151
|
Glucocorticoids induce CCN5/WISP-2 expression and attenuate invasion in oestrogen receptor-negative human breast cancer cells. Biochem J 2012; 447:71-9. [PMID: 22765757 DOI: 10.1042/bj20120311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CCN5 (cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed 5)/WISP-2 [WNT1 (wingless-type MMTV integration site family, member 1)-inducible signalling pathway protein 2] is an oestrogen-regulated member of the CCN family. CCN5 is a transcriptional repressor of genes associated with the EMT (epithelial-mesenchymal transition) and plays an important role in maintenance of the differentiated phenotype in ER (oestrogen receptor)-positive breast cancer cells. In contrast, CCN5 is undetectable in more aggressive ER-negative breast cancer cells. We now report that CCN5 is induced in ER-negative breast cancer cells such as MDA-MB-231 following glucocorticoid exposure, due to interaction of the endogenous glucocorticoid receptor with a functional glucocorticoid-response element in the CCN5 gene promoter. Glucocorticoid treatment of MDA-MB-231 cells is accompanied by morphological alterations, decreased invasiveness and attenuated expression of mesenchymal markers, including vimentin, cadherin 11 and ZEB1 (zinc finger E-box binding homeobox 1). Interestingly, glucocorticoid exposure did not increase CCN5 expression in ER-positive breast cancer cells, but rather down-regulated ER expression, thereby attenuating oestrogen pathway signalling. Taken together, our results indicate that glucocorticoid treatment of ER-negative breast cancer cells induces high levels of CCN5 expression and is accompanied by the appearance of a more differentiated and less invasive epithelial phenotype. These findings propose a novel therapeutic strategy for high-risk breast cancer patients.
Collapse
|
152
|
Benjamin DI, Cravatt BF, Nomura DK. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 2012; 16:565-77. [PMID: 23063552 PMCID: PMC3539740 DOI: 10.1016/j.cmet.2012.09.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/16/2012] [Accepted: 07/31/2012] [Indexed: 12/27/2022]
Abstract
Cancer cells possess fundamentally altered metabolism that provides a foundation to support tumorigenicity and malignancy. Our understanding of the biochemical underpinnings of cancer has benefited from the integrated utilization of large-scale profiling platforms (e.g., genomics, proteomics, and metabolomics), which, together, can provide a global assessment of how enzymes and their parent metabolic networks become altered in cancer to fuel tumor growth. This review presents several examples of how these integrated platforms have yielded fundamental insights into dysregulated metabolism in cancer. We will also discuss questions and challenges that must be addressed to more completely describe, and eventually control, the diverse metabolic pathways that support tumorigenesis.
Collapse
Affiliation(s)
- Daniel I Benjamin
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
153
|
Ferrari P, Nicolini A. Breast cancer stem cells: new therapeutic approaches. BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
SUMMARY Breast cancer stem cells are defined as a small subset of cells within a cancer that constitutes a reservoir of self-sustaining cells; they are low-dividing, have a reduced ability to undergo apoptosis and a higher ability of DNA repair, making them more resistant to conventional radiation and chemotherapy. The recent better understanding of the mechanisms of resistance to therapy related to stem cells has opened new scenarios and perspectives for therapeutic approaches. Some drugs active against breast cancer stem cells have been used in cancer therapy for years, other approaches are currently under clinical trials and many drugs are still in a preclinical phase. Only controlled clinical trials will answer the question whether or not these new therapeutical approaches alone or combined with the ongoing treatments significantly improve the outcome of breast cancer patients.
Collapse
Affiliation(s)
- Paola Ferrari
- Unit of Oncology 1, Department of Oncology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Andrea Nicolini
- Unit of Oncology 2, Department of Oncology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
154
|
Mohammadi Ghahhari N, Mohammadi Ghahhari H, Kadivar M. GSK3β and CREB3 gene expression profiling in benign and malignant salivary gland tumors. IRANIAN BIOMEDICAL JOURNAL 2012; 16:140-4. [PMID: 23023215 DOI: 10.6091/ibj.1050.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Salivary gland tumors (SGT) are rare lesions with uncertain histopathology. One of the major signaling pathways that participate in the development of several tumors is protein kinase A. In this pathway, glycogen synthase kinase β (GSK3β) and cAMP responsive element binding protein (CREB3) are two genes which are supposed to be down regulated in most human tumors. The expression level of the genes was evaluated in SGT to scrutinize their possible under expression in these tumors. METHODS Forty eight fresh tissue samples were obtained from patients with benign and malignant SGT, including pleomorphic adenoma, warthin's tumor, mucoepidermoid carcinoma (MEC), salivary duct carcinoma and carcinoma ex pleomorphic adenoma. Eight normal samples were used as controls. Quantitative real-time PCR was used to analyze the expression level of interest genes. RESULTS Data was analyzed by statistical methods. GSK3β was downregulate in all samples and all results were statistically significant (P<0.05). CREB3 did not show a significant decrease or increase in its mRNA expression, but the results were significant in MEC and salivary duct carcinoma. CONCLUSION GSK3β down regulation has been reported in many human tumors. This gene stimulates CREB3, inducing cell proliferation and oncogenesis. Our findings showed GSK β down regulation; however, CREB3 expression level was close to normal group. No association between CREB3 expression and inactivated GSK3β could be postulated in SGT.
Collapse
Affiliation(s)
| | | | - Mehdi Kadivar
- Dept. of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
155
|
Kiesslich T, Pichler M, Neureiter D. Epigenetic control of epithelial-mesenchymal-transition in human cancer. Mol Clin Oncol 2012; 1:3-11. [PMID: 24649114 DOI: 10.3892/mco.2012.28] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 09/07/2012] [Indexed: 02/06/2023] Open
Abstract
Development and tissue homeostasis as well as carcinogenesis share the evolutionary conserved process of epithelial-mesenchymal transition (EMT). EMT enables differentiated epithelial cells to trans-differentiate to a mesenchymal phenotype which is associated with diverse cellular properties including altered morphology, migration and invasion and stemness. In physiological development and tissue homeostasis, EMT exerts beneficial functions for structured tissue formation and maintenance. Under pathological conditions, EMT causes uncontrolled tissue repair and organ fibrosis, as well as the induction of tumor growth, angiogenesis and metastasis in the context of cancer progression. Particularly, the metastatic process is essentially linked to diverse EMT-driven functions which give the mesenchymal differentiated tumor cells the capacity to migrate and form micrometastases in distant organs. Recent analyses of the mechanisms controlling EMT revealed a significant epigenetic regulatory impact reflecting the reversible nature of EMTs. As several approaches of epigenetic therapy are already under clinical evaluation, including inhibitors of DNA methyl transferase and histone deacetylase, targeting the epigenetic regulation of EMT may represent a promising therapeutic option in the future. Therefore, we undertook this review to reassess the current knowledge on the roles of epigenetic control in the regulation of EMT in human cancer. These recent findings are discussed in view of their implications on future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Tobias Kiesslich
- Institute of Pathology; ; Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | | |
Collapse
|
156
|
Yuan GJ, Li QW, Shan SL, Wang WM, Jiang S, Xu XM. Hyperthermia inhibits hypoxia-induced epithelial-mesenchymal transition in HepG2 hepatocellular carcinoma cells. World J Gastroenterol 2012; 18:4781-6. [PMID: 23002349 PMCID: PMC3442218 DOI: 10.3748/wjg.v18.i34.4781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/17/2012] [Accepted: 04/22/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of hyperthermia on hypoxia-induced epithelial-mesenchymal transition (EMT) in HepG2 hepatocellular carcinoma (HCC) cells, and its mechanism.
METHODS: Cells were treated with hyperthermia at 43 °C for 0.5 h, followed by incubation under hypoxic or normoxic conditions for 72 h. Cell morphology was observed. Expressions of E-cadherin and vimentin were determined by immunofluorescence assay or Western blot. The protein and mRNA expressions of Snail were also determined by Western blot and reverse transcription-polymerase chain reaction. Cell migratory capacity was evaluated.
