151
|
Diagnostic And Therapeutic Challenges. Retina 2011. [DOI: 10.1097/iae.0b013e3181d7a740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
152
|
Lee SH, Kim JW. Effect of Erythropoietin on the Production of Nitric Oxide in Trabecular Meshwork Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2011. [DOI: 10.3341/jkos.2011.52.12.1514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Seung Hee Lee
- Department of Ophthalmology, Catholic University of Daegu College of Medicine, Daegu, Korea
| | - Jae Woo Kim
- Department of Ophthalmology, Catholic University of Daegu College of Medicine, Daegu, Korea
| |
Collapse
|
153
|
Min X, Zhou Q, Dong X, Wang Y, Xie L. Expression profile and regulation of telomerase reverse transcriptase on oxygen-induced retinal neovascularization. Curr Eye Res 2010; 36:135-42. [PMID: 21158588 DOI: 10.3109/02713683.2010.525679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Telomerase is critical for the control of replicative capacity, which plays a major role in proliferative retinal neovascularization. In this study, we investigated the expression profiles of telomerase reverse transcriptase (Tert) in a mouse model of oxygen-induced retinal neovascularization and explored the possibility of inhibiting a retinal Tert expression with small interfering RNAs (SiRNA) as a novel potential approach to suppress proliferative retinopathy. METHODS The mouse oxygen-induced retinal neovascularization model was used to examine expression profiles in different developmental phases and to assess the anti-angiogenic activity of Tert-SiRNA. Recombinant SiRNA plasmids were injected intravitreously into mice with or without pathological retinal neovascularization. Fluorescein angiography, vessel counting, and the expression levels of Tert mRNA and protein were used to evaluate the anti-angiogenic effects. RESULTS Retinal Tert expression, as assessed by both mRNA and protein levels, was significantly up-regulated during the proliferative phase of oxygen-induced retinal neovascularization. Intravitreous injection of Tert-SiRNA effectively suppressed the expression of Tert mRNA and proteins and inhibited retinal neovascularization, as confirmed by retinal flat angiography and vessel counting. CONCLUSIONS The expression of Tert was up-regulated during the development of oxygen-induced retinal neovascularization. Inhibiting Tert expression with SiRNA is effective in suppressing retinal neovascularization, suggesting that telomerase may be a potential therapeutic target for treating proliferative retinopathy.
Collapse
Affiliation(s)
- Xiaojie Min
- State Key Lab Cultivation Base, Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Qingdao, China
| | | | | | | | | |
Collapse
|
154
|
Wong VHY, Bui BV, Vingrys AJ. Clinical and experimental links between diabetes and glaucoma. Clin Exp Optom 2010; 94:4-23. [PMID: 21091536 DOI: 10.1111/j.1444-0938.2010.00546.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glaucoma is a leading cause of blindness. It is a multifactorial condition, the risk factors for which are increasingly well defined from large-scale epidemiological studies. One risk factor that remains controversial is the presence of diabetes. It has been proposed that diabetic eyes are at greater risk of injury from external stressors, such as elevated intraocular pressure. Alternatively, diabetes may cause ganglion cell loss, which becomes additive to a glaucomatous ganglion cell injury. Several clinical trials have considered whether a link exists between diabetes and glaucoma. In this review, we outline these studies and consider the causes for their lack of concordant findings. We also review the biochemical and cellular similarities between the two conditions. Moreover, we review the available literature that attempts to answer the question of whether the presence of diabetes increases the risk of developing glaucoma. At present, laboratory studies provide robust evidence for an association between diabetes and glaucoma.
Collapse
Affiliation(s)
- Vickie H Y Wong
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | | |
Collapse
|
155
|
Anand-Apte B, Ebrahem Q, Cutler A, Farage E, Sugimoto M, Hollyfield J, Folkman J. Betacellulin induces increased retinal vascular permeability in mice. PLoS One 2010; 5:e13444. [PMID: 20976146 PMCID: PMC2956654 DOI: 10.1371/journal.pone.0013444] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/11/2010] [Indexed: 12/27/2022] Open
Abstract
Background Diabetic maculopathy, the leading cause of vision loss in patients with type 2 diabetes, is characterized by hyper-permeability of retinal blood vessels with subsequent formation of macular edema and hard exudates. The degree of hyperglycemia and duration of diabetes have been suggested to be good predictors of retinal complications. Intervention studies have determined that while intensive treatment of diabetes reduced the development of proliferative diabetic retinopathy it was associated with a two to three-fold increased risk of severe hypoglycemia. Thus we hypothesized the need to identify downstream glycemic targets, which induce retinal vascular permeability that could be targeted therapeutically without the additional risks associated with intensive treatment of the hyperglycemia. Betacellulin is a 32 kD member of the epidermal growth factor family with mitogenic properties for the retinal pigment epithelial cells. This led us to hypothesize a role for betacellulin in the retinal vascular complications associated with diabetes. Methods and Findings In this study, using a mouse model of diabetes, we demonstrate that diabetic mice have accentuated retinal vascular permeability with a concomitant increased expression of a cleaved soluble form of betacellulin (s-Btc) in the retina. Intravitreal injection of soluble betacellulin induced retinal vascular permeability in normoglycemic and hyperglycemic mice. Western blot analysis of retinas from patients with diabetic retinopathy showed an increase in the active soluble form of betacellulin. In addition, an increase in the levels of A disintegrin and metalloproteinase (ADAM)-10 which plays a role in the cleavage of betacellulin was seen in the retinas of diabetic mice and humans. Conclusions These results suggest that excessive amounts of betacellulin in the retina may contribute to the pathogenesis of diabetic macular edema.
Collapse
Affiliation(s)
- Bela Anand-Apte
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America.
| | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
The glycemic index (GI) indicates how fast blood glucose is raised after consuming a carbohydrate-containing food. Human metabolic studies indicate that GI is related to patho-physiological responses after meals. Compared with a low-GI meal, a high-GI meal is characterized with hyperglycemia during the early postprandial stage (0-2h) and a compensatory hyperlipidemia associated with counter-regulatory hormone responses during late postprandial stage (4-6h). Over the past three decades, several human health disorders have been related to GI. The strongest relationship suggests that consuming low-GI foods prevents diabetic complications. Diabetic retinopathy (DR) is a complication of diabetes. In this aspect, GI appears to be useful as a practical guideline to help diabetic people choose foods. Abundant epidemiological evidence also indicates positive associations between GI and risk for type 2 diabetes, cardiovascular disease, and more recently, age-related macular degeneration (AMD) in people without diabetes. Although data from randomized controlled intervention trials are scanty, these observations are strongly supported by evolving molecular mechanisms which explain the pathogenesis of hyperglycemia. This wide range of evidence implies that dietary hyperglycemia is etiologically related to human aging and diseases, including DR and AMD. In this context, these diseases can be considered as metabolic retinal diseases. Molecular theories that explain hyperglycemic pathogenesis involve a mitochondria-associated pathway and four glycolysis-associated pathways, including advanced glycation end products formation, protein kinase C activation, polyol pathway, and hexosamine pathway. While the four glycolysis-associated pathways appear to be universal for both normoxic and hypoxic conditions, the mitochondria-associated mechanism appears to be most relevant to the hyperglycemic, normoxic pathogenesis. For diseases that affect tissues with highly active metabolism and that frequently face challenge from low oxygen tension, such as retina in which metabolism is determined by both glucose and oxygen homeostases, these theories appear to be insufficient. Several lines of evidence indicate that the retina is particularly vulnerable when hypoxia coincides with hyperglycemia. We propose a novel hyperglycemic, hypoxia-inducible factor (HIF) pathway, to complement the current theories regarding hyperglycemic pathogenesis. HIF is a transcription complex that responds to decrease oxygen in the cellular environment. In addition to playing a significant role in the regulation of glucose metabolism, under hyperglycemia HIF has been shown to increase the expression of HIF-inducible genes, such as vascular endothelial growth factor (VEGF) leading to angiogenesis. To this extent, we suggest that HIF can also be described as a hyperglycemia-inducible factor. In summary, while management of dietary GI appears to be an effective intervention for the prevention of metabolic diseases, specifically AMD and DR, more interventional data is needed to evaluate the efficacy of GI management. There is an urgent need to develop reliable biomarkers of exposure, surrogate endpoints, as well as susceptibility for GI. These insights would also be helpful in deciphering the detailed hyperglycemia-related biochemical mechanisms for the development of new therapeutic agents.
