151
|
Larsen JE, Cascone T, Gerber DE, Heymach JV, Minna JD. Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J 2011; 17:512-27. [PMID: 22157296 PMCID: PMC3381956 DOI: 10.1097/ppo.0b013e31823e701a] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although lung cancer remains the leading cancer killer in the United States, recently a number of developments indicate future clinical benefit. These include evidence that computed tomography-based screening decreases lung cancer mortality, the use of stereotactic radiation for early-stage tumors, the development of molecular methods to predict chemotherapy sensitivity, and genome-wide expression and mutation analysis data that have uncovered oncogene "addictions" as important therapeutic targets. Perhaps the most significant advance in the treatment of this challenging disease is the introduction of molecularly targeted therapies, a term that currently includes monoclonal antibodies and small-molecule tyrosine kinase inhibitors. The development of effective targeted therapeutics requires knowledge of the genes and pathways involved and how they relate to the biologic behavior of lung cancer. Drugs targeting the epidermal growth factor receptor, anaplastic lymphoma kinase, and vascular endothelial growth factor are now U.S. Food and Drug Administration approved for the treatment of advanced non-small cell lung cancer. These agents are generally better tolerated than conventional chemotherapy and show dramatic efficacy when their use is coupled with a clear understanding of clinical data, mechanism, patient selection, drug interactions, and toxicities. Integrating genome-wide tumor analysis with drug- and targeted agent-responsive phenotypes will provide a wealth of new possibilities for lung cancer-targeted therapeutics. Ongoing research efforts in these areas as well as a discussion of emerging targeted agents being evaluated in clinical trials are the subjects of this review.
Collapse
Affiliation(s)
- Jill E. Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas
| | - Tina Cascone
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - David E. Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - John V. Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
152
|
Ioffe YJ, Chiappinelli KB, Mutch DG, Zighelboim I, Goodfellow PJ. Phosphatase and tensin homolog (PTEN) pseudogene expression in endometrial cancer: a conserved regulatory mechanism important in tumorigenesis? Gynecol Oncol 2011; 124:340-6. [PMID: 22005521 DOI: 10.1016/j.ygyno.2011.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/09/2011] [Accepted: 10/10/2011] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The PTEN pseudogene, PTENP1, was recently shown to play a role in cell proliferation in a prostate cancer model. In the present study, we sought to determine whether PTENP1 is expressed in endometrial cancer (EMCA) cell lines and primary tumors along with the microRNAs (miRNAs) that are predicted to regulate PTEN and PTENP1 transcript levels. METHODS RNA was prepared from six EMCA cell lines, three normal endometrial samples, and 61 primary tumors. TaqMan® RT-PCR was used to quantitate PTEN expression in all specimens and PTENP1 expression in cell lines, and normal endometrial (NE) samples. PTENP1 expression was evaluated using conventional RT-PCR in primary tumors. MicroRNA profiling was undertaken using NanoString(TM) technology in AN3CA and KLE cell lines. The relationship between PTEN transcript levels, PTENP1 expression, and PTEN mutation status was investigated. RESULTS All NE samples, cell lines, and primary tumors expressed PTEN. PTENP1 transcript was expressed in NE, cell lines, and 34/61 (56%) primary tumors. The median relative PTEN level was 2.9 arbitrary expression units in PTENP1-positive tumors and 2.3 in PTENP1-negative tumors (p=0.09). PTEN levels in wild-type and haploinsufficient tumors were variable compared to PTEN-null tumors (p=0.015). Four microRNAs predicted to bind PTEN/PTENP1 ranked in the top 20 most abundant microRNA subtypes in the AN3CA and KLE cell lines. CONCLUSIONS PTENP1 is expressed in NE and EMCA cell lines, as are PTEN/PTENP1 targeting inhibitory miRNAs (cell lines). Further studies are needed to evaluate the impact of PTEN/PTENP1/miRNA interactions on tumorigenesis regulation in EMCA.
Collapse
Affiliation(s)
- Yevgeniya J Ioffe
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, MO, USA.
| | | | | | | | | |
Collapse
|
153
|
Invasiveness and anchorage independent growth ability augmented by PTEN inactivation through the PI3K/AKT/NFkB pathway in lung cancer cells. Lung Cancer 2011; 73:302-9. [DOI: 10.1016/j.lungcan.2011.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/11/2011] [Accepted: 01/18/2011] [Indexed: 01/05/2023]
|
154
|
O'Byrne KJ, Gatzemeier U, Bondarenko I, Barrios C, Eschbach C, Martens UM, Hotko Y, Kortsik C, Paz-Ares L, Pereira JR, von Pawel J, Ramlau R, Roh JK, Yu CT, Stroh C, Celik I, Schueler A, Pirker R. Molecular biomarkers in non-small-cell lung cancer: a retrospective analysis of data from the phase 3 FLEX study. Lancet Oncol 2011; 12:795-805. [PMID: 21782507 DOI: 10.1016/s1470-2045(11)70189-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Findings from the phase 3 FLEX study showed that the addition of cetuximab to cisplatin and vinorelbine significantly improved overall survival, compared with cisplatin and vinorelbine alone, in the first-line treatment of EGFR-expressing, advanced non-small-cell lung cancer (NSCLC). We investigated whether candidate biomarkers were predictive for the efficacy of chemotherapy plus cetuximab in this setting. METHODS Genomic DNA extracted from formalin-fixed paraffin-embedded (FFPE) tumour tissue of patients enrolled in the FLEX study was screened for KRAS codon 12 and 13 and EGFR kinase domain mutations with PCR-based assays. In FFPE tissue sections, EGFR copy number was assessed by dual-colour fluorescence in-situ hybridisation and PTEN expression by immunohistochemistry. Treatment outcome was investigated according to biomarker status in all available samples from patients in the intention-to-treat population. The primary endpoint in the FLEX study was overall survival. The FLEX study, which is ongoing but not recruiting participants, is registered with ClinicalTrials.gov, number NCT00148798. FINDINGS KRAS mutations were detected in 75 of 395 (19%) tumours and activating EGFR mutations in 64 of 436 (15%). EGFR copy number was scored as increased in 102 of 279 (37%) tumours and PTEN expression as negative in 107 of 303 (35%). Comparisons of treatment outcome between the two groups (chemotherapy plus cetuximab vs chemotherapy alone) according to biomarker status provided no indication that these biomarkers were of predictive value. Activating EGFR mutations were identified as indicators of good prognosis, with patients in both treatment groups whose tumours carried such mutations having improved survival compared with those whose tumours did not (chemotherapy plus cetuximab: median 17·5 months [95% CI 11·7-23·4] vs 8·5 months [7·1-10·8], hazard ratio [HR] 0·52 [0·32-0·84], p=0·0063; chemotherapy alone: 23·8 months [15·2-not reached] vs 10·0 months [8·7-11·0], HR 0·35 [0·21-0·59], p<0·0001). Expression of PTEN seemed to be a potential indicator of good prognosis, with patients whose tumours expressed PTEN having improved survival compared with those whose tumours did not, although this finding was not significant (chemotherapy plus cetuximab: median 11·4 months [8·6-13·6] vs 6·8 months [5·9-12·7], HR 0·80 [0·55-1·16], p=0·24; chemotherapy alone: 11·0 months [9·2-12·6] vs 9·3 months [7·6-11·9], HR 0·77 [0·54-1·10], p=0·16). INTERPRETATION The efficacy of chemotherapy plus cetuximab in the first-line treatment of advanced NSCLC seems to be independent of each of the biomarkers assessed. FUNDING Merck KGaA.
Collapse
|
155
|
Kim J, Min SY, Lee HE, Kim WH. Aberrant DNA methylation and tumor suppressive activity of the EBF3 gene in gastric carcinoma. Int J Cancer 2011; 130:817-26. [PMID: 21387304 DOI: 10.1002/ijc.26038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/17/2011] [Indexed: 11/11/2022]
Abstract
The early B-cell factors (EBFs) are a group of four highly conserved DNA-binding transcription factors with an atypical zinc-finger and a helix-loop-helix domain. The EBF3 locus on chromosome 10q26.3 is epigenetically silenced or deleted in several types of cancers. In addition, EBF3 activates genes involved in cell cycle arrest and inhibits cell survival. However, inactivation of EBF3 gene expression was not fully studied in gastric carcinoma and the functions of EBF3 that underlie EBF3-regulated tumor suppression have not been identified. In our study, we found that inactivation of the EBF3 gene is frequently accompanied by promoter region hypermethylation in several gastric cancer cell lines and that the gene is reactivated by 5-aza-2'-deoxycytidine (5-aza-dc) and/or trichostatin A (TSA) in all ten gastric cancer cell lines. We performed functional analysis using small interfering RNA or expressional cDNA transfection in gastric cancer cell lines and demonstrate that EBF3 represses gastric cancer cell growth and migration, but activates cell cycle arrest and apoptosis. Promoter methylation of EBF3 was detected in 42/104 (40.4%) gastric cancer tissues but not in normal gastric tissues. Furthermore, promoter methylation of EBF3 was found to be significantly correlated with lymphatic invasion (p = 0.013) and poor survival (p = 0.038) in gastric carcinoma. These results suggest that EBF3 tumor suppressor is epigenetically silenced and that it serves as an independent prognostic marker in gastric carcinoma.
