151
|
Spencer AK, Schaumberg AJ, Zallen JA. Scaling of cytoskeletal organization with cell size in Drosophila. Mol Biol Cell 2017; 28:1519-1529. [PMID: 28404752 PMCID: PMC5449150 DOI: 10.1091/mbc.e16-10-0691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 11/11/2022] Open
Abstract
Actin-rich denticle precursors are regularly distributed in the Drosophila embryo. Cytoskeletal scaling occurs through changes in denticle number and spacing. Denticle spacing scales with cell length over a 10-fold range. Accurate denticle positioning requires the microtubule cytoskeleton. Spatially organized macromolecular complexes are essential for cell and tissue function, but the mechanisms that organize micron-scale structures within cells are not well understood. Microtubule-based structures such as mitotic spindles scale with cell size, but less is known about the scaling of actin structures within cells. Actin-rich denticle precursors cover the ventral surface of the Drosophila embryo and larva and provide templates for cuticular structures involved in larval locomotion. Using quantitative imaging and statistical modeling, we demonstrate that denticle number and spacing scale with cell length over a wide range of cell sizes in embryos and larvae. Denticle number and spacing are reduced under space-limited conditions, and both features robustly scale over a 10-fold increase in cell length during larval growth. We show that the relationship between cell length and denticle spacing can be recapitulated by specific mathematical equations in embryos and larvae and that accurate denticle spacing requires an intact microtubule network and the microtubule minus end–binding protein, Patronin. These results identify a novel mechanism of microtubule-dependent actin scaling that maintains precise patterns of actin organization during tissue growth.
Collapse
Affiliation(s)
- Alison K Spencer
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences.,Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Andrew J Schaumberg
- Weill Cornell Graduate School of Medical Sciences and the Tri-Institutional PhD Program in Computational Biology and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
152
|
Stroberg W, Schnell S. On the origin of non-membrane-bound organelles, and their physiological function. J Theor Biol 2017; 434:42-49. [PMID: 28392184 DOI: 10.1016/j.jtbi.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/28/2022]
Abstract
The origin of cellular compartmentalization has long been viewed as paralleling the origin of life. Historically, membrane-bound organelles have been presented as the canonical examples of compartmentalization. However, recent interest in cellular compartments that lack encompassing membranes has forced biologists to reexamine the form and function of cellular organization. The intracellular environment is now known to be full of transient macromolecular structures that are essential to cellular function, especially in relation to RNA regulation. Here we discuss key findings regarding the physicochemical principles governing the formation and function of non-membrane-bound organelles. Particularly, we focus how the physiological function of non-membrane-bound organelles depends on their molecular structure. We also present a potential mechanism for the formation of non-membrane-bound organelles. We conclude with suggestions for future inquiry into the diversity of roles played by non-membrane bound organelles.
Collapse
Affiliation(s)
- Wylie Stroberg
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
153
|
Alemasova EE, Lavrik OI. At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Acta Naturae 2017; 9:4-16. [PMID: 28740723 PMCID: PMC5508997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 11/26/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.
Collapse
Affiliation(s)
- E. E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
154
|
Weber SC. Sequence-encoded material properties dictate the structure and function of nuclear bodies. Curr Opin Cell Biol 2017; 46:62-71. [PMID: 28343140 DOI: 10.1016/j.ceb.2017.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Concomitant with packaging the genome, the cell nucleus must also spatially organize the nucleoplasm. This complex mixture of proteins and nucleic acids partitions into a variety of phase-separated, membraneless organelles called nuclear bodies. Significant progress has been made in understanding the relationship between the material properties of nuclear bodies and their structural and functional consequences. Furthermore, the molecular basis of these condensed phases is beginning to emerge. Here, I review the latest work in this exciting field, highlighting recent advances and new challenges.
Collapse
Affiliation(s)
- Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
155
|
Jacobs WM, Frenkel D. Phase Transitions in Biological Systems with Many Components. Biophys J 2017; 112:683-691. [PMID: 28256228 PMCID: PMC5340130 DOI: 10.1016/j.bpj.2016.10.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022] Open
Abstract
Biological mixtures such as the cytosol may consist of thousands of distinct components. There is now a substantial body of evidence showing that, under physiological conditions, intracellular mixtures can phase separate into spatially distinct regions with differing compositions. In this article we present numerical evidence indicating that such spontaneous compartmentalization exploits general features of the phase diagram of a multicomponent biomolecular mixture. In particular, we show that demixed domains are likely to segregate when the variance in the intermolecular interaction strengths exceeds a well-defined threshold. Multiple distinct phases are likely to become stable under very similar conditions, which can then be tuned to achieve multiphase coexistence. As a result, only minor adjustments to the composition of the cytosol or the strengths of the intermolecular interactions are needed to regulate the formation of different domains with specific compositions, implying that phase separation is a robust mechanism for creating spatial organization. We further predict that this functionality is only weakly affected by increasing the number of components in the system. Our model therefore suggests that, for purely physico-chemical reasons, biological mixtures are naturally poised to undergo a small number of demixing phase transitions.
Collapse
Affiliation(s)
- William M Jacobs
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
156
|
Cohen-Fix O, Askjaer P. Cell Biology of the Caenorhabditis elegans Nucleus. Genetics 2017; 205:25-59. [PMID: 28049702 PMCID: PMC5216270 DOI: 10.1534/genetics.116.197160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology.