Collapse
|
157
|
Weidemann A, Krohne TU, Aguilar E, Kurihara T, Takeda N, Dorrell MI, Simon MC, Haase VH, Friedlander M, Johnson RS. Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Glia 2010; 58:1177-85. [PMID: 20544853 DOI: 10.1002/glia.20997] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular/parenchymal crosstalk is increasingly recognized as important in the development and maintenance of healthy vascularized tissues. The retina is an excellent model in which to study the role of cell type-specific contributions to the process of blood vessel and neuronal growth. During retinal vascular development, glial cells such as astrocytes provide the template over which endothelial cells migrate to form the retinal vascular network, and hypoxia-regulated vascular endothelial growth factor (VEGF) has been demonstrated to play a critical role in this process as well as pathological neovascularization. To investigate the nature of cell-specific contributions to this process, we deleted VEGF and its upstream regulators, the hypoxia-inducible transcription factors HIF-1 alpha and HIF-2 alpha, and the negative regulator of HIF alpha, von Hippel-Lindau protein (VHL), in astrocytes. We found that loss of hypoxic response and VEGF production in astrocytes does not impair normal development of retinal vasculature, indicating that astrocyte-derived VEGF is not essential for this process. In contrast, using a model of oxygen-induced ischemic retinopathy, we show that astrocyte-derived VEGF is essential for hypoxia-induced neovascularization. Thus, we demonstrate that astrocytes in the retina have highly divergent roles during developmental, physiological angiogenesis, and ischemia-driven, pathological neovascularization.
Collapse
Affiliation(s)
- Alexander Weidemann
- Division of Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Borghi V, Bastia E, Guzzetta M, Chiroli V, Toris CB, Batugo MR, Carreiro ST, Chong WKM, Gale DC, Kucera DJ, Jia L, Prasanna G, Ongini E, Krauss AHP, Impagnatiello F. A novel nitric oxide releasing prostaglandin analog, NCX 125, reduces intraocular pressure in rabbit, dog, and primate models of glaucoma. J Ocul Pharmacol Ther 2010; 26:125-32. [PMID: 20415621 DOI: 10.1089/jop.2009.0120] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Nitric oxide (NO) is involved in a variety of physiological processes including ocular aqueous humor dynamics by targeting mechanisms that are complementary to those of prostaglandins. Here, we have characterized a newly synthesized compound, NCX 125, comprising latanoprost acid and NO-donating moieties. METHODS NCX 125 was synthesized and tested in vitro for its ability to release functionally active NO and then compared with core latanoprost for its intraocular pressure (IOP)-lowering effects in rabbit, dog, and nonhuman primate models of glaucoma. RESULTS NCX 125 elicited cGMP formation (EC(50) = 3.8 + or - 1.0 microM) in PC12 cells and exerted NO-dependent iNOS inhibition (IC(50) = 55 + or - 11 microM) in RAW 264.7 macrophages. NCX 125 lowered IOP to a greater extent compared with equimolar latanoprost in: (a) rabbit model of transient ocular hypertension (0.030% latanoprost, not effective; 0.039% NCX 125, Delta(max) = -10.6 + or - 2.3 mm Hg), (b) ocular hypertensive glaucomatous dogs (0.030% latanoprost, Delta(max)= -6.7 + or - 1.2 mm Hg; 0.039% NCX 125, Delta(max) = -9.1 + or - 3.1 mm Hg), and (c) laser-induced ocular hypertensive non-human primates (0.10% latanoprost, Delta(max) = -11.9 + or - 3.7 mm Hg, 0.13% NCX 125, Delta(max) = -16.7 + or - 2.2 mm Hg). In pharmacokinetic studies, NCX 125 and latanoprost resulted in similar latanoprost-free acid exposure in anterior segment ocular tissues. CONCLUSIONS NCX 125, a compound targeting 2 different mechanisms, is endowed with potent ocular hypotensive effects. This may lead to potential new perspectives in the treatment of patients at risk of glaucoma.
Collapse
|
159
|
Complement-mediated inhibition of neovascularization reveals a point of convergence between innate immunity and angiogenesis. Blood 2010; 116:4395-403. [PMID: 20625009 DOI: 10.1182/blood-2010-01-261503] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Beyond its role in immunity, complement mediates a wide range of functions in the context of morphogenetic or tissue remodeling processes. Angiogenesis is crucial during tissue remodeling in multiple pathologies; however, the knowledge about the regulation of neovascularization by the complement components is scarce. Here we studied the involvement of complement in pathological angiogenesis. Strikingly, we found that mice deficient in the central complement component C3 displayed increased neovascularization in the model of retinopathy of prematurity (ROP) and in the in vivo Matrigel plug assay. In addition, antibody-mediated blockade of C5, treatment with C5aR antagonist, or C5aR deficiency in mice resulted in enhanced pathological retina angiogenesis. While complement did not directly affect angiogenesis-related endothelial cell functions, we found that macrophages mediated the antiangiogenic activity of complement. In particular, C5a-stimulated macrophages were polarized toward an angiogenesis-inhibitory phenotype, including the up-regulated secretion of the antiangiogenic soluble vascular endothelial growth factor receptor-1. Consistently, macrophage depletion in vivo reversed the increased neovascularization associated with C3- or C5aR deficiency. Taken together, complement and in particular the C5a-C5aR axes are potent inhibitors of angiogenesis.
Collapse
|
160
|
Håkansson G, Gesslein B, Gustafsson L, Englund-Johansson U, Malmsjö M. Hypoxia-inducible factor and vascular endothelial growth factor in the neuroretina and retinal blood vessels after retinal ischemia. J Ocul Biol Dis Infor 2010; 3:20-9. [PMID: 21139705 DOI: 10.1007/s12177-010-9050-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 05/05/2010] [Indexed: 10/19/2022] Open
Abstract
Retinal ischemia arises from circulatory failure. As the retinal blood vessels are key organs in circulatory failure, our aim was to study the retinal vasculature separately from the neuroretina to elucidate the role of hypoxia-inducible factor (HIF) 1α and 1β and vascular endothelial growth factor (VEGF) in retinal ischemia. Retinal ischemia was induced in porcine eyes by applying an intraocular pressure, followed by 12 h of reperfusion. HIF-1α mRNA expression was not affected by ischemia, while immunofluorescence staining was higher after ischemia in the neuroretina. HIF-1β immunoreactivity and mRNA expression were unaffected. VEGF protein levels in the vitreous humor and VEGF staining in the neuroretina were more pronounced in eyes subjected to ischemia than in the sham eyes. VEGF may be activated downstream of HIF-1 and is known to stimulate retinal neovascularization, which causes sight-threatening complications. These results emphasize the need for pharmacological treatment to block the HIF and VEGF signaling pathways in retinal ischemia.