Collapse
Affiliation(s)
- Jin Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
156
|
Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011; 11:289-301. [PMID: 21430697 PMCID: PMC6946181 DOI: 10.1038/nrc3037] [Citation(s) in RCA: 619] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PTEN is among the most frequently inactivated tumour suppressor genes in sporadic cancer. PTEN has dual protein and lipid phosphatase activity, and its tumour suppressor activity is dependent on its lipid phosphatase activity, which negatively regulates the PI3K-AKT-mTOR pathway. Germline mutations in PTEN have been described in a variety of rare syndromes that are collectively known as the PTEN hamartoma tumour syndromes (PHTS). Cowden syndrome is the best-described syndrome within PHTS, with approximately 80% of patients having germline PTEN mutations. Patients with Cowden syndrome have an increased incidence of cancers of the breast, thyroid and endometrium, which correspond to sporadic tumour types that commonly exhibit somatic PTEN inactivation. Pten deletion in mice leads to Cowden syndrome-like phenotypes, and tissue-specific Pten deletion has provided clues to the role of PTEN mutation and loss in specific tumour types. Studying PTEN in the continuum of rare syndromes, common cancers and mouse models provides insight into the role of PTEN in tumorigenesis and will inform targeted drug development.
Collapse
Affiliation(s)
- M Christine Hollander
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
157
|
Somatic mutations in epidermal growth factor receptor signaling pathway genes in non-small cell lung cancers. J Thorac Oncol 2011; 5:1734-40. [PMID: 20881644 DOI: 10.1097/jto.0b013e3181f0beca] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) signaling pathway plays a crucial role in the development and progression of lung cancer. We searched for mutations of EGFR pathway genes in non-small cell lung cancers (NSCLCs) and analyzed their relationship with clinicopathologic features. METHODS Mutations of EGFR, ERBB2, ERBB3, ERBB4, KRAS, NRAS, BRAF, PTEN, PIK3CA, LKB1, and AKT1 genes were determined by direct sequencing in 173 surgically resected NSCLCs--56 squamous cell carcinomas (SCCs) and 117 adenocarcinomas (ACs). RESULTS Of the 173 NSCLCs, a total of 65 mutations were detected in 63 (36.4%) tumors--10 (17.9%) in SCCs and 53 (45.3%) in ACs. Mutations in EGFR pathway genes were significantly more frequent in women and ACs than in women and SCCs (p = 0.02 and p < 0.001, respectively). The mutations occurred in a mutually exclusive pattern. When the genes were divided into three subgroups according to their roles in the signaling cascade, mutations in the EGFR/ERBB2 and KRAS/BRAF genes were more frequent in ACs than in SCCs (p < 0.001 and p = 0.01, respectively). In marked contrast, mutations in the PIK3CA/PTEN were more frequent in SCCs than in ACs (p = 0.002). Furthermore, mutations in the PIK3CA/PTEN genes were more frequent in smokers (p = 0.04). DISCUSSION Our study demonstrates that mutations in each part of the EGFR pathway were associated with different clinicopathologic features in patients with NSCLCs.
Collapse
|
158
|
Yoo SB, Xu X, Lee HJ, Jheon S, Lee CT, Choe G, Chung JH. Loss of PTEN Expression is an Independent Poor Prognostic Factor in Non-small Cell Lung Cancer. KOREAN JOURNAL OF PATHOLOGY 2011. [DOI: 10.4132/koreanjpathol.2011.45.4.329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Seol Bong Yoo
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Xianhua Xu
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
- Tumor Immunity Medical Research Center at Seoul National University College of Medicine, Seoul, Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Choon-Taek Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Tumor Immunity Medical Research Center at Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
159
|
Pu X, Hildebrandt MA, Lu C, Lin J, Stewart DJ, Ye Y, Gu J, Spitz MR, Wu X. PI3K/PTEN/AKT/mTOR pathway genetic variation predicts toxicity and distant progression in lung cancer patients receiving platinum-based chemotherapy. Lung Cancer 2011; 71:82-8. [PMID: 20447721 PMCID: PMC2952281 DOI: 10.1016/j.lungcan.2010.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/08/2010] [Accepted: 04/03/2010] [Indexed: 11/18/2022]
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of cancer-related deaths. The effect of the PI3K/PTEN/AKT/mTOR signaling pathway on cancer treatment, including NSCLC, has been well documented. In this study, we analyzed associations between genetic variations within this pathway and clinical outcomes following platinum-based chemotherapy in 168 patients with stage IIIB (wet) or stage IV NSCLC. Sixteen tagging SNPs in five core genes (PIK3CA, PTEN, AKT1, AKT2, and FRAP1) of this pathway and identified SNPs associated with development of toxicity and disease progression. We observed significantly increased toxicity for patients with PIK3CA:rs2699887 (OR: 3.86, 95% CI: 1.08-13.82). In contrast, a SNP in PTEN was associated with significantly reduced risk for chemotherapeutic toxicity (OR: 0.44, 95% CI: 0.20-0.95). We identified three SNPs in AKT1 resulting in significantly decreased risks of distant progression in patients carrying at least one variant allele with HRs of 0.66 (95% CI: 0.45-0.97), 0.52 (95% CI: 0.35-0.77), and 0.62 (95% CI: 0.42-0.91) for rs3803304, rs2498804, and rs1130214, respectively. Furthermore, these same variants conferred nearly 2-fold increased progression-free survival times. The current study provides evidence that genetic variations within the PI3K/PTEN/AKT/mTOR signaling pathway are associated with variation in clinical outcomes of NSCLC patients. With further validation, our findings may provide additional biomarkers for customized treatment of platinum-based chemotherapy for NSCLC.
Collapse
Affiliation(s)
- Xia Pu
- Departments of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | | | - Charles Lu
- Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jie Lin
- Departments of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - David J. Stewart
- Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Yuanqing Ye
- Departments of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jian Gu
- Departments of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Margaret R. Spitz
- Departments of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Xifeng Wu
- Departments of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
160
|
DNA methylation in thoracic neoplasms. Cancer Lett 2010; 301:7-16. [PMID: 21087818 DOI: 10.1016/j.canlet.2010.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/14/2010] [Accepted: 10/20/2010] [Indexed: 12/31/2022]
Abstract
Thoracic neoplasms, which include lung cancers, esophageal carcinoma, and thymic epithelial tumors, are the leading causes of tumor-related death and a major health concern worldwide. The development of neoplasms is a multistep process involving both genetic and epigenetic alterations. A growing body of research provides evidence that aberrant DNA methylation, including DNA hypermethylation in promoter regions, global DNA hypomethylation and the overexpression of DNA methyltransferases, plays an important role in tumorigenesis. In this review, we summarize published observations of methylation pattern disruptions in thoracic tumors, and discuss how these abnormalities contribute to the development of cancers. We review recent findings showing that suppressing the activity of the DNA methylating enzymes DNMTs can have potent anti-cancer effects, and discuss the possibility of developing novel therapies for thoracic tumors based on DNMT inhibition.
Collapse
|
161
|
Bourne TD, Schiff D. Update on molecular findings, management and outcome in low-grade gliomas. Nat Rev Neurol 2010. [PMID: 21045797 DOI: 10.1038/nrneurol.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Low-grade infiltrating gliomas in adults include diffuse astrocytoma, oligoastrocytoma and oligodendroglioma. The current gold standard diagnosis of these tumors relies on histological classification; however, emerging molecular abnormalities discovered in these tumors are playing an increasingly prominent part in the process of tumor diagnosis and, consequently, patient management. The frequency and clinical importance of tumor protein p53 (TP53) abnormalities, deletions involving chromosomes 1p and 19q, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, abnormalities in the PTEN tumor suppressor gene and the BRAF oncogene, and isocitrate dehydrogenase (IDH) mutations have become better defined. Molecular markers have not, historically, had an important role in determining the course of treatment for patients with low-grade gliomas, but ongoing phase III clinical trials incorporate 1p deletion or 1p19q codeletion status-and future trials plan to incorporate MGMT promoter methylation status-as stratification factors. Future trials will need to incorporate IDH mutational status in addition to these factors. Ultimately, molecular marker assessment will, hopefully, improve the accuracy of tumor diagnosis and enhance the effectiveness of treatment to achieve improved patient outcomes.