Collapse
Affiliation(s)
- Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
157
|
Aumiller WM, Keating CD. Experimental models for dynamic compartmentalization of biomolecules in liquid organelles: Reversible formation and partitioning in aqueous biphasic systems. Adv Colloid Interface Sci 2017; 239:75-87. [PMID: 27401136 DOI: 10.1016/j.cis.2016.06.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 12/29/2022]
Abstract
Living cells contain numerous subcellular compartments, many of which lack membranous boundaries and are thought to occur due to liquid-liquid phase coexistence. This review will introduce these biological membraneless organelles and discuss simple experimental models based on liquid-liquid phase separation in polymer solutions. When more than one phase is present, solutes such as proteins or nucleic acids can be compartmentalized by partitioning into one of the phases. This could confer benefits to the cell such as enhanced reaction rates or sequestration of toxic molecules. Liquid-like compartments inside living cells are often dynamic, for example, appearing and disappearing in response to stimuli and/or at different points in the cell cycle. We will discuss mechanisms by which phase transitions can be induced in the laboratory and inside living cells, with special emphasis on regulating phase formation by phosphorylation state. This work is motivated by a desire to understand the physical and chemical mechanisms that underlie biological processes and to enable new nonbiological applications.
Collapse
|
158
|
Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP. Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell 2016; 168:159-171.e14. [PMID: 28041848 DOI: 10.1016/j.cell.2016.11.054] [Citation(s) in RCA: 591] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/20/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022]
Abstract
Phase transitions driven by intrinsically disordered protein regions (IDRs) have emerged as a ubiquitous mechanism for assembling liquid-like RNA/protein (RNP) bodies and other membrane-less organelles. However, a lack of tools to control intracellular phase transitions limits our ability to understand their role in cell physiology and disease. Here, we introduce an optogenetic platform that uses light to activate IDR-mediated phase transitions in living cells. We use this "optoDroplet" system to study condensed phases driven by the IDRs of various RNP body proteins, including FUS, DDX4, and HNRNPA1. Above a concentration threshold, these constructs undergo light-activated phase separation, forming spatiotemporally definable liquid optoDroplets. FUS optoDroplet assembly is fully reversible even after multiple activation cycles. However, cells driven deep within the phase boundary form solid-like gels that undergo aging into irreversible aggregates. This system can thus elucidate not only physiological phase transitions but also their link to pathological aggregates.
Collapse
Affiliation(s)
- Yongdae Shin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Joel Berry
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Nicole Pannucci
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
159
|
Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4. Skelet Muscle 2016; 6:42. [PMID: 27906075 PMCID: PMC5134237 DOI: 10.1186/s13395-016-0113-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Nuclear bodies, such as nucleoli, PML bodies, and SC35 speckles, are dynamic sub-nuclear structures that regulate multiple genetic and epigenetic processes. Additional regulation is provided by RNA/DNA handling proteins, notably TDP-43 and FUS, which have been linked to ALS pathology. Previous work showed that mouse cell line myotubes have fewer but larger nucleoli than myoblasts, and we had found that nuclear aggregation of TDP-43 in human myotubes was induced by expression of DUX4-FL, a transcription factor that is aberrantly expressed and causes pathology in facioscapulohumeral dystrophy (FSHD). However, questions remained about nuclear bodies in human myogenesis and in muscle disease. Methods We examined nucleoli, PML bodies, SC35 speckles, TDP-43, and FUS in myoblasts and myotubes derived from healthy donors and from patients with FSHD, laminin-alpha-2-deficiency (MDC1A), and alpha-sarcoglycan-deficiency (LGMD2D). We further examined how these nuclear bodies and proteins were affected by DUX4-FL expression. Results We found that nucleoli, PML bodies, and SC35 speckles reorganized during differentiation in vitro, with all three becoming less abundant in myotube vs. myoblast nuclei. In addition, though PML bodies did not change in size, both nucleoli and SC35 speckles were larger in myotube than myoblast nuclei. Similar patterns of nuclear body reorganization occurred in healthy control, MDC1A, and LGMD2D cultures, as well as in the large fraction of nuclei that did not show DUX4-FL expression in FSHD cultures. In contrast, nuclei that expressed endogenous or exogenous DUX4-FL, though retaining normal nucleoli, showed disrupted morphology of some PML bodies and most SC35 speckles and also co-aggregation of FUS with TDP-43. Conclusions Nucleoli, PML bodies, and SC35 speckles reorganize during human myotube formation in vitro. These nuclear body reorganizations are likely needed to carry out the distinct gene transcription and splicing patterns that are induced upon myotube formation. DUX4-FL-induced disruption of some PML bodies and most SC35 speckles, along with co-aggregation of TDP-43 and FUS, could contribute to pathogenesis in FSHD, perhaps by locally interfering with genetic and epigenetic regulation of gene expression in the small subset of nuclei that express high levels of DUX4-FL at any one time.
Collapse
|
160
|
Taylor N, Elbaum-Garfinkle S, Vaidya N, Zhang H, Stone HA, Brangwynne CP. Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics. SOFT MATTER 2016; 12:9142-9150. [PMID: 27791212 PMCID: PMC6724727 DOI: 10.1039/c6sm01087c] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Living cells contain numerous membrane-less RNA/protein (RNP) bodies that assemble by intracellular liquid-liquid phase separation. The properties of these condensed phase droplets are increasingly recognized as important in their physiological function within living cells, and also through the link to protein aggregation pathologies. However, techniques such as droplet coalescence analysis or standard microrheology do not always enable robust property measurements of model RNA/protein droplets in vitro. Here, we introduce a microfluidic platform that drives protein droplets into a single large phase, which facilitates viscosity measurements using passive microrheology and/or active two-phase flow analysis. We use this technique to study various phase separating proteins from structures including P granules, nucleoli, and Whi3 droplets. In each case, droplets exhibit simple liquid behavior, with shear rate-independent viscosities, over observed timescales. Interestingly, we find that a reported order of magnitude difference between the timescale of Whi3 and LAF-1 droplet coalescence is driven by large differences in surface tension rather than viscosity, with implications for droplet assembly and function. The ability to simultaneously perform active and passive microrheological measurements enables studying the impact of ATP-dependent biological activity on RNP droplets, which is a key area for future research.