Collapse
|
161
|
Tan K, Lessieur E, Cutler A, Nerone P, Vasanji A, Asosingh K, Erzurum S, Anand-Apte B. Impaired function of circulating CD34(+) CD45(-) cells in patients with proliferative diabetic retinopathy. Exp Eye Res 2010; 91:229-37. [PMID: 20493838 DOI: 10.1016/j.exer.2010.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 02/03/2023]
Abstract
Proliferative diabetic retinopathy is a consequence of retinal ischemia due to capillary occlusion resulting from damage to the retinal microvascular endothelium. Recent evidence suggests that high levels of bone-marrow derived circulating endothelial progenitor cells (EPCs) contribute to the pathological neovascularization of ischemic tissues and are a critical risk factor for the development of these complications. In the absence of a consensus definition of a circulating EPC and its surface markers in humans we evaluated the functional properties of CD34(+) CD45(-) endothelial colony forming cells (ECFCs) in patients with proliferative diabetic retinopathy (PDR). Higher levels of circulating CD34(+) CD45(-) cells were observed in patients with PDR compared to controls. However, ECFCs from patients with PDR were impaired in their ability to migrate towards SDF-1 and human serum, incorporate into and form vascular tubes with human retinal endothelial cells. The results from these pilot studies suggest that ECFCs from patients with PDR are mobilized into the circulation but may be unable to migrate and repair damaged capillary endothelium. This suggests that ECFCs may be a potential therapeutic target in the prevention and treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Kevin Tan
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Zayed MA, Uppal A, Hartnett ME. New-onset maternal gestational hypertension and risk of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2010; 51:4983-8. [PMID: 20463319 DOI: 10.1167/iovs.10-5283] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate associations between conditions of maternal new-onset gestational hypertension (mHTN) and the features imparting risk of severe retinopathy of prematurity (ROP) in preterm infants. METHODS Hospital databases and charts of all preterm inborn infants at the University of North Carolina from 1996 to 2007 were retrospectively reviewed. The presence or absence of mHTN (e.g., pre-eclampsia) and infant factors (birthweight, gestational age, erythropoietin use, and zone and stage of ROP) were analyzed for independence of association. RESULTS Of the 5143 infants, 323 had ROP and 76 had mothers with mHTN. Infants with ROP were more likely to have mothers with mHTN and to be younger and smaller at birth. At initial examination, more infants of mothers with mHTN had vascularization into the lower zones than did infants of mothers without mHTN (P < 0.001). However, at the examination in which the most severe ROP was present, there was no association between mHTN and ROP stage (P = 0.2342). Analysis of stage and zone together showed that infants born to mothers with mHTN were more likely to have ROP at initial examination, after adjustment for gestational age, but not for birth weight. The use of erythropoietin was not associated with ROP zone or stage, even after adjustment for maternal condition, infant birth weight, or gestational age. CONCLUSIONS Although larger avascular areas or higher severity scores were associated with mHTN after adjustment for gestational age at initial examination, no associations were found between mHTN and ROP severity score at the examination when ROP was most severe. There were no associations between ROP severity and treatment with erythropoietin.
Collapse
Affiliation(s)
- Mohamed A Zayed
- Department of Ophthalmology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
163
|
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.
Collapse
Affiliation(s)
- Yureeda Qazi
- Department of Ophthalmology, John Moran Eye Center, University of Utah, Salt Lake City, UT-84132, USA
| | | | | |
Collapse
|
164
|
Mokbel TH, Ghanem AA, Kishk H, Arafa LF, El-Baiomy AA. Erythropoietin and soluble CD44 levels in patients with primary open-angle glaucoma. Clin Exp Ophthalmol 2010; 38:560-5. [DOI: 10.1111/j.1442-9071.2010.02318.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
165
|
van Rooijen E, Voest EE, Logister I, Bussmann J, Korving J, van Eeden FJ, Giles RH, Schulte-Merker S. von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Dis Model Mech 2010; 3:343-53. [DOI: 10.1242/dmm.004036] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Biallelic inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene predisposes human patients to the development of highly vascularized neoplasms in multiple organ systems. We show that zebrafish vhl mutants display a marked increase in blood vessel formation throughout the embryo, starting at 2 days post-fertilization. The most severe neovascularization is observed in distinct areas that overlap with high vegfa mRNA expression, including the vhl mutant brain and eye. Real-time quantitative PCR revealed increased expression of the duplicated VEGFA orthologs vegfaa and vegfab, and of vegfb and its receptors flt1, kdr and kdr-like, indicating increased vascular endothelial growth factor (Vegf) signaling in vhl mutants. Similar to VHL-associated retinal neoplasms, diabetic retinopathy and age-related macular degeneration, we show, by tetramethyl rhodamine-dextran angiography, that vascular abnormalities in the vhl−/− retina lead to vascular leakage, severe macular edema and retinal detachment. Significantly, vessels in the brain and eye express cxcr4a, a marker gene expressed by tumor and vascular cells in VHL-associated hemangioblastomas and renal cell carcinomas. VEGF receptor (VEGFR) tyrosine kinase inhibition (through exposure to sunitinib and 676475) blocked vhl−/−-induced angiogenesis in all affected tissues, demonstrating that Vegfaa, Vegfab and Vegfb are key effectors of the vhl−/− angiogenic phenotype through Flt1, Kdr and Kdr-like signaling. Since we show that the vhl−/− angiogenic phenotype shares distinct characteristics with VHL-associated vascular neoplasms, zebrafish vhl mutants provide a valuable in vivo vertebrate model to elucidate underlying mechanisms contributing to the development of these lesions. Furthermore, vhl mutant zebrafish embryos carrying blood vessel-specific transgenes represent a unique and clinically relevant model for tissue-specific, hypoxia-induced pathological angiogenesis and vascular retinopathies. Importantly, they will allow for a cost-effective, non-invasive and efficient way to screen for novel pharmacological agents and combinatorial treatments.
Collapse
Affiliation(s)
- Ellen van Rooijen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Emile E. Voest
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Ive Logister
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Jeroen Bussmann
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Fredericus J. van Eeden
- Deptartment of Biomedical Science, Sheffield University, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Rachel H. Giles
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
166
|
Nagel S, Talbot NP, Mecinović J, Smith TG, Buchan AM, Schofield CJ. Therapeutic manipulation of the HIF hydroxylases. Antioxid Redox Signal 2010; 12:481-501. [PMID: 19754349 DOI: 10.1089/ars.2009.2711] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypoxia-inducible factor (HIF) family of transcription factors is responsible for coordinating the cellular response to low oxygen levels in animals. By regulating the expression of a large array of target genes during hypoxia, these proteins also direct adaptive changes in the hematopoietic, cardiovascular, and respiratory systems. They also play roles in pathological processes, including tumorogenesis. In recent years, several oxygenases have been identified as key molecular oxygen sensors within the HIF system. The HIF hydroxylases regulate the stability and transcriptional activity of the HIF-alpha subunit by catalyzing hydroxylation of specific proline and asparaginyl residues, respectively. They require oxygen and 2-oxoglutarate (2OG) as co-substrates, and depend upon non-heme ferrous iron (Fe(II)) as a cofactor. This article summarizes current understanding of the biochemistry of the HIF hydroxylases, identifies targets for their pharmacological manipulation, and discusses their potential in the therapeutic manipulation of the HIF system.
Collapse
Affiliation(s)
- Simon Nagel
- Acute Stroke Programme, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
167
|
Zhu X, Zhou W, Cui Y, Zhu L, Li J, Feng X, Shao B, Qi H, Zheng J, Wang H, Chen H. Pilocarpine protects cobalt chloride-induced apoptosis of RGC-5 cells: involvement of muscarinic receptors and HIF-1 alpha pathway. Cell Mol Neurobiol 2010; 30:427-35. [PMID: 19816768 DOI: 10.1007/s10571-009-9467-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022]
Abstract
The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl(2))-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1 alpha (HIF-1 alpha), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 microM CoCl(2) for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 microM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 microM pilocarpine could significantly prevent CoCl(2)-induced HIF-1 alpha translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1 alpha, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1 alpha pathway. The findings suggest that HIF-1 alpha pathway as a "master switch" may be used as a therapeutic target in the cholinergic treatment of glaucoma.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Taylor AC, Seltz LM, Yates PA, Peirce SM. Chronic whole-body hypoxia induces intussusceptive angiogenesis and microvascular remodeling in the mouse retina. Microvasc Res 2010; 79:93-101. [PMID: 20080108 DOI: 10.1016/j.mvr.2010.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 01/28/2023]
Abstract
Currently, little is known about the response of the adult retinal microvasculature to hypoxia. To test the hypothesis that chronic systemic hypoxia induces angiogenesis and microvascular remodeling in the adult mouse retina, adult 10-week old female C57Bl/6 mice were exposed to 10% O(2) for 2 or 3 weeks. After hypoxia exposure, retinas were harvested, whole-mounted, and processed for immunohistochemistry. Retinas were stained with lectin, anti-smooth muscle alpha-actin antibody, and anti-NG2 antibody to visualize microvascular networks and their cellular components. Confocal microscopy was used to obtain images of superficial retinal networks. Images were analyzed to assess vessel diameter, vascular length density, branch point density, and the presence of vascular loops, a hallmark of intussusceptive angiogenesis. Both 2 and 3 weeks of hypoxia exposure resulted in a significant increase in the diameters of arterioles and post-arteriole capillaries (p<0.003). After 3 weeks of hypoxia, vascular length density and branch point density were significantly increased in retinas exposed to hypoxia as compared to normoxic controls (p<0.001). The number of vascular loops in the superficial retinal networks was significantly greater in hypoxia-exposed retinas (p < or = 0.001). Our results demonstrate, for the first time, intussusceptive angiogenesis as a tissue-level mechanism of vascular adaptation to chronic systemic hypoxia in the adult mouse retina and contribute to our understanding of hypoxia-induced angiogenesis and microvascular remodeling in the adult animal.