RESULTS: Hypoxia induced EMT in HepG2 cells, which was evidenced by morphological, molecular and functional changes, including the formation of a spindle shape and the loss of cell contact. The expression of E-cadherin was decreased but the expression of vimentin was increased; also, the migratory capability was increased by 2.2 ± 0.20-fold as compared with normoxia. However, those effects were inhibited by hyperthermia pretreatment. Furthermore, protein synthesis and mRNA expression of Snail in the cells were enhanced by hypoxia as compared with normoxia, and also significantly inhibited by hyperthermia pretreatment.
CONCLUSION: Hyperthermia may inhibit hypoxia-induced EMT in HepG2 HCC cells, and the mechanism may involve inhibition of induced expression of Snail.
Collapse
|
157
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
158
|
MEMO1, a new IRS1-interacting protein, induces epithelial-mesenchymal transition in mammary epithelial cells. Oncogene 2012; 32:3130-8. [PMID: 22824790 DOI: 10.1038/onc.2012.327] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
MEMO1 (mediator of ErbB2-driven cell motility 1) regulates HER2-dependent cell migration. Increased MEMO1 expression is associated with cancer aggressiveness. Here, we found that MEMO1 is also involved in breast carcinogenesis via regulating insulin-like growth factor-I receptor-dependent signaling events. We showed that MEMO1 binds to insulin receptor substrate 1, activates the downstream PI3K/Akt signaling pathway, leads to upregulation of Snail1 and thereby triggers the epithelial-mesenchymal transition (EMT) program. In addition, MEMO1 overexpression is accompanied by growth factor-independent proliferation, anchorage-independent growth in soft agar, and enhanced metastatic potential. Together, these findings suggest that MEMO1 acts as an oncogene and is a potential therapeutic target for cancer treatment.
Collapse
|
159
|
Albert S, Hourseau M, Halimi C, Serova M, Descatoire V, Barry B, Couvelard A, Riveiro ME, Tijeras-Raballand A, de Gramont A, Raymond E, Faivre S. Prognostic value of the chemokine receptor CXCR4 and epithelial-to-mesenchymal transition in patients with squamous cell carcinoma of the mobile tongue. Oral Oncol 2012; 48:1263-71. [PMID: 22776129 DOI: 10.1016/j.oraloncology.2012.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the expression and the prognostic value of chemokine receptor 4 (CXCR4), its cognate ligand the CXCL12, and markers of epithelial-to-mesenchymal transition (EMT) in squamous cell carcinoma (SCC) of the mobile tongue. PATIENTS AND METHODS Patients with primary SCC of the mobile tongue who underwent surgery in our center were screened retrospectively. Patients without prior treatment, who had pre-surgery TNM staging and available tumor samples, were eligible. Protein expression of CXCL12, CXCR4, CA9, E-cadherin, and vimentin was determined by immunohistochemical staining, scored, and correlated with clinical and pathological parameters and overall survival. Multivariate and Cox proportional hazards analyses were performed. RESULTS Among 160 patients treated and screened, 47 were analyzed. CXCR4 and CXCL12 expression was high in tumor cells. CXCR4 expression in primary tumor samples was significantly higher in patients with high-grade tumors, lymph node metastases, and microscopic nerve invasion (p ≤ 0.05). There was a non-significant trend towards a correlation between high CXCL12 expression and pathologic tumor stage (p=0.07). Tumors with high CXCR4 expression correlated with poor overall survival (hazard ratio=3.6, 95% confidence interval 1.3-9.7; p=0.011), notably in the CXCR4(high)/vimentin-positive subgroup. Vimentin-positive tumors, characterizing EMT, were associated with lower survival (hazard ratio=4.5, 95% confidence interval 1.6-12.3; p=0.0086). Multivariate analysis confirmed vimentin (but not CXCR4) expression as an independent prognostic factor of poor overall survival (p=0.016). CONCLUSION Our results suggest that CXCR4 is a marker of tumor aggressiveness and vimentin is an important and independent prognostic factor in patients with SCC of the mobile tongue.
Collapse
Affiliation(s)
- Sébastien Albert
- INSERM U728, RayLab, and Departments of Medical Oncology, Beaujon University Hospital (AP-HP - Paris 7 Diderot), Clichy, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Radiotherapy is a mainstay of treatment, either alone for early stage tumors or combined with chemotherapy for late stage tumors. An overall 5-year survival rate of around 50% for HNSCC demonstrates that treatment is often unsuccessful. Prediction of outcome is, therefore, aimed at sparing patients from ineffective and toxic treatments on the one hand, and indicating more successful treatment modalities on the other. Both functional and genetic assays have been developed to predict intrinsic radiosensitivity, hypoxia, and repopulation rate. Few, however, have shown consistent correlations with outcome across multiple studies. Messenger RNA and microRNA profiling show promise for predicting hypoxia, whereas epidermal growth factor receptor expression combined with other measures of tumor differentiation grade shows promise for predicting repopulation rate. Intrinsic radiosensitivity assays have not proven useful to date, although development of repair protein foci assays indicates promise from preclinical studies. Assays for cancer stem cell content have shown promise in several clinical studies. In addition, 2 assays showing robustness as predictors for outcome in HNSCC are human papilloma virus status and epidermal growth factor receptor expression. Neither these nor stem cell assays, however, can as yet reliably indicate alternative and better treatments for poor prognosis patients. It would be of great value to have assays that predict the benefit for an individual from combining new molecularly targeted agents with radiotherapy to increase response, in particular those that exploit tumor mutations to provide tumor specificity. Predictive assays are being developed for detecting defects in repair pathways for single- and double-strand DNA breaks, which should allow selection of drugs targeting the appropriate backup pathway, thus exploiting the concept of synthetic lethality. This is one of the most promising areas for prediction, both currently and in the future.
Collapse
|
161
|
Christensen J, El-Gebali S, Natoli M, Sengstag T, Delorenzi M, Bentz S, Bouzourene H, Rumbo M, Felsani A, Siissalo S, Hirvonen J, Vila MR, Saletti P, Aguet M, Anderle P. Defining new criteria for selection of cell-based intestinal models using publicly available databases. BMC Genomics 2012; 13:274. [PMID: 22726358 PMCID: PMC3412164 DOI: 10.1186/1471-2164-13-274] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/22/2012] [Indexed: 02/07/2023] Open
Abstract
Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.
Collapse
Affiliation(s)
- Jon Christensen
- 1Institute for Macromolecular Chemistry and Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Palena C, Hamilton DH, Fernando RI. Influence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol 2012; 8:713-22. [PMID: 22764769 PMCID: PMC3462442 DOI: 10.2217/fon.12.59] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The phenomenon of epithelial-mesenchymal transition (EMT) has gained attention in the field of cancer biology for its potential contribution to the progression of carcinomas. Tumor EMT is a phenotypic switch that promotes the acquisition of a fibroblastoid-like morphology by epithelial tumor cells, resulting in enhanced tumor cell motility and invasiveness, increased metastatic propensity and resistance to chemotherapy, radiation and certain small-molecule-targeted therapies. Tumor cells undergoing EMT are also known to increase the secretion of specific factors, including cytokines, chemokines and growth factors, which could play an important role in tumor progression. This review summarizes the current knowledge on the secretory properties of epithelial tumor cells that have undergone an EMT, with an emphasis on the potential role of the IL-8-IL-8 receptor axis on the induction and/or maintenance of tumor EMT and its ability to remodel the tumor microenvironment.
