151
|
Tomar P, Giri N, Karwasara VS, Pandey RS, Dixit V. “Prevention of structural perturbation and aggregation of hepatitis B surface antigen: screening of various additives”. Pharm Dev Technol 2011; 17:421-8. [DOI: 10.3109/10837450.2010.546408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
152
|
Wang M, Feng Q, Guo X, She Z, Tan R. A dual microsphere based on PLGA and chitosan for delivering the oligopeptide derived from BMP-2. Polym Degrad Stab 2011. [DOI: 10.1016/j.polymdegradstab.2010.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
153
|
Todo H, Kimura E, Yasuno H, Tokudome Y, Hashimoto F, Ikarashi Y, Sugibayashi K. Permeation pathway of macromolecules and nanospheres through skin. Biol Pharm Bull 2010; 33:1394-9. [PMID: 20686237 DOI: 10.1248/bpb.33.1394] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The permeation pathway of macromolecules and nanospheres through skin was evaluated using fluorescent isothiocyanate (FITC)-dextran (average MW, 4 kDa) (FD-4) and nanospheres (500 nm in diameter) in hairless rat abdominal skin and porcine ear skin as well as a three-dimensional cultured human skin model (cultured skin model). A low molecular hydrophilic compound, sodium fluorescein (FL) (MW, 376 Da), was used for comparison. FL penetrated the stratum corneum and permeated the viable epidermis of hairless rat skin, whereas less permeation of FL was observed through the cultured skin model, suggesting that the primary permeation pathway for the hydrophilic material may be skin appendages through the rat skin. A macromolecular compound, FD-4, was distributed through the hair follicles of the rat skin. In addition, nanospheres were detected in the hair follicles of porcine skin, although no skin permeation was detected. These findings suggest that appendage routes such as hair follicles can be a penetration pathway of macromolecules and nanospheres through skin.
Collapse
Affiliation(s)
- Hiroaki Todo
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | | | | | | | | | | | | |
Collapse
|
154
|
Parajó Y, d’Angelo I, Horváth A, Vantus T, György K, Welle A, Garcia-Fuentes M, Alonso MJ. PLGA:poloxamer blend micro- and nanoparticles as controlled release systems for synthetic proangiogenic factors. Eur J Pharm Sci 2010; 41:644-9. [DOI: 10.1016/j.ejps.2010.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/27/2022]
|
155
|
Effect of pH on the Formation of Acylated Octreotides by Poly(lactide-co-glycolide). JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.4.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
156
|
Rafi M, Singh SM, Kanchan V, Anish CK, Panda AK. Controlled release of bioactive recombinant human growth hormone from PLGA microparticles. J Microencapsul 2010; 27:552-60. [DOI: 10.3109/02652048.2010.489974] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
157
|
Carrillo-Conde B, Schiltz E, Yu J, Chris Minion F, Phillips GJ, Wannemuehler MJ, Narasimhan B. Encapsulation into amphiphilic polyanhydride microparticles stabilizes Yersinia pestis antigens. Acta Biomater 2010; 6:3110-9. [PMID: 20123135 DOI: 10.1016/j.actbio.2010.01.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 01/24/2010] [Accepted: 01/27/2010] [Indexed: 11/28/2022]
Abstract
The design of biodegradable polymeric delivery systems based on polyanhydrides that would provide for improved structural integrity of Yersinia pestis antigens was the main goal of this study. Accordingly, the full-length Y. pestis fusion protein (F1-V) or a recombinant Y. pestis fusion protein (F1(B2T1)-V10) was encapsulated and released from microparticles based on 1,6-bis(p-carboxyphenoxy)hexane (CPH) and sebacic acid (SA) copolymers and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) and CPH copolymers fabricated by cryogenic atomization. An enzyme-linked immunosorbent assay was used to measure changes in the antigenicity of the released proteins. The recombinant F1(B2T1)-V10 was unstable upon release from the hydrophobic CPH:SA microparticles, but maintained its structure and antigenicity in the amphiphilic CPTEG:CPH system. The full-length F1-V was stably released by both CPH:SA and CPTEG:CPH microparticles. In order to determine the effect of the anhydride monomers on the protein structure, changes in the primary, secondary, and tertiary structure, as well as the antigenicity of both Y. pestis antigens, were measured after incubation in the presence of saturated solutions of SA, CPH, and CPTEG anhydride monomers. The results indicated that the amphiphilic environment provided by the CPTEG monomer was important to preserve the structure and antigenicity of both proteins. These studies offer an approach by which a thorough understanding of the mechanisms governing antigenic instability can be elucidated in order to optimize the in vivo performance of biodegradable delivery devices as protein carriers and/or vaccine adjuvants.