Collapse
Affiliation(s)
- Nicole Taylor
- Department of Chemical and Biological Engineering, Princeton University, USA.
| | | | - Nilesh Vaidya
- Department of Chemical and Biological Engineering, Princeton University, USA.
| | - Huaiying Zhang
- Department of Chemical and Biological Engineering, Princeton University, USA.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, USA
| | | |
Collapse
|
161
|
Musinova YR, Lisitsyna OM, Sorokin DV, Arifulin EA, Smirnova TA, Zinovkin RA, Potashnikova DM, Vassetzky YS, Sheval EV. RNA-dependent disassembly of nuclear bodies. J Cell Sci 2016; 129:4509-4520. [PMID: 27875271 DOI: 10.1242/jcs.189142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022] Open
Abstract
Nuclear bodies are membraneless organelles that play important roles in genome functioning. A specific type of nuclear bodies known as interphase prenucleolar bodies (iPNBs) are formed in the nucleoplasm after hypotonic stress from partially disassembled nucleoli. iPNBs are then disassembled, and the nucleoli are reformed simultaneously. Here, we show that diffusion of B23 molecules (also known as nucleophosmin, NPM1) from iPNBs, but not fusion of iPNBs with the nucleoli, contributes to the transfer of B23 from iPNBs to the nucleoli. Maturation of pre-ribosomal RNAs (rRNAs) and the subsequent outflow of mature rRNAs from iPNBs led to the disassembly of iPNBs. We found that B23 transfer was dependent on the synthesis of pre-rRNA molecules in nucleoli; these pre-rRNA molecules interacted with B23 and led to its accumulation within nucleoli. The transfer of B23 between iPNBs and nucleoli was accomplished through a nucleoplasmic pool of B23, and increased nucleoplasmic B23 content retarded disassembly, whereas B23 depletion accelerated disassembly. Our results suggest that iPNB disassembly and nucleolus assembly might be coupled through RNA-dependent exchange of nucleolar proteins, creating a highly dynamic system with long-distance correlations between spatially distinct processes.
Collapse
Affiliation(s)
- Yana R Musinova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.,LIA1066 French-Russian Joint Cancer Research Laboratory, Villejuif 94805, France
| | - Olga M Lisitsyna
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Dmitry V Sorokin
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Botanická 68a, Brno 602 00, Czech Republic.,Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Eugene A Arifulin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Tatiana A Smirnova
- Department of Cell Biology and Histology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Roman A Zinovkin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Daria M Potashnikova
- Department of Cell Biology and Histology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Yegor S Vassetzky
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.,LIA1066 French-Russian Joint Cancer Research Laboratory, Villejuif 94805, France.,UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, Villejuif 94805, France
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia .,LIA1066 French-Russian Joint Cancer Research Laboratory, Villejuif 94805, France
| |
Collapse
|
162
|
Trinkle-Mulcahy L, Sleeman JE. The Cajal body and the nucleolus: "In a relationship" or "It's complicated"? RNA Biol 2016; 14:739-751. [PMID: 27661468 DOI: 10.1080/15476286.2016.1236169] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
From their initial identification as 'nucleolar accessory bodies' more than a century ago, the relationship between Cajal bodies and nucleoli has been a subject of interest and controversy. In this review, we seek to place recent developments in the understanding of the physical and functional relationships between the 2 structures in the context of historical observations. Biophysical models of nuclear body formation, the molecular nature of CB/nucleolus interactions and the increasing list of joint roles for CBs and nucleoli, predominantly in assembling ribonucleoprotein (RNP) complexes, are discussed.
Collapse
Affiliation(s)
- Laura Trinkle-Mulcahy
- a Department of Cellular and Molecular Medicine , Ottawa Institute of Systems Biology, University of Ottawa , Ottawa , ON , Canada
| | - Judith E Sleeman
- b BSRC Complex, School of Biology, University of St Andrews , UK
| |
Collapse
|
163
|
Pederson T, King MC, Marko JF. Forces, fluctuations, and self-organization in the nucleus. Mol Biol Cell 2016; 26:3915-9. [PMID: 26543199 PMCID: PMC4710223 DOI: 10.1091/mbc.e15-06-0357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We address several processes and domains in the nucleus wherein holding the perspective of physics either reveals a conundrum or is likely to enable progress.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - John F Marko
- Department of Molecular Biosciences and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
164
|
Abstract
Why do cells age? Recent advances show that the cytoplasm is organized into many membrane‐less compartments via a process known as phase separation, which ensures spatiotemporal control over diffusion‐limited biochemical reactions. Although phase separation is a powerful mechanism to organize biochemical reactions, it comes with the trade‐off that it is extremely sensitive to changes in physical‐chemical parameters, such as protein concentration, pH, or cellular energy levels. Here, we highlight recent findings showing that age‐related neurodegenerative diseases are linked to aberrant phase transitions in neurons. We discuss how these aberrant phase transitions could be tied to a failure to maintain physiological physical‐chemical conditions. We generalize this idea to suggest that the process of cellular aging involves a progressive loss of the organization of phase‐separated compartments in the cytoplasm.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
165
|
Vorontsova MA, Vekilov PG, Maes D. Characterization of the diffusive dynamics of particles with time-dependent asymmetric microscopy intensity profiles. SOFT MATTER 2016; 12:6926-6936. [PMID: 27489111 DOI: 10.1039/c6sm00946h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We put forth an algorithm to track isolated micron-size solid and liquid particles that produce time-dependent asymmetric intensity patterns. This method quantifies the displacement of a particle in the image plane from the peak of a spatial cross-correlation function with a reference image. The peak sharpness results in subpixel resolution. We demonstrate the utility of the method for tracking liquid droplets with changing shapes and micron-size particles producing images with exaggerated asymmetry. We compare the accuracy of diffusivity determination with particles of known size by this method to that by common tracking techniques and demonstrate that our algorithm is superior. We address several open questions on the characterization of diffusive behaviors. We show that for particles, diffusing with a root-mean-square displacement of 0.6 pixel widths in the time between two successive recorded frames, more accurate diffusivity determinations result from mean squared displacement (MSD) for lag times up to 5 time intervals and that MSDs determined from non-overlapping displacements do not yield more accurate diffusivities. We discuss the optimal length of image sequences and demonstrate that lower frame rates do not affect the accuracy of the estimated diffusivity.