Collapse
Affiliation(s)
- Claudia Palena
- Laboratory of Tumor Immunology & Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
163
|
Maione F, Capano S, Regano D, Zentilin L, Giacca M, Casanovas O, Bussolino F, Serini G, Giraudo E. Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J Clin Invest 2012; 122:1832-48. [PMID: 22484816 DOI: 10.1172/jci58976] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 02/22/2012] [Indexed: 12/27/2022] Open
Abstract
Cancer development, progression, and metastasis are highly dependent on angiogenesis. The use of antiangiogenic drugs has been proposed as a novel strategy to interfere with tumor growth, but cancer cells respond by developing strategies to escape these treatments. In particular, animal models show that antiangiogenic drugs currently used in clinical settings reduce tumor tissue oxygenation and trigger molecular events that foster cancer resistance to therapy. Here, we show that semaphorin 3A (Sema3A) expression overcomes the proinvasive and prometastatic resistance observed upon angiogenesis reduction by the small-molecule tyrosine inhibitor sunitinib in both pancreatic neuroendocrine tumors (PNETs) in RIP-Tag2 mice and cervical carcinomas in HPV16/E2 mice. By improving cancer tissue oxygenation and extending the normalization window, Sema3A counteracted sunitinib-induced activation of HIF-1α, Met tyrosine kinase receptor, epithelial-mesenchymal transition (EMT), and other hypoxia-dependent signaling pathways. Sema3A also reduced tumor hypoxia and halted cancer dissemination induced by DC101, a specific inhibitor of the VEGF pathway. As a result, reexpressing Sema3A in cancer cells converts metastatic PNETs and cervical carcinomas into benign lesions. We therefore suggest that this strategy could be developed to safely harnesses the therapeutic potential of the antiangiogenic treatment.
Collapse
Affiliation(s)
- Federica Maione
- Laboratory of Transgenic Mouse Models, University of Torino School of Medicine, Candiolo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Jing J, Greshock J, Holbrook JD, Gilmartin A, Zhang X, McNeil E, Conway T, Moy C, Laquerre S, Bachman K, Wooster R, Degenhardt Y. Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol Cancer Ther 2012; 11:720-9. [PMID: 22169769 DOI: 10.1158/1535-7163.mct-11-0505] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MEK1 and MEK2 inhibitor GSK1120212 is currently in phase II/III clinical development. To identify predictive biomarkers, sensitivity to GSK1120212 was profiled for 218 solid tumor cell lines and 81 hematologic malignancy cell lines. For solid tumors, RAF/RAS mutation was a strong predictor of sensitivity. Among RAF/RAS mutant lines, co-occurring PIK3CA/PTEN mutations conferred a cytostatic response instead of a cytotoxic response for colon cancer cells that have the biggest representation of the comutations. Among KRAS mutant cell lines, transcriptomics analysis showed that cell lines with an expression pattern suggestive of epithelial-to-mesenchymal transition were less sensitive to GSK1120212. In addition, a proportion of cell lines from certain tissue types not known to carry frequent RAF/RAS mutations also seemed to be sensitive to GSK1120212. Among these were breast cancer cell lines, with triple negative breast cancer cell lines being more sensitive than cell lines from other breast cancer subtypes. We identified a single gene DUSP6, whose expression was associated with sensitivity to GSK1120212 and lack of expression associated with resistance irrelevant of RAF/RAS status. Among hematologic cell lines, acute myeloid leukemia and chronic myeloid leukemia cell lines were particularly sensitive. Overall, this comprehensive predictive biomarker analysis identified additional efficacy biomarkers for GSK1120212 in RAF/RAS mutant solid tumors and expanded the indication for GSK1120212 to patients who could benefit from this therapy despite the RAF/RAS wild-type status of their tumors.
Collapse
Affiliation(s)
- Junping Jing
- Cancer Research, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Biology and significance of circulating and disseminated tumour cells in colorectal cancer. Langenbecks Arch Surg 2012; 397:535-42. [PMID: 22350614 DOI: 10.1007/s00423-012-0917-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/15/2023]
Abstract
PURPOSE More than 130 years ago, circulating tumour cells (CTCs) and disseminated tumour cells (DTCs) have been linked to metastasis. Since then, a myriad of studies attempted to characterise and elucidate the clinical impact of CTCs/DTCs, amongst others in colorectal cancer (CRC). Due to a flood of heterogeneous findings regarding CTCs/DTCs in CRC, this review aims to describe the known facts about CTC/DTC biology and clinical impact. METHODS To identify the basic scientific literature regarding the biology and clinical impact of CTCs/DTCs in CRC, we reviewed the literature in the PubMed database. We focused on publications written in English and published until January 2012. As search terms, we used "colorectal cancer (CRC)", "colon cancer (CC)", "CTC", "DTC", "bone marrow (BM)", "lymph node (LN)", "peripheral blood (PB)", "significance" and "prognosis". RESULTS CTC detection and quantification under standardised conditions is feasible. Several studies in large patient settings have revealed prognostic impact of CTCs in CRC. CRC-derived DTC detection and analysis in BM exhibits a more heterogeneous picture but also shows clinical value. Furthermore, the presence of DTCs in LN has a strong prognostic impact in CRC. CONCLUSIONS Clinical relevance and prognostic significance of CTCs/DTCs in CRC have been clearly demonstrated in many experimental studies. The major challenge in CTC/DTC research is now to harmonise the various identification and detection approaches and consequently to conduct large prospective multi-institutional trials to verify the use of CTCs/DTCs as a valid prognostic and predictive biomarker for clinical routine.
Collapse
|
166
|
Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta Rev Cancer 2012; 1825:207-22. [PMID: 22289780 DOI: 10.1016/j.bbcan.2012.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 12/17/2022]
Abstract
Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e., canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | |
Collapse
|
167
|
Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 22289780 DOI: 10.1016/j.bbcan.2012.01.002.oncogenic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e., canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts.
Collapse
|
168
|
Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T. Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res 2012; 14:R15. [PMID: 22264265 PMCID: PMC3496132 DOI: 10.1186/bcr3099] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/31/2011] [Accepted: 01/20/2012] [Indexed: 01/16/2023] Open
Abstract
Introduction The presence of circulating tumor cells (CTC) in breast cancer might be associated with stem cell-like tumor cells which have been suggested to be the active source of metastatic spread in primary tumors. Furthermore, to be able to disseminate and metastasize, CTC must be able to perform epithelial-mesenchymal transition (EMT). We studied the expression of three EMT markers and the stem cell marker ALDH1 in CTC from 502 primary breast cancer patients. Data were correlated with the presence of disseminated tumor cells (DTC) in the bone marrow (BM) and with clinicopathological data of the patients. Methods A total of 2 × 5 ml of blood was analyzed for CTC with the AdnaTest BreastCancer (AdnaGen AG) for the detection of EpCAM, MUC-1, HER2 and beta-Actin transcripts. The recovered c-DNA was additionally multiplex tested for three EMT markers [TWIST1, Akt2, phosphoinositide kinase-3 (PI3Kα)] and separately for the tumor stem cell marker ALDH1. The identification of EMT markers was considered positive if at least one marker was detected in the sample. Two BM aspirates from all patients were analyzed for DTC by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. Results Ninety-seven percent of 30 healthy donor samples investigated were negative for EMT and 95% for ALDH1 transcripts, respectively. CTC were detected in 97/502 (19%) patients. At least one of the EMT markers was expressed in 29% and ALDH1 was present in 14% of the samples, respectively. Interestingly, 5% of the ALDH1-positive and 18% of the EMT-positive patients were CTC-negative based on the cut-off level determined for CTC-positivity applying the AdnaTest BreastCancer. DTC in the BM were detected in 107/502 (21%) patients and no correlation was found between BM status and CTC positivity (P = 0.41). The presence of CTC, EMT and ALDH1 expression was not correlated to any of the prognostic clinical markers. Conclusions Our data indicate that (1) a subset of primary breast cancer patients shows EMT and stem cell characteristics and (2) the currently used detection methods for CTC are not efficient to identify a subtype of CTC which underwent EMT. (3) The clinical relevance on prognosis and therapy response has to be further evaluated in a prospective trial.