Collapse
Affiliation(s)
- Brenda Carrillo-Conde
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Davis HE, Leach JK. Designing bioactive delivery systems for tissue regeneration. Ann Biomed Eng 2010; 39:1-13. [PMID: 20676773 PMCID: PMC3010216 DOI: 10.1007/s10439-010-0135-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 07/20/2010] [Indexed: 11/29/2022]
Abstract
The direct infusion of macromolecules into defect sites generally does not impart adequate physiological responses. Without the protection of delivery systems, inductive molecules may likely redistribute away from their desired locale and are vulnerable to degradation. In order to achieve efficacy, large doses supplied at interval time periods are necessary, often at great expense and ensuing detrimental side effects. The selection of a delivery system plays an important role in the rate of re-growth and functionality of regenerating tissue: not only do the release kinetics of inductive molecules and their consequent bioactivities need to be considered, but also how the delivery system interacts and integrates with its surrounding host environment. In the current review, we describe the means of release of macromolecules from hydrogels, polymeric microspheres, and porous scaffolds along with the selection and utilization of bioactive delivery systems in a variety of tissue-engineering strategies.
Collapse
Affiliation(s)
- Hillary E Davis
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, 2303 Genome and Biomedical Sciences Facility, Davis, CA, 95616, USA
| | | |
Collapse
|
159
|
Effect of PEGylation on stability of peptide in poly(lactide-co-glycolide) microspheres. Arch Pharm Res 2010; 33:1111-6. [DOI: 10.1007/s12272-010-0718-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/19/2010] [Accepted: 05/13/2010] [Indexed: 11/27/2022]
|
160
|
Paillard-Giteau A, Tran V, Thomas O, Garric X, Coudane J, Marchal S, Chourpa I, Benoît J, Montero-Menei C, Venier-Julienne M. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique. Eur J Pharm Biopharm 2010; 75:128-36. [DOI: 10.1016/j.ejpb.2010.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 03/01/2010] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
161
|
Haushey LA, Bolzinger MA, Fessi H, Briançon S. rhEGF microsphere formulation andin vitroskin evaluation. J Microencapsul 2010; 27:14-24. [DOI: 10.3109/02652040902749061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
162
|
Li FQ, Su H, Chen X, Qin XJ, Liu JY, Zhu QG, Hu JH. Mannose 6-phosphate-modified bovine serum albumin nanoparticles for controlled and targeted delivery of sodium ferulate for treatment of hepatic fibrosis. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.09.0004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Objectives
The aim was to prepare neoglycoprotein-based nanoparticles for targeted drug delivery to hepatic stellate cells, and to evaluate their characteristics in vitro and in vivo.
Methods
The neoglycoprotein of bovine serum albumin modified with mannose 6-phosphate was synthesised from mannose, and used as wall material to nanoencapsulate the model natural antifibrotic substance sodium ferulate using a desolvation method. The morphology, drug loading capacity, release in vitro and biodistribution in vivo of the nanoparticles were studied. Selectivity of the nanoparticles for hepatic stellate cells was evaluated by immunohistochemical analysis of fibrotic rat liver sections.
Key findings
The spherical nanoparticles were negatively charged with zeta potential ranging from −2.73 to −35.85 mV, and sizes between 100 and 200 nm with a narrow size distribution. Drug entrapment efficiency of about 90% (w/w) and loading capacity of 20% (w/w) could be achieved. In vitro, the nanoparticles showed an initial rapid continuous release followed by a slower sustained release. After intravenous injection into mice, the nanoparticles showed a slower elimination rate and a much higher drug concentration in liver compared with the sodium ferrate solution, and less distribution to the kidneys and other tissues. Immunohistochemistry indicated that the neoglycoprotein-based nano-particles were taken up specifically by hepatic stellate cells.
Conclusions
The nanoparticles may be an efficient drug carrier targeting hepatic stellate cells.