Collapse
Affiliation(s)
- T David Bourne
- University of Virginia Health System, Department of Pathology, Division of Neuropathology, Charlottesville, VA 22908-0214, USA
| | | |
Collapse
|
162
|
|
163
|
Amodio N, Scrima M, Palaia L, Salman AN, Quintiero A, Franco R, Botti G, Pirozzi P, Rocco G, De Rosa N, Viglietto G. Oncogenic role of the E3 ubiquitin ligase NEDD4-1, a PTEN negative regulator, in non-small-cell lung carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2622-34. [PMID: 20889565 DOI: 10.2353/ajpath.2010.091075] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss of the PTEN tumor suppressor gene occurs frequently in non-small-cell lung carcinoma (NSCLC), although neither genetic alterations nor epigenetic silencing are significant predictors of PTEN protein levels. Since recent reports implicated neural precursor cell expressed, developmentally down-regulated 4-1 (NEDD4-1) as the E3 ubiquitin ligase that regulates PTEN stability, we investigated the role of NEDD4-1 in the regulation of PTEN expression in cases of NSCLC. Our findings indicate that NEDD4-1 plays a critical role in the development of NSCLC and provides novel insight on the mechanisms that contribute to inactivate PTEN in lung cancer. Immunohistochemical analysis on tissue microarrays containing 103 NSCLC resections revealed NEDD4-1 overexpression in 80% of tumors, which correlated with the loss of PTEN protein (n=98; P<0.001). Accordingly, adoptive NEDD4-1 expression in NSCLC cells decreased PTEN protein stability, whereas knock-down of NEDD4-1 expression decreased PTEN ubiquitylation and increased PTEN protein levels. In 25% of cases, NEDD4-1 overexpression was due to gene amplification at 15q21. In addition, manipulation of NEDD4-1 expression in different lung cell systems demonstrated that suppression of NEDD4-1 expression significantly reduced proliferation of NSCLC cells in vitro and tumor growth in vivo, whereas NEDD4-1 overexpression facilitated anchorage-dependent and independent growth in vitro of nontransformed lung epithelial cells that lack pRB and TP53 (BEAS-2B). NEDD4-1 overexpression also augmented the tumorigenicity of lung cancer cells that have an intact PTEN gene (NCI-H460 cells).
Collapse
Affiliation(s)
- Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Overexpression of the Parkinson Disease Protein DJ-1 and its Regulator PTEN in Gestational Trophoblastic Disease. Int J Gynecol Pathol 2010; 29:468-75. [DOI: 10.1097/pgp.0b013e3181de3068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
165
|
Kratz JR, Yagui-Beltrán A, Jablons DM. Cancer stem cells in lung tumorigenesis. Ann Thorac Surg 2010; 89:S2090-5. [PMID: 20493987 DOI: 10.1016/j.athoracsur.2010.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 12/13/2022]
Abstract
Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continued research in the field of lung cancer stem cell biology is vital, as ongoing efforts promise to yield new prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Johannes R Kratz
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
166
|
Kim DS, Lee SM, Yoon GS, Choi JE, Park JY. Infrequent hypermethylation of the PTEN gene in Korean non-small-cell lung cancers. Cancer Sci 2010; 101:568-72. [PMID: 20175786 PMCID: PMC11159311 DOI: 10.1111/j.1349-7006.2009.01406.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CpG islands (CGIs) hypermethylation is implicated in the pathogenesis of many cancers, including lung cancer. The phosphate and tension homolog (PTEN) is a tumor suppressor that controls a variety of biological processes including cell proliferation, growth, migration, and death. The defects in PTEN regulation have a profound impact on carcinogenesis. Herein, we have examined the methylation status of the human PTEN gene in 137 primary non-small-cell lung cancers (NSCLCs) by using a methylation-specific PCR and correlated the results with clinicopathological features. Promoter methylation of the PTEN gene was observed in 5.1%, 2.9%, and 0.0% of three different CpG regions, which were localized at -1460 to -1263, -984 to -848, and -300 to -128 nucleotides upstream of the translation start site, respectively. Reverse transcription-PCR and immunohistochemical analysis showed the methylation of the CGI region at -984 to -848 correlated more accurately with PTEN expression. In addition, no significant correlation was found between PTEN methylation and clinicopathological factors, including the survival rates. These findings suggest that promoter methylation is not an important mechanism for PTEN deregulation in NSCLCs from Koreans.
Collapse
Affiliation(s)
- Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | |
Collapse
|
167
|
TRAIL receptor targeting therapies for non-small cell lung cancer: Current status and perspectives. Drug Resist Updat 2010; 13:2-15. [DOI: 10.1016/j.drup.2009.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 11/25/2009] [Indexed: 12/17/2022]
|
168
|
Other Molecular Targeted Agents in Non-small Cell Lung Cancer. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
169
|
Abstract
Lung cancer is the leading cause of cancer-related death in the United States, and 85 to 90% of lung cancer cases are associated with tobacco use. Tobacco components promote lung tumorigenesis through genotoxic effects, as well as through biochemical modulation of signaling pathways such as the Akt/mammalian target of rapamycin (mTOR) pathway that regulates cell proliferation and survival. This review will describe cell surface receptors and other upstream components required for tobacco carcinogen-induced activation of Akt and mTOR. Preclinical studies show that inhibitors of the Akt/mTOR pathway inhibit tumor formation in mouse models of carcinogen-induced lung tumorigenesis. Some of these inhibitors will be highlighted, and their clinical potential for the treatment and prevention of lung cancer will be discussed.
Collapse
Affiliation(s)
- Regan M Memmott
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20889, USA
| | | |
Collapse
|
170
|
|
171
|
Melkamu T, Zhang X, Tan J, Zeng Y, Kassie F. Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 2009; 31:252-8. [PMID: 19748927 DOI: 10.1093/carcin/bgp208] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-protein-coding RNAs that can function as tumor suppressors or oncogenes. Deregulation of miRNA expression has been reported in lung cancer. However, modulation of miRNA expression by chemopreventive agents remains to be defined. In the present study, we examined if the chemopreventive agent indole-3-carbinol (I3C) reversed vinyl carbamate (VC)-induced deregulation of miRNA levels in lung tissues of female A/J mice. Lung tissues were obtained from a previous chemoprevention study, in which mice were treated with VC and given I3C in the diet for 15 weeks. Microarray studies revealed alterations in the expression of a number of miRNAs in lung tumors relative to that of normal lungs. miR-21, mir-31, miR-130a, miR-146b and miR-377 were consistently upregulated, whereas miR-1 and miR-143 were downregulated in lung tumors relative to normal lungs. In mice treated with VC and given I3C in the diet, levels of miR-21, mir-31, miR-130a, miR-146b and miR-377 were reduced relative to the level in mice treated with the carcinogen only. The results of the microarray study were confirmed by quantitative reverse transcription-polymerase chain reaction and gel analysis of polymerase chain reaction products. Further studies with miR-21 indicated that phosphatase and tensin homolog, programmed cell death 4 and rich protein with Kazal motifs are potential targets for the oncogenic effect of miR-21 and the chemopreventive activity of I3C. Taken together, we showed here that miRNAs are deregulated during VC-induced mouse lung tumorigenesis and their levels are modulated by I3C. Therefore, miRNAs and their target genes are promising biomarkers for the diagnosis of lung cancer and efficacy of chemopreventive/chemotherapeutic agents.
Collapse
Affiliation(s)
- Tamene Melkamu
- College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
172
|
Cetin Z, Ozbilim G, Erdogan A, Luleci G, Karauzum SB. Evaluation of PTEN and Mcl-1 expressions in NSCLC expressing wild-type or mutated EGFR. Med Oncol 2009; 27:853-60. [PMID: 19763916 DOI: 10.1007/s12032-009-9296-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 08/18/2009] [Indexed: 12/18/2022]
Abstract
Signaling pathways activated by epidermal growth factor receptors (EGFRs) are important in lung carcinogenesis. New treatment strategies with EGFR-targeting drugs provided improvements in management of lung cancer. However, molecular mechanisms underlying resistance to these drugs need to be evaluated. Surgically resected samples were obtained from 50 patients with non-small-cell-lung cancer. PTEN, Mcl-1 and EGFR protein expression levels were evaluated by Western-blot. Direct sequencing was performed to investigate EGFR tyrosine kinase domain mutations. We detected c.2235-2249 (pGlu746-Ala750del) mutation in exon 19 in two patients with adenocarcinoma histology. Elevated expression levels of both Mcl-1 isoforms (Mcl-1S and Mcl-1XL) and EGFR proteins were found in 15 (30%) and 23 (46%) of the cases, respectively. Reduced PTEN protein expression levels were observed in 17 (34%) of the cases. PTEN expression level was reduced in 26% of cases that showed increased EGFR expression. Also, increased expression of Mcl-1 protein was observed in 26% of cases with EGFR overexpression. One of the cases harboring pGlu746-Ala750del mutation had increased levels of Mcl-1 and decreased PTEN expression levels. Our results indicate that, in addition to lack of PTEN expression, elevated levels of the Mcl-1 protein might be one of the important intrinsic mechanisms protecting non-small-cell-lung cancer cells from apoptosis induced by several compounds. Therefore, EGFR mutations in conjunction with evaluation of Mcl-1 and PTEN expression levels in large cohorts might provide important clues for improvements of new treatment strategies in non-small-cell-lung cancer management.