Collapse
Affiliation(s)
- Alyssa C Taylor
- Department of Biomedical Engineering, P.O. Box 800759, UVA Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
169
|
Wright WS, McElhatten RM, Messina JE, Harris NR. Hypoxia and the expression of HIF-1alpha and HIF-2alpha in the retina of streptozotocin-injected mice and rats. Exp Eye Res 2009; 90:405-12. [PMID: 20005221 DOI: 10.1016/j.exer.2009.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 12/26/2022]
Abstract
Decreases in retinal blood flow in diabetics could render the retina hypoxic. In mouse and rat models of diabetes, a decrease in retinal blood flow occurs early, within 3-4 weeks of the induction of hyperglycemia, although information is scarce on whether this early decrease in flow induces hypoxia. The purpose of the current study was to determine whether hypoxia-inducible factor (HIF) levels increase following 4 and/or 12 weeks of hyperglycemia in streptozotocin (STZ)-injected mouse (C57BL/6) and rat (Wistar) retinas. Additionally, retinal tissue hypoxia was measured with pimonidazole following 12 weeks of hyperglycemia. These aims were accomplished via immunostaining of cross-sections from enucleated eyes. In mice, staining for HIF-1alpha and HIF-2alpha showed a contrasting pattern, with HIF-1alpha higher in the inner retina than outer, but HIF-2alpha higher in the outer retina than inner. However, in rats, staining for both HIF-1alpha and HIF-2alpha was more intense in the inner retina. The HIF-1alpha staining intensities and patterns were similar between diabetic animals and their non-diabetic counterparts following 4 and 12 weeks of hyperglycemia. The same was true for HIF-2alpha except for a trend toward an increase following 12 weeks of hyperglycemia in mice. Pimonidazole staining showed significant decreases throughout all layers of the central retina and most layers of the peripheral retina of rats (but not mice), following 12 weeks of hyperglycemia. In summary, despite early decreases in flow in rats and mice, retinal HIF-1alpha and HIF-2alpha were not found to be increased, and the extent of hypoxia may even decrease after 12 weeks of hyperglycemia in rats.
Collapse
Affiliation(s)
- William S Wright
- Department of Molecular and Cellular Physiology, Louisiana State University, Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
170
|
Vassilopoulos A, Deng CX, Chavakis T. Crosstalk between the DNA damage response, histone modifications and neovascularisation. Int J Biochem Cell Biol 2009; 42:193-7. [PMID: 19945543 DOI: 10.1016/j.biocel.2009.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 01/12/2023]
Abstract
Neovascularisation is critical in several malignant and inflammatory conditions, as well as in the course of eye disorders. During new vessel formation, endothelial cell functions, such as proliferation and sprouting are very important and are regulated by a variety of growth factors. The DNA damage response machinery as well as factors regulating histone modifications, such as histone deacetylases, regulate cell fate as well as gene expression. Recent evidence has pointed to potential interactions among BRCA1, H2AX and SIRT1 in these intracellular pathways and neovascularisation, which will be reviewed here.
Collapse
Affiliation(s)
- Athanassios Vassilopoulos
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
171
|
Chavakis T, Orlova VV, Langer HF. A possible crosstalk between DNA repair pathways and angiogenesis. Cell Cycle 2009; 8:3438-9. [PMID: 19838053 DOI: 10.4161/cc.8.21.9750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
172
|
Understanding ischemic retinopathies: emerging concepts from oxygen-induced retinopathy. Doc Ophthalmol 2009; 120:51-60. [DOI: 10.1007/s10633-009-9201-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 10/12/2009] [Indexed: 01/08/2023]
|
173
|
Expression of HIF-1 alpha, VEGF and EPO in peripheral blood from patients with two cardiac abnormalities associated with hypoxia. Clin Biochem 2009; 43:234-9. [PMID: 19804771 DOI: 10.1016/j.clinbiochem.2009.09.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/21/2009] [Accepted: 09/22/2009] [Indexed: 01/22/2023]
Abstract
OBJECTIVES HIF-1 alpha (hypoxia-inducible factor-1 alpha) mediates the responses of mammalian cells to hypoxia/ischemia by inducing the expression of adaptive gene products (e.g., vascular endothelial growth factor (VEGF) and erythropoietin (EPO)). Persistent pulmonary hypertension of the newborn (PPHN) and cyanotic congenital heart disease (CCHD) are common neonatal diseases considered as paradigms of hypoxemia. Since the expression HIF-1 alpha, VEGF and EPO in newborns diagnosed with these diseases has yet to be studied, we set out to define the expression of these genes in peripheral blood from newborn infants diagnosed with PPHN and CCHD. DESIGN AND METHODS The mRNA transcripts encoding HIF-1 alpha, VEGF and EPO were measured by RT-PCR in healthy newborn infants and infants diagnosed with PPHN and CCHD. RESULTS An important increase in HIF-1 alpha expression was observed in both pathological conditions, accompanied by significant increases in VEGF and EPO expression when compared to healthy infants. CONCLUSIONS HIF-1 alpha mRNA expression increases in newborn infants with PPHN or CCHD, as does the expression of its target genes VEGF and EPO.
Collapse
|
174
|
Dadgostar H, Kaiser PK. siRNA therapeutics for age-related macular degeneration: promises and pitfalls. EXPERT REVIEW OF OPHTHALMOLOGY 2009. [DOI: 10.1586/eop.09.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
175
|
Regulatory role of HIF-1alpha in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev 2009; 8:349-58. [PMID: 19589398 DOI: 10.1016/j.arr.2009.06.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 01/10/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the elderly throughout the world. AMD is attributed to a complex interaction of genetic and environmental factors. It is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium (RPE), and Bruch's membrane, as well as alterations in choroidal capillaries. Aging and age-associated degenerative diseases, such as AMD, are intimately associated with decreased levels of tissue oxygenation and hypoxia that may induce accumulation of detrimental RPE-associated deposits, inflammation and neovascularization processes in retina. Hypoxia-inducible factor (HIF) is the master regulator for hypoxia-induced cellular adaptation that is involved in NF-kappaB signaling and the autophagic protein clearance system. In this review, we discuss role of HIF in AMD pathology and as a possible therapeutic target.