Collapse
Affiliation(s)
- Feng-Qian Li
- Shanghai Eighth People's Hospital, Shanghai, China
| | - Hua Su
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xu Chen
- Shanghai Eighth People's Hospital, Shanghai, China
| | - Xian-Ju Qin
- Shanghai Eighth People's Hospital, Shanghai, China
| | - Ji-Yong Liu
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Quan-Gang Zhu
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jin-Hong Hu
- Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
163
|
Wang M, Feng Q, Niu X, Tan R, She Z. A spheres-in-sphere structure for improving protein-loading poly (lactide-co-glycolide) microspheres. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2009.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
164
|
Mora-Huertas C, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm 2010; 385:113-42. [DOI: 10.1016/j.ijpharm.2009.10.018] [Citation(s) in RCA: 994] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/01/2009] [Accepted: 10/03/2009] [Indexed: 10/20/2022]
|
165
|
Bertram JP, Rauch MF, Chang K, Lavik EB. Using polymer chemistry to modulate the delivery of neurotrophic factors from degradable microspheres: delivery of BDNF. Pharm Res 2009; 27:82-91. [PMID: 19921405 DOI: 10.1007/s11095-009-0009-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/02/2009] [Indexed: 12/22/2022]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) plays an important role in neuroprotection and repair, but long-term delivery from polymer systems has been challenging. We investigated the role the chemistry of the polymer played in loading and delivery of BDNF via microspheres, which are suitable for minimally invasive administration. METHODS We synthesized polymers based on PLGA and PEG to determine what components augmented loading and delivery. We characterized microspheres fabricated from these polymers using a battery of tests, including sizing, in vitro release, and bioactivity of the BDNF using PC12 cells engineered to express the trkB receptor. RESULTS We found that a triblock polymer of PLGA, PLL, and PEG led to the delivery of BDNF for periods of time greater than 60 days and that the BDNF delivered was bioactive. The microsphere size was amendable to injection via a 30 gauge needle, allowing minimally invasive delivery. CONCLUSIONS PLGA-PLL-PEG leads to greater loading and longer-term delivery of BDNF than PLGA or a blend of the polymers. We hypothesize that the introduction of an amphiphilic PLGA-based polymer increases the interaction of the BDNF with the polymer and leads to release that more closely correlates with the degradation of the polymer.
Collapse
Affiliation(s)
- James P Bertram
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
166
|
Dermatan sulfate as a stabilizer for protein stability in poly(lactide-co-glycolide) depot. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-009-0058-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
167
|
Kaye RS, Purewal TS, Alpar HO. Simultaneously manufactured nano-in-micro (SIMANIM) particles for dry-powder modified-release delivery of antibodies. J Pharm Sci 2009; 98:4055-68. [DOI: 10.1002/jps.21673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
168
|
Wang YC, Wu YT, Huang HY, Yang CS. Surfactant-free formulation of poly(lactic/glycolic) acid nanoparticles encapsulating functional polypeptide: a technical note. AAPS PharmSciTech 2009; 10:1263-7. [PMID: 19866361 DOI: 10.1208/s12249-009-9330-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 10/13/2009] [Indexed: 11/30/2022] Open
|
169
|
Bertram JP, Jay SM, Hynes SR, Robinson R, Criscione JM, Lavik EB. Functionalized poly(lactic-co-glycolic acid) enhances drug delivery and provides chemical moieties for surface engineering while preserving biocompatibility. Acta Biomater 2009; 5:2860-71. [PMID: 19433141 PMCID: PMC2749076 DOI: 10.1016/j.actbio.2009.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/17/2009] [Accepted: 04/17/2009] [Indexed: 11/26/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is one of the more widely used polymers for biomedical applications. Nonetheless, PLGA lacks chemical moieties that facilitate cellular interactions and surface chemistries. Furthermore, incorporation of hydrophilic molecules is often problematic. The integration of polymer functionalities would afford the opportunity to alter device characteristics, thereby enabling control over drug interactions, conjugations and cellular phenomena. In an effort to introduce amine functionalities and improve polymer versatility, we synthesized two block copolymers (PLGA-PLL 502H and PLGA-PLL 503H) composed of PLGA and poly(epsilon-carbobenzoxy-l-lysine) utilizing dicyclohexyl carbodiimide coupling. PLGA-PLL microspheres encapsulated approximately sixfold (502H) and threefold (503H) more vascular endothelial growth factor, and 41% (503H) more ciliary neurotrophic factor than their PLGA counterparts. While the amine functionalities were amenable to the delivery of large molecules and surface conjugations, they did not compromise polymer biocompatibility. With the versatile combination of properties, biocompatibility and ease of synthesis, these block copolymers have the potential for diverse utility in the fields of drug delivery and tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Erin B. Lavik
- Prof E.B. Lavik, Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06520 (USA), Phone: 203-432-4265, Fax: 203-432-0030, E-mail:
| |
Collapse
|
170
|
Salmaso S, Bersani S, Elvassore N, Bertucco A, Caliceti P. Biopharmaceutical characterisation of insulin and recombinant human growth hormone loaded lipid submicron particles produced by supercritical gas micro-atomisation. Int J Pharm 2009; 379:51-8. [DOI: 10.1016/j.ijpharm.2009.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|
171
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
172
|
Kafka AP, Rades T, McDowell A. Rapid and specific high-performance liquid chromatography for the in vitro quantification of d-Lys6-GnRH in a microemulsion-type formulation in the presence of peptide oxidation products. Biomed Chromatogr 2009; 24:132-9. [DOI: 10.1002/bmc.1261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
173
|
Zou W, Liu C, Chen Z, Zhang N. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA. NANOSCALE RESEARCH LETTERS 2009; 4:982-992. [PMID: 20596550 PMCID: PMC2893611 DOI: 10.1007/s11671-009-9345-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/06/2009] [Indexed: 05/21/2023]
Abstract
The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.