Collapse
Affiliation(s)
- Maria A Vorontsova
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA. and Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Dominique Maes
- Structural Biology Brussels, SBB, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
166
|
Brickner DG, Sood V, Tutucci E, Coukos R, Viets K, Singer RH, Brickner JH. Subnuclear positioning and interchromosomal clustering of the GAL1-10 locus are controlled by separable, interdependent mechanisms. Mol Biol Cell 2016; 27:2980-93. [PMID: 27489341 PMCID: PMC5042583 DOI: 10.1091/mbc.e16-03-0174] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
“DNA zip codes” control positioning and interchromosomal clustering of GAL1-10 in yeast. However, these two phenomena have distinct molecular mechanisms, requiring different nuclear pore proteins, and are regulated differently by transcription and the cell cycle. On activation, the GAL genes in yeast are targeted to the nuclear periphery through interaction with the nuclear pore complex. Here we identify two cis-acting “DNA zip codes” from the GAL1-10 promoter that are necessary and sufficient to induce repositioning to the nuclear periphery. One of these zip codes, GRS4, is also necessary and sufficient to promote clustering of GAL1-10 alleles. GRS4, and to a lesser extent GRS5, contribute to stronger expression of GAL1 and GAL10 by increasing the fraction of cells that respond to the inducer. The molecular mechanism controlling targeting to the NPC is distinct from the molecular mechanism controlling interchromosomal clustering. Targeting to the nuclear periphery and interaction with the nuclear pore complex are prerequisites for gene clustering. However, once formed, clustering can be maintained in the nucleoplasm, requires distinct nuclear pore proteins, and is regulated differently through the cell cycle. In addition, whereas targeting of genes to the NPC is independent of transcription, interchromosomal clustering requires transcription. These results argue that zip code–dependent gene positioning at the nuclear periphery and interchromosomal clustering represent interdependent phenomena with distinct molecular mechanisms.
Collapse
Affiliation(s)
| | - Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Evelina Tutucci
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Kayla Viets
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
167
|
In Vivo Formation of Vacuolated Multi-phase Compartments Lacking Membranes. Cell Rep 2016; 16:1228-1236. [PMID: 27452472 DOI: 10.1016/j.celrep.2016.06.088] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/02/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cells contain membrane-less organelles, including nucleoli and stress granules, that behave like liquid droplets. Such endogenous condensates often have internal substructure, but how this is established in the absence of membrane encapsulation remains unclear. We find that the N- and C-terminal domains of TDP43, a heterogeneous nuclear ribonucleoprotein implicated in neurodegenerative diseases, are capable of driving the formation of sub-structured liquid droplets in vivo. These droplets contain dynamic internal "bubbles" of nucleoplasm, reminiscent of membrane-based multi-vesicular endosomes. A conserved sequence embedded within the intrinsically disordered region (IDR) of TDP43 promotes the formation of these multi-phase assemblies. Disease-causing point mutations in the IDR can change the propensity to form bubbles, protein dynamics within the phase, or phase-environment exchange rates. Our results show that a single IDR-containing protein can nucleate the assembly of compartmentalized liquid droplets approximating the morphological complexity of membrane-bound organelles.
Collapse
|
168
|
Harbage D, Kondev J. Exact Length Distribution of Filamentous Structures Assembled from a Finite Pool of Subunits. J Phys Chem B 2016; 120:6225-30. [PMID: 27135597 DOI: 10.1021/acs.jpcb.6b02242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembling filamentous structures made of protein subunits are ubiquitous in cell biology. These structures are often highly dynamic, with subunits in a continuous state of flux, binding to and falling off of filaments. In spite of this constant turnover of their molecular parts, many cellular structures seem to maintain a well-defined size over time, which is often required for their proper functioning. One widely discussed mechanism of size regulation involves the cell maintaining a finite pool of protein subunits available for assembly. This finite pool mechanism can control the length of a single filament by having assembly proceed until the pool of free subunits is depleted to the point when assembly and disassembly are balanced. Still, this leaves open the question of whether the same mechanism can provide size control for multiple filamentous structures that are assembled from a common pool of protein subunits, as is often the case in cells. We address this question by solving the steady-state master equation governing the stochastic assembly and disassembly of multifilament structures made from a shared finite pool of subunits. We find that, while the total number of subunits within a multifilament structure is well-defined, individual filaments within the structure have a wide, power-law distribution of lengths. We also compute the phase diagram for two multifilament structures competing for the same pool of subunits and identify conditions for coexistence when both have a well-defined size. These predictions can be tested in cell experiments in which the size of the subunit pool or the number of filament nucleators is tuned.