Collapse
|
176
|
Matsumoto K, Obara N, Ema M, Horie M, Naka A, Takahashi S, Imagawa S. Antitumor effects of 2-oxoglutarate through inhibition of angiogenesis in a murine tumor model. Cancer Sci 2009; 100:1639-47. [PMID: 19575748 PMCID: PMC11159297 DOI: 10.1111/j.1349-7006.2009.01249.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/29/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) plays essential roles in tumor angiogenesis and growth by regulating the transcription of several key genes in response to hypoxic stress and growth factors. HIF-1 is a heterodimeric transcriptional activator consisting of inducible alpha and constitutive beta subunits. In oxygenated cells, proteins containing the prolyl hydroxylase domain (PHD) directly sense intracellular oxygen concentrations. PHDs tag HIF-1alpha subunits for polyubiquitination and proteasomal degradation by prolyl hydroxylation using 2-oxoglutarate (2-OX) and dioxygen. Our recent studies showed that 2-OX reduces HIF-1alpha, erythropoietin, and vascular endothelial growth factor (VEGF) expression in the hepatoma cell line Hep3B when under hypoxic conditions in vitro. Here, we report that similar results were obtained in Lewis lung cancer (LLC) cells in in vitro studies. Furthermore, 2-OX showed potent antitumor effects in a mouse dorsal air sac assay and a murine tumor xenograft model. In the dorsal air sac assay, 2-OX reduced the numbers of newly formed vessels induced by LLC cells. In a murine tumor xenograft model, intraperitoneal injection of 2-OX significantly inhibited tumor growth and angiogenesis in tumor tissues. Moreover, 5-fluorouracil combined with 2-OX significantly inhibited tumor growth in this model, which was accompanied by reduction of Vegf gene expression and inhibited angiogenesis in tumor tissues. These results suggest that 2-OX is a promising anti-angiogenic therapeutic agent.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Blotting, Western
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/pathology
- Cell Proliferation
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Fluorouracil/therapeutic use
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunoenzyme Techniques
- Ketoglutaric Acids/therapeutic use
- Male
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/prevention & control
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ken Matsumoto
- Division of Hematology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
177
|
Xia XB, Xiong SQ, Xu HZ, Jiang J, Li Y. Suppression of Retinal Neovascularization by shRNA Targeting HIF-1α. Curr Eye Res 2009; 33:892-902. [DOI: 10.1080/02713680802416670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
178
|
Histone H2AX is integral to hypoxia-driven neovascularization. Nat Med 2009; 15:553-8. [PMID: 19377486 DOI: 10.1038/nm.1947] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 02/27/2009] [Indexed: 12/24/2022]
Abstract
H2A histone family member X (H2AX, encoded by H2AFX) and its C-terminal phosphorylation (gamma-H2AX) participates in the DNA damage response and mediates DNA repair. Hypoxia is a physiological stress that induces a replication-associated DNA damage response. Moreover, hypoxia is the major driving force for neovascularization, as the hypoxia-mediated induction of vascular growth factors triggers endothelial cell proliferation. Here we studied the role of the hypoxia-induced DNA damage response in endothelial cell function and in hypoxia-driven neovascularization in vivo. Hypoxia induced replication-associated generation of gamma-H2AX in endothelial cells in vitro and in mice. Both in cultured cells and in mice, endothelial cell proliferation under hypoxic conditions was reduced by H2AX deficiency. Whereas developmental angiogenesis was not affected in H2afx(-/-) mice, hypoxia-induced neovascularization during pathologic proliferative retinopathy, in response to hind limb ischemia or during tumor angiogenesis was substantially lower in H2afx(-/-) mice. Moreover, endothelial-specific H2afx deletion resulted in reduced hypoxia-driven retina neovascularization and tumor neovascularization. Our findings establish that H2AX, and hence activation of the DNA repair response, is needed for endothelial cells to maintain their proliferation under hypoxic conditions and is crucial for hypoxia-driven neovascularization.
Collapse
|
179
|
Zhang Q, Zhang J, Guan Y, Zhang S, Zhu C, Xu GT, Wang L. Suppression of retinal neovascularization by the iNOS inhibitor aminoguanidine in mice of oxygen-induced retinopathy. Graefes Arch Clin Exp Ophthalmol 2009; 247:919-27. [PMID: 19301028 DOI: 10.1007/s00417-009-1066-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/02/2009] [Accepted: 02/26/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Retinal neovascularization (NV) is a major cause of blindness associated with ischemic retinal disorders. Our study was focused on evaluating the inhibitory effect of aminoguanidine (AG), an inhibitor of inducible nitric oxide synthase (iNOS), on retinal NV in mice of oxygen-induced retinopathy (OIR). METHODS An OIR model was established with 7-day-old C57BL/6J mice. One day before and 1 and 3 days after being returned to the room air, the right eyes were injected intravitreally with bevacizumab, AG or bevacizumab+AG respectively. The left eyes were injected with normal saline (NS) as control. The mice were killed at postnatal day 17 (P17). The effects of AG or bevacizumab on iNOS or VEGF expressions were evaluated by RT-PCR and immunohistochemistry. Retinal NV was examined by fluorescein angiography, and was quantified histologically by CD34 immnunostaining at P17. RESULTS Compared with NS-treated eyes, retinal VEGF and iNOS mRNA expressions were significantly reduced in AG- and bevacizumab+AG-treated eyes; whereas in bevacizumab-treated eyes, retinal VEGF mRNA expression increased and iNOS mRNA expression remained unchanged. The above changes were confirmed by immunohistochemical study. The generalized decrease in both VEGF and iNOS distributions in mice retina treated with AG or bevacizumab+AG was demonstrated by immunohistochemistry. Retinal NV was significantly reduced in all three groups treated with bevacizumab, AG or bevacizumab+AG, when compared with NS-treated eyes. CONCLUSIONS iNOS activation plays a pathological role in retinal NV in a mouse model of ischemic retinopathy. Administration of AG significantly suppressed retinal NV. Therefore, AG appears to be a novel and effective therapeutic approach for retinal NV.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
180
|
Goralska M, Ferrell J, Harned J, Lall M, Nagar S, Fleisher LN, McGahan MC. Iron metabolism in the eye: a review. Exp Eye Res 2009; 88:204-15. [PMID: 19059397 PMCID: PMC3746754 DOI: 10.1016/j.exer.2008.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 10/31/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
This review article covers all aspects of iron metabolism, which include studies of iron levels within the eye and the processes used to maintain normal levels of iron in ocular tissues. In addition, the involvement of iron in ocular pathology is explored. In each section there is a short introduction to a specific metabolic process responsible for iron homeostasis, which for the most part has been studied in non-ocular tissues. This is followed by a summary of our current knowledge of the process in ocular tissues.
Collapse
Affiliation(s)
- M Goralska
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Zhang P, Zhang X, Hao X, Wang Y, Hui Y, Wang H, Hu D, Zhou J. Rac1 activates HIF-1 in retinal pigment epithelium cells under hypoxia. Graefes Arch Clin Exp Ophthalmol 2009; 247:633-9. [PMID: 19165496 DOI: 10.1007/s00417-008-1031-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 12/10/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Upregulation of vascular endothelial growth factor (VEGF) in hypoxic retinal pigment epithelium (RPE) cells, mediated by hypoxia-inducible factor-1 (HIF-1) is responsible for choroidal neovascularization (CNV). HIF-1alpha is the inducible subunit of HIF-1, but the underlying mechanisms by which RPE cells sense a decrease in oxygen concentration and transduce this signal to HIF-1alpha are largely unknown. Rho family small GTPase Rac1, as a potential intermediate, possibly plays a pivotal role in activating HIF-1alpha in RPE cells under hypoxia. AIMS To further define Rac1 playing an essential role in the induction of HIF-1alpha expression in RPE cells under hypoxia. METHODS In this study, we examined the expression of HIF-1alpha and Rac1 in human RPE cells under hypoxia for 0, 1, 2, 4, 8, 12 and 24 h by RT-PCR and Western blot. To elucidate whether Rac1 is responsible for activating the expression of hypoxia-induced HIF-1alpha, human RPE cells were treated with Rac1 inhibitor NSC23766 under hypoxia for 0, 1, 2, 4, 8, 12 and 24 h, and expression of HIF-1alpha and Rac1 measured by RT-PCR and Western blot. RESULTS The mRNA expression of HIF-1alpha and Rac1 in RPE cells significantly increased in a time-dependent manner, reaching the maximum at 4 h, and thereafter slowly declined. HIF-1alpha protein induction in human RPE cells was found after 1 h of hypoxia, reaching the maximum at 8 h, and then slowly declined. In response to hypoxia, the levels of Rac1 protein significantly increased, reaching the maximum at 4 h, and then slowly declined. After treatment with NSC23766, both HIF-1alpha and Rac1 expression were significantly inhibited in hypoxic RPE cells. CONCLUSIONS Rac1 is crucial to activate HIF-1 in RPE cells under hypoxia, which may be a novel target other than VEGF and HIF-1 in developing CNV inhibitors.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Mauget-Faysse M, Germain-Pastene M. Hypoxia tolerance and retinal vein occlusion: a pilot evaluation. Eur J Ophthalmol 2009; 19:86-90. [PMID: 19123154 DOI: 10.1177/112067210901900113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To determine if hypoxia tolerance in patients with retinal vein occlusion (RVO) following exposure to transient hypoxia is different from the hypoxia tolerance of healthy patients without retinal vein occlusion. METHODS Consecutive patients presenting with RVO following exposure to transient hypoxia (Group I) were compared with healthy subjects (Group II). In addition to cardiovascular and plasma tests, functional respiratory evaluation was performed at rest and during exercise at both normal oxygen levels (21% O2) and in hypoxia (11.6% O2). We used the Wilcoxon test for statistical analysis. RESULTS Both groups of eight males had similar mean ages: Group I, 47.5 years and Group II, 53 years. In Group I, three patients had glucose or lipid abnormalities, one had hypertension, and one minor thalassanemia. In Group II, one patient had hypertension. At rest in hypoxia, the oxyhemoglobinic desaturation was significantly different (p=0.03) in Group I in comparison with Group II (-13.8 versus -9.3). At exercise in hypoxia, the oxyhemoglobinic desaturation was similar in both groups but there was a statistically significant increase in both systolic (189 versus 155 mmHg; p=0.01) and diastolic (94 versus 77 mmHg; p=0.03) blood pressure in Group I. Ventilation rate and increased heart rate during hypoxia were higher in Group I compared with Group II but were not statistically significant. CONCLUSIONS In our pilot study, patients with RVO following exposure to transient hypoxia demonstrated intolerance to hypoxia and were significantly different from healthy subjects in their response to hypoxia. A larger study is required to confirm these preliminary results.