Collapse
Affiliation(s)
- Weiwei Zou
- School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, 250012, Ji-nan, China
| | - Chunxi Liu
- School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, 250012, Ji-nan, China
| | - Zhijin Chen
- School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, 250012, Ji-nan, China
| | - Na Zhang
- School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, 250012, Ji-nan, China
| |
Collapse
|
174
|
Malzert-Fréon A, Schönhammer K, Benoît JP, Boury F. Interactions between poly(ethylene glycol) and protein in dichloromethane/water emulsions. 2. Conditions required to obtain spontaneous emulsification allowing the formation of bioresorbable poly(D,L lactic acid) microparticles. Eur J Pharm Biopharm 2009; 73:66-73. [PMID: 19427379 DOI: 10.1016/j.ejpb.2009.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
From microscopic observations, it was established that an oil-in-water emulsion with droplets of a size in the micrometer range can spontaneously form at room temperature without additional external stirring as soon as a solvent that is only partly miscible to water-like dichloromethane (DCM) is put in contact with an aqueous mixture of polyethylene glycol (PEG) and a protein. Experimental results show that emulsification only occurs if the system simultaneously includes PEG with middle chain, an organic solvent partly miscible to water and for which PEG affinity is sufficiently high, and a protein. From adsorption kinetics, it appears that this spontaneous emulsification process is related to the rapid diffusion of DCM towards water through the formation of interfacial turbulences, once the accumulation of PEG close to the DCM/water interface occurs. The oil droplets formed would be then stabilized by adsorbed protein molecules. Since the presence of polylactic acid in the organic phase did not prevent the emulsion formation, we studied the feasibility of formulating microparticles using this polymer. From results, it appears that microcapsules with a polymeric shell, with a homogeneous size of about 50 microm and able to encapsulate a model hydrophobic drug, such as amiodarone, can be obtained by using this spontaneous emulsification method.
Collapse
Affiliation(s)
- Aurélie Malzert-Fréon
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA 4258, UFR des Sciences Pharmaceutiques, Université de Caen Basse-Normandie, Bd Becquerel, 14032 Caen, France.
| | | | | | | |
Collapse
|
175
|
Dawes GJS, Fratila-Apachitei LE, Mulia K, Apachitei I, Witkamp GJ, Duszczyk J. Size effect of PLGA spheres on drug loading efficiency and release profiles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1089-1094. [PMID: 19160026 DOI: 10.1007/s10856-008-3666-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 12/09/2008] [Indexed: 05/27/2023]
Abstract
Drug delivery systems (DDS) based on poly (lactide-co-glycolide) (PLGA) microspheres and nanospheres have been separately studied in previous works as a means of delivering bioactive compounds over an extended period of time. In the present study, two DDS having different sizes of the PLGA spheres were compared in morphology, drug (dexamethasone) loading efficiency and drug release kinetics in order to investigate their feasibility with regard to production of medical combination devices for orthopedic applications. The loaded PLGA spheres have been produced by the oil-in-water emulsion/solvent evaporation method following two different schemes. Their morphology was assessed by scanning electron microscopy and the drug release was monitored in phosphate buffer saline solution at 37 degrees C for 550 h using high performance liquid chromatography. The synthesis schemes used produced spheres with two different and reproducible size ranges (20 +/- 10 and 1.0 +/- 0.4 microm) having a smooth outer surface and regular shape. The drug loading efficiency of the 1.0 microm spheres was found to be 11% as compared to just 1% for the 20 microm spheres. Over the 550 h release period, the larger spheres (diameter 20 +/- 10 microm) released 90% of the encapsulated dexamethasone in an approximately linear fashion whilst the relatively small spheres (diameter 1.0 +/- 0.4 microm) released only 30% of the initially loaded dexamethasone, from which 20% within the first 25 h. The changes observed were mainly attributed to the difference in surface area between the two types of spheres as the surface texture of both systems was visibly similar. As the surface area per unit volume increases in the synthesis mixture, as is the case for the 1.0 microm spheres formulation, the amount of polymer-water interfaces increases allowing more dexamethasone to be encapsulated by the emerging polymer spheres. Similarly, during the release phase, as the surface area per unit volume increases, the rate of inclusion of water into the polymer increases, permitting faster diffusion of dexamethasone.
