151
|
Halvorsen B, Dahl TB, Smedbakken LM, Singh A, Michelsen AE, Skjelland M, Krohg-Sørensen K, Russell D, Höpken UE, Lipp M, Damås JK, Holm S, Yndestad A, Biessen EA, Aukrust P. Increased levels of CCR7 ligands in carotid atherosclerosis: different effects in macrophages and smooth muscle cells. Cardiovasc Res 2014; 102:148-56. [PMID: 24518141 DOI: 10.1093/cvr/cvu036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIMS The homeostatic chemokines, CCL19 and CCL21 and their receptor CCR7, have recently been linked to atherogenesis. We investigated the expression of CCL19/CCL21/CCR7 in carotid atherosclerosis as well as the ability of these chemokines to modulate lipid accumulation in macrophages and vascular smooth muscle cell (SMC) phenotype. METHODS AND RESULTS Our major findings were: (i) patients with carotid atherosclerosis (n = 158) had increased plasma levels of CCL21, but not of CCL19, compared with controls (n = 20), with particularly high levels in symptomatic (n = 99) when compared with asymptomatic (n = 59) disease. (ii) Carotid plaques showed markedly increased mRNA levels of CCL21 and CCL19 in symptomatic (n = 14) when compared with asymptomatic (n = 7) patients, with CCR7 localized to macrophages and vascular SMC (immunohistochemistry). (iii) In vitro, CCL21, but not CCL19, increased the binding of modified LDL and promoted lipid accumulation in THP-1 macrophages. (iv) CCL19, but not CCL21, increased proliferation and release and activity of matrix metalloproteinase (MMP) 1 in vascular SMC. (v) The differential effects of CCL19 and CCL21 in macrophages and SMC seem to be attributable to divergent signalling pathways, with CCL19-mediated activation of AKT in SMC- and CCL21-mediated activation of extracellular signal-regulated kinase 1/2 in macrophages. CONCLUSION CCL19 and CCL21 are up-regulated in carotid atherosclerosis. The ability of CCL21 to promote lipid accumulation in macrophages and of CCL19 to induce proliferation and MMP-1 expression in vascular SMC could contribute to their pro-atherogenic potential.
Collapse
Affiliation(s)
- Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Shin HY, Kim H, Kwon MJ, Hwang DH, Lee K, Kim BG. Molecular and cellular changes in the lumbar spinal cord following thoracic injury: regulation by treadmill locomotor training. PLoS One 2014; 9:e88215. [PMID: 24520355 PMCID: PMC3919755 DOI: 10.1371/journal.pone.0088215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022] Open
Abstract
Traumatic spinal cord injury (SCI) often leads to debilitating loss of locomotor function. Neuroplasticity of spinal circuitry underlies some functional recovery and therefore represents a therapeutic target to improve locomotor function following SCI. However, the cellular and molecular mechanisms mediating neuroplasticity below the lesion level are not fully understood. The present study performed a gene expression profiling in the rat lumbar spinal cord at 1 and 3 weeks after contusive SCI at T9. Another group of rats received treadmill locomotor training (TMT) until 3 weeks, and gene expression profiles were compared between animals with and without TMT. Microarray analysis showed that many inflammation-related genes were robustly upregulated in the lumbar spinal cord at both 1 and 3 weeks after thoracic injury. Notably, several components involved in an early complement activation pathway were concurrently upregulated. In line with the microarray finding, the number of microglia substantially increased not only in the white matter but also in the gray matter. C3 and complement receptor 3 were intensely expressed in the ventral horn after injury. Furthermore, synaptic puncta near ventral motor neurons were frequently colocalized with microglia after injury, implicating complement activation and microglial cells in synaptic remodeling in the lumbar locomotor circuitry after SCI. Interestingly, TMT did not influence the injury-induced upregulation of inflammation-related genes. Instead, TMT restored pre-injury expression patterns of several genes that were downregulated by injury. Notably, TMT increased the expression of genes involved in neuroplasticity (Arc, Nrcam) and angiogenesis (Adam8, Tie1), suggesting that TMT may improve locomotor function in part by promoting neurovascular remodeling in the lumbar motor circuitry.