Collapse
Affiliation(s)
- Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, D-45122 Essen, Germany.
| | | | | | | | | |
Collapse
|
169
|
Mathias RA, Ji H, Simpson RJ. Proteomic profiling of the epithelial-mesenchymal transition using 2D DIGE. Methods Mol Biol 2012; 854:269-86. [PMID: 22311767 DOI: 10.1007/978-1-61779-573-2_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metastasis remains the primary cause of cancer patient death. Although the precise molecular mechanisms at play remain largely unknown, tumor progression is currently hypothesized to follow a series of sequential steps known as the metastatic cascade. An important component, thought to be involved early in this cascade, is the process known as epithelial-mesenchymal transition (EMT), whereby epithelial cells undergo morphogenetic alterations and acquire properties typical of mesenchymal cells. EMT confers a metastatic advantage to the cancer cells through the loss of cell-cell adhesion, enhanced proteolytic activity, and increased cell migration and invasiveness. This chapter describes the experimental workflow for the secretome analysis of MDCK cells undergoing oncogenic Ras, and Ras/TGF-β-mediated EMT. To enable this comparison, serum-free cell culture conditions were optimized, and a secretome purification methodology established. Secretome samples were then subjected to DIGE analysis to reveal and quantify proteins that are differentially expressed during EMT. The proteomic strategy detailed within successfully identified several EMT modulators and broadens our understanding of the extracellular facets of the EMT process.
Collapse
|
170
|
Gespach C. Increasing potential of HER3 signaling in colon cancer progression and therapy. Clin Cancer Res 2011; 18:917-9. [PMID: 22205688 DOI: 10.1158/1078-0432.ccr-11-3143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HER3 protein levels at the cancer cell plasma membrane are directly correlated with reduced survival in patients with colorectal cancer. In colorectal cancer cells, HER3 blockade restricted cellular growth (G(2)-M arrest), survival, migration, and invasion, and potentiated the chemotherapeutic effect of 5-FU, supporting strategies that target HER3 in subsets of patients with colorectal cancer.
Collapse
Affiliation(s)
- Christian Gespach
- Institut National de la Santé et de la Recherche Médicale U938, Paris 6 Université Pierre et Marie Curie, and Department of Molecular and Clinical Oncology, Hôpital Saint-Antoine, Paris, France.
| |
Collapse
|
171
|
Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem 2011; 363:427-36. [DOI: 10.1007/s11010-011-1195-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/13/2011] [Indexed: 01/01/2023]
|
172
|
Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G, Engelman JA, Ono M, Rho JK, Cascione L, Volinia S, Nephew KP, Croce CM. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2011; 18:74-82. [PMID: 22157681 PMCID: PMC3467100 DOI: 10.1038/nm.2577] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 10/20/2011] [Indexed: 12/13/2022]
Abstract
The involvement of the MET oncogene in de novo and acquired resistance of non-small cell lung cancers (NSCLCs) to tyrosine kinase inhibitors (TKIs) has previously been reported, but the precise mechanism by which MET overexpression contributes to TKI-resistant NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression, and their dysregulation has been implicated in tumorigenesis. To understand their role in TKI-resistant NSCLCs, we examined changes in miRNA that are mediated by tyrosine kinase receptors. Here we report that miR-30b, miR-30c, miR-221 and miR-222 are modulated by both epidermal growth factor (EGF) and MET receptors, whereas miR-103 and miR-203 are controlled only by MET. We showed that these miRNAs have important roles in gefitinib-induced apoptosis and epithelial-mesenchymal transition of NSCLC cells in vitro and in vivo by inhibiting the expression of the genes encoding BCL2-like 11 (BIM), apoptotic peptidase activating factor 1 (APAF-1), protein kinase C ɛ (PKC-ɛ) and sarcoma viral oncogene homolog (SRC). These findings suggest that modulation of specific miRNAs may provide a therapeutic approach for the treatment of NSCLCs.
Collapse
Affiliation(s)
- Michela Garofalo
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Modern Trends into the Epidemiology and Screening of Ovarian Cancer. Genetic Substrate of the Sporadic Form. Pathol Oncol Res 2011; 18:135-48. [DOI: 10.1007/s12253-011-9482-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|
174
|
Perego P, Zuco V, Gatti L, Zunino F. Sensitization of tumor cells by targeting histone deacetylases. Biochem Pharmacol 2011; 83:987-94. [PMID: 22120677 DOI: 10.1016/j.bcp.2011.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 01/05/2023]
Abstract
Epigenetic mechanisms may contribute to drug resistance by interfering with tumor growth regulatory pathways and pro-apoptotic programs. Since gene expression is regulated by acetylation status of histones, a large variety of histone deacetylase (HDAC) inhibitors have been studied as antitumor agents. On the basis of their pro-apoptotic activity, HDAC inhibitors have been combined with conventional antitumor agents or novel target-specific agents to increase susceptibility to apoptosis and drug sensitivity of cancer cells. Several combination strategies including HDAC inhibitors have been explored in preclinical studies. Promising therapeutic effects have been reported in combination with DNA damaging agents, taxanes, targeted agents, death receptor agonists and hormonal therapies. Some histone deacetylases, such as HDAC6, can also modulate the function of non-histone proteins involved in critical regulatory processes which may be relevant as therapeutic targets. Given the pleiotropic effects of most of the available inhibitors, the mechanisms of the sensitization are not completely elucidated. A better understanding of the involved mechanisms will provide a rational basis to improve the therapeutic outcome of the available antitumor agents.
Collapse
Affiliation(s)
- Paola Perego
- Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | | | | | | |
Collapse
|
175
|
Shersher DD, Vercillo MS, Fhied C, Basu S, Rouhi O, Mahon B, Coon JS, Warren WH, Faber LP, Hong E, Bonomi P, Liptay MJ, Borgia JA. Biomarkers of the Insulin-Like Growth Factor Pathway Predict Progression and Outcome in Lung Cancer. Ann Thorac Surg 2011; 92:1805-11; discussion 1811. [DOI: 10.1016/j.athoracsur.2011.06.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 01/15/2023]
|
176
|
Hendrix A, Gespach C, Bracke M, De Wever O. The tumor ecosystem regulates the roads for invasion and metastasis. Clin Res Hepatol Gastroenterol 2011; 35:714-9. [PMID: 21676670 DOI: 10.1016/j.clinre.2011.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 02/04/2023]
Abstract
Invasive cancer cells traffic from the primary tumor ecosystem to distant metastatic sites. Experimental data are reviewed with a focus on cross-signaling between cancer cells and host cells such as myofibroblasts and mesenchymal stem cells. Invasion-associated cellular activities, namely vesicle exocytosis and epithelial to mesenchymal transition, depend on complex networks of signal transduction pathways including activation of tyrosine kinases, the Rab, Rac and Rho family of small GTPases and cadherin signaling. As clinical validation, some cell types or molecules implicated in invasion-associated activities may serve as prognostic/predictive biomarker or as target for patient-tailored therapy.
Collapse
Affiliation(s)
- An Hendrix
- Laboratory of experimental cancer research, department of radiation oncology and experimental cancer research, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
177
|
Manicone AM, Harju-Baker S, Johnston LK, Chen AJ, Parks WC. Epilysin (matrix metalloproteinase-28) contributes to airway epithelial cell survival. Respir Res 2011; 12:144. [PMID: 22040290 PMCID: PMC3225336 DOI: 10.1186/1465-9921-12-144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/31/2011] [Indexed: 11/10/2022] Open
Abstract
MMP28 is constitutively expressed by epithelial cells in many tissues, including the respiratory epithelium in the lung and keratinocytes in the skin. This constitutive expression suggests that MMP28 may serve a role in epithelial cell homeostasis. In an effort to determine its function in epithelial cell biology, we generated cell lines expressing wild-type or catalytically-inactive mutant MMP28 in two pulmonary epithelial cell lines, A549 and BEAS-2B. We observed that over-expression of MMP28 provided protection against apoptosis induced by either serum-deprivation or treatment with a protein kinase inhibitor, staurosporine. Furthermore, we observed increased caspase-3/7 activity in influenza-infected lungs from Mmp28-/- mice compared to wild-type mice, and this activity localized to the airway epithelium but was not associated with a change in viral load. Thus, we have identified a novel role of MMP28 in promoting epithelial cell survival in the lung.