Collapse
Affiliation(s)
- G J S Dawes
- Department of Materials Science and Engineering, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
176
|
Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids Surf B Biointerfaces 2009; 70:248-53. [DOI: 10.1016/j.colsurfb.2008.12.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/18/2008] [Accepted: 12/20/2008] [Indexed: 11/22/2022]
|
177
|
Emami J, Hamishehkar H, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, Nokhodchi A. A Novel Approach to Prepare Insulin-Loaded Poly (Lactic-Co-Glycolic Acid) Microcapsules and the Protein Stability Study. J Pharm Sci 2009; 98:1712-31. [DOI: 10.1002/jps.21544] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
178
|
Park W, Na K. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly(lactide-co-glycolide) microsphere for stability and controlled release. Colloids Surf B Biointerfaces 2009; 72:193-200. [PMID: 19414243 DOI: 10.1016/j.colsurfb.2009.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
A polyelectrolyte complex between a therapeutic peptide and chargeable polymer was applied to prevent peptide denaturation in poly(lactide-co-glycolide) (PLGA) microspheres. Chondroitin sulfate A (CsA) was employed as a polymeric additive for the formation of an ionic complex with insulin (InS). The complex prepared at pH 3.0 evidenced a nano-size in the range of 100-400 nm with a mono distribution. The stability of InS in the complex in an organic/water (O/W) interface was verified via RP-HPLC. The insulin in the complex evidenced a retention time almost identical to native InS, whereas free insulin did not evidence such a retention time. On the basis of these studies, PLGA microspheres including a complex with various CsA/InS ratios were prepared via a double-emulsion method (PLGA/CsA MS). InS loading efficiency in the system is higher than that of the microspheres without CsA. The system evidenced a lower initial burst and, following the initial burst, continuous release kinetics for 30 days. Circular dichroism (CD) spectra demonstrated that the insulin in PLGA/CsA MS is more stable than the PLGA-only microspheres (PLGA/only MS) for 20 days. These results indicate that the complex system with CsA is useful for the long-term delivery of peptides with lower pI values.
Collapse
Affiliation(s)
- Wooram Park
- Department of Biotechnology, The Catholic University of Korea, 43-1 Yeokkok2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea
| | | |
Collapse
|
179
|
Sharma S, Mukkur T, Benson HA, Chen Y. Pharmaceutical Aspects of Intranasal Delivery of Vaccines Using Particulate Systems. J Pharm Sci 2009; 98:812-43. [DOI: 10.1002/jps.21493] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
180
|
Ribeiro-Costa R, Cunha MRD, Gongora-Rubio M, Michaluart-Júnior P, Ré M. Preparation of protein-loaded-PLGA microspheres by an emulsion/solvent evaporation process employing LTCC micromixers. POWDER TECHNOL 2009. [DOI: 10.1016/j.powtec.2008.04.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
181
|
van der Walle CF, Sharma G, Ravi Kumar MNV. Current approaches to stabilising and analysing proteins during microencapsulation in PLGA. Expert Opin Drug Deliv 2009; 6:177-86. [DOI: 10.1517/17425240802680169] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
182
|
Rastogi R, Anand S, Koul V. Evaluation of pharmacological efficacy of 'insulin-surfoplex' encapsulated polymer vesicles. Int J Pharm 2009; 373:107-15. [PMID: 19429295 DOI: 10.1016/j.ijpharm.2009.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/23/2009] [Accepted: 01/24/2009] [Indexed: 11/18/2022]
Abstract
The present study has been designed to study whether formation of ion-pair complex or 'surfoplex' can enhance the pharmacological efficacy of protein-loaded PCL-PEG-based polymerosomes. Insulin was selected as the model protein and was complexed with sodium deoxycholate, a naturally occurring bile salt. The surfoplexes were characterized for extent and site of complexation, stability, mass and partition coefficient. The lipophilicity of insulin was enhanced 5-fold upon complexation resulting in an increase in entrapment efficiency by 10-50% for all formulations compared to free insulin. The release of insulin from the systems was also modulated with reduction in burst release by 30%. The surfoplex was found to be therapeutically active for 8h duration (C(max) serum insulin=64.15+/-13.28 mIU/mL) in diabetic rat model. However, pharmacological efficacy of the complex-loaded nanoparticles (Nps) did not show significant enhancement with respect to insulin-loaded systems. The study therefore suggests that while ion-pair complexes may improve the in vitro kinetics of protein-loaded carriers, their therapeutic potential is dependent on the intensity of interactions between the peptide chains and polymer matrix.