Collapse
Affiliation(s)
- Hae Young Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyosil Kim
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Min Jung Kwon
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong Hoon Hwang
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - KiYoung Lee
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- * E-mail: (KYL); (BGK)
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
- * E-mail: (KYL); (BGK)
| |
Collapse
|
153
|
Dreymueller D, Martin C, Schumacher J, Groth E, Boehm JK, Reiss LK, Uhlig S, Ludwig A. Smooth Muscle Cells Relay Acute Pulmonary Inflammation via Distinct ADAM17/ErbB Axes. THE JOURNAL OF IMMUNOLOGY 2013; 192:722-31. [DOI: 10.4049/jimmunol.1302496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
154
|
A brief history of tumor necrosis factor α--converting enzyme: an overview of ectodomain shedding. Keio J Med 2013; 62:29-36. [PMID: 23563789 DOI: 10.2302/kjm.2012-0003-re] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many membrane-bound molecules are cleaved at the cell surface, thereby releasing their extracellular domains. This process, often referred to as ectodomain shedding, has emerged as a critical post-translational mechanism for various membrane-bound ligands, receptors, and adhesion molecules. Tumor necrosis factor α (TNFα)-converting enzyme (TACE/ADAM17) was originally identified as an enzyme responsible for releasing the membrane-bound TNFα precursor. However, subsequent studies found an exceptionally large number of target molecules of TACE, including the ligands for epidermal growth factor receptor, L-selectin, CD44, and vascular growth factor receptor 2. Furthermore, in vivo studies using TACE-conditional knockout mice demonstrated the crucial roles of TACE and ectodomain shedding under both physiological and pathological conditions. However, the potential clinical application of the manipulation of TACE activity remains to be investigated.
Collapse
|
155
|
Meprin-β regulates production of pro-inflammatory factors via a disintegrin and metalloproteinase-10 (ADAM-10) dependent pathway in macrophages. Int Immunopharmacol 2013; 18:77-84. [PMID: 24239627 DOI: 10.1016/j.intimp.2013.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 01/17/2023]
Abstract
Inflammatory response plays an important role not only in the normal physiology but also in the pathology such as atherosclerosis. Meprin, an astacin metalloproteinase, has exhibited proinflammatory effects in vivo and in vitro studies. Here, we tried to further investigate the proinflammatory potential of meprin-β and the possible underlying mechanisms in primary human peripheral blood macrophages. In our current study, ELISA assay revealed that meprin-β increased the production of pro-inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-18 and interleukin-6 (IL-6) in macrophages. However, meprin-β shows no effects on the level of ligands of epidermal growth factor receptor (EGFR), and the activation of EGFR. The molecular mechanism was associated with activation of a disintegrin and metalloproteinase 10 (ADAM10) and the phosphorylation of IκB. Further analysis of upstream mechanisms showed that activation of NF-κB by meprin-β was mediated by inhibiting ADAM10-downstream extracellular signal regulated kinase (ERK1/2) pathway. Taken together, these results indicated that meprin-β exhibited pro-inflammatory effects by targeting activating ADAM10, leading to ERK1/2-mediated activation of NF-κB in macrophages, and this would make meprin-β a strong candidate for further study as proinflammatory target.
Collapse
|
156
|
Diagnosis of Alport syndrome--search for proteomic biomarkers in body fluids. Pediatr Nephrol 2013; 28:2117-23. [PMID: 23793922 DOI: 10.1007/s00467-013-2533-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/26/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The hereditary kidney disease Alport syndrome (AS) has become a treatable disease: intervention with angiotensin-converting enzyme (ACE)-inhibitors delays end stage renal failure by years. The efficiency of ACE inhibition depends on the onset of therapy-the earlier the better. Therefore, early diagnosis has become increasingly important. To date, robust diagnosis requires renal biopsy and/or expensive genetic analysis, which is mostly performed late after onset of the profound clinical symptoms of this progressive renal disease. Thus, disease biomarkers enabling low-invasive screening are urgently required. METHODS Fourteen potential proteomic candidate markers (proteins) identified in a previous study in sera from patients exhibiting manifest AS were evaluated in the plasma, serum, and urine collected from a cohort of 132 subjects, including patients with AS and other nephropathies and healthy controls. Quantitation was performed by immunoassays. RESULTS The serum and plasma levels of none of the 14 proteins evaluated were significantly different among the three groups and therefore could not be used to discriminate between the groups. In contrast, the levels of various biomarker combinations in the urine were significantly different between AS patients and healthy controls. Importantly, some combinations had the potential to discriminate between AS and other nephropathies. CONCLUSIONS These findings open a window of opportunity for the sensitive and specific early diagnosis of AS. Our results increase the potential for larger scale evaluation of an increased number of patients.