Collapse
Affiliation(s)
- Anne M Manicone
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
178
|
Sigurdsson V, Hilmarsdottir B, Sigmundsdottir H, Fridriksdottir AJR, Ringnér M, Villadsen R, Borg A, Agnarsson BA, Petersen OW, Magnusson MK, Gudjonsson T. Endothelial induced EMT in breast epithelial cells with stem cell properties. PLoS One 2011; 6:e23833. [PMID: 21915264 PMCID: PMC3167828 DOI: 10.1371/journal.pone.0023833] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 07/25/2011] [Indexed: 12/11/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44high/CD24low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.
Collapse
Affiliation(s)
- Valgardur Sigurdsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | - Bylgja Hilmarsdottir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | - Hekla Sigmundsdottir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | - Agla J. R. Fridriksdottir
- Department of Cellular and Molecular Medicine, Centre for Cell Biological Disease Analysis, and the Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Markus Ringnér
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Rene Villadsen
- Department of Cellular and Molecular Medicine, Centre for Cell Biological Disease Analysis, and the Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ake Borg
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Bjarni A. Agnarsson
- Department of Pathology, Landspitali University Hospital and School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, Centre for Cell Biological Disease Analysis, and the Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus K. Magnusson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
- * E-mail:
| |
Collapse
|
179
|
Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH, Burge CB, Gertler FB. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 2011; 7:e1002218. [PMID: 21876675 PMCID: PMC3158048 DOI: 10.1371/journal.pgen.1002218] [Citation(s) in RCA: 361] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 06/17/2011] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression. Epithelial-to-mesenchymal transition (EMT) is the process by which cancer cells lose their epithelial characteristics and obtain a mesenchymal phenotype that is thought to allow them to migrate away from the primary tumor. A better understanding of how EMT is controlled would be valuable in predicting the likelihood of metastasis and in designing targeted therapies to block metastatic progression. While there have been many studies on the contribution of changes in gene expression to EMT, much less is known regarding the role of alternative splicing of mRNA during EMT. Alternative splicing can produce different protein isoforms from the same gene that often have distinct activities and functions. Here, we used a recently developed method to characterize changes in alternative splicing during EMT and found that thousands of multi-exon genes underwent alternative splicing. Alternative isoform expression was confirmed in human breast cancer cell lines and in primary human breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. Since EMT is considered an early step in metastatic progression, novel markers of EMT that we identified in human breast cancer samples might become valuable prognostic and diagnostic tools if confirmed in a larger cohort of patients.
Collapse
Affiliation(s)
- Irina M. Shapiro
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Albert W. Cheng
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Nicholas C. Flytzanis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michele Balsamo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John S. Condeelis
- Department of Anatomy, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Christopher B. Burge
- Department of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (FBG); (CBB)
| | - Frank B. Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (FBG); (CBB)
| |
Collapse
|
180
|
Chung WG, Sandoval MA, Sloat BR, Lansakara-P DSP, Cui Z. Stearoyl gemcitabine nanoparticles overcome resistance related to the over-expression of ribonucleotide reductase subunit M1. J Control Release 2011; 157:132-40. [PMID: 21851843 DOI: 10.1016/j.jconrel.2011.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/27/2011] [Accepted: 08/03/2011] [Indexed: 11/28/2022]
Abstract
Gemcitabine is a deoxycytidine analog used in the treatment of various solid tumors. However, tumors often develop resistances over time, which becomes a major issue for most gemcitabine-related chemotherapies. In the present study, a previously reported stearoyl gemcitabine nanoparticle formulation (GemC18-NPs) was evaluated for its ability to overcome gemcitabine resistance. In the wild type CCRF-CEM human leukemia cells, the IC(50) value of GemC18-NPs was 9.5-fold greater than that of gemcitabine hydrochloride (HCl). However, in the CCRF-CEM-AraC-8C cells that are deficient in the human equilibrative nucleoside transporter-1, the IC(50) of GemC18-NPs was only 3.4-fold greater than that in the parent CCRF-CEM cells, whereas the IC(50) of gemcitabine HCl was 471-fold greater than that in the parent CCRF-CEM cells. The GemC18-NPs were also more cytotoxic than gemcitabine HCl in the deoxycytidine kinase deficient (CCRF-CEM/dCK(-/-)) tumor cells. Similar to gemcitabine HCl, GemC18-NPs induced apoptosis through caspase activation. Another gemcitabine-resistant tumor cell line, TC-1-GR, was developed in our laboratory. In the TC-1-GR cells, the IC(50) of GemC18-NPs was only 5% of that of gemcitabine HCl. Importantly, GemC18-NPs effectively controlled the growth of gemcitabine resistant TC-1-GR tumors in mice, whereas the molar equivalent dose of gemcitabine HCl did not show any activity against the growth of the TC-1-GR tumors. Proteomics analysis revealed that the TC-1-GR cells over-expressed ribonucleotide reductase M1, which was likely the cause of the acquired gemcitabine resistance in the TC-1-GR cells. To our best knowledge, this represents the first report demonstrating that a nanoparticle formulation of gemcitabine overcomes gemcitabine resistance related to ribonucleotide reductase M1 over-expression.
Collapse
Affiliation(s)
- Woon-Gye Chung
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
181
|
Holbrook JD, Parker JS, Gallagher KT, Halsey WS, Hughes AM, Weigman VJ, Lebowitz PF, Kumar R. Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J Transl Med 2011; 9:119. [PMID: 21781349 PMCID: PMC3152520 DOI: 10.1186/1479-5876-9-119] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/25/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Globally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries. METHODS Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers. RESULTS Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways. CONCLUSIONS The data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.
Collapse
Affiliation(s)
- Joanna D Holbrook
- Cancer Research, Oncology R&D, Glaxosmithkline R&D, Collegeville, USA.
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Nagathihalli NS, Nagaraju G. RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:209-18. [PMID: 21807066 DOI: 10.1016/j.bbcan.2011.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 11/30/2022]
Abstract
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Nagaraj S Nagathihalli
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232-6860, USA.
| | | |
Collapse
|
183
|
In vitro and in vivo inhibitory effect of three Cox-2 inhibitors and epithelial-to-mesenchymal transition in human bladder cancer cell lines. Br J Cancer 2011; 105:393-402. [PMID: 21750550 PMCID: PMC3172915 DOI: 10.1038/bjc.2011.262] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Although the anti-tumour effect of cyclooxygenase-2 (Cox-2) inhibitors in invasive bladder cancer has been confirmed, its mechanisms of action are unclear. Recently, the concept of an epithelial-to-mesenchymal transition (EMT) promoting carcinoma progression has been suggested, and a key feature of the EMT is the downregulation of E-cadherin. In this study, we investigated the effect of Cox-2 inhibitors on reversal EMT and tumour growth inhibition in bladder cancer cells. Methods: We used three Cox-2 inhibitors, etodolac, celecoxib and NS-398 and three human bladder cancer cell lines, T24, 5637 and KK47, in this study. T24 xenograft tumour mouse model was used in the in vivo study. Results: Within the clinical drug concentrations, only etodolac showed the in vitro growth inhibition in T24 not in the other cell lines. Etodolac reduced SNAIL mRNA and vimentin cell surface expression, and induced E-cadherin mRNA and E-cadherin cell surface expression, in T24. Etodolac also most strongly inhibited the cell migration of T24 in vitro and showed the highest tumour growth inhibition in T24 tumour in vivo. Conclusion: Etodolac at clinical doses exhibited induced in vitro and in vivo anti-tumour effects and reversal effect of EMT in T24. These results suggest that etodolac is a good candidate for an anti-tumour or chemopreventive reagent for high-grade bladder cancer.