Collapse
Affiliation(s)
- David Harbage
- Department of Physics, Brandeis University , Waltham, Massachusetts 02453, United States
| | - Jané Kondev
- Department of Physics, Brandeis University , Waltham, Massachusetts 02453, United States
| |
Collapse
|
169
|
Aguzzi A, Altmeyer M. Phase Separation: Linking Cellular Compartmentalization to Disease. Trends Cell Biol 2016; 26:547-558. [DOI: 10.1016/j.tcb.2016.03.004] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/29/2022]
|
170
|
Bolognesi B, Lorenzo Gotor N, Dhar R, Cirillo D, Baldrighi M, Tartaglia GG, Lehner B. A Concentration-Dependent Liquid Phase Separation Can Cause Toxicity upon Increased Protein Expression. Cell Rep 2016; 16:222-231. [PMID: 27320918 PMCID: PMC4929146 DOI: 10.1016/j.celrep.2016.05.076] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 05/18/2016] [Indexed: 11/17/2022] Open
Abstract
Multiple human diseases are associated with a liquid-to-solid phase transition resulting in the formation of amyloid fibers or protein aggregates. Here, we present an alternative mechanism for cellular toxicity based on a concentration-dependent liquid-liquid demixing. Analyzing proteins that are toxic when their concentration is increased in yeast reveals that they share physicochemical properties with proteins that participate in physiological liquid-liquid demixing in the cell. Increasing the concentration of one of these proteins indeed results in the formation of cytoplasmic foci with liquid properties. Demixing occurs at the onset of toxicity and titrates proteins and mRNAs from the cytoplasm. Focus formation is reversible, and resumption of growth occurs as the foci dissolve as protein concentration falls. Preventing demixing abolishes the dosage sensitivity of the protein. We propose that triggering inappropriate liquid phase separation may be an important cause of dosage sensitivity and a determinant of human disease.
Collapse
Affiliation(s)
- Benedetta Bolognesi
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Nieves Lorenzo Gotor
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Riddhiman Dhar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Davide Cirillo
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Baldrighi
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
171
|
Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP. Coexisting Liquid Phases Underlie Nucleolar Subcompartments. Cell 2016; 165:1686-1697. [PMID: 27212236 DOI: 10.1016/j.cell.2016.04.047] [Citation(s) in RCA: 1218] [Impact Index Per Article: 152.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/11/2016] [Accepted: 04/13/2016] [Indexed: 12/26/2022]
Abstract
The nucleolus and other ribonucleoprotein (RNP) bodies are membrane-less organelles that appear to assemble through phase separation of their molecular components. However, many such RNP bodies contain internal subcompartments, and the mechanism of their formation remains unclear. Here, we combine in vivo and in vitro studies, together with computational modeling, to show that subcompartments within the nucleolus represent distinct, coexisting liquid phases. Consistent with their in vivo immiscibility, purified nucleolar proteins phase separate into droplets containing distinct non-coalescing phases that are remarkably similar to nucleoli in vivo. This layered droplet organization is caused by differences in the biophysical properties of the phases-particularly droplet surface tension-which arises from sequence-encoded features of their macromolecular components. These results suggest that phase separation can give rise to multilayered liquids that may facilitate sequential RNA processing reactions in a variety of RNP bodies. PAPERCLIP.
Collapse
Affiliation(s)
- Marina Feric
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Nilesh Vaidya
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Tyler S Harmon
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Lian Zhu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Tiffany M Richardson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
172
|
Nott TJ, Craggs TD, Baldwin AJ. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat Chem 2016; 8:569-75. [PMID: 27219701 DOI: 10.1038/nchem.2519] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/21/2016] [Indexed: 12/26/2022]
Abstract
Membraneless organelles are cellular compartments made from drops of liquid protein inside a cell. These compartments assemble via the phase separation of disordered regions of proteins in response to changes in the cellular environment and the cell cycle. Here we demonstrate that the solvent environment within the interior of these cellular bodies behaves more like an organic solvent than like water. One of the most-stable biological structures known, the DNA double helix, can be melted once inside the liquid droplet, and simultaneously structures formed from regulatory single-stranded nucleic acids are stabilized. Moreover, proteins are shown to have a wide range of absorption or exclusion from these bodies, and can act as importers for otherwise-excluded nucleic acids, which suggests the existence of a protein-mediated trafficking system. A common strategy in organic chemistry is to utilize different solvents to influence the behaviour of molecules and reactions. These results reveal that cells have also evolved this capability by exploiting the interiors of membraneless organelles.
Collapse
Affiliation(s)
- Timothy J Nott
- Physical and Theoretical Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Timothy D Craggs
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew J Baldwin
- Physical and Theoretical Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
173
|
Bergeron-Sandoval LP, Safaee N, Michnick S. Mechanisms and Consequences of Macromolecular Phase Separation. Cell 2016; 165:1067-1079. [DOI: 10.1016/j.cell.2016.05.026] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/23/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022]
|
174
|
Mohapatra L, Goode BL, Jelenkovic P, Phillips R, Kondev J. Design Principles of Length Control of Cytoskeletal Structures. Annu Rev Biophys 2016; 45:85-116. [PMID: 27145876 DOI: 10.1146/annurev-biophys-070915-094206] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cells contain elaborate and interconnected networks of protein polymers, which make up the cytoskeleton. The cytoskeleton governs the internal positioning and movement of vesicles and organelles and controls dynamic changes in cell polarity, shape, and movement. Many of these processes require tight control of the size and shape of cytoskeletal structures, which is achieved despite rapid turnover of their molecular components. Here we review mechanisms by which cells control the size of filamentous cytoskeletal structures, from the point of view of simple quantitative models that take into account stochastic dynamics of their assembly and disassembly. Significantly, these models make experimentally testable predictions that distinguish different mechanisms of length control. Although the primary focus of this review is on cytoskeletal structures, we believe that the broader principles and mechanisms discussed herein will apply to a range of other subcellular structures whose sizes are tightly controlled and are linked to their functions.