Collapse
|
157
|
Soluble lectin-like oxidized low density lipoprotein receptor-1 as a biochemical marker for atherosclerosis-related diseases. DISEASE MARKERS 2013; 35:413-8. [PMID: 24198442 PMCID: PMC3809739 DOI: 10.1155/2013/716325] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/26/2013] [Indexed: 11/22/2022]
Abstract
Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), the main oxidized low-density lipoprotein (OxLDL) in endothelial cells, is upregulated in atherosclerotic lesions and is involved in several cellular processes that regulate the pathogenesis of atherosclerosis. The LOX-1 expressed on the cell surface can be proteolytically cleaved and released in a soluble form (sLOX-1) in the circulation under pathological conditions. Serum levels of sLOX-1, in fact, are elevated at the early stages of acute coronary syndrome and are associated with coronary plaque vulnerability and with the presence of multiple complex coronary lesions. Moreover, in subjects with stable CAD, levels of serum sLOX-1 are associated with the presence of lesions in the proximal and mid-segments of the left anterior descending artery that are the most prone to rupture; in subjects undergoing percutaneous coronary intervention, baseline preprocedural serum sLOX-1 levels are associated with the incidence of periprocedural myocardial infarction. Altogether, these findings suggest that circulating levels of sLOX-1 might be a diagnostic and prognostic marker for atherosclerotic-related events.
Collapse
|
158
|
ADAM12 is expressed in the tumour vasculature and mediates ectodomain shedding of several membrane-anchored endothelial proteins. Biochem J 2013; 452:97-109. [PMID: 23458101 DOI: 10.1042/bj20121558] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ADAM (a disintegrin and metalloproteinase) 12 is a metalloprotease implicated in cancer progression. ADAM12 can activate membrane-anchored proteins, such as sonic hedgehog, Delta-like 1 and certain epidermal growth factor receptor ligands, through a process called ectodomain shedding. We screened several membrane-anchored proteins to further dissect the substrate profile of ADAM12-mediated ectodomain shedding, and found shedding of five previously unreported substrates [Kitl1, VE-cadherin (vascular endothelial cadherin), Flk-1 (fetal liver kinase 1), Tie-2, and VCAM-1 (vascular cell adhesion molecule 1)], of which the latter four are specifically expressed by endothelial cells. We also observed that ADAM12 expression was increased in the tumour vasculature of infiltrating ductal carcinoma of the human breast as compared with little to no expression in normal breast tissue vasculature, suggesting a role for ADAM12 in tumour vessels. These results prompted us to further evaluate ADAM12-mediated shedding of two endothelial cell proteins, VE-cadherin and Tie-2. Endogenous ADAM12 expression was very low in cultured endothelial cells, but was significantly increased by cytokine stimulation. In parallel, the shed form of VE-cadherin was elevated in such cytokine-stimulated endothelial cells, and ADAM12 siRNA (small interfering RNA) knockdown reduced cytokine-induced shedding of VE-cadherin. In conclusion, the results of the present study demonstrate a role for ADAM12 in ectodomain shedding of several membrane-anchored endothelial proteins. We speculate that this process may have importance in tumour neovascularization or/and tumour cell extravasation.