Collapse
|
184
|
Al Saleh S, Al Mulla F, Luqmani YA. Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS One 2011; 6:e20610. [PMID: 21713035 PMCID: PMC3119661 DOI: 10.1371/journal.pone.0020610] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/05/2011] [Indexed: 12/15/2022] Open
Abstract
We propose the hypothesis that loss of estrogen receptor function which leads to endocrine resistance in breast cancer, also results in trans-differentiation from an epithelial to a mesenchymal phenotype that is responsible for increased aggressiveness and metastatic propensity. siRNA mediated silencing of the estrogen receptor in MCF7 breast cancer cells resulted in estrogen/tamoxifen resistant cells (pII) with altered morphology, increased motility with rearrangement and switch from a keratin/actin to a vimentin based cytoskeleton, and ability to invade simulated components of the extracellular matrix. Phenotypic profiling using an Affymetrix Human Genome U133 plus 2.0 GeneChip indicated geometric fold changes ≥ 3 in approximately 2500 identifiable unique sequences, with about 1270 of these being up-regulated in pII cells. Changes were associated with genes whose products are involved in cell motility, loss of cellular adhesion and interaction with the extracellular matrix. Selective analysis of the data also showed a shift from luminal to basal cell markers and increased expression of a wide spectrum of genes normally associated with mesenchymal characteristics, with consequent loss of epithelial specific markers. Over-expression of several peptide growth factors and their receptors are indicative of an increased contribution to the higher proliferative rates of pII cells as well as aiding their potential for metastatic activity. Signalling molecules that have been identified as key transcriptional drivers of epithelial to mesenchymal transition were also found to be elevated in pII cells. These data support our hypothesis that induced loss of estrogen receptor in previously estrogen/antiestrogen sensitive cells is a trigger for the concomitant loss of endocrine dependence and onset of a series of possibly parallel events that changes the cell from an epithelial to a mesenchymal type. Inhibition of this transition through targeting of specific mediators may offer a useful supplementary strategy to circumvent the effects of loss of endocrine sensitivity.
Collapse
Affiliation(s)
- Sanaa Al Saleh
- Faculty of Pharmacy, Kuwait University, Safat, Kuwait
- College of Graduate Studies, Kuwait University, Safat, Kuwait
| | - Fahd Al Mulla
- Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
185
|
Dhayat S, Mardin WA, Mees ST, Haier J. Epigenetic markers for chemosensitivity and chemoresistance in pancreatic cancer--a review. Int J Cancer 2011; 129:1031-41. [PMID: 21413017 DOI: 10.1002/ijc.26078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/02/2011] [Indexed: 01/04/2023]
Abstract
Adjuvant first-line gemcitabine monochemotherapy presents a standard treatment for patients with advanced pancreatic adenocarcinoma and improves overall survival in chemosensitive patients. Nonetheless, 6-month progression-free survival remains below 15%, despite interdisciplinary approaches. The success of gemcitabine treatment is disappointing and-in the absence of reliable tumor markers--challenging to quantify. Epigenetic alterations have been recently identified to take on important roles in cancer development and possibly cancer treatment. In this context, microRNAs are becoming increasingly acknowledged as useful biomarkers for classifying cancers and providing information on their chemo- and radiosensitivity. This review illustrates the potential of genetic and epigenetic markers in the prediction of chemosensitivity in pancreatic cancer patients and in the monitoring of their response rates to adjuvant therapy.
Collapse
Affiliation(s)
- Sameer Dhayat
- Department of General and Visceral Surgery, University Hospital of Muenster, Muenster, Germany.
| | | | | | | |
Collapse
|
186
|
Sun YF, Yang XR, Zhou J, Qiu SJ, Fan J, Xu Y. Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol 2011; 137:1151-73. [PMID: 21681690 DOI: 10.1007/s00432-011-0988-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circulating tumor cells (CTCs) have long been considered a reflection of tumor aggressiveness. Hematogenous spreading of CTCs from a primary tumor is a crucial step in the metastasis cascade, which leads ultimately to the formation of overt metastases. However, owing to the rarity of CTCs in peripheral blood, detecting these cells requires methods combined with high sensitivity and specificity, which sets tremendous challenges for the implementation of these assays into clinical routine. METHODS Generally, CTCs detection methods are composed of the following two steps: enrichment (isolation) process (morphological and immunological techniques) and detection (identification) process (cytometric and nucleic acid techniques), which may or may not be separate from enrichment. Genetic and molecular characterization of CTCs carried out by fluorescent in situ hybridization (FISH), comparative genomic hybridization (CGH), PCR-based techniques, and biomarker immunofluorescent staining extract more information about malignant profile, metastatic potential of CTCs, and the extent to which CTCs are genetically identical to the primary tumor. RESULTS Recent technical advances made it possible to detect CTCs. The efficacy of circulating tumor cell (CTC) detection among patients with solid malignancy has been investigated, which shows great potential to become a tool for real-time parameter of prognosis and serve as an early marker to assess the therapeutic response in overt cancers. Improvements in detection and characterization of CTCs will hopefully lead to refinement of clinical management of cancer patients. CONCLUSION This review addresses the majority of assays that have been published thus far, including the enrichment and detection steps and the markers used in these assays, accompanied by some biological issues of CTC and the results of clinical application harvested.
Collapse
Affiliation(s)
- Yun-Fan Sun
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
187
|
Yi ZY, Feng LJ, Xiang Z, Yao H. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in hepatocellular carcinoma cells. J INVEST SURG 2011; 24:67-76. [PMID: 21345006 DOI: 10.3109/08941939.2010.542272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To explore the molecular mechanism of Vascular endothelial growth factor receptor-1 (VEGFR-1) in invasion and metastasis of hepatocellular carcinoma. METHODS Reverse transcription polymerase chain reaction was performed to test expression of VEGFR-1 and its ligand VEGF-B19 in four hepatoma carcinoma cell. Fluorescent immunohistochemistry and western blotting were used to test the change of expression of E-cadherin or α-catenin. RESULTS VEGF-B-treated cells exhibited a change in E-cadherin from an organized, membrane-bound structure to a disorganized state that was dispersed throughout the cytoplasm. The maximal changes in E-cadherin were observed 24 hr after treatment of cells with VEGF-B. α-catenin was observed to translocate to the nucleus from its usual membrane-bound location 24 hr after treatment with either VEGF-B. Expression of the epithelial adhesion molecules E-cadherin was observed to decrease 48 hours after VEGF-B treatment. The nuclear expression of α-catenin was observed to increase 24 hr after treatment with VEGF-B. CONCLUSIONS VEGFR-1 on tumor cells may contribute to the aggressive behavior of hepatocellular carcinoma cells by inducing epithelial to mesenchymal transition (EMT). Targeting VEGFR-1 and downstream mediators of EMT may provide the foundation for the development of novel therapeutic approaches for this morbid and lethal disease.