Collapse
|
183
|
Bartoli M, Al-Shabrawey M, Labazi M, Behzadian MA, Istanboli M, El-Remessy AB, Caldwell RW, Marcus DM, Caldwell RB. HMG-CoA reductase inhibitors (statin) prevents retinal neovascularization in a model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 2008; 50:4934-40. [PMID: 19098312 DOI: 10.1167/iovs.08-2158] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Retinal neovascularization (RNV) is a primary cause of blindness and involves the dysfunction of retinal capillaries. Recent studies have emphasized the beneficial effects of inhibitors of HMG-CoA reductase (statins) in preventing vascular dysfunction. In the present study, the authors characterized the therapeutic effects of statins on RNV. METHODS Statin treatment (10 mg/kg/d fluvastatin) was tested in a mouse model of oxygen-induced retinopathy. Morphometric analysis was conducted to determine the extent of capillary growth. Pimonidazole hydrochloride was used to assess retinal ischemia. Western blot and immunohistochemical analyses were used to assess protein expression levels and immunolocalization. Lipid peroxidation and superoxide radical formation were determined to assess oxidative changes. RESULTS Fluvastatin treatment significantly reduced the area of the capillary-free zone (P < 0.01), decreased the formation of neovascular tufts (P < 0.01), and ameliorated retinal ischemia. These morphologic and functional changes were associated with statin effects in preventing the upregulation of VEGF, HIF-1 alpha, phosphorylated STAT3, and vascular expression of the inflammatory mediator ICAM-1 (P < 0.01). Superoxide production and lipid peroxidation in the ischemic retina were also reduced by statin treatment (P < 0.01). CONCLUSIONS These data suggest the beneficial effects of statin treatment in preventing retinal neovascularization. These beneficial effects appear to result from the anti-oxidant and anti-inflammatory properties of statins.
Collapse
Affiliation(s)
- Manuela Bartoli
- Department of Ophthalmology, University of South Carolina School of Medicine, Columbia, South Carolina 29203, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Zhang P, Liu N, Wang Y. Insulin may cause deterioration of proliferative diabetic retinopathy. Med Hypotheses 2008; 72:306-8. [PMID: 19027244 DOI: 10.1016/j.mehy.2008.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/12/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus (DM) can cause many systemic complications, including proliferative diabetic retinopathy (PDR). Retinal neovascularization (RNV) is the typical symptom of PDR, representing an important risk factor for severe vision loss in patients with DM. Diabetic hyperglycemia plays a major role in the destruction of retinal capillary walls, resulting in retinal ischemia and up-regulation of vascular endothelial growth factor (VEGF), leading to neovascularization. The transcriptional regulation of VEGF is mediated by transcription factor hypoxia-inducible factor 1 (HIF-1). Insulin is the mainstay of treatment for DM, but some studies have demonstrated that insulin had the ability to stimulate VEGF and HIF-1 expression in retinal pigment epithelial cells, retinal epithelial cells and vascular smooth muscle cells. In addition to the mitogenic effect of insulin makes it as an assistant agent has long been used in vitro cell culture. Other studies confirmed that insulin increased leukostasis in retinal microcirculation. Based on these experimental results, we hypothesize that long-term insulin therapy maybe improves the expression of VEGF and increase the risk of RNV, eventually deteriorates PDR in patients with DM.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, 15 West Changle Street, Xi'an, Shaanxi Province 710032, PR China
| | | | | |
Collapse
|
185
|
The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med 2008; 14:1067-76. [DOI: 10.1038/nm.1873] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 09/03/2008] [Indexed: 01/30/2023]
|
186
|
Xiao Q, Zeng S, Lv M, Ling S. Small hairpin loop RNA targeting HIF-1alpha down-regulates VEGF and up-regulates PEDF in human retinal pigment epithelial cells under hypoxic condition. ACTA ACUST UNITED AC 2008; 28:460-4. [PMID: 18704312 DOI: 10.1007/s11596-008-0419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Indexed: 11/30/2022]
Abstract
The aim of this study was to explore the effect of small hairpin loop RNA (shRNA) silencing hypoxia-induced factor 1alpha (HIF-1alpha) gene on the expression of vascular endothelial growth factor (VEGF) and pigment epithelium derived factor (PEDF) in human retinal pigment epithelium (RPE) cells under hypoxic condition. Two target sites of HIF-1alpha mRNA were chosen and two kinds of shRNA were designed and synthesized against the target sites. Then the two kinds of shRNA were transfected into human RPE cells in vitro, respectively. These cells were cultured under hypoxic condition that was simulated by using 150 mumol/L CoCl(2). The mRNA expressions of HIF-1alpha, VEGF and PEDF were tested by semi-quantitative reverse transcription PCR (RT-PCR). The protein levels of HIF-1alpha, VEGF and PEDF were analyzed by Western blotting. After the two kinds of HIF-1alpha-specific shRNA were transfected into RPE cells respectively, the expression of HIF-1alpha mRNA and the levels of HIF-1alpha protein were decreased significantly in RPE cells under hypoxic condition. The expression of VEGF mRNA and the levels of protein significantly were also decreased. However, the levels of PEDF protein was significantly increased, but the expression of PEDF mRNA showed no significant changes. In conclusion, HIF-1alpha-specific shRNA can effectively silence the HIF-1alpha gene, and consequently down-regulate VEGF and up-regulate PEDF expression against hypoxia. These results reveal that HIF-1 is associated with posttranslational mechanism for down-regulating PEDF under hypoxia and provide an explanation for hypoxia-provoked increases in VEGF/PEDF ratios. These results also suggest that HIF-1 is one of the key cytokines to retinal neovascularization.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | |
Collapse
|
187
|
Leal C, Admetlla J, Viscor G, Ricart A. Diabetic retinopathy at high altitude. High Alt Med Biol 2008; 9:24-7. [PMID: 18331217 DOI: 10.1089/ham.2008.0125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to determine whether altitude hypoxia favors the development of diabetic retinopathy (DR) in healthy type 1 diabetic climbers with tight glycemia control. The retinas of 7 type 1 diabetic climbers with a history of stays at high altitude were studied through nonmydriatic chamber retinography (Ffo-CNM). The retinographies were performed before and after a 7,143 m peak expedition. One of the subjects presented evidence of DR prior to the ascent, in addition to a microhemorrhage afterward; the rest of the retinographies were normal. Fine glycemia management and adequate acclimatization are not the only cautions for diabetics going to altitude; an ophthalmologic exam beforehand is also recommended.