Collapse
Affiliation(s)
- Zafer Cetin
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | | | | | | |
Collapse
|
173
|
Hao LS, Zhang XL, An JY, Karlin J, Tian XP, Dun ZN, Xie SR, Chen S. PTEN expression is down-regulated in liver tissues of rats with hepatic fibrosis induced by biliary stenosis. APMIS 2009; 117:681-91. [PMID: 19703128 DOI: 10.1111/j.1600-0463.2009.02515.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gene phosphatase and tensin homolog deleted on chromosome 10 (PTEN) codes for a tumor-suppressor phospholipid phosphatase. Deletion, mutation or abnormal expression of PTEN is commonly found in many kinds of malignant tumors. At the time of this study, though, the role of PTEN expression in the pathology of hepatic fibrosis remains unclear. In this study, we investigate the dynamic expression of PTEN in a rat model of hepatic fibrosis, with special emphasis on the activation and proliferation of hepatic stellate cells (HSC) in vivo. The rat model of hepatic fibrosis used in this study employed common bile duct ligation. At four time points, the expression of PTEN in hepatic tissues and activated HSC in rat liver tissues was measured by immunohistochemical staining, Western blotting, real-time fluorescent quantitative PCR and immunofluorescence confocal laser scanning microscopy, respectively. Further, alpha-smooth muscle actin (alpha-SMA), an activated HSC marker in rat liver tissues, was detected by immunohistochemical staining. This study showed that aggravation of hepatic fibrosis led to gradually decreasing expression of PTEN in the hepatic tissues. Further, as hepatic fibrosis worsens, PTEN-expressing activated HSC accounts for an increasingly smaller percentage of all activated HSC. In contrast, the percentage of alpha-SMA-expressing HSC cells increases significantly. In conclusion, expression of PTEN mRNA and protein is down-regulated in fibrogenic rat liver tissue, and its expression in HSC in vivo also decreases with progression of fibrosis. Thus, these results show that the dynamic expression of PTEN in hepatic tissues negatively correlates with activation and proliferation of HSC.
Collapse
Affiliation(s)
- Li Sen Hao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Regina S, Valentin JB, Lachot S, Lemarié E, Rollin J, Gruel Y. Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clin Chem 2009; 55:1834-42. [PMID: 19661141 DOI: 10.1373/clinchem.2009.123695] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Tissue factor (TF), the main initiator of blood coagulation, is also a signaling protein that regulates cancer progression. TF synthesis was recently shown to be affected by tumor suppressor genes (TSGs) in tumor cell lines. We therefore studied TF gene (F3) expression and the status of genes coding for tumor protein p53 (TP53), phosphatase and tensin homolog (PTEN), and serine/threonine kinase 11 (STK11) in non-small cell lung cancer (NSCLC). Heparanase (HPSE) gene expression was also measured because this endo-beta-D-glucuronidase was recently shown to enhance TF gene expression. METHODS TF and heparanase mRNA expression was measured by real-time PCR in 53 NSCLC tumors. Exons 5-8 of TP53 were sequenced from genomic DNA. Mutations of PTEN and STK11 were screened by multiplex ligation-dependent probe amplification. RESULTS TF mRNA levels were significantly higher in T(3)-T(4) tumors (P = 0.04) and in stages III-IV of NSCLC (P = 0.03). Mutations of TP53, STK11, and PTEN were identified in 20 (37.7%), 21 (39%), and 20 (37.7%) of tumors, respectively. TF expression was higher in mutated TP53 (TP53(Mut)) (P = 0.02) and PTEN(Mut) (P = 0.03) samples. Moreover, TF mRNA increased from 2700 copies (no mutation) to 11 6415 when 3 TSG were mutated. Heparanase gene expression did not differ according to TF gene (F3) expression or TSG mutation. The median survival time was shorter in patients with tumor TF mRNA levels above median values (relative risk 2.2; P = 0.03, multivariate analysis) and when TP53 was mutated (relative risk 1.8; P = 0.02). CONCLUSIONS These results provide clear evidence that combined oncogene events affecting TSG dramatically increase TF gene expression in lung tumors. Moreover, this study suggests that TF gene expression could be used as a prognostic marker in NSCLC.
Collapse
Affiliation(s)
- Sandra Regina
- Department of Hematology-Hemostasis, Trousseau Hospital and François Rabelais University, Tours, France
| | | | | | | | | | | |
Collapse
|
175
|
Mahalingam D, Mita A, Mita MM, Nawrocki ST, Giles FJ. Targeted therapy for advanced non-small cell lung cancers: historical perspective, current practices, and future development. Curr Probl Cancer 2009; 33:73-111. [PMID: 19409299 DOI: 10.1016/j.currproblcancer.2009.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Devalingam Mahalingam
- Institute of Drug Development, Division of Cancer Research and Therapy Center, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | |
Collapse
|
176
|
RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small cell lung cancer in China. J Cancer Res Clin Oncol 2009; 135:1675-84. [PMID: 19506903 DOI: 10.1007/s00432-009-0614-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To identify the DNA methylation biomarkers for the detection of the stage I non-small cell lung cancer (NSCLC). MATERIALS AND METHODS The methylated state of p16INK4A, ESR1, HOX9, RASSF1A, DAPK1, PTEN, ABCB1, MGMT, APC and MT1G genes that have been reported frequently methylated in lung cancer was determined using methylation-specific PCR in four lung cancer cell lines, 124 cancer tissues of the stage I NSCLC and 26 non-cancerous disease tissues. RESULT The RASSF1A (53/124, 42.74%), APC (49/123, 39.52%), ESR1 (37/124, 29.84%), ABCB1 (31/124, 24.19%, MT1G (25/124, 20.16%) and HOXC9 (17/124, 13.71%) genes were more frequently methylated in the lung tissue from the stage I NSCLC than the non-cancerous lesion patients (2/26, 7.69%, P < 0.01; 2/26, 7.69%, P < 0.01; 2/26, 7.69%, P < 0.05; 1/26, 3.85% P < 0.01; 0/26 0%, P value: <0.01; 0/26, 0%, P < 0.05, respectively). p16INK4A was methylated in 28/124 (22.56%) of cancer tissues and 2/26 (7.69%) of non-cancerous tissues (P value >0.05). No significant association between the methylated state of the genes and the smoking, age or the pathologic types (squamous carcinoma, adenoma and the mixed types) was found. However, p16INK4A methylation was more frequently detected in the male (23/80, 28.75%) than the female (5/44, 11.36%, P > 0.05) patients. MGMT was barely methylated: 1/67, 1.49%), while DAPK1 and PTEN were not at all methylated in the cancer groups. CONCLUSIONS Methylation analysis in tissue of RASSF1A, APC, ESR1, ABCB1 and HOXC9 genes confirmed 79.8% of the existing diagnosis for the stage I NSCLC at specificity: 73.1%. The insufficiency of predicting disease onset in China, using the previously recommended targets (MGMT, DAPK1 and PTEN) in the United States reflects a potential disease disparity between these two populations. Alternatively, methylated state of this set of genes may be more specific to the late rather than the early stage of NSCLC.
Collapse
|
177
|
Ma J, Sawai H, Ochi N, Matsuo Y, Xu D, Yasuda A, Takahashi H, Wakasugi T, Takeyama H. PTEN regulates angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells. Mol Cell Biochem 2009; 331:161-71. [PMID: 19437103 DOI: 10.1007/s11010-009-0154-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/28/2009] [Indexed: 02/06/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) pathway exerts its effects through Akt, its downstream target molecule, and thereby regulates various cell functions including cell proliferation, cell transformation, apoptosis, tumor growth, and angiogenesis. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been implicated in regulating cell survival signaling through the PI3K/Akt pathway. However, the mechanism by PI3K/PTEN signaling regulates angiogenesis and tumor growth in vivo remains to be elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in tumor angiogenesis. The effect of PTEN on VEGF-mediated signal in pancreatic cancer is unknown. This study aimed to determine the effect of PTEN on both the expression of VEGF and angiogenesis. Toward that end, we used the siRNA knockdown method to specifically define the role of PTEN in the expression of VEGF and angiogenesis. We found that siRNA-mediated inhibition of PTEN gene expression in pancreatic cancer cells increase their VEGF secretion, up-modulated the proliferation, and migration of co-cultured vascular endothelial cell and enhanced tubule formation by HUVEC. In addition, PTEN modulated VEGF-mediated signaling and affected tumor angiogenesis through PI3K/Akt/VEGF/eNOS pathway.