Collapse
|
159
|
Deng W, Cho S, Li R. FERM domain of moesin desorbs the basic-rich cytoplasmic domain of l-selectin from the anionic membrane surface. J Mol Biol 2013; 425:3549-62. [PMID: 23796515 DOI: 10.1016/j.jmb.2013.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023]
Abstract
Moesin and calmodulin (CaM) jointly associate with the cytoplasmic domain of l-selectin in the cell to modulate the function and ectodomain shedding of l-selectin. Using fluorescence spectroscopy, we have examined the association of moesin FERM domain with the recombinant transmembrane and cytoplasmic domains of l-selectin (CLS) reconstituted in model phospholipid liposomes. The dissociation constant of moesin FERM domain to CLS in the phosphatidylcholine liposome is about 300nM. In contrast to disrupting the CaM association with CLS, inclusion of anionic phosphatidylserine lipids in the phosphatidylcholine liposome increased the apparent binding affinity of moesin FERM domain for CLS. Using the environmentally sensitive fluorescent probe attached to the cytoplasmic domain of CLS and the nitroxide quencher attached to the lipid bilayer, we showed that the association of moesin FERM domain induced the desorption of the basic-rich cytoplasmic domain of CLS from the anionic membrane surface, which enabled subsequent association of CaM to the cytoplasmic domain of CLS. These results have elucidated the molecular basis for the moesin/l-selectin/CaM ternary complex and suggested an important role of phospholipids in modulating l-selectin function and shedding.
Collapse
Affiliation(s)
- Wei Deng
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive NE, Room 440, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
160
|
Li Y, Liao F, Yin XJ, Cui LL, Ma GD, Nong XX, Zhou HH, Chen YF, Zhao B, Li KS. An association study on ADAM10 promoter polymorphisms and atherosclerotic cerebral infarction in a Chinese population. CNS Neurosci Ther 2013; 19:785-94. [PMID: 23773531 PMCID: PMC4233972 DOI: 10.1111/cns.12136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 12/03/2022] Open
Abstract
Aim Dysregulation of the activity of the disintegrin/metalloproteinase ADAM10 could contribute to the development of atherosclerosis. Although a number of genetic studies have focused on the association of ADAM10 gene polymorphisms with susceptibility to diseases, no genetic association studies of ADAM10 gene variability with atherosclerotic cerebral infarction (ACI) have been conducted. The aim of this study was to analyze the potential association between ADAM10 promoter polymorphisms and ACI. Methods The associations between rs653765 and rs514049 polymorphisms of the ADAM10 promoter and the possible risk of ACI were assessed among 347 patients with ACI and 299 matched healthy individuals in a case–control study. Results Overall, there was a significant difference in the genotypes frequencies of rs653765 (P = 0.04) between the ACI and control subjects. In addition, the rs653765 mutated allele of ADAM10 was significantly associated with increased ADAM10 expression in patients with ACI (P = 0.032). In contrast, the allele frequency of rs514049 was not statistically associated with ACI, and the rs514049 variant A > C did not affect the expression of ADAM10 either. Conclusion Our findings indicate a positive association between the rs653765 polymorphism of ADAM10 and ACI, as well as a negative result for rs514049. In addition, a significant increase in ADAM10 expression was observed in patients with ACI carrying the rs653765 C > T mutation. This new knowledge about ADAM10 might be clinically important and confirm a role for ADAM10 in the pathophysiology of ACI, with potentially important therapeutic implications.