Collapse
Affiliation(s)
- Conxita Leal
- Institut d'Estudis de Medicina de Muntanya (IEMM), Barcelona, Spain.
| | | | | | | |
Collapse
|
188
|
Reaven PD, Emanuele N, Moritz T, Klein R, Davis M, Glander K, Duckworth W, Abraira C. Proliferative diabetic retinopathy in type 2 diabetes is related to coronary artery calcium in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care 2008; 31:952-7. [PMID: 18316393 DOI: 10.2337/dc07-1926] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Increasing evidence suggests that macrovascular disease and retinopathy may be more closely linked than previously believed. We determined the relationship between retinopathy and coronary atherosclerosis as measured by computed tomography-detectable coronary artery calcium (CAC). RESEARCH DESIGN AND METHODS The cross-sectional association between CAC and retinopathy was assessed on a Veteran Affairs Diabetes Trial subsample of 204 subjects with a mean duration of type 2 diabetes of 12.3 +/- 8.3 years. RESULTS Retinopathy was correlated with CAC (r = 0.19, P = 0.006). Median CAC increased across retinopathy categories: 197 in those with no retinopathy, 229 in those with microaneurysms only, 364 in those with mild nonproliferative diabetic retinopathy (NPDR), 300 in those with moderate to severe NPDR, and 981 in those with proliferative diabetic retinopathy (PDR). Stepwise multivariable linear regression analysis was performed to find a parsimonious subset of relevant risk factors to include along with PDR in predicting CAC. After adjustment for either this subset of standard factors (P = 0.047) or a more extensive panel of risk factors (P = 0.035), PDR was significantly associated with CAC. Moreover, using logistic regression, individuals with PDR were approximately sixfold more likely to have CAC >400 than those with no PDR, even after adjustment for other CVD risk factors. CONCLUSIONS These data indicate an important relationship between retinopathy and extent of CAC and suggest the potential to identify and treat shared risk factors for these common micro- and macrovascular complications.
Collapse
Affiliation(s)
- Peter D Reaven
- Carl T. Hayden VA Medical Center, Phoenix, Arizona 85012-1892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Pournaras CJ, Rungger-Brändle E, Riva CE, Hardarson SH, Stefansson E. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 2008; 27:284-330. [PMID: 18448380 DOI: 10.1016/j.preteyeres.2008.02.002] [Citation(s) in RCA: 403] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optimal retinal neuronal cell function requires an appropriate, tightly regulated environment, provided by cellular barriers, which separate functional compartments, maintain their homeostasis, and control metabolic substrate transport. Correctly regulated hemodynamics and delivery of oxygen and metabolic substrates, as well as intact blood-retinal barriers are necessary requirements for the maintenance of retinal structure and function. Retinal blood flow is autoregulated by the interaction of myogenic and metabolic mechanisms through the release of vasoactive substances by the vascular endothelium and retinal tissue surrounding the arteriolar wall. Autoregulation is achieved by adaptation of the vascular tone of the resistance vessels (arterioles, capillaries) to changes in the perfusion pressure or metabolic needs of the tissue. This adaptation occurs through the interaction of multiple mechanisms affecting the arteriolar smooth muscle cells and capillary pericytes. Mechanical stretch and increases in arteriolar transmural pressure induce the endothelial cells to release contracting factors affecting the tone of arteriolar smooth muscle cells and pericytes. Close interaction between nitric oxide (NO), lactate, arachidonic acid metabolites, released by the neuronal and glial cells during neural activity and energy-generating reactions of the retina strive to optimize blood flow according to the metabolic needs of the tissue. NO, which plays a central role in neurovascular coupling, may exert its effect, by modulating glial cell function involved in such vasomotor responses. During the evolution of ischemic microangiopathies, impairment of structure and function of the retinal neural tissue and endothelium affect the interaction of these metabolic pathways, leading to a disturbed blood flow regulation. The resulting ischemia, tissue hypoxia and alterations in the blood barrier trigger the formation of macular edema and neovascularization. Hypoxia-related VEGF expression correlates with the formation of neovessels. The relief from hypoxia results in arteriolar constriction, decreases the hydrostatic pressure in the capillaries and venules, and relieves endothelial stretching. The reestablished oxygenation of the inner retina downregulates VEGF expression and thus inhibits neovascularization and macular edema. Correct control of the multiple pathways, such as retinal blood flow, tissue oxygenation and metabolic substrate support, aiming at restoring retinal cell metabolic interactions, may be effective in preventing damage occurring during the evolution of ischemic microangiopathies.
Collapse
Affiliation(s)
- Constantin J Pournaras
- Department of Ophthalmology, Vitreo-Retina Unit, University Hospitals of Geneva, 22 rue Alcide Jentzer, CH-1211 Geneva 14, Switzerland.
| | | | | | | | | |
Collapse
|
190
|
Bibliography. Current world literature. Neuro-ophthalmology. Curr Opin Ophthalmol 2007; 18:515-17. [PMID: 18163005 DOI: 10.1097/icu.0b013e3282f292cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
191
|
Schiffelers RM, Fens MH, van Blijswijk JM, Bink DI, Storm G. Targeting the retinal microcirculation to treat diabetic sight problems. Expert Opin Ther Targets 2007; 11:1493-502. [PMID: 18028012 DOI: 10.1517/14728222.11.11.1493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diabetic retinopathy is a secondary complication of hyperglycemia caused by diabetes mellitus. The damage to the retina can ultimately cause vision loss as a result of increased capillary permeability and angiogenesis. Recent progress in the understanding of the mediators that drive angiogenesis, as well as the phenotypes of cells that are involved in this process, has provided a multitude of targets for pharmacologic intervention. This review presents the inhibitors of the biochemical processes that are at the root of diabetic retinopathy (i.e., non-enzymatic glycosylation of biomolecules, oxidative stress, activation of aldose reductase and activation of protein kinase C by formation of diacylglycerol) in addition to the inhibitors of the mechanical damage (i.e., increased vascular permeability, capillary occlusion and neovascularization).
Collapse
Affiliation(s)
- Raymond M Schiffelers
- Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
192
|
|
193
|
Forooghian F, Das B. Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha. Am J Ophthalmol 2007; 144:761-8. [PMID: 17869204 DOI: 10.1016/j.ajo.2007.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/11/2007] [Accepted: 07/16/2007] [Indexed: 12/25/2022]
Abstract
PURPOSE To compare the in vitro anti-angiogenic effects of inhibiting vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1alpha) using ribonucleic acid (RNA) interference (RNAi). DESIGN Laboratory investigation. METHODS VEGF or HIF-1alpha was antagonized in human retinal pigment epithelial (RPE) cells using RNAi, and then cells were cultured under hypoxia. Angiogenic proteins secreted into the media were measured using enzyme-linked immunosorbent assay. Media from hypoxic RPE cells was used to grow human umbilical vein endothelial cells (HUVECs). Capillary tube formation by HUVECs was quantified and compared to assess the effectiveness of angiogenesis. RESULTS RNAi targeting VEGF caused a significant decrease in VEGF in addition to several other clinically important angiogenic factors, including angiogenin, interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), and tumor growth factor beta(1) (TGF-beta(1)). Although HIF-1alpha RNAi reduced the production of VEGF, angiogenin, and TGF-beta(1), we observed an increase in the levels of several other angiogenic factors like IL-6, IL-8, and MCP-1. RNAi of VEGF and HIF-1alpha was effective in inhibiting angiogenesis, although the effect was more pronounced for VEGF RNAi. CONCLUSIONS RNAi of VEGF and HIF-1alpha may have therapeutic potential in ischemic retinal diseases like diabetic retinopathy. Targeting VEGF seems to have the advantage of decreasing the production of several clinically important angiogenic factors, thereby effectively inhibiting angiogenesis. Antagonism of HIF-1alpha may lead to the overactivation of alternate transcription factors and their respective gene products, leading to less effective inhibition of angiogenesis.