Collapse
Affiliation(s)
- Jiachi Ma
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Kawasumi 1, Mizuho-cho, Mizuhoku, Nagoya, 467-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Zolota VG, Tzelepi VN, Leotsinidis M, Zili PE, Panagopoulos ND, Dougenis D, Tsamandas AC, Scopa CD. Histologic-type specific role of cell cycle regulators in non-small cell lung carcinoma. J Surg Res 2009; 164:256-65. [PMID: 19691991 DOI: 10.1016/j.jss.2009.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Lung cancer is the most lethal type of cancer in humans. Cell cycle alterations have commonly been encountered in lung cancer and may have prognostic value. MATERIALS AND METHODS This study investigates the immunohistochemical expression of the important cell cycle regulators phosphatase and tensin homolog deleted on chromosome 10 (PTEN), p27, Cks1, and Skp2 in 128 non-small cell lung carcinomas (64 adenocarcinomas, 46 squamous cell carcinomas, and 18 large cell undifferentiated carcinomas) and adjacent non-neoplastic lung tissue. RESULTS PTEN and p27 were always highly expressed in non-neoplastic lung whereas Cks1 and Skp2 were not expressed in normal tissue. Decreased PTEN expression was noted in 19/64 adenocarcinomas, 15/46 squamous cell carcinomas, and 7/18 undifferentiated large cell carcinomas. Reduced expression of p27 was noted in 28/64, 19/46, and 6/18 of the tumors, respectively. Increased expression of Cks1 was seen in 38/64, 26/46, and 11/18 and increased expression of Skp2 in 29/64, 30/46, and 14/18 of the tumors, respectively. An inverse relationship between p27 and Skp2 levels was found in adenocarcinomas and between p27 and Cks1 levels in squamous cell carcinomas. Decreased PTEN and p27 expression were associated with advanced tumor stage in squamous cell carcinomas. Univariate analysis showed that high p27 and PTEN and low Cks1 expression correlated with increased survival in patients with squamous cell carcinoma independently of tumor stage. CONCLUSIONS Aberrant expression of PTEN, p27, Cks1, and Skp2 is a common feature of all three major types of non-small cell lung cancer NSCLC, but seems to be involved in the progression of squamous cell carcinoma alone.
Collapse
Affiliation(s)
- Vassiliki G Zolota
- Department of Pathology, Medical School, University of Patras, Patras, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D, Masi G, Graziano F, Cremolini C, Rulli E, Canestrari E, Funel N, Schiavon G, Petrini I, Magnani M, Tonini G, Campani D, Floriani I, Cascinu S, Falcone A. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 2009; 27:2622-9. [PMID: 19398573 DOI: 10.1200/jco.2008.20.2796] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE PTEN, AKT, and KRAS are epidermal growth factor receptor (EGFR) downstream regulators. KRAS mutations confer resistance to cetuximab. This retrospective study investigated the role of PTEN loss, AKT phosphorylation, and KRAS mutations on the activity of cetuximab plus irinotecan in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS A cohort of patients with irinotecan-refractory mCRC who were treated with cetuximab plus irinotecan was tested for PTEN immunoreactivity (ie, immunohistochemistry; IHC), pAKT IHC, and KRAS mutations. Analyses were performed both on primary tumors and on related metastases, and the association among IHC, mutational results, and treatment outcomes was investigated. RESULTS One-hundred two patients were eligible. Ninety-six primary tumors, 59 metastases, and 53 paired samples were available. Forty-nine primary tumors (58% of assessable samples) had a preserved PTEN expression (PTEN-positive), whereas 35 (40% of assessable samples) were pAKT-positive. Levels of concordance between primary tumors and metastases were 60%, 68%, and 95% for PTEN, pAKT, and KRAS, respectively. PTEN status on primary tumors and pAKT status both on primary tumors and on metastases did not predict response or progression-free survival (PFS). On metastases, 12 (36%) of 33 patients with PTEN-positive tumors were responders compared with one (5%) of 22 who had PTEN-negative tumors (P = .007). The median PFS of patients with PTEN-positive metastases was 4.7 months compared with 3.3 months for those with PTEN-negative metastases (hazard ratio [HR], 0.49; P = .005). Patients with PTEN-positive metastases and KRAS wild type had longer PFS compared with other patients (5.5 months v 3.8 months; HR, 0.42; P = .001). CONCLUSION PTEN loss in metastases may be predictive of resistance to cetuximab plus irinotecan. The combination of PTEN IHC and KRAS mutational analyses could help to identify a subgroup of patients with mCRC who have higher chances of benefiting from EGFR inhibition.
Collapse
Affiliation(s)
- Fotios Loupakis
- Department of Oncology, Azienda USL 6, Istituto Toscano Tumori, Livorno, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
|
181
|
Abstract
Pten is a negative regulator of the Akt pathway, and its inactivation is believed to be an etiological factor in many tumor types. Pten+/- mice are susceptible to a variety of spontaneous tumor types, depending on strain background. Pten+/- mice, in lung tumor-sensitive and -resistant background strains, were treated with a tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), to determine whether allelic Pten deletion can cooperate with NNK in carcinogenesis in lung or other tissues. In lung tumor-resistant C57BL/6 Pten+/- or +/+ mice, NNK treatment did not lead to any lung tumors and did not increase the incidence or severity of tumors previously reported for this strain. In contrast, in a lung tumor-susceptible pseudo-A/J strain, there was a dose-dependent increase in lung tumor size in Pten+/- compared with +/+ mice, although there was no increase in multiplicity. No other tumor types were observed in pseudo-A/J Pten+/- mice regardless of NNK treatment. Lung tumors from these Pten+/- mice had K-ras mutations, retained Pten expression and had similar Akt pathway activation as lung tumors from +/+ mice. Therefore, deletion of a single copy of Pten does not substantially add to the lung tumor phenotype conferred by mutation of K-ras by NNK, and there is likely no selective advantage for loss of the second Pten allele in lung tumor initiation.
Collapse
|
182
|
The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 2008; 27:5398-415. [PMID: 18794876 DOI: 10.1038/onc.2008.238] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In 1997, PTEN (phosphatase and tensin homologue deleted on chromosome 10, 10q23.3) was identified as an important tumor suppressor gene that is inactivated in a wide variety of human cancers. Ever since, PTEN's function has been extensively studied, and huge progress has been made in understanding PTEN's role in normal physiology and disease. In this review, we will systematically summarize the important data that have been gained from gene inactivation studies in mice and will put these data into physiological context using a tissue-by-tissue approach. We will cover mice exhibiting complete and constitutive inactivation of Pten as well as a large number of strains in which Pten has been conditionally deleted in specific tissues. We hope to highlight not only the tumor suppressive function of Pten but also its roles in embryogenesis and in the maintenance of the normal physiological functions of many organ systems.
Collapse
|
183
|
Makowski L, Hayes DN. Role of LKB1 in lung cancer development. Br J Cancer 2008; 99:683-8. [PMID: 18728656 PMCID: PMC2528145 DOI: 10.1038/sj.bjc.6604515] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/03/2008] [Accepted: 06/25/2008] [Indexed: 12/12/2022] Open
Abstract
Three phenotypically related genetic syndromes and their lesions (LKB1, PTEN, and TSC1/2) are identified as frequently altered in lung cancer. LKB1, a kinase inactivated in 30% of lung cancers, is discussed in this review. Loss of LKB1 regulation often coincident with KRAS activation allows for unchecked growth and the metabolic capacity to accommodate the proliferation.
Collapse
Affiliation(s)
- L Makowski
- Division of Endocrinology, Department of Medicine, Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Metabolism, and Nutrition, Durham, NC, USA
| | - D N Hayes
- Division of Medical Oncology, Department of Internal Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
184
|
Wang YC, Kulp SK, Wang D, Yang CC, Sargeant AM, Hung JH, Kashida Y, Yamaguchi M, Chang GD, Chen CS. Targeting endoplasmic reticulum stress and Akt with OSU-03012 and gefitinib or erlotinib to overcome resistance to epidermal growth factor receptor inhibitors. Cancer Res 2008; 68:2820-30. [PMID: 18413750 DOI: 10.1158/0008-5472.can-07-1336] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Preexisting and acquired resistance to epidermal growth factor receptor (EGFR) inhibitors limits their clinical usefulness in patients with advanced non-small cell lung cancer (NSCLC). This study characterizes the efficacy and mechanisms of the combination of gefitinib or erlotinib with OSU-03012, a celecoxib-derived antitumor agent, to overcome EGFR inhibitor resistance in three NSCLC cell lines, H1155, H23, and A549. The OSU-03012/EGFR inhibitor combination induced pronounced apoptosis in H1155 and H23 cells, but not in A549 cells, suggesting a correlation between drug sensitivity and basal phospho-Akt levels independently of EGFR expression status. Evidence indicates that this combination facilitates apoptosis through both Akt signaling inhibition and up-regulation of endoplasmic reticulum (ER) stress-induced, GADD153-mediated pathways. For example, ectopic expression of constitutively active Akt significantly attenuated the inhibitory effect on cell survival, and small interfering RNA-mediated knockdown of GADD153 protected cells from undergoing apoptosis in response to drug cotreatments. Furthermore, the OSU-03012/EGFR inhibitor combination induced GADD153-mediated up-regulation of death receptor 5 expression and subsequent activation of the extrinsic apoptosis pathway. It is noteworthy that the ER stress response induced by this combination was atypical in that the cytoprotective pathway was not engaged. In addition, in vivo suppression of tumor growth and modulation of intratumoral biomarkers were observed in a H1155 tumor xenograft model in nude mice. These data suggest that the concomitant modulation of Akt and ER stress pathways with the OSU-03012/EGFR inhibitor combination represents a unique approach to overcoming EGFR inhibitor resistance in NSCLC and perhaps other types of cancer with elevated basal Akt activities.