Collapse
Affiliation(s)
- You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Sassoli C, Chellini F, Pini A, Tani A, Nistri S, Nosi D, Zecchi-Orlandini S, Bani D, Formigli L. Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 2013; 8:e63896. [PMID: 23704950 PMCID: PMC3660557 DOI: 10.1371/journal.pone.0063896] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/07/2013] [Indexed: 01/12/2023] Open
Abstract
The hormone relaxin (RLX) is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures of neonatal cardiac stromal cells. RLX inhibited TGF-β1-induced fibroblast-myofibroblast transition, as judged by its ability to down-regulate α-smooth muscle actin and type I collagen expression. We also found that the hormone up-regulated metalloprotease (MMP)-2 and MMP-9 expression and downregulated the tissue inhibitor of metalloproteinases (TIMP)-2 in TGF-β1-stimulated cells. Interestingly, the effects of RLX on cardiac fibroblasts involved the activation of Notch-1 pathway. Indeed, Notch-1 expression was significantly decreased in TGF-β1-stimulatedfibroblasts as compared to the unstimulated controls; this reduction was prevented by the addition of RLX to TGF-β1-stimulated cells. Moreover, pharmacological inhibition of endogenous Notch-1 signaling by N-3,5-difluorophenyl acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT), a γ-secretase specific inhibitor, as well as the silencing of Notch-1 ligand, Jagged-1, potentiated TGF-β1-induced myofibroblast differentiation and abrogated the inhibitory effects of RLX. Interestingly, RLX and Notch-1 exerted their inhibitory effects by interfering with TGF-β1 signaling, since the addition of RLX to TGF-β1-stimulated cells caused a significant decrease in Smad3 phosphorylation, a typical downstream event of TGF-β1 receptor activation, while the treatment with a prevented this effect. These data suggest that Notch signaling can down-regulate TGF-β1/Smad3-induced fibroblast-myofibroblast transition and that RLX could exert its well known anti-fibrotic action through the up-regulation of this pathway. In conclusion, the results of the present study beside supporting the role of RLX in the field of cardiac fibrosis, provide novel experimental evidence on the molecular mechanisms underlying its effects.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
162
|
Daniel AE, van Buul JD. Endothelial junction regulation: a prerequisite for leukocytes crossing the vessel wall. J Innate Immun 2013; 5:324-35. [PMID: 23571667 DOI: 10.1159/000348828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/12/2013] [Indexed: 12/13/2022] Open
Abstract
The leukocytes of the innate immune system, especially neutrophils and monocytes, exit the circulation early in the response to local inflammation and infection. This is necessary to control and prevent the spread of infections before an adaptive immune response can be raised. The endothelial cells and the intercellular junctions that connect them form a barrier that leukocytes need to pass in order to get to the site of inflammation. The junctions are tightly regulated which ensures that leukocytes only exit when and where they are needed. This regulation is disturbed in many chronic inflammatory diseases which are characterized by ongoing recruitment and interstitial accumulation of leukocytes. In this review, we summarize the molecular mechanisms that regulate endothelial cell-cell junctions and prevent or permit leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Anna E Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
163
|
Yotsumoto F, Tokunaga E, Oki E, Maehara Y, Yamada H, Nakajima K, Nam SO, Miyata K, Koyanagi M, Doi K, Shirasawa S, Kuroki M, Miyamoto S. Molecular hierarchy of heparin-binding EGF-like growth factor-regulated angiogenesis in triple-negative breast cancer. Mol Cancer Res 2013; 11:506-17. [PMID: 23443317 DOI: 10.1158/1541-7786.mcr-12-0428] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is one of several proangiogenic factors and represents a possible therapeutic target for patients with triple-negative breast cancer (TNBC). However, the role of HB-EGF in promoting tumor aggressiveness in TNBC remains unclear. To investigate specific genes and pathways involved in TNBC tumorigenesis, we profiled gene expression changes in two TNBC cell lines under two-dimensional culture (2DC) and three-dimensional culture (3DC) and in a tumor xenograft model. We identified simultaneous upregulation of HB-EGF, VEGFA, and angiopoietin-like 4 (ANGPTL4) in 3DC and tumor xenografts, compared with 2DC. We show that HB-EGF regulates the expression of VEGFA or ANGPTL4 via transcriptional regulation of hypoxia-inducible factor-1α and NF-κB. Furthermore, suppression of VEGFA or ANGPTL4 expression enhanced HB-EGF expression, highlighting a unique regulatory loop underlying this angiogenesis network. Targeted knockdown of HB-EGF significantly suppressed tumor formation in a TNBC xenograft model, compared with individual knockdown of either VEGFA or ANGPTL4, by reducing the expression of both VEGFA and ANGPTL4. In patients with TNBC, VEGFA or ANGPTL4 expression was also significantly correlated with HB-EGF expression. Low concentrations of exogenously added HB-EGF strongly activated the proliferation of endothelial cells, tube formation, and vascular permeability in blood vessels, in a similar fashion to high doses of VEGFA and ANGPTL4. Taken together, these results suggest that HB-EGF plays a pivotal role in the acquisition of tumor aggressiveness in TNBC by orchestrating a molecular hierarchy regulating tumor angiogenesis.