Collapse
Affiliation(s)
- Farzin Forooghian
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | |
Collapse
|
194
|
Zhang P, Wang Y, Hui Y, Hu D, Wang H, Zhou J, Du H. Inhibition of VEGF Expression by Targeting HIF-1α with Small Interference RNA in Human RPE Cells. Ophthalmologica 2007; 221:411-7. [DOI: 10.1159/000107502] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 02/22/2007] [Indexed: 11/19/2022]
|
195
|
Rosenberger C, Khamaisi M, Abassi Z, Shilo V, Weksler-Zangen S, Goldfarb M, Shina A, Zibertrest F, Eckardt KU, Rosen S, Heyman SN. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 2007; 73:34-42. [PMID: 17914354 DOI: 10.1038/sj.ki.5002567] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hypoxia of the kidney in diabetes could predispose it to develop acute and chronic renal failure. To examine the relationship between renal hypoxia and renal failure, we measured hypoxia (as a pimonidazole adducts), hypoxia-inducible factors (HIFs), and a hypoxia target gene heme oxygenase-1. The studies were performed in rats with streptozotocin (STZ)-induced diabetes, Cohen diabetes sensitive rats, and during short-term artificial hyperglycemia in rats induced by intravenous glucose and octreotide. STZ-treated rats received insulin, the superoxide dismutase mimetic tempol, or contrast medium. Radiocontrast media causes hypoxia and HIF induction. Hypoxia, HIFs, and heme oxygenase were undetectable in controls, but transiently activated in STZ-treated and the Cohen diabetes sensitive rats. Different patterns of HIFs and pimonidazole were observed between the three models. Insulin abolished pimonidazole and HIF induction, whereas tempol lead to increased HIFs and heme oxygenase induction at similar levels of pimonidazole. When compared with control rats, STZ-treated rats exhibited more intense and protracted renal pimonidazole, with augmented hypoxia inducible factor production and reduced GFR following contrast media. Our data suggest that both regional hypoxia and hypoxia adaptation transiently occur in early stages of experimental diabetes, largely dependent on hyperglycemia or after contrast media. Tempol may augment the HIF response in diabetes.
Collapse
Affiliation(s)
- C Rosenberger
- Nephrology and Medical Intensive Care, Charité University Clinic, Augustenburger Platz 1, Berlin 13353, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Emara M, Obaid L, Johnson S, Bigam DL, Cheung PY. Expression of angiostatin and its related factors in the plasma of newborn pigs with hypoxia and reoxygenation. Arch Biochem Biophys 2007; 466:136-44. [PMID: 17718998 DOI: 10.1016/j.abb.2007.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 12/12/2022]
Abstract
Little is known about angiostatin and its related factors in the hypoxia-reoxygenation of neonates. In this study we compared the effect of 21% and 100% reoxygenation on temporal changes in the plasma level of these factors in newborn piglets subjected to hypoxia. Newborn piglets were subjected to 2 h hypoxia followed by 1 h of reoxygenation with either 21% or 100% oxygen and observed for 4 days. On day 4 of recovery in 100% hypoxic-reoxygenated group, there were increases in total angiostatin, plasminogen/plasmin and MMP-2 levels, and decreases in VEGF levels (vs. respective baseline levels, all P <0.001), whereas no significant temporal changes were found in the 21% hypoxic-reoxygenated and sham-operated groups. Angiostatin levels correlated positively with the levels of MMP-2 and HIF-1alpha and negatively with VEGF levels in 100% hypoxic-reoxygenated group (all P <0.05). In comparison to 21% oxygen, neonatal resuscitation with 100% oxygen was found to increase the levels anti-angiogenic factors.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Pediatrics, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | | | | | | | | |
Collapse
|
197
|
Hernández C, Simó R. Strategies for blocking angiogenesis in diabetic retinopathy: from basic science to clinical practice. Expert Opin Investig Drugs 2007; 16:1209-26. [PMID: 17685870 DOI: 10.1517/13543784.16.8.1209] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proliferative diabetic retinopathy (PDR) demands both more effective and less expensive biologically based treatments. Our understanding of the pathophysiology of the disease is increasing as new biochemical pathways are identified. Most reports emphasize proangiogenic stimuli, with the natural inhibitory elements receiving little attention. There are two therapeutic strategies for blocking retinal angiogenesis in PDR: systemic drug administration (protein kinase C inhibitors and somatostatin analogs) or local therapies (anti-vascular endothelial growth factor strategies, anti-inflammatory agents, gene therapy and stem cell therapy). This review mainly focuses on the role of local therapies, especially intravitreous delivery, in the management of PDR. The potential for adverse effect are also discussed. The availability of these new strategies or the combination of them will not only be beneficial in treating PDR but may also result in a shift towards treating earlier stages of diabetic retinopathy, thus easing the burden of this devastating disease.
Collapse
Affiliation(s)
- Cristina Hernández
- Hospital Universitari Vall d'Hebron, Diabetes and Metabolism Research Unit, Endocrinology Division, Pg. Vall d'Hebron, Barcelona, Spain
| | | |
Collapse
|
198
|
Abstract
BACKGROUND Hypoxia-inducible factor (HIF) is a common transcription factor for many angiogenic proteins. Retinal pigment epithelial (RPE) cells are an important source of angiogenic factors in the retina. The expression of HIF, its regulation by proline hydroxylase (PHD) enzymes, and its downstream regulation of angiogenic factors like vascular endothelial growth factor (VEGF) and erythropoietin (EPO) was studied in RPE cells in order to determine some of the molecular mechanisms underlying ischaemic retinal disease. METHODS ARPE-19 cells were cultured for various times under hypoxic conditions. Cellular HIF and PHD isoforms were analysed and quantified using western blot and densitometry. VEGF and EPO secreted into the media were assayed using enzyme-linked immunosorbent assay (ELISA). Messenger RNA (mRNA) was quantified using real-time quantitative reverse transcriptase polymerase chain reaction (qPCR). RNA interference was achieved using siRNA techniques. RESULTS HIF-1 alpha was readily produced by ARPE-19 cells under hypoxia, but HIF-2 alpha and HIF-3 alpha could not be detected even after HIF-1 alpha silencing. HIF-1 alpha protein levels showed an increasing trend for the first 24 h while HIF-1 alpha mRNA levels fluctuated during this time. After 36 h HIF-1 alpha protein levels declined to baseline levels, a change that was coincident with a rise in both PHD2 and PHD3. Silencing HIF-1 alpha significantly decreased VEGF secretion. Significant production of EPO could not be detected at the protein or mRNA level. CONCLUSIONS HIF-1 alpha appears to be the main isoform of HIF functioning in ARPE-19 cells. Under hypoxia, HIF-1 alpha levels are likely self-regulated by a feedback loop that involves both transcriptional and post-translational mechanisms. VEGF production by human RPE cells is regulated by HIF-1 alpha. EPO was not produced in significant amounts by RPE cells under hypoxic conditions, suggesting that other cells and/or transcription factors in the retina are responsible for its production.
Collapse
Affiliation(s)
- Farzin Forooghian
- Department of Ophthalmology and Vision Sciences and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
199
|
Rosa RFM, Travi GM, Valiatti F, Zen PRG, Pinto LL, Kiss A, Graziadio C, Paskulin GA. Poland syndrome associated with an aberrant subclavian artery and vascular abnormalities of the retina in a child exposed to misoprostol during pregnancy. ACTA ACUST UNITED AC 2007; 79:507-11. [PMID: 17393483 DOI: 10.1002/bdra.20366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Poland syndrome has been attributed to a process of vascular disruption, and exposure to misoprostol at 6-8 weeks of gestation has been shown to produce defects attributed to vascular disruption. Herein we report the first case of a patient with Poland syndrome associated with an aberrant subclavian artery and vascular abnormalities of the retina, whose mother used misoprostol during pregnancy. CASE A White boy of 1 year and 7 months of age, whose mother used misoprostol during the second month of pregnancy, presented with bilateral epicanthal folds, aplasia of the sternocostal head of the pectoralis major muscle with a hypoplastic nipple on the right side, and asymmetry between the upper limbs. The results of an angiotomographic study showed the presence of an aberrant right subclavian artery. Ultrasonographic evaluation showed turbulence and a high peak in the diastolic velocity in both carotid arteries, suggesting stenosis. Ophthalmologic assessment disclosed an intense bilateral tortuosity of the retinal blood vessels, with arterialnarrowing and rarefaction of the retinal pigment epithelium. CONCLUSIONS This case suggests that the mechanism of vascular disruption of misoprostol could be related to the aberrant subclavian artery and the observed Poland syndrome. His retinal findings are different from those in cases described thus far in the literature, and this pattern of anomaly has never been associated with a gestational exposure to misoprostol. The possibility of a relationship of the aberrant right subclavian artery and the pattern of blood flow verified in the carotid arteries with the eye fundus abnormalities could be causally related or simply coincidental.
Collapse
Affiliation(s)
- Rafael Fabiano Machado Rosa
- Clinical Genetics Discipline, Fundação Faculdade Federal de Ciências Médicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|