Collapse
Affiliation(s)
- Yu-Chieh Wang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Yang Y, Iwanaga K, Raso MG, Wislez M, Hanna AE, Wieder ED, Molldrem JJ, Wistuba II, Powis G, Demayo FJ, Kim CF, Kurie JM. Phosphatidylinositol 3-kinase mediates bronchioalveolar stem cell expansion in mouse models of oncogenic K-ras-induced lung cancer. PLoS One 2008; 3:e2220. [PMID: 18493606 PMCID: PMC2376060 DOI: 10.1371/journal.pone.0002220] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 04/14/2008] [Indexed: 11/19/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined. Methodology/Principal Findings We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K. Conclusions/Significance We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients.
Collapse
Affiliation(s)
- Yanan Yang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kentaro Iwanaga
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Maria Gabriela Raso
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Marie Wislez
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Tenon, UFR Pierre et Marie Curie, Université Paris VI, Paris, France
| | - Amy E. Hanna
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Eric D. Wieder
- Department of Stem Cell Transplantation Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jeffrey J. Molldrem
- Department of Stem Cell Transplantation Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ignacio I. Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Garth Powis
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Francesco J. Demayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Carla F. Kim
- Children's Hospital Stem Cell Program and Department of Genetics, Harvard Medical School and Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
186
|
Götz R. Inter-cellular adhesion disruption and the RAS/RAF and beta-catenin signalling in lung cancer progression. Cancer Cell Int 2008; 8:7. [PMID: 18492263 PMCID: PMC2427011 DOI: 10.1186/1475-2867-8-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/20/2008] [Indexed: 12/30/2022] Open
Abstract
Cadherin cell adhesion molecules play an essential role in creating tight intercellular association and their loss has been correlated with poor prognosis in human cancer. Mutational activation of protein kinases and loss of cell adhesion occur together in human lung adenocarcinoma but how these two pathways interconnect is only poorly understood. Mouse models of human lung adenocarcinoma with oncogene expression targeted to subtypes of lung epithelial cells led to formation of adenomas or adenocarcinomas that lacked metastatic potential. Conditional genetic abrogation of epithelial tumour cell adhesion in mice with benign lung tumours induced by oncogenic RAF kinase has been demonstrated to induce intratumourous vascularization (angiogenic switch), progression to invasive adenocarcinoma and micrometastasis. Importantly, breaking cell adhesion in benign oncogene-driven lung tumour cells activated beta-catenin signalling and induced the expression of several genes that are normally expressed in intestine rather than the lung. I will discuss potential routes to nuclear beta-catenin signalling in cancer and how nuclear beta-catenin may epigenetically alter the plasticity of tumour cells during malignant progression.
Collapse
Affiliation(s)
- Rudolf Götz
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Germany.
| |
Collapse
|
187
|
Iwanaga K, Yang Y, Raso MG, Ma L, Hanna AE, Thilaganathan N, Moghaddam S, Evans CM, Li H, Cai WW, Sato M, Minna JD, Wu H, Creighton CJ, Demayo FJ, Wistuba II, Kurie JM. Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer. Cancer Res 2008; 68:1119-27. [PMID: 18281487 DOI: 10.1158/0008-5472.can-07-3117] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphatase and tensin homologue deleted from chromosome 10 (Pten) is expressed aberrantly in non-small cell lung cancer cells, but the role of Pten in lung neoplasia has not been fully elucidated. In this study, we used a genetic approach to inactivate Pten in the bronchial epithelium of mice. Although, by itself, Pten inactivation had no discernible effect on bronchial epithelial histology, it accelerated lung tumorigenesis initiated by oncogenic K-ras, causing more rapid lethality than that induced by oncogenic K-ras alone (8 weeks versus 24 weeks of median duration of survival, respectively). Lung tumors arose in K-ras mutant, Pten-deficient mice that rapidly obstructed bronchial lumina and replaced alveolar spaces. Relative to K-ras mutant tumors, the K-ras mutant, Pten-deficient tumors exhibited more advanced histologic severity and more prominent inflammation and vascularity. Thus, Pten inactivation cooperated with oncogenic K-ras in promoting lung tumorigenesis.
Collapse
Affiliation(s)
- Kentaro Iwanaga
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas-M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Legrier ME, Yang CPH, Yan HG, Lopez-Barcons L, Keller SM, Pérez-Soler R, Horwitz SB, McDaid HM. Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res 2008; 67:11300-8. [PMID: 18056456 DOI: 10.1158/0008-5472.can-07-0702] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is a genetically heterogeneous disease characterized by the acquisition of somatic mutations in numerous protein kinases, including components of the rat sarcoma viral oncogene homolog (RAS) and AKT signaling cascades. These pathways intersect at various points, rendering this network highly redundant and suggesting that combined mitogen-activated protein/extracellular signal-regulated kinase (MEK) and mammalian target of rapamycin (mTOR) inhibition may be a promising drug combination that can overcome its intrinsic plasticity. The MEK inhibitors, CI-1040 or PD0325901, in combination with the mTOR inhibitor, rapamycin, or its analogue AP23573, exhibited dose-dependent synergism in human lung cancer cell lines that was associated with suppression of proliferation rather than enhancement of cell death. Concurrent suppression of MEK and mTOR inhibited ribosomal biogenesis by 40% within 24 h and was associated with a decreased polysome/monosome ratio that is indicative of reduced protein translation efficiency. Furthermore, the combination of PD0325901 and rapamycin was significantly superior to either drug alone or PD0325901 at the maximum tolerated dose in nude mice bearing human lung tumor xenografts or heterotransplants. Except for a PTEN mutant, all tumor models had sustained tumor regressions and minimal toxicity. These data (a) provide evidence that both pathways converge on factors that regulate translation initiation and (b) support therapeutic strategies in lung cancer that simultaneously suppress the RAS and AKT signaling network.
Collapse
Affiliation(s)
- Marie-Emmanuelle Legrier
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Chang D, Wang TY, Li HC, Wei JC, Song JX. Prognostic significance of PTEN expression in esophageal squamous cell carcinoma from Linzhou City, a high incidence area of northern China. Dis Esophagus 2007; 20:491-6. [PMID: 17958724 DOI: 10.1111/j.1442-2050.2007.00695.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Decreased expression of tumor suppressor gene PTEN has been reported to be a poor prognostic indicator in a variety of human malignant tumors. The purpose of this study was to clarify the roles of PTEN in esophageal squamous cell carcinoma (ESCC) and the prognostic significance of PTEN protein expression. Sixty-four patients from a high incidence area of northern China who underwent esophagectomy for ESCC between January 1998 and December 1999 enrolled in this study. PTEN expression was assessed by immunohistochemistry in 64 primary cancers and 64 paired normal esophageal epithelium tissues. The positive rate and staining grade of PTEN protein expression was lower in the esophageal cancers than in paired adjacent normal esophageal epithelium (P < 0.001). PTEN expression correlated with tumor differentiation (P = 0.001), tumor infiltration depth (P = 0.015) and pTNM staging (P = 0.048). The 5-year survival rate in patients with PTEN positive expression was 82% compared to 39% in patients with PTEN negative expression (P = 0.0019). Our results show that the expression of PTEN is decreased in ESCC compared to normal esophageal epithelium. Therefore, PTEN may play an important role in carcinogenesis and the progression of ESCC in a high incidence area of northern China, and PTEN could serve as an important factor to predict clinical outcome and prognosis.