Collapse
Affiliation(s)
- Fusanori Yotsumoto
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Fiorentino L, Cavalera M, Menini S, Marchetti V, Mavilio M, Fabrizi M, Conserva F, Casagrande V, Menghini R, Pontrelli P, Arisi I, D'Onofrio M, Lauro D, Khokha R, Accili D, Pugliese G, Gesualdo L, Lauro R, Federici M. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol Med 2013; 5:441-55. [PMID: 23401241 PMCID: PMC3598083 DOI: 10.1002/emmm.201201475] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 01/15/2023] Open
Abstract
ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3−/− mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3−/− mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re-expression of Timp3 in Timp3−/− mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased. Our study suggests that loss of TIMP3 is a hallmark of DKD in human and mouse models and designates TIMP3 as a new possible therapeutic target for diabetic nephropathy.
Collapse
|
165
|
Menghini R, Fiorentino L, Casagrande V, Lauro R, Federici M. The role of ADAM17 in metabolic inflammation. Atherosclerosis 2013; 228:12-7. [PMID: 23384719 DOI: 10.1016/j.atherosclerosis.2013.01.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/12/2013] [Accepted: 01/14/2013] [Indexed: 01/04/2023]
Abstract
The TNF-alpha Converting Enzyme (TACE), also called ADAM17 (A Disintegrin and A Metalloproteinase 17) is a type I transmembrane metalloproteinase involved in the shedding of the extracellular domain of several transmembrane proteins such as cytokines, growth factors, receptors and adhesion molecules. Some of these proteolytic events are part of cleavage cascades known as Regulated Intramembrane Proteolysis and lead to intracellular signaling. Evidence is provided that ADAM17 plays a role in atherosclerosis, in adipose tissue metabolism, insulin resistance and diabetes. The multitude of substrates cleaved by ADAM17 makes this enzyme an attractive candidate to study its role in inflammatory disorders. This review is focused on effects of ADAM17 in major metabolic tissues.
Collapse
Affiliation(s)
- Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
166
|
Saito K, Horiuchi K, Kimura T, Mizuno S, Yoda M, Morioka H, Akiyama H, Threadgill D, Okada Y, Toyama Y, Sato K. Conditional inactivation of TNFα-converting enzyme in chondrocytes results in an elongated growth plate and shorter long bones. PLoS One 2013; 8:e54853. [PMID: 23349978 PMCID: PMC3548805 DOI: 10.1371/journal.pone.0054853] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/17/2012] [Indexed: 12/03/2022] Open
Abstract
TNFα-converting enzyme (TACE) is a membrane-bound proteolytic enzyme with essential roles in the functional regulation of TNFα and epidermal growth factor receptor (EGFR) ligands. Previous studies have demonstrated critical roles for TACE in vivo, including epidermal development, immune response, and pathological neoangiogenesis, among others. However, the potential contribution of TACE to skeletal development is still unclear. In the present study, we generated a Tace mutant mouse in which Tace is conditionally disrupted in chondrocytes under the control of the Col2a1 promoter. These mutant mice were fertile and viable but all exhibited long bones that were approximately 10% shorter compared to those of wild-type animals. Histological analyses revealed that Tace mutant mice exhibited a longer hypertrophic zone in the growth plate, and there were fewer osteoclasts at the chondro-osseous junction in the Tace mutant mice than in their wild-type littermates. Of note, we found an increase in osteoprotegerin transcripts and a reduction in Rankl and Mmp-13 transcripts in the TACE-deficient cartilage, indicating that dysregulation of these genes is causally related to the skeletal defects in the Tace mutant mice. Furthermore, we also found that phosphorylation of EGFR was significantly reduced in the cartilage tissue lacking TACE, and that suppression of EGFR signaling increases osteoprotegerin transcripts and reduces Rankl and Mmp-13 transcripts in primary chondrocytes. In accordance, chondrocyte-specific abrogation of Egfr in vivo resulted in skeletal defects nearly identical to those observed in the Tace mutant mice. Taken together, these data suggest that TACE-EGFR signaling in chondrocytes is involved in the turnover of the growth plate during postnatal development via the transcriptional regulation of osteoprotegerin, Rankl, and Mmp-13.