Collapse
Affiliation(s)
- Zeng Yong Yi
- Liver Disease Center of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | | | | | | |
Collapse
|
188
|
Ghadimi MP, Al-Zaid T, Madewell J, Peng T, Colombo C, Hoffman A, Creighton CJ, Zhang Y, Zhang A, Lazar AJ, Pollock RE, Lev D. Diagnosis, Management, and Outcome of Patients with Dedifferentiated Liposarcoma Systemic Metastasis. Ann Surg Oncol 2011; 18:3762-70. [DOI: 10.1245/s10434-011-1794-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Indexed: 01/06/2023]
|
189
|
Takehara M, Hoshino T, Namba T, Yamakawa N, Mizushima T. Acetaminophen-induced differentiation of human breast cancer stem cells and inhibition of tumor xenograft growth in mice. Biochem Pharmacol 2011; 81:1124-35. [DOI: 10.1016/j.bcp.2011.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 12/18/2022]
|
190
|
Epithelial-to-mesenchymal transition and acquired resistance to sunitinib in a patient with hepatocellular carcinoma. J Hepatol 2011; 54:1073-8. [PMID: 21145871 DOI: 10.1016/j.jhep.2010.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 11/03/2010] [Accepted: 11/22/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS Based on the success of sorafenib, several anti-angiogenic therapies are currently evaluated in advanced hepatocellular carcinomas. Few biological data are currently available from patients that may help understanding mechanisms of acquired resistance to these drugs. Herein, we report translational data from a post-treatment surgical specimen in a patient who experienced acquired resistance to sunitinib. METHODS Clinical, radiological, and pathological data were collected before treatment, under treatment, and at the time of tumor progression. In addition, a biomolecular analysis was performed at the time of progression. RESULTS In this patient with non-alcoholic steatohepatitis, initial response to sunitinib was followed by tumor progression within 6 months of treatment, requesting salvage surgical resection. Surprisingly, pathological examination on post-treatment specimens revealed the presence of two juxtaposed tissue components containing either sarcomatoid-like mesenchymal cells or well- to moderately-differentiated hepatocellular carcinoma cells. Cancer cells retain a high α-fetoprotein expression in both components. However, while cells from carcinoma expressed E-cadherin but no vimentin, cancer cells from the mesenchymal component highly expressed vimentin and lost E-cadherin protein expression as measured by immunostaining. HMGA2 and Ki67 mRNA were also expressed at higher levels in mesenchymal than in carcinoma cells. CONCLUSION This case report suggests the occurrence of an epithelial-to-mesenchymal transition in discrete areas of hepatocellular carcinomas developing resistance to sunitinib.
Collapse
|
191
|
Bu Y, Gao L, Gelman IH. Role for transcription factor TFII-I in the suppression of SSeCKS/Gravin/Akap12 transcription by Src. Int J Cancer 2011; 128:1836-42. [PMID: 20568114 DOI: 10.1002/ijc.25524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The SSeCKS/Gravin/AKAP12 gene, encoding a kinase scaffolding protein with metastasis-suppressing activity, is transcriptionally downregulated in Src-transformed cells through the recruitment of HDAC1 to a Src-responsive proximal promoter site charged with Sp1, Sp3 and USF1. However, the ectopic expression of these proteins formed a suppressive complex in Src-transformed but not in parental NIH3T3 cells, suggesting the involvement of additional repressor factors. Transcription factor II-I (TFII-I) [general transcription factor 2i (Gtf2i)] was identified by mass spectrometry as being associated with the SSeCKS promoter complex in NIH3T3/Src cells, and moreover, the Src-induced tyrosine phosphorylation of TFII-I significantly increased its binding to the SSeCKS proximal promoter. siRNA-mediated knockdown of TFII-I or the expression of TFII-I(Y248/249F) caused the derepression of SSeCKS in NIH3T3/Src cells. Taken with previous data showing that the tyrosine phosphorylation of TFII-I facilitates its nuclear translocation, these data suggest that Src-family kinase-mediated phosphorylation converts a portion of TFII-I into a transcriptional repressor.
Collapse
Affiliation(s)
- Yahao Bu
- Kinex Pharmaceuticals, LLC, Buffalo, NY, USA
| | | | | |
Collapse
|
192
|
Perret GY, Uzzan B. An anticancer strategic dilemma: to kill or to contain. The choice of the pharmaceutical industry in 2009. Fundam Clin Pharmacol 2011; 25:283-95. [DOI: 10.1111/j.1472-8206.2010.00849.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
193
|
Abstract
Hundreds of G protein coupled receptor (GPCR) isotypes integrate and coordinate the function of individual cells mediating signaling between different organs in our bodies. As an aberration of the normal relationships that organize cells' coexistence, cancer has to deceive cell-cell communication in order to grow and spread. GPCRs play a critical role in this process. Despite the fact that GPCRs represent one of the most common drug targets, current medical practice includes only a few anticancer compounds directly acting on their signaling. Many approaches can be envisaged to target GPCRs involved in oncology. Beyond interfering with GPCRs signaling by using agonists or antagonists to prevent cell proliferation, favor apoptosis, induce maturation, prevent migration, etc., the high specificity of the interaction between the receptors and their ligands can be exploited to deliver toxins, antineoplastic drugs or isotopes to transformed cells. In this review we describe the strategies that are in use, or appear promising, to act directly on GPCRs in the fight against neoplastic transformation and tumor progression.
Collapse
|
194
|
Park JY, Helm J, Coppola D, Kim D, Malafa M, Kim SJ. MicroRNAs in pancreatic ductal adenocarcinoma. World J Gastroenterol 2011; 17:817-27. [PMID: 21412491 PMCID: PMC3051132 DOI: 10.3748/wjg.v17.i7.817] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Ductal adenocarcinoma of the pancreas is a lethal cancer for which the only chance of long-term survival belongs to the patient with localized disease in whom a potentially curative resection can be done. Therefore, biomarkers for early detection and new therapeutic strategies are urgently needed. miRNAs are a recently discovered class of small endogenous non-coding RNAs of about 22 nucleotides that have gained attention for their role in downregulation of mRNA expression at the post-transcriptional level. miRNAs regulate proteins involved in critical cellular processes such as differentiation, proliferation, and apoptosis. Evidence suggests that deregulated miRNA expression is involved in carcinogenesis at many sites, including the pancreas. Aberrant expression of miRNAs may upregulate the expression of oncogenes or downregulate the expression of tumor suppressor genes, as well as play a role in other mechanisms of carcinogenesis. The purpose of this review is to summarize our knowledge of deregulated miRNA expression in pancreatic cancer and discuss the implication for potential translation of this knowledge into clinical practice.
Collapse
|
195
|
Takahashi F, Chiba N, Tajima K, Hayashida T, Shimada T, Takahashi M, Moriyama H, Brachtel E, Edelman EJ, Ramaswamy S, Maheswaran S. Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib. Oncogene 2011; 30:3084-95. [PMID: 21339742 DOI: 10.1038/onc.2011.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The B-cell translocation gene-2 (BTG2), a p53-inducible gene, is suppressed in mammary epithelial cells during gestation and lactation. In human breast cancer, decreased BTG2 expression correlates with high tumor grade and size, p53 status, blood and lymph vessel invasion, local and metastatic recurrence and decrease in overall survival, suggesting that suppression of BTG2 has a critical role in disease progression. To analyze the role of BTG2 in breast cancer progression, BTG2 expression was knocked down in mammary epithelial cells. Suppression of BTG2 enhances the motility of cells in vitro and tumor growth and metastasis in vivo. The effects of BTG2 knockdown are mediated through stabilization of the human epidermal growth factor receptor (HER) ligands neuregulin and epiregulin and activation of the HER2 and HER3 receptors, leading to elevated AKT phosphorylation. Suppression of HER activation using the tyrosine kinase inhibitor lapatinib abrogates the effects of BTG2 knockdown, including the increased cell migration observed in vitro and the enhancement of tumorigenesis and metastasis in vivo. These results link BTG2-dependent effects on tumor progression to ErbB receptor signaling, and raise the possibility that targeted inhibition of this pathway may be relevant in the treatment of breast cancers that have reduced BTG2 expression.