Collapse
Affiliation(s)
- D Chang
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
190
|
Abstract
The functions ascribed to PTEN have become more diverse since its discovery as a putative phosphatase mutated in many human tumors. Although it can dephosphorylate lipids and proteins, it also has functions independent of phosphatase activity in normal and pathological states. In addition, control of PTEN function is very complex. It is positively and negatively regulated at the transcriptional level, as well as post-translationally by phosphorylation, ubiquitylation, oxidation and acetylation. Although most of its tumor suppressor activity is likely to be caused by lipid dephosphorylation at the plasma membrane, PTEN also resides in the cytoplasm and nucleus, and its subcellular distribution is under strict control. Deregulation of PTEN function is implicated in other human diseases in addition to cancer, including diabetes and autism.
Collapse
Affiliation(s)
- Tanja Tamguney
- UCSF Cancer Research Institute, 2340 Sutter Street, San Francisco, CA 94115, USA
| | - David Stokoe
- UCSF Cancer Research Institute, 2340 Sutter Street, San Francisco, CA 94115, USA
| |
Collapse
|
191
|
Yanagi S, Kishimoto H, Kawahara K, Sasaki T, Sasaki M, Nishio M, Yajima N, Hamada K, Horie Y, Kubo H, Whitsett JA, Mak TW, Nakano T, Nakazato M, Suzuki A. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J Clin Invest 2007; 117:2929-40. [PMID: 17909629 PMCID: PMC1994617 DOI: 10.1172/jci31854] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 07/12/2007] [Indexed: 12/22/2022] Open
Abstract
PTEN is a tumor suppressor gene mutated in many human cancers. We generated a bronchioalveolar epithelium-specific null mutation of Pten in mice [SP-C-rtTA/(tetO)(7)-Cre/Pten(flox/flox) (SOPten(flox/flox)) mice] that was under the control of doxycycline. Ninety percent of SOPten(flox/flox) mice that received doxycycline in utero [SOPten(flox/flox)(E10-16) mice] died of hypoxia soon after birth. Surviving SOPten(flox/flox)(E10-16) mice and mice that received doxycycline postnatally [SOPten(flox/flox)(P21-27) mice] developed spontaneous lung adenocarcinomas. Urethane treatment accelerated number and size of lung tumors developing in SOPten(flox/flox) mice of both ages. Histological and biochemical examinations of the lungs of SOPten(flox/flox)(E10-16) mice revealed hyperplasia of bronchioalveolar epithelial cells and myofibroblast precursors, enlarged alveolar epithelial cells, and impaired production of surfactant proteins. Numbers of bronchioalveolar stem cells (BASCs), putative initiators of lung adenocarcinomas, were increased. Lungs of SOPten(flox/flox)(E10-16) mice showed increased expression of Spry2, which inhibits the maturation of alveolar epithelial cells. Levels of Akt, c-Myc, Bcl-2, and Shh were also elevated in SOPten(flox/flox)(E10-16) and SOPten(flox/flox)(P21-27) lungs. Furthermore, K-ras was frequently mutated in adenocarcinomas observed in SOPten(flox/flox)(P21-27) lungs. These results indicate that Pten is essential for both normal lung morphogenesis and the prevention of lung carcinogenesis, possibly because this tumor suppressor is required for BASC homeostasis.
Collapse
Affiliation(s)
- Shigehisa Yanagi
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Kishimoto
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Kohichi Kawahara
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takehiko Sasaki
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Masato Sasaki
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miki Nishio
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nobuyuki Yajima
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Koichi Hamada
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yasuo Horie
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Kubo
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Jeffrey A. Whitsett
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tak Wah Mak
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Toru Nakano
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Masamitsu Nakazato
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Akira Suzuki
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
192
|
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Transformation, Neoplastic
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Clinical Trials, Phase III as Topic
- Enzyme Inhibitors/therapeutic use
- Farnesyltranstransferase/antagonists & inhibitors
- Humans
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Lung Neoplasms/therapy
- Mutation/genetics
- Neovascularization, Pathologic/drug therapy
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Signal Transduction/drug effects
- Survival Analysis
- Treatment Outcome
Collapse
Affiliation(s)
- B Besse
- Department of Medicine, Institut Gustave Roussy, Villejuif
| | | | | |
Collapse
|
193
|
Engelman JA. The role of phosphoinositide 3-kinase pathway inhibitors in the treatment of lung cancer. Clin Cancer Res 2007; 13:s4637-40. [PMID: 17671156 DOI: 10.1158/1078-0432.ccr-07-0653] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phosphoinositide 3-kinase signaling network is widely implicated in the pathogenesis of human cancer. This pathway is commandeered by cancer cells to promote unrestrained cellular growth and survival. In this brief review, we speculate about the uses of inhibitors of phosphoinositide 3-kinase signaling as treatments for human cancers, with an emphasis on non-small cell lung cancer.
Collapse
Affiliation(s)
- Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
194
|
Inamura K, Togashi Y, Nomura K, Ninomiya H, Hiramatsu M, Okui M, Satoh Y, Okumura S, Nakagawa K, Tsuchiya E, Ishikawa Y. Up-regulation of PTEN at the transcriptional level is an adverse prognostic factor in female lung adenocarcinomas. Lung Cancer 2007; 57:201-6. [PMID: 17452061 DOI: 10.1016/j.lungcan.2007.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/22/2007] [Accepted: 03/07/2007] [Indexed: 11/19/2022]
Abstract
In lung adenocarcinomas, genetic alterations of PTEN are relatively rare and little has been reported concerning the relationship between PTEN transcriptional level and clinicopathologic features or genetic changes. This study was conducted to gain insight into clinicopathologic correlations. The transcriptional levels of PTEN were examined using real time RT-PCR and analyzed for correlations with clinicopathologic features and the mutation status of EGFR and KRAS. After confirming significant correlation for PTEN levels between macrodissected and microdissected materials (p<0.01), macrodissected samples from 115 lung adenocarcinomas were examined. There were no significant difference between the PTEN levels, divided into three ranges, and the mutation status of EGFR or KRAS. Noteworthy clinicopathologic correlations between PTEN transcriptional up/down-regulation and young age (p=0.0081, 61.7+/-8.7years versus 66.1+/-8.1years), smoking (p=0.032) and less differentiated adenocarcinomas (p=0.013) were identified. Whereas male patients demonstrated no prognostic association with PTEN levels, female cases with up-regulated PTEN expression had significantly worse survival compared with those with normal PTEN levels (p=0.0027). This study revealed distinct clinicopathologic correlations with PTEN transcriptional up/down-regulation.
Collapse
Affiliation(s)
- Kentaro Inamura
- Department of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research (JFCR), 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Marinov M, Fischer B, Arcaro A. Targeting mTOR signaling in lung cancer. Crit Rev Oncol Hematol 2007; 63:172-82. [PMID: 17540577 DOI: 10.1016/j.critrevonc.2007.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/07/2007] [Accepted: 04/18/2007] [Indexed: 11/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in the world, with more than 1 million deaths per year. Over the past years, lung cancer treatment has been based on cytotoxic agents and an improvement in the outcome and quality of life for patients has been observed. However, it has become clear that additional therapeutic strategies are urgently required in order to provide an improved survival benefit for patients. Two major intracellular signaling pathways, the Ras/Raf/extracellular signal-regulated kinase (Erk) and the phosphoinositide 3-kinase (PI3K)/Akt pathways have been extensively studied in neoplasia, including lung cancer. Furthermore, the study of constitutively activated receptor tyrosine kinases (RTKs) and their downstream signaling mediators has opened a promising new field of investigation for lung cancer treatment. Since both the Ras/Raf/Erk and the PI3K/Akt pathways are downstream of a plethora of activated RTKs, they have been extensively studied for the development of novel anti-tumor agents. Moreover, the mammalian target of rapamycin (mTOR) has been identified as a downstream target of the PI3K/Akt pathway. Rapamycin and its derivatives are highly selective and very potent inhibitors of mTOR and initial pre-clinical and clinical studies have reported encouraging results for different tumor types. Nevertheless for lung cancer, this approach has not been successful yet. Here we will review the molecular basis of PI3K/Akt/mTOR signaling in lung cancer and further discuss the therapeutic potential of multi-targeted strategies involving mTOR inhibitors.