Collapse
Affiliation(s)
- Kenta Saito
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Anti-Aging Orthopedic Research, School of Medicine, Keio University, Tokyo, Japan
- * E-mail:
| | - Tokuhiro Kimura
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Sakiko Mizuno
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Masaki Yoda
- Department of Anti-Aging Orthopedic Research, School of Medicine, Keio University, Tokyo, Japan
| | - Hideo Morioka
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | - David Threadgill
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Yasunori Okada
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuki Sato
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
167
|
Yoda M, Kimura T, Tohmonda T, Morioka H, Matsumoto M, Okada Y, Toyama Y, Horiuchi K. Systemic overexpression of TNFα-converting enzyme does not lead to enhanced shedding activity in vivo. PLoS One 2013; 8:e54412. [PMID: 23342154 PMCID: PMC3544834 DOI: 10.1371/journal.pone.0054412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/13/2012] [Indexed: 01/12/2023] Open
Abstract
TNFα-converting enzyme (TACE/ADAM17) is a membrane-bound proteolytic enzyme with a diverse set of target molecules. Most importantly, TACE is indispensable for the release and activation of pro-TNFα and the ligands for epidermal growth factor receptor in vivo. Previous studies suggested that the overproduction of TACE is causally related to the pathogenesis of inflammatory diseases and cancers. To test this hypothesis, we generated a transgenic line in which the transcription of exogenous Tace is driven by a CAG promoter. The Tace-transgenic mice were viable and exhibited no overt defects, and the quantitative RT-PCR and Western blot analyses confirmed that the transgenically introduced Tace gene was highly expressed in all of the tissues examined. The Tace-transgenic mice were further crossed with Tace⁻/⁺ mice to abrogate the endogenous TACE expression, and the Tace-transgenic mice lacking endogenous Tace gene were also viable without any apparent defects. Furthermore, there was no difference in the serum TNFα levels after lipopolysaccharide injection between the transgenic mice and control littermates. These observations indicate that TACE activity is not necessarily dependent on transcriptional regulation and that excess TACE does not necessarily result in aberrant proteolytic activity in vivo.
Collapse
Affiliation(s)
- Masaki Yoda
- Anti-aging Orthopedic Research, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Berry E, Bosonea AM, Wang X, Fernandez-Patron C. Insights into the Activity, Differential Expression, Mutual Regulation, and Functions of Matrix Metalloproteinases and A Disintegrin and Metalloproteinases in Hypertension and Cardiac Disease. J Vasc Res 2013; 50:52-68. [DOI: 10.1159/000345240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/13/2012] [Indexed: 12/19/2022] Open
|
169
|
Haining EJ, Yang J, Bailey RL, Khan K, Collier R, Tsai S, Watson SP, Frampton J, Garcia P, Tomlinson MG. The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem 2012; 287:39753-65. [PMID: 23035126 DOI: 10.1074/jbc.m112.416503] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitous transmembrane metalloprotease that cleaves the extracellular regions from over 40 different transmembrane target proteins, including Notch and amyloid precursor protein. ADAM10 is essential for embryonic development and is also important in inflammation, cancer, and Alzheimer disease. However, ADAM10 regulation remains poorly understood. ADAM10 is compartmentalized into membrane microdomains formed by tetraspanins, which are a superfamily of 33 transmembrane proteins in humans that regulate clustering and trafficking of certain other transmembrane "partner" proteins. This is achieved by specific tetraspanin-partner interactions, but it is not clear which tetraspanins specifically interact with ADAM10. The aims of this study were to identify which tetraspanins interact with ADAM10 and how they regulate this metalloprotease. Co-immunoprecipitation identified specific ADAM10 interactions with Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33/Penumbra. These are members of the largely unstudied TspanC8 subgroup of tetraspanins, all six of which promoted ADAM10 maturation. Different cell types express distinct repertoires of TspanC8 tetraspanins. Human umbilical vein endothelial cells express relatively high levels of Tspan14, the knockdown of which reduced ADAM10 surface expression and activity. Mouse erythrocytes express predominantly Tspan33, and ADAM10 expression was substantially reduced in the absence of this tetraspanin. In contrast, ADAM10 expression was normal on Tspan33-deficient mouse platelets in which Tspan14 is the major TspanC8 tetraspanin. These results define TspanC8 tetraspanins as essential regulators of ADAM10 maturation and trafficking to the cell surface. This finding has therapeutic implications because focusing on specific TspanC8-ADAM10 complexes may allow cell type- and/or substrate-specific ADAM10 targeting.