Collapse
Affiliation(s)
- Rachna Rastogi
- II/192, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | |
Collapse
|
183
|
Schoubben A, Blasi P, Giovagnoli S, Perioli L, Rossi C, Ricci M. Novel composite microparticles for protein stabilization and delivery. Eur J Pharm Sci 2009; 36:226-34. [DOI: 10.1016/j.ejps.2008.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/16/2008] [Accepted: 09/21/2008] [Indexed: 11/24/2022]
|
184
|
|
185
|
Wu F, Jin T. Polymer-based sustained-release dosage forms for protein drugs, challenges, and recent advances. AAPS PharmSciTech 2008; 9:1218-29. [PMID: 19085110 DOI: 10.1208/s12249-008-9148-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 09/04/2008] [Indexed: 11/30/2022] Open
Abstract
While the concept of using polymer-based sustained-release delivery systems to maintain therapeutic concentration of protein drugs for extended periods of time has been well accepted for decades, there has not been a single product in this category successfully commercialized to date despite clinical and market demands. To achieve successful systems, technical difficulties ranging from protein denaturing during formulation process and the course of prolonged in vivo release, burst release, and incomplete release, to low encapsulation efficiency and formulation complexity have to be simultaneously resolved. Based on this updated understanding, formulation strategies attempting to address these aspects comprehensively were reported in recent years. This review article (with 134 citations) aims to summarize recent studies addressing the issues above, especially those targeting practical industrial solutions. Formulation strategies representative of three areas, microsphere technology using degradable hydrophobic polymers, microspheres made of water soluble polymers, and hydrophilic in vivo gelling systems will be selected and introduced. To better understand the observations and conclusions from different studies for different systems and proteins, physicochemical basis of the technical challenges and the pros and cons of the corresponding formulation methods will be discussed.
Collapse
|
186
|
Silk fibroin spheres as a platform for controlled drug delivery. J Control Release 2008; 132:26-34. [DOI: 10.1016/j.jconrel.2008.08.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/22/2008] [Accepted: 08/12/2008] [Indexed: 11/21/2022]
|
187
|
Gamma irradiated micro system for long-term parenteral contraception: An alternative to synthetic polymers. Eur J Pharm Sci 2008; 35:307-17. [DOI: 10.1016/j.ejps.2008.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 07/18/2008] [Accepted: 07/30/2008] [Indexed: 11/24/2022]
|
188
|
Fredenberg S, Reslow M, Axelsson A. Effect of Divalent Cations on Pore Formation and Degradation of Poly(D,L-lactide-co-glycolide). Pharm Dev Technol 2008; 12:563-72. [DOI: 10.1080/10837450701560588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
189
|
Mohl S, Winter G. Continuous Release of rh-Interferon α-2a from Triglyceride Implants: Storage Stability of the Dosage Forms. Pharm Dev Technol 2008; 11:103-10. [PMID: 16544914 DOI: 10.1080/10837450500464230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tristearin implants containing polyethylene glycol 6000 (PEG) were shown to be a promising platform for the delivery of pharmaceutical proteins for periods up to 1 month. The objective of this study was to investigate the storage stability of the lipid devices, as long-term storage stability ensuring acceptable shelf-life can be considered the most important parameter for commercially viable sustained-release dosage forms. Rh-Interferon alpha-2a was stabilized by a lyophilization process using either trehalose or hydroxypropyl-beta-cyclodextrin as stabilizer. Tristearin implants containing the lyophilized protein material and 10% PEG were stored over 3 months and 6 months, both at 4 degrees C and room temperature, before release studies were initiated. Data from stored implants demonstrated trehalose not to be effective to provide full protein stabilization during long-term storage of the lipid matrices, this was apparent from both the reduced total drug level liberated and the release of aggregated specimen compared to the situation immediately after implant manufacture. In contrast, hydroxypropyl-beta-cyclodextrin (HP-beta-CD) exhibited a high potential for protein stabilization within the matrices during both storage and release. Generally, 95% of the incorporated protein was delivered continuously within 1 month in monomeric form, even after 6 months' storage of the implants at room temperature.
Collapse
Affiliation(s)
- Silke Mohl
- Ludwig-Maximilians-University, Munich, Germany.
