifications in the transcriptome are referred to as epitranscriptomic changes and represent a fascinating new layer of gene expression regulation that has only recently been appreciated. Here, we outline how RNA editing and RNA modification can rapidly affect gene expression, making both processes as well suited to respond to cellular stress and to regulate the transcriptome during development or circadian periods.
Collapse
Affiliation(s)
- Konstantin Licht
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
163
|
RNA Editing: A Contributor to Neuronal Dynamics in the Mammalian Brain. Trends Genet 2016; 32:165-175. [PMID: 26803450 DOI: 10.1016/j.tig.2015.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
Abstract
Post-transcriptional RNA modification by adenosine to inosine (A-to-I) editing expands the functional output of many important neuronally expressed genes. The mechanism provides flexibility in the proteome by expanding the variety of isoforms, and is a requisite for neuronal function. Indeed, targets for editing include key mediators of synaptic transmission with an overall significant effect on neuronal signaling. In addition, editing influences splice-site choice and miRNA targeting capacity, and thereby regulates neuronal gene expression. Editing efficiency at most of these sites increases during neuronal differentiation and brain maturation in a spatiotemporal manner. This editing-induced dynamics in the transcriptome is essential for normal brain development, and we are only beginning to understand its role in neuronal function. In this review we discuss the impact of RNA editing in the brain, with special emphasis on the physiological consequences for neuronal development and plasticity.
Collapse
|
164
|
Papavasiliou FN, Chung YC, Gagnidze K, Hajdarovic KH, Cole DC, Bulloch K. Epigenetic Modulators of Monocytic Function: Implication for Steady State and Disease in the CNS. Front Immunol 2016; 6:661. [PMID: 26834738 PMCID: PMC4713841 DOI: 10.3389/fimmu.2015.00661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/24/2015] [Indexed: 01/03/2023] Open
Abstract
Epigenetic alterations are necessary for the establishment of functional and phenotypic diversity in the populations of immune cells of the monocytic lineage. The epigenetic status of individual genes at different time points defines their transcriptional responses throughout development and in response to environmental stimuli. Epigenetic states are defined at the level of DNA modifications, chromatin modifications, as well as at the level of RNA base changes through RNA editing. Drawing from lessons regarding the epigenome and epitranscriptome of cells of the monocytic lineage in the periphery, and from recently published RNAseq data deriving from brain-resident monocytes, we discuss the impact of modulation of these epigenetic states and how they affect processes important for the development of a healthy brain, as well as mechanisms of neurodegenerative disease and aging. An understanding of the varied brain responses and pathologies in light of these novel gene regulatory systems in monocytes will lead to important new insights in the understanding of the aging process and the treatment and diagnosis of neurodegenerative disease.
Collapse
Affiliation(s)
- F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University , New York, NY , USA
| | - Young Cheul Chung
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Khatuna Gagnidze
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Kaitlyn H Hajdarovic
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Dan C Cole
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Karen Bulloch
- Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
165
|
Abstract
This year's signaling breakthroughs highlight insights into the pathogenesis or treatment of cancer, malaria, and neurodegenerative disorders; reveal molecular insights into cell death; and identify signals that could be leveraged to prevent plant parasitism or engineer bacteria as microbial fuel cells.
Collapse
|
166
|
Liddicoat BJ, Chalk AM, Walkley CR. ADAR1, inosine and the immune sensing system: distinguishing self from non-self. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:157-72. [PMID: 26692549 DOI: 10.1002/wrna.1322] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/10/2022]
Abstract
The conversion of genomically encoded adenosine to inosine in dsRNA is termed as A-to-I RNA editing. This process is catalyzed by two of the three mammalian ADAR proteins (ADAR1 and ADAR2) both of which have essential functions for normal organismal homeostasis. The phenotype of ADAR2 deficiency can be primarily ascribed to a lack of site-selective editing of a single transcript in the brain. In contrast, the biology and substrates responsible for the Adar1(-/-) phenotype have remained more elusive. Several recent studies have identified that a feature of absence or reductions of ADAR1 activity, conserved across human and mouse models, is a profound activation of interferon-stimulated gene signatures and innate immune responses. Further analysis of this observation has lead to the conclusion that editing by ADAR1 is required to prevent activation of the cytosolic innate immune system, primarily focused on the dsRNA sensor MDA5 and leading to downstream signaling via MAVS. The delineation of this mechanism places ADAR1 at the interface between the cells ability to differentiate self- from non-self dsRNA. Based on MDA5 dsRNA recognition requisites, the mechanism indicates that the type of dsRNA must fulfil a particular structural characteristic, rather than a sequence-specific requirement. While additional studies are required to molecularly verify the genetic model, the observations to date collectively identify A-to-I editing by ADAR1 as a key modifier of the cellular response to endogenous dsRNA.