Collapse
Affiliation(s)
| | - Bruce L Goode
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454
| | - Predrag Jelenkovic
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| | - Rob Phillips
- Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454;
| |
Collapse
|
175
|
Ma TH, Lee LW, Lee CC, Yi YH, Chan SP, Tan BCM, Lo SJ. Genetic control of nucleolar size: An evolutionary perspective. Nucleus 2016; 7:112-20. [PMID: 27003693 DOI: 10.1080/19491034.2016.1166322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Exploiting a C. elegans mutant (ncl-1) exhibiting nucleolar abnormalities, we recently identified the let-7/ncl-1/fib-1 genetic cascade underlying proper rRNA abundance and nucleolar size. These 3 factors, let-7 (a miRNA), NCL-1 (a member of the TRIM-NHL family), and fibrillarin (a nucleolar methyltransferase), are evolutionarily conserved across metazoans. In this article, we provide several lines of bioinformatic evidence showing that human and Drosophila homologues of C. elegans NCL-1, TRIM-71 and Brat, respectively, likely act as translational suppressors of fibrillarin. Moreover, since their 3'-UTRs contain putative target sites, they may also be under the control of the let-7 miRNA. We hypothesize that let-7, TRIM and fibrillarin contribute activities in concert, and constitute a conserved network controlling nucleolar size in eukaryotes. We provide an in-depth literature review of various molecular pathways, including the let-7/ncl-1/fib-1 genetic cascade, implicated in the regulation of nucleolar size.
Collapse
Affiliation(s)
- Tian-Hsiang Ma
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,b Graduate Institute of Biomedical Sciences , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| | - Li-Wei Lee
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,c Molecular Medicine Research Center , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| | - Chi-Chang Lee
- d Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Yung-Hsiang Yi
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,c Molecular Medicine Research Center , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| | - Shih-Peng Chan
- e Graduate Institute of Microbiology , College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Bertrand Chin-Ming Tan
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,b Graduate Institute of Biomedical Sciences , College of Medicine , Chang Gung University , TaoYuan , Taiwan.,c Molecular Medicine Research Center , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| | - Szecheng J Lo
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,b Graduate Institute of Biomedical Sciences , College of Medicine , Chang Gung University , TaoYuan , Taiwan.,c Molecular Medicine Research Center , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| |
Collapse
|
176
|
Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res 2016; 1647:9-18. [PMID: 26996412 PMCID: PMC5003744 DOI: 10.1016/j.brainres.2016.02.037] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 12/12/2022]
Abstract
Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications.
Collapse
|
177
|
Abstract
Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.
Collapse
Affiliation(s)
- Richik N Mukherjee
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Pan Chen
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Daniel L Levy
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| |
Collapse
|
178
|
Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev 2016; 116:6424-62. [PMID: 26922996 DOI: 10.1021/acs.chemrev.5b00548] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding". We also summarize the mounting data showing that large-scale assembly and protein phase separation occurs within a variety of signaling complexes and cellular structures. In addition, we discuss efforts to therapeutically target disordered proteins with small molecules. Overall, we interpret the remodeling of disordered state ensembles due to binding and post-translational modifications within an expanded framework for allostery that provides significant insights into how disordered proteins transmit biological information.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center , Memphis, Tennessee 38163, United States
| | - Julie D Forman-Kay
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
179
|
Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR, Stanley CB, Nourse A, Deniz AA, Kriwacki RW. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 2016; 5:13571. [PMID: 26836305 PMCID: PMC4786410 DOI: 10.7554/elife.13571] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/21/2016] [Indexed: 12/21/2022] Open
Abstract
The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. DOI:http://dx.doi.org/10.7554/eLife.13571.001 Inside cells, machines called ribosomes assemble proteins from building blocks known as amino acids. Cells can alter the numbers of ribosomes they produce to match the cell’s demand for new proteins. For instance, when cells grow they require a lot of new proteins and therefore more ribosomes are produced. However, when cells face harsh conditions that cause stress (e.g. exposure to UV radiation or a harmful chemical) they generally stop growing and therefore need fewer ribosomes. In human and other eukaryotic cells, ribosomes are assembled in a structure called the nucleolus. However, because the nucleolus is not separated from the rest of the cell by a membrane, it was not clear how it is able to accumulate large quantities of the proteins and other molecules needed to make ribosomes. Recent work suggests that the nucleolus is formed through a process referred to as “phase separation” in which the liquid in a particular region of the cell has different physical properties to the liquid surrounding it. This is like how oil and water form separate layers when mixed. A protein called nucleophosmin is found at high levels in the nucleolus where it interacts with many other proteins, including those involved in making ribosomes. Nucleophosmin binds to motifs within these proteins that contain multiple copies of an amino acid called arginine (referred to as R-motifs). Now, Mitrea et al. investigate how nucleophosmin binds to R-motif proteins and whether this is important for assembling the nucleolus. A search for R-motifs in a list of over a hundred proteins known to bind to nucleophosmin showed that the majority of these proteins contained multiple R-motifs. Furthermore, when high levels of nucleophosmin and the R-motif proteins were present, they underwent phase separation. Next, Mitrea et al. examine the changes in how nucleophosmin and a ribosomal protein interact before and after phase separation. The experiments show that many molecules of nucleophosmin bind to each other and that multiple regions in nucleophosmin are able to interact with the R-motifs. Together, these interactions produce large assemblies of proteins that result in the creation of separate liquid layers. Furthermore, the experiments show that R-motif proteins and other molecules needed to make ribosomes can be brought together within the same liquid phase by nucleophosmin. Mitrea et al.’s findings provide the first insights into the role of nucleophosmin in the molecular organisation of the nucleolus. The next challenge is to understand how this organisation promotes the production of ribosomes and helps the cell to respond to stressful situations. DOI:http://dx.doi.org/10.7554/eLife.13571.002