Collapse
Affiliation(s)
- Marin Marinov
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | | | | |
Collapse
|
196
|
Wiencke JK, Zheng S, Jelluma N, Tihan T, Vandenberg S, Tamgüney T, Baumber R, Parsons R, Lamborn KR, Berger MS, Wrensch MR, Haas-Kogan DA, Stokoe D. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol 2007; 9:271-9. [PMID: 17504928 PMCID: PMC1907411 DOI: 10.1215/15228517-2007-003] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) can present as either de novo or secondary tumors arising from previously diagnosed low-grade gliomas. Although these tumor types are phenotypically indistinguishable, de novo and secondary GBMs are associated with distinct genetic characteristics. PTEN mutations, which result in activation of the phosphoinositide 3-kinase (PI3K) signal transduction pathway, are frequent in de novo but not in secondary GBMs or their antecedent low-grade tumors. Results we present here show that grade II astrocytomas, oligodendrogliomas, and oligoastrocytomas commonly display methylation of the PTEN promoter, a finding that is absent in nontumor brain specimens and rare in de novo GBMs. Methylation of the PTEN promoter correlates with protein kinase B (PKB/Akt) phosphorylation, reflecting functional activation of the PI3K pathway. Our results also demonstrate frequent methylation of the PTEN promoter in grade III astrocytomas and secondary GBMs, consistent with the hypothesis that these tumors arise from lower grade precursors. PTEN methylation is rare in de novo GBMs and is mutually exclusive with PTEN mutations. We conclude that methylation of the PTEN promoter may represent an alternate mechanism by which PI3K signaling is increased in grade II and III gliomas as well as secondary GBMs, a finding that offers new therapeutic approaches in these patients.
Collapse
Affiliation(s)
- John K Wiencke
- Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
Molecular genetic studies of lung cancer have revealed that clinically evident lung cancers have multiple genetic and epigenetic abnormalities, including DNA sequence alterations, copy number changes, and aberrant promoter hypermethylation. Together, these abnormalities result in the activation of oncogenes and inactivation of tumor-suppressor genes. In many cases these abnormalities can be found in premalignant lesions and in histologically normal lung bronchial epithelial cells. Findings suggest that lung cancer develops through a stepwise process from normal lung epithelial cells towards frank malignancy, which usually occurs as a result of cigarette smoking. Lung cancer has a high morbidity because it is difficult to detect early and is frequently resistant to available chemotherapy and radiotherapy. New, rationally designed early detection, chemoprevention, and therapeutic strategies based on the growing understanding of the molecular changes important to lung cancer are under investigation. For example, methylated tumor DNA sequences in sputum or blood are being investigated for early detection screening, and new treatments that specifically target molecules such as vascular endothelial growth factor and the epidermal growth factor receptor are becoming available. Meanwhile, global gene expression signatures from individual tumors are showing potential as prognostic and therapeutic indicators, such that molecular typing of individual tumors for therapy selection is not far away. Finally, the recent development of a model system of immortalized human bronchial epithelial cells, along with a paradigm shift in the conception of cancer stem cells, promises to improve the situation for patients with lung cancer. These advances highlight the translation of molecular discoveries on lung cancer pathogenesis from the laboratory to the clinic.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/epidemiology
- Carcinoma, Non-Small-Cell Lung/etiology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/physiopathology
- Carcinoma, Small Cell/epidemiology
- Carcinoma, Small Cell/etiology
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/physiopathology
- Cell Transformation, Neoplastic/genetics
- DNA Methylation
- DNA, Neoplasm
- Early Diagnosis
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease/epidemiology
- Genomics/methods
- Humans
- Lung Neoplasms/epidemiology
- Lung Neoplasms/etiology
- Lung Neoplasms/genetics
- Lung Neoplasms/physiopathology
- Male
- Mass Screening
- Molecular Biology
- Prevalence
- Prognosis
- Risk Factors
- Smoking/adverse effects
- Survival Analysis
- United States/epidemiology
Collapse
Affiliation(s)
- Mitsuo Sato
- Hamon Center for Therapeutic Oncology Research Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
198
|
Suzuki E, Umezawa K, Bonavida B. Rituximab inhibits the constitutively activated PI3K-Akt pathway in B-NHL cell lines: involvement in chemosensitization to drug-induced apoptosis. Oncogene 2007; 26:6184-93. [PMID: 17420722 DOI: 10.1038/sj.onc.1210448] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rituximab (chimeric anti-CD20 monoclonal antibody) is currently being used, alone or in combination with chemotherapy, in the treatment of B-non-Hodgkin's lymphoma (B-NHL). We have reported that rituximab treatment of B-NHL cell lines sensitizes the drug-resistant tumor cells to apoptosis by various chemotherapeutic drugs and chemosensitization was, in large part, owing to the selective inhibition of the anti-apoptotic Bcl-(XL) gene product. The constitutive activation of the Akt pathway in B-NHL results in overexpression and functional activation of Bcl-(xL). Hence, we hypothesized that rituximab-induced inhibition of Bcl-(xL) expression and chemosensitization may result, in part, from its inhibitory activity of the Akt pathway. This hypothesis was tested using the drug-resistant Ramos and Daudi B-NHL cell lines. Time kinetic analysis revealed that treatment with rituximab inhibited phosphorylation of Akt, but not unphosphorylated Akt, and the inhibition was first detected at 6 h post-rituximab treatment. Similar time kinetics revealed rituximab-induced inhibition of p-PDK1, p-Bad, p-IKKalpha/beta and p-Ikappabetaalpha and no inhibition of unphosphorylated proteins. In addition, rituximab treatment resulted in significant increase of Bcl-(xL)-Bad heterodimeric complexes as compared to untreated cells. The role of the Akt pathway in the regulation of resistance was corroborated by the use of the Akt inhibitor, LY294002, and by transfection with siRNA Akt. Treatment of tumor cells with LY294002 or with Akt siRNA, but not control siRNA, resulted in inhibition of Bcl-(xL) expression and sensitization to drug-induced apoptosis. Although rituximab did not inhibit the Akt pathway nor sensitized the rituximab-resistant Ramos RR1 clone, treatment with LY294002 or Akt siRNA sensitized the clone to drug-induced apoptosis. The present findings demonstrate for the first time that rituximab inhibits the constitutively activated Akt pathway in B-NHL cell lines, and this inhibition contributes to sensitization of drug-resistant cells to apoptosis by chemotherapeutic drugs. The findings also identify the Akt pathway as target for therapeutic intervention in the reversal of rituximab and drug-resistant B-NHL.
Collapse
Affiliation(s)
- E Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1747, USA
| | | | | |
Collapse
|
199
|
Okahara F, Itoh K, Nakagawara A, Murakami M, Kanaho Y, Maehama T. Critical role of PICT-1, a tumor suppressor candidate, in phosphatidylinositol 3,4,5-trisphosphate signals and tumorigenic transformation. Mol Biol Cell 2006; 17:4888-95. [PMID: 16971513 PMCID: PMC1635402 DOI: 10.1091/mbc.e06-04-0301] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulates diverse cellular functions by dephosphorylating the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). Recent study revealed that PICT-1/GLTSCR2 bound to and stabilized PTEN protein in cells, implicating its roles in PTEN-governed PIP(3) signals. In this study, we demonstrate that RNA interference-mediated knockdown of PICT-1 in HeLa cells down-regulated endogenous PTEN and resulted in the activation of PIP(3) downstream effectors, such as protein kinase B/Akt. Furthermore, the PICT-1 knockdown promoted HeLa cell proliferation; however the proliferation of PTEN-null cells was not altered by the PICT-1 knockdown, suggesting its dependency on PTEN status. In addition, apoptosis of HeLa cells induced by staurosporine or serum-depletion was alleviated by the PICT-1 knockdown in the similar PTEN-dependent manner. Most strikingly, the PICT-1 knockdown in HeLa and NIH3T3 cells promoted anchorage-independent growth, a hallmark of tumorigenic transformation. Furthermore, PICT-1 was aberrantly expressed in 18 (41%) of 44 human neuroblastoma specimens, and the PICT-1 loss was associated with reduced PTEN protein expression in spite of the existence of PTEN mRNA. Collectively, these results suggest that PICT-1 plays a role in PIP(3) signals through controlling PTEN protein stability and the impairment in the PICT-1-PTEN regulatory unit may become a causative factor in human tumor(s).
Collapse
Affiliation(s)
- Fumiaki Okahara
- *Biomembrane Signaling Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kouichi Itoh
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Akira Nakagawara
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan; and
| | - Makoto Murakami
- *Biomembrane Signaling Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
- PRESTO, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tomohiko Maehama
- *Biomembrane Signaling Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| |
Collapse
|
200
|
Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006; 5:671-88. [PMID: 16883305 DOI: 10.1038/nrd2062] [Citation(s) in RCA: 734] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a kinase that functions as a master switch between catabolic and anabolic metabolism and as such is a target for the design of anticancer agents. The most established mTOR inhibitors--rapamycin and its derivatives--showed long-lasting objective tumour responses in clinical trials, with CCI-779 being a first-in-class mTOR inhibitor that improved the survival of patients with advanced renal cell carcinoma. This heralded the beginning of extensive clinical programmes to further evaluate mTOR inhibitors in several tumour types. Here we review the clinical development of this drug class and look at future prospects for incorporating these agents into multitarget or multimodality strategies against cancer.
Collapse
Affiliation(s)
- Sandrine Faivre
- Service Inter Hospitalier de Cancrologie, Beaujon University Hospital, 100 Boulevard du General Leclerc, 92118 Clichy Cedex, France
| | | | | |
Collapse
|