Collapse
Affiliation(s)
- Brian J Liddicoat
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
167
|
Abstract
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference.
Collapse
|
168
|
|
169
|
Rayon-Estrada V, Papavasiliou FN, Harjanto D. RNA Editing Dynamically Rewrites the Cancer Code. Trends Cancer 2015; 1:211-212. [PMID: 27695712 DOI: 10.1016/j.trecan.2015.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Global analyses of cancer transcriptomes demonstrate that ADAR (adenosine deaminase, RNA-specific)-mediated RNA editing dynamically contributes to genetic alterations in cancer, and directly correlates with progression and prognosis. RNA editing is abundant and frequently elevated in cancer, and affects functionally and clinically relevant sites in both coding and non-coding regions of the transcriptome. Therefore, ADAR and differentially edited transcripts may be promising biomarkers or targets for therapy.
Collapse
Affiliation(s)
- Violeta Rayon-Estrada
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; The Rockefeller Graduate Program, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Dewi Harjanto
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
170
|
Han L, Diao L, Yu S, Xu X, Li J, Zhang R, Yang Y, Werner HMJ, Eterovic AK, Yuan Y, Li J, Nair N, Minelli R, Tsang YH, Cheung LWT, Jeong KJ, Roszik J, Ju Z, Woodman SE, Lu Y, Scott KL, Li JB, Mills GB, Liang H. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell 2015; 28:515-528. [PMID: 26439496 PMCID: PMC4605878 DOI: 10.1016/j.ccell.2015.08.013] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/16/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a widespread post-transcriptional mechanism, but its genomic landscape and clinical relevance in cancer have not been investigated systematically. We characterized the global A-to-I RNA editing profiles of 6,236 patient samples of 17 cancer types from The Cancer Genome Atlas and revealed a striking diversity of altered RNA-editing patterns in tumors relative to normal tissues. We identified an appreciable number of clinically relevant editing events, many of which are in noncoding regions. We experimentally demonstrated the effects of several cross-tumor nonsynonymous RNA editing events on cell viability and provide the evidence that RNA editing could selectively affect drug sensitivity. These results highlight RNA editing as an exciting theme for investigating cancer mechanisms, biomarkers, and treatments.
Collapse
Affiliation(s)
- Leng Han
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoyan Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathophysiology, College of Basic Medicine, China Medical University, Shenyang City, Liaoning Province 110001, China
| | - Jie Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yang Yang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Division of Biostatistics, The University of Texas Health Science Center at Houston, School of Public Health, Houston TX 77030, USA
| | - Henrica M J Werner
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Women's Department, Haukeland University Hospital, Jonas Liesvei 72, 5053 Bergen, Norway
| | - A Karina Eterovic
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Yuan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikitha Nair
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rosalba Minelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lydia W T Cheung
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott E Woodman
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
171
|
Paz-Yaacov N, Bazak L, Buchumenski I, Porath HT, Danan-Gotthold M, Knisbacher BA, Eisenberg E, Levanon EY. Elevated RNA Editing Activity Is a Major Contributor to Transcriptomic Diversity in Tumors. Cell Rep 2015; 13:267-76. [PMID: 26440895 DOI: 10.1016/j.celrep.2015.08.080] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/02/2015] [Accepted: 08/28/2015] [Indexed: 01/08/2023] Open
Abstract
Genomic mutations in key genes are known to drive tumorigenesis and have been the focus of much attention in recent years. However, genetic content also may change farther downstream. RNA editing alters the mRNA sequence from its genomic blueprint in a dynamic and flexible way. A few isolated cases of editing alterations in cancer have been reported previously. Here, we provide a transcriptome-wide characterization of RNA editing across hundreds of cancer samples from multiple cancer tissues, and we show that A-to-I editing and the enzymes mediating this modification are significantly altered, usually elevated, in most cancer types. Increased editing activity is found to be associated with patient survival. As is the case with somatic mutations in DNA, most of these newly introduced RNA mutations are likely passengers, but a few may serve as drivers that may be novel candidates for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Nurit Paz-Yaacov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Lily Bazak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ilana Buchumenski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Hagit T Porath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Miri Danan-Gotthold
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Binyamin A Knisbacher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Eisenberg
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|