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Jaclyn A Cika
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States.,Integrative Biomedical Sciences Program, University of Tennessee Health Sciences Center, Memphis, United States
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, United States
| | - David Ban
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Christopher B Stanley
- Biology and Biomedical Sciences Group, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, United States
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States.,Molecular Interactions Analysis Shared Resource, St. Jude Children's Research Hospital, Memphis, United States
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, United States
| |
Collapse
|
180
|
Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P, Bridges AA, Brangwynne CP, Gladfelter AS. RNA Controls PolyQ Protein Phase Transitions. Mol Cell 2016; 60:220-30. [PMID: 26474065 DOI: 10.1016/j.molcel.2015.09.017] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Abstract
Compartmentalization in cells is central to the spatial and temporal control of biochemistry. In addition to membrane-bound organelles, membrane-less compartments form partitions in cells. Increasing evidence suggests that these compartments assemble through liquid-liquid phase separation. However, the spatiotemporal control of their assembly, and how they maintain distinct functional and physical identities, is poorly understood. We have previously shown an RNA-binding protein with a polyQ-expansion called Whi3 is essential for the spatial patterning of cyclin and formin transcripts in cytosol. Here, we show that specific mRNAs that are known physiological targets of Whi3 drive phase separation. mRNA can alter the viscosity of droplets, their propensity to fuse, and the exchange rates of components with bulk solution. Different mRNAs impart distinct biophysical properties of droplets, indicating mRNA can bring individuality to assemblies. Our findings suggest that mRNAs can encode not only genetic information but also the biophysical properties of phase-separated compartments.
Collapse
Affiliation(s)
- Huaiying Zhang
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Shana Elbaum-Garfinkle
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Erin M Langdon
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Nicole Taylor
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Patricia Occhipinti
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Andrew A Bridges
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
181
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
182
|
Mitrea DM, Kriwacki RW. Phase separation in biology; functional organization of a higher order. Cell Commun Signal 2016; 14:1. [PMID: 26727894 PMCID: PMC4700675 DOI: 10.1186/s12964-015-0125-7] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
Inside eukaryotic cells, macromolecules are partitioned into membrane-bounded compartments and, within these, some are further organized into non-membrane-bounded structures termed membrane-less organelles. The latter structures are comprised of heterogeneous mixtures of proteins and nucleic acids and assemble through a phase separation phenomenon similar to polymer condensation. Membrane-less organelles are dynamic structures maintained through multivalent interactions that mediate diverse biological processes, many involved in RNA metabolism. They rapidly exchange components with the cellular milieu and their properties are readily altered in response to environmental cues, often implicating membrane-less organelles in responses to stress signaling. In this review, we discuss: (1) the functional roles of membrane-less organelles, (2) unifying structural and mechanistic principles that underlie their assembly and disassembly, and (3) established and emerging methods used in structural investigations of membrane-less organelles.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
183
|
Abstract
Caenorhabditis elegans is a well-established model organism which allows, among others, to investigate the link between nucleolar structure/function on the one hand and cell fate choices and cellular differentiation on the other. In addition, C. elegans can be used to study the role of the nucleolus in processes that can be difficult to faithfully reproduce in vitro, such as gametogenesis, disease development, and aging. Here I present two complementary techniques, immunofluorescent staining and DNA fluorescence in situ hybridization, that have been adapted to label nucleolar components at various stages of the life cycle of the worm.
Collapse
Affiliation(s)
- Christian Lanctôt
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| |
Collapse
|
184
|
Ruff KM, Harmon TS, Pappu RV. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences. J Chem Phys 2015; 143:243123. [PMID: 26723608 PMCID: PMC4644154 DOI: 10.1063/1.4935066] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/21/2015] [Indexed: 01/28/2023] Open
Abstract
We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Computational and Systems Biology Program and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA
| | - Tyler S Harmon
- Department of Physics and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, CB 1097, St. Louis, Missouri 63130-4899, USA
| |
Collapse
|
185
|
Politz JCR, Scalzo D, Groudine M. The redundancy of the mammalian heterochromatic compartment. Curr Opin Genet Dev 2015; 37:1-8. [PMID: 26706451 DOI: 10.1016/j.gde.2015.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/05/2023]
Abstract
Two chromatin compartments are present in most mammalian cells; the first contains primarily euchromatic, early replicating chromatin and the second, primarily late-replicating heterochromatin, which is the subject of this review. Heterochromatin is concentrated in three intranuclear regions: the nuclear periphery, the perinucleolar space and in pericentromeric bodies. We review recent evidence demonstrating that the heterochromatic compartment is critically involved in global nuclear organization and the maintenance of genome stability, and discuss models regarding how this compartment is formed and maintained. We also evaluate our understanding of how heterochromatic sequences (herein named heterochromatic associated regions (HADs)) might be tethered within these regions and review experiments that reveal the stochastic nature of individual HAD positioning within the compartment. These investigations suggest a substantial level of functional redundancy within the heterochromatic compartment.