| | | |
Collapse
|
190
|
Zheng W, Li J, Zheng Y. Preparation of poly(l-lactide) and its application in bioelectrochemistry. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2008.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
191
|
Nkansah MK, Tzeng SY, Holdt AM, Lavik EB. Poly(lactic-co-glycolic acid) nanospheres and microspheres for short- and long-term delivery of bioactive ciliary neurotrophic factor. Biotechnol Bioeng 2008; 100:1010-9. [PMID: 18431801 DOI: 10.1002/bit.21822] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ciliary neurotrophic factor (CNTF) has been shown to be neuroprotective in the central nervous system (CNS). However, systemic administration and bolus injections have shown significant side effects and limited efficacy. Sustained, local delivery may lead to effective neuroprotection and avoid or limit adverse side effects, but sustained CNTF delivery has proven difficult to achieve and control. For controlled, sustained delivery, we investigated several processing variables in making poly(DL-lactic-co-glycolic acid) (PLGA) nano- and microspheres to optimize CNTF encapsulation and release. Nano- and microspheres were 314.9 +/- 24.9 nm and 11.69 +/- 8.16 microm in diameter, respectively. CNTF delivery from nanospheres was sustained over 14 days, and delivery from microspheres continued over more than 70 days. To assess protein bioactivity after encapsulation, neural stem cells (NSCs) were treated with CNTF released from nanospheres and compared to those treated with unencapsulated CNTF as a control. NSCs treated with CNTF expressed markers specific to mature cells, notably astrocytes; some increase in oligodendrocytic and neuronal marker expression was also observed. Significantly, cells treated with CNTF released by nanospheres exhibited a similar degree of differentiation when compared to those treated with control CNTF of equivalent concentration, showing that the process of protein encapsulation did not reduce its potency.
Collapse
Affiliation(s)
- Michael K Nkansah
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|
192
|
Johnson PJ, Skornia SL, Stabenfeldt SE, Willits RK. Maintaining bioactivity of NGF for controlled release from PLGA using PEG. J Biomed Mater Res A 2008; 86:420-7. [DOI: 10.1002/jbm.a.31635] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
193
|
Yoshii H, Buche F, Takeuchi N, Terrol C, Ohgawara M, Furuta T. Effects of protein on retention of ADH enzyme activity encapsulated in trehalose matrices by spray drying. J FOOD ENG 2008. [DOI: 10.1016/j.jfoodeng.2007.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
194
|
Van Tomme SR, van Nostrum CF, Dijkstra M, De Smedt SC, Hennink WE. Effect of particle size and charge on the network properties of microsphere-based hydrogels. Eur J Pharm Biopharm 2008; 70:522-30. [PMID: 18582574 DOI: 10.1016/j.ejpb.2008.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 05/19/2008] [Accepted: 05/28/2008] [Indexed: 11/20/2022]
Abstract
This work describes the tailorability of the network properties of self-assembling hydrogels, based on ionic crosslinking between dextran microspheres. Copolymerization of hydroxyethyl methacrylate-derivatized dextran (dex-HEMA), emulsified in an aqueous poly(ethylene glycol) (PEG) solution, with methacrylic acid (MAA) or dimethylaminoethyl methacrylate (DMAEMA) resulted in negatively or positively charged microspheres, respectively, at physiological pH. The monomer/HEMA ratio ranged between 6 and 57, resulting in microspheres with zeta (zeta)-potentials from -6 to -34mV and +3 to +23mV, for the monomers MAA and DMAEMA, respectively. By altering the emulsification procedure, microsphere batches with various sizes and size distributions were obtained. The aim of the research was to assess the effect of particle size (distribution) and charge on the network properties of the macroscopic hydrogels. The ability to tailor the mechanical properties such as strength and elasticity increases the potential of the hydrogels to be used in a variety of pharmaceutical applications. Additionally, the injectability of these self-assembling hydrogels was investigated. Injectability is an important feature of drug delivery systems, since it allows avoiding surgery. Rheological analysis showed that an increasing surface charge of the microspheres led to stronger hydrogels. Relatively small microspheres (7microm) with a narrow size distribution (99% smaller than 14microm) gave rise to stronger hydrogels when compared to larger microspheres of 20microm with a broad distribution (99% smaller than 50microm). When small microspheres were combined with large microspheres of opposite charge, it was found that the strongest gels were obtained with 75% small and 25% large microspheres, instead of equal amounts (50/50) of positively and negatively charged microspheres. Computer modeling confirmed these findings and showed that the most favorable composition, related to the lowest potential energy, comprised of 75% small microspheres. Taking both charge and size effects into account, the storage moduli (G') of the almost fully elastic hydrogels could be tailored from 400 to 30,000Pa. Injectability tests showed that hydrogels (G' up to 4000Pa) composed of equal amounts of oppositely charged microspheres (-7 and +6mV, average particle size 7microm) could be injected through 25G needles using a static load of 15N, an ISO accepted value. In conclusion, a variety of options to control the network properties of macroscopic hydrogels are provided, related to the charge and particle size of the composing dextran microspheres. Furthermore, it is shown that the hydrogels are injectable, making them attractive candidates for a diversity of pharmaceutical applications.