Collapse
Affiliation(s)
- Elizabeth J Haining
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
van der Vorst EPC, Keijbeck AA, de Winther MPJ, Donners MMPC. A disintegrin and metalloproteases: molecular scissors in angiogenesis, inflammation and atherosclerosis. Atherosclerosis 2012; 224:302-8. [PMID: 22698791 DOI: 10.1016/j.atherosclerosis.2012.04.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 01/19/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are enzymes that cleave (shed) the extracellular domains of various cell surface molecules, e.g. adhesion molecules, cytokine/chemokine and growth factor receptors, thereby releasing soluble molecules that can exert agonistic or antagonistic functions or serve as biomarkers. By functioning as such molecular scissors, ADAM proteases have been implicated in various diseases, e.g. cancer, and their role in cardiovascular diseases is now emerging. This review will focus on the role of ADAM proteases in molecular mechanisms of angiogenesis and inflammation in relation to atherosclerosis. Besides a concise overview of the current state and recent advances of this research area, we will discuss key questions about redundancy, specificity and regulation of ADAM proteases and emphasize the importance of confirmation of in vitro findings in in vivo models.
Collapse
Affiliation(s)
- Emiel P C van der Vorst
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
171
|
Dreymueller D, Martin C, Kogel T, Pruessmeyer J, Hess FM, Horiuchi K, Uhlig S, Ludwig A. Lung endothelial ADAM17 regulates the acute inflammatory response to lipopolysaccharide. EMBO Mol Med 2012; 4:412-23. [PMID: 22367719 PMCID: PMC3403298 DOI: 10.1002/emmm.201200217] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 11/07/2022] Open
Abstract
Acute lung injury (ALI) is associated with increased vascular permeability, leukocyte recruitment, and pro-inflammatory mediator release. We investigated the role of the metalloproteinase ADAM17 in endotoxin-induced ALI with focus on endothelial ADAM17. In vitro, endotoxin-mediated induction of endothelial permeability and IL-8-induced transmigration of neutrophils through human microvascular endothelial cells required ADAM17 as shown by inhibition with GW280264X or shRNA-mediated knockdown. In vivo, ALI was induced by intranasal endotoxin-challenge combined with GW280264X treatment or endothelial adam17-knockout. Endotoxin-triggered upregulation of ADAM17 mRNA in the lung was abrogated in knockout mice and associated with reduced ectodomain shedding of the junctional adhesion molecule JAM-A and the transmembrane chemokine CX3CL1. Induced vascular permeability, oedema formation, release of TNF-α and IL-6 and pulmonary leukocyte recruitment were all markedly reduced by GW280264X or endothelial adam17-knockout. Intranasal application of TNF-α could not restore leukocyte recruitment and oedema formation in endothelial adam17-knockout animals. Thus, activation of endothelial ADAM17 promotes acute pulmonary inflammation in response to endotoxin by multiple endothelial shedding events most likely independently of endothelial TNF-α release leading to enhanced vascular permeability and leukocyte recruitment.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Interdisciplinary Center for Clinical Research, RWTH Aachen UniversityGermany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen UniversityGermany
| | - Tanja Kogel
- Interdisciplinary Center for Clinical Research, RWTH Aachen UniversityGermany
| | - Jessica Pruessmeyer
- Interdisciplinary Center for Clinical Research, RWTH Aachen UniversityGermany
| | - Franz M Hess
- Institute of Pharmacology and Toxicology, RWTH Aachen UniversityGermany
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, School of Medicine, Keio UniversityTokyo, Japan
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen UniversityGermany
| | - Andreas Ludwig
- Interdisciplinary Center for Clinical Research, RWTH Aachen UniversityGermany
- Institute of Pharmacology and Toxicology, RWTH Aachen UniversityGermany
- *Corresponding author: Tel: +49 241 80 35771; Fax: +49 241 80 82081; E-mail:
| |
Collapse
|