Collapse
Affiliation(s)
| | - David Scalzo
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mark Groudine
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| |
Collapse
|
186
|
Schmoller KM, Skotheim JM. The Biosynthetic Basis of Cell Size Control. Trends Cell Biol 2015; 25:793-802. [PMID: 26573465 DOI: 10.1016/j.tcb.2015.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022]
Abstract
Cell size is an important physiological trait that sets the scale of all biosynthetic processes. Although physiological studies have revealed that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained unclear. Here we review recent progress in identifying the molecular mechanisms of cell size control. We focus on budding yeast, where cell growth dilutes a cell cycle inhibitor to couple growth and division. We discuss a new model for size control based on the titration of activator and inhibitor molecules whose synthesis rates are differentially dependent on cell size.
Collapse
Affiliation(s)
- Kurt M Schmoller
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
187
|
Vorontsova MA, Chan HY, Lubchenko V, Vekilov PG. Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics. Biophys J 2015; 109:1959-68. [PMID: 26536272 PMCID: PMC4643268 DOI: 10.1016/j.bpj.2015.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role.
Collapse
Affiliation(s)
- Maria A Vorontsova
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas
| | - Ho Yin Chan
- Department of Physics, University of Houston, Houston, Texas
| | - Vassiliy Lubchenko
- Department of Physics, University of Houston, Houston, Texas; Department of Chemistry, University of Houston, Houston, Texas
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas; Department of Chemistry, University of Houston, Houston, Texas.
| |
Collapse
|
188
|
Holehouse AS, Pappu RV. Protein polymers: Encoding phase transitions. NATURE MATERIALS 2015; 14:1083-1084. [PMID: 26490213 DOI: 10.1038/nmat4459] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Alex S Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
189
|
Abstract
Initially identified as a marker of coiled bodies (now Cajal bodies or CBs), the protein coilin was discovered a quarter of century ago. Coilin is now known to scaffold the CB, but its structure and function are poorly understood. Nearly devoid of predicted structural motifs, coilin has numerous reported molecular interactions that must underlie its role in the formation and function of CBs. In this review, we summarize what we have learned in the past 25 years about coilin's structure, post-transcriptional modifications, and interactions with RNA and proteins. We show that genes with homology to human coilin are found in primitive metazoans and comment on differences among model organisms. Coilin's function in Cajal body formation and RNP metabolism will be discussed in the light of these developments.
Collapse
Affiliation(s)
- Martin Machyna
- a Department of Molecular Biophysics & Biochemistry ; Yale University ; New Haven , CT USA
| | | | | |
Collapse
|
190
|
Lin Y, Protter DSW, Rosen MK, Parker R. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell 2015; 60:208-19. [PMID: 26412307 PMCID: PMC4609299 DOI: 10.1016/j.molcel.2015.08.018] [Citation(s) in RCA: 1106] [Impact Index Per Article: 122.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 01/04/2023]
Abstract
Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA-binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components and the full-length granule protein hnRNPA1 can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules.
Collapse
Affiliation(s)
- Yuan Lin
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - David S W Protter
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael K Rosen
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Roy Parker
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
191
|
RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A 2015; 112:E5237-45. [PMID: 26351690 DOI: 10.1073/pnas.1509317112] [Citation(s) in RCA: 341] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid-liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of "extranucleolar droplets" (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism.
Collapse
|
192
|
The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci U S A 2015; 112:7189-94. [PMID: 26015579 DOI: 10.1073/pnas.1504822112] [Citation(s) in RCA: 842] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
P granules and other RNA/protein bodies are membrane-less organelles that may assemble by intracellular phase separation, similar to the condensation of water vapor into droplets. However, the molecular driving forces and the nature of the condensed phases remain poorly understood. Here, we show that the Caenorhabditis elegans protein LAF-1, a DDX3 RNA helicase found in P granules, phase separates into P granule-like droplets in vitro. We adapt a microrheology technique to precisely measure the viscoelasticity of micrometer-sized LAF-1 droplets, revealing purely viscous properties highly tunable by salt and RNA concentration. RNA decreases viscosity and increases molecular dynamics within the droplet. Single molecule FRET assays suggest that this RNA fluidization results from highly dynamic RNA-protein interactions that emerge close to the droplet phase boundary. We demonstrate than an N-terminal, arginine/glycine rich, intrinsically disordered protein (IDP) domain of LAF-1 is necessary and sufficient for both phase separation and RNA-protein interactions. In vivo, RNAi knockdown of LAF-1 results in the dissolution of P granules in the early embryo, with an apparent submicromolar phase boundary comparable to that measured in vitro. Together, these findings demonstrate that LAF-1 is important for promoting P granule assembly and provide insight into the mechanism by which IDP-driven molecular interactions give rise to liquid phase organelles with tunable properties.
Collapse
|
193
|
Zhu L, Brangwynne CP. Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr Opin Cell Biol 2015; 34:23-30. [PMID: 25942753 DOI: 10.1016/j.ceb.2015.04.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 01/02/2023]
Abstract
The cell nucleus contains a large number of membrane-less bodies that play important roles in the spatiotemporal regulation of gene expression. Recent work suggests that low complexity/disordered protein motifs and repetitive binding domains drive assembly of droplets of nuclear RNA/protein by promoting nucleoplasmic phase separation. Nucleation and maturation of these structures is regulated by, and may in turn affect, factors including post-translational modifications, protein concentration, transcriptional activity, and chromatin state. Here we present a concise review of these exciting recent advances, and discuss current and future challenges in understanding the assembly, regulation, and function of nuclear RNA/protein bodies.
Collapse
Affiliation(s)
- Lian Zhu
- Princeton University, Department of Chemical and Biological Engineering, Princeton, NJ 08544, USA
| | - Clifford P Brangwynne
- Princeton University, Department of Chemical and Biological Engineering, Princeton, NJ 08544, USA.
| |
Collapse
|