Collapse
Affiliation(s)
- F Takahashi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Kars MD, Işeri OD, Gündüz U. A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells. Eur J Pharmacol 2011; 657:4-9. [PMID: 21320484 DOI: 10.1016/j.ejphar.2011.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/26/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
Resistance to the broad spectrum of chemotherapeutic agents in cancer cell lines and tumors has been called multiple drug resistance (MDR). In this study, the molecular mechanisms of resistance to two anticancer agents (paclitaxel and vincristine) in mammary carcinoma cell line MCF-7 were investigated. Drug resistant sublines to paclitaxel (MCF-7/Pac) and vincristine (MCF-7/Vinc) that were developed from sensitive MCF-7 cells (MCF-7/S) were used. cDNA microarray analysis was performed for the RNA samples of sensitive and resistant cells in duplicate experiments. GeneSpring GX 7.3.1 Software was used in data analysis. The results indicated that the upregulation of MDR1 gene is the dominating mechanism of the paclitaxel and vincristine drug resistance. Additionally the upregulation of the genes encoding the detoxifying enzymes (i.e. GSTP1) was observed. Significant downregulation of apoptotic genes (i.e. PDCD2/4/6/8) and upregulation of some cell cycle regulatory genes (CDKN2A, CCNA2 etc.) was seen which may be in close relation to MDR in breast cancer. Drug resistant cancer cells exhibit different gene expression patterns depending on drug treatment, and each drug resistance phenotype is probably genetically different. Further functional studies are needed to demonstrate the complete set of genes contributing to the drug resistance phenotype in breast cancer cells.
Collapse
Affiliation(s)
- Meltem Demirel Kars
- Middle East Technical University, Department of Biological Sciences, 06531, Ankara, Turkey.
| | | | | |
Collapse
|
197
|
Emami S. Interplay between p53-family, their regulators, and PARPs in DNA repair. Clin Res Hepatol Gastroenterol 2011; 35:98-104. [PMID: 21177056 DOI: 10.1016/j.gcb.2010.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 02/07/2023]
Abstract
Abnormalities of the p53 tumor suppressor gene are among the most frequent molecular events in human neoplasia. p53 is consequently one of the most studied proteins, and is the subject of over 55,500 scientific papers. In this review, attention is focused on the functions of p53 in DNA repair. We highlight the recent progress in the analysis of protein signals to p53, including PARPs, and ubiquitination cascade proteins MDM2, CRM1, USP10 and 14-3-3σ.
Collapse
Affiliation(s)
- S Emami
- Inserm UMR S938, centre de recherche Saint-Antoine, université Pierre-et-Marie-Curie (université Paris-6), 184, rue du faubourg-Saint-Antoine, 75571 Paris cedex 12, France.
| |
Collapse
|
198
|
CCN5, a novel transcriptional repressor of the transforming growth factor β signaling pathway. Mol Cell Biol 2011; 31:1459-69. [PMID: 21262769 DOI: 10.1128/mcb.01316-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CCN5 is a member of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family and was identified as an estrogen-inducible gene in estrogen receptor-positive cell lines. However, the role of CCN5 in breast carcinogenesis remains unclear. We report here that the CCN5 protein is localized mostly in the cytoplasm and in part in the nucleus of human tumor breast tissue. Using a heterologous transcription assay, we demonstrate that CCN5 can act as a transcriptional repressor presumably through association with histone deacetylase 1 (HDAC1). Microarray gene expression analysis showed that CCN5 represses expression of genes associated with epithelial-mesenchymal transition (EMT) as well as expression of key components of the transforming growth factor β (TGF-β) signaling pathway, prominent among them TGF-βRII receptor. We show that CCN5 is recruited to the TGF-βRII promoter, thereby providing a mechanism by which CCN5 restricts transcription of the TGF-βRII gene. Consistent with this finding, CCN5, we found, functions to suppress TGF-β-induced transcriptional responses and invasion that is concomitant with EMT. Thus, our data uncovered CCN5 as a novel transcriptional repressor that plays an important role in regulating tumor progression functioning, at least in part, by inhibiting the expression of genes involved in the TGF-β signaling cascade that is known to promote EMT.
Collapse
|
199
|
Maitah MY, Ali S, Ahmad A, Gadgeel S, Sarkar FH. Up-regulation of sonic hedgehog contributes to TGF-β1-induced epithelial to mesenchymal transition in NSCLC cells. PLoS One 2011; 6:e16068. [PMID: 21249152 PMCID: PMC3020967 DOI: 10.1371/journal.pone.0016068] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/05/2010] [Indexed: 11/24/2022] Open
Abstract
Background Lung cancer, especially non-small cell lung cancer (NSCLC) is the major cause of cancer-related deaths in the United States. The aggressiveness of NSCLC has been shown to be associated with the acquisition of epithelial-to-mesenchymal transition (EMT). The acquisition of EMT phenotype induced by TGF-β1in several cancer cells has been implicated in tumor aggressiveness and resistance to conventional therapeutics; however, the molecular mechanism of EMT and tumor aggressiveness in NSCLC remains unknown. Methodology/Principal Findings In this study we found for the first time that the induction of EMT by chronic exposure of A549 NSCLC cells to TGF-β1 (A549-M cells) led to the up-regulation of sonic hedgehog (Shh) both at the mRNA and protein levels causing activation of hedgehog signaling. These results were also reproduced in another NSCLC cell line (H2030). Induction of EMT was found to be consistent with aggressive characteristics such as increased clonogenic growth, cell motility and invasion. The aggressiveness of these cells was attenuated by the treatment of A549-M cells with pharmacological inhibitors of Hh signaling in addition to Shh knock-down by siRNA. The inhibition of Hh signaling by pharmacological inhibitors led to the reversal of EMT phenotype as confirmed by the reduction of mesenchymal markers such as ZEB1 and Fibronectin, and induction of epithelial marker E-cadherin. In addition, knock-down of Shh by siRNA significantly attenuated EMT induction by TGF-β1. Conclusions/Significance Our results show for the first time the transcriptional up-regulation of Shh by TGF-β1, which is mechanistically associated with TGF-β1 induced EMT phenotype and aggressive behavior of NSCLC cells. Thus the inhibitors of Shh signaling could be useful for the reversal of EMT phenotype, which would inhibit the metastatic potential of NSCLC cells and also make these tumors more sensitive to conventional therapeutics.
Collapse
Affiliation(s)
- Ma'in Y. Maitah
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Shadan Ali
- Division of Hematology/Oncology, Department of Internal Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Shirish Gadgeel
- Division of Hematology/Oncology, Department of Internal Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
200
|
Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:197-213. [PMID: 21193018 DOI: 10.1016/j.bbcan.2010.12.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/21/2022]
Abstract
The Notch signaling plays a key role in cell differentiation, survival, and proliferation through diverse mechanisms. Notch signaling is also involved in vasculogenesis and angiogenesis. Moreover, Notch expression is regulated by hypoxia and inflammatory cytokines (IL-1, IL-6 and leptin). Entangled crosstalk between Notch and other developmental signaling (Hedgehog and Wnt), and signaling triggered by growth factors, estrogens and oncogenic kinases, could impact on Notch targeted genes. Thus, alterations of the Notch signaling can lead to a variety of disorders, including human malignancies. Notch signaling is activated by ligand binding, followed by ADAM/tumor necrosis factor-α-converting enzyme (TACE) metalloprotease and γ-secretase cleavages that produce the Notch intracellular domain (NICD). Translocation of NICD into the nucleus induces the transcriptional activation of Notch target genes. The relationships between Notch deregulated signaling, cancer stem cells and the carcinogenesis process reinforced by Notch crosstalk with many oncogenic signaling pathways suggest that Notch signaling may be a critical drug target for breast and other cancers. Since current status of knowledge in this field changes quickly, our insight should be continuously revised. In this review, we will focus on recent advancements in identification of aberrant Notch signaling in breast cancer and the possible underlying mechanisms, including potential role of Notch in breast cancer stem cells, tumor angiogenesis, as well as its crosstalk with other oncogenic signaling pathways in breast cancer. We will also discuss the prognostic value of Notch proteins and therapeutic potential of targeting Notch signaling for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | |
Collapse
|