Collapse
Affiliation(s)
- Sophie R Van Tomme
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
195
|
|
196
|
Kreye F, Siepmann F, Siepmann J. Lipid implants as drug delivery systems. Expert Opin Drug Deliv 2008; 5:291-307. [DOI: 10.1517/17425247.5.3.291] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
197
|
Giteau A, Venier-Julienne M, Aubert-Pouëssel A, Benoit J. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm 2008; 350:14-26. [DOI: 10.1016/j.ijpharm.2007.11.012] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
|
198
|
Yang L, Shi C, Chang Y, Li H, Xiao P, Yang W, Zeng Q. Entrapment of recombinant staphylokinase by liposomes: formulations, preparation, characterization and behavior in vivo. J Drug Deliv Sci Technol 2008. [DOI: 10.1016/s1773-2247(08)50048-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
199
|
Chognot D, Six JL, Léonard M, Dellacherie E, Faivre B, Bonneaux F, Vigneron C. Synthesis and In vivo Studies of Protein C-loaded Nanoparticles with PEO Modified Surfaces. J BIOACT COMPAT POL 2008. [DOI: 10.1177/0883911507085280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein C-loaded nanoparticles coated with monomethoxypoly (ethylene oxide) (MPEO) were prepared by double emulsion/solvent evaporation using water-soluble biocompatible copolymers of MPEO and polylactide, as surfactants of the secondary emulsion. The nanoparticle preparation was optimized to obtain the best yield of encapsulated protein C and provide the greatest retention of its biological activity. The nanoparticles were characterized in terms of size, zeta potential, and thickness of the MPEO external layer. Protein C-loaded nanoparticles were injected into the bloodstream of guinea pigs and the protein concentration in plasma is measured as a function of time. After a rapid release corresponding to 20% of the injected protein, the protein plasma concentration progressively decreased and reached a value close to zero after 5 h. Consequently, the in vivo fate of the fluorescent nanoparticles coated with or without MPEO is studied. The uncoated nanoparticles were rapidly captured by the circulating granulocytes while the coated ones were not. The histological analysis of the spleen, 1 hour after injection, showed that the MPEO-coated particles were retained in this organ, while the uncoated ones were not captured.
Collapse
Affiliation(s)
- David Chognot
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568 ENSIC, BP 20451, 54001 Nancy Cedex, France
| | - Jean-Luc Six
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568 ENSIC, BP 20451, 54001 Nancy Cedex, France
| | - Michèle Léonard
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568 ENSIC, BP 20451, 54001 Nancy Cedex, France
| | - Edith Dellacherie
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568 ENSIC, BP 20451, 54001 Nancy Cedex, France, edith.dellacherie@ ensic.inpl-nancy.fr
| | - Béatrice Faivre
- Mise en forme et évaluation de matériaux d'intérêt thérapeutique et biologique, EA 3452, Faculté de Pharmacie, BP 403, 54001 NANCY Cedex, France
| | - François Bonneaux
- Mise en forme et évaluation de matériaux d'intérêt thérapeutique et biologique, EA 3452, Faculté de Pharmacie, BP 403, 54001 NANCY Cedex, France
| | - Claude Vigneron
- Mise en forme et évaluation de matériaux d'intérêt thérapeutique et biologique, EA 3452, Faculté de Pharmacie, BP 403, 54001 NANCY Cedex, France
| |
Collapse
|
200
|
Gomes AJ, Lunardi CN, Lunardi LO, Pitol DL, Machado AEH. Identification of psoralen loaded PLGA microspheres in rat skin by light microscopy. Micron 2008; 39:40-4. [PMID: 17689966 DOI: 10.1016/j.micron.2007.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 11/19/2022]
Abstract
Drug delivery systems involving the use of polymers are widely studied and discovery of biocompatible polymers has become the focus of research in this area. Psoralen loaded poly(DL-lactide-co-glycolide) (PLGA) microspheres to be used in PUVA therapy (psoralen and UVA irradiation (ultraviolet A, 320-400 nm) of psoriasis were identified in paraffin sections by histological analysis. The psoralen loaded PLGA microspheres were prepared using the solvent evaporation technique. They were spherical and possessed an external smooth surface as observed by scanning electron microscopy (SEM) analysis. This study describes a modification in the routine preparation of microsphere samples for examination by light microscopy. The changes involved fixative agents and/or stains allowing the identification of microspheres containing a non-fluorescent material. The preservation and identification of microspheres in tissues for histological processing in paraffin was greatly improved by these modifications as proven by our results.
Collapse
Affiliation(s)
- Anderson J Gomes
- Laboratório de Fotoquímica, Instituto de Química, Universidade Federal de Uberlândia, PO Box 593, CEP 38400-089 Uberlândia, MG, Brazil.
| | | | | | | | | |
Collapse
|