151
|
Jia H, Chen Y, Wang J, Xie X, Ruan Z. Emerging challenges of whole-genome-sequencing-powered epidemiological surveillance of globally distributed clonal groups of bacterial infections, giving Acinetobacter baumannii ST195 as an example. Int J Med Microbiol 2019; 309:151339. [PMID: 31451388 DOI: 10.1016/j.ijmm.2019.151339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 10/26/2022] Open
Abstract
Whole-genome sequencing (WGS) has revolutionized the genotyping of bacterial pathogens and is expected to become the new gold standard for tracing the transmissions of bacterial infectious diseases for public health purposes. However, it is still unexpectedly demanding to employ WGS for global epidemiological surveillance because of the high degree of similarity between the genomes of intercontinental isolates. The aim of this study was to utilize genomically derived bioinformatics analysis to identify globally distributed A. baumannii ST195 lineage and differentiation outbreaks to address this issue. The genomic sequences and their related epidemiological metadata of 2850 A. baumannii isolates were recruited from NCBI Genbank database. Assignment into sequence type (Oxford scheme) and lineage (global clone 2/CC92) were performed. A total of 91 ST195 A. baumannii isolates were subsequently classified to perform the bacterial source tracking analysis by implementing both core genome MLST (cgMLST) and core genome SNP (cgSNP) strategy that were integrated in our recently updated BacWGSTdb 2.0 server. Antibiotic resistance genes were identified using the ResFinder database. The ST195 A. baumannii isolates distributed widely in eight countries and harboured multiple antimicrobial resistance genes simultaneously. In most cases, the bacterial isolates recovered from geographically distant sources may present less genomic sequence similarity, i.e., the phylogenetic relationship between these ST195 isolates worldwide was roughly congruent with their country of isolation. However, a few isolates collected from distant geographic regions were revealed to possess smaller genetic distances (less than 8 loci or 20 SNPs) than the threshold without an observable epidemiological link. Our study highlights the emerging challenges entailed in the WGS-powered epidemiological surveillance of globally distributed clonal groups. Standardization is urgently required before WGS can be routinely applied to infectious diseases outbreak investigations.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yan Chen
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310018, China
| | - Jianfeng Wang
- Department of Respiratory Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
152
|
Lv D, Zhang D, Song Q. Expansion of Salmonella Typhi clonal lineages with ampicillin resistance and reduced ciprofloxacin susceptibility in Eastern China. Infect Drug Resist 2019; 12:2215-2221. [PMID: 31413599 PMCID: PMC6659784 DOI: 10.2147/idr.s208251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/30/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose This study was aimed to investigate the dynamics of antimicrobial resistance expansion among different lineages and isolates of S. Typhi. Materials and methods The S. Typhi isolates were collected from the patients clinically suspected of typhoid fever in Eastern China during 2005–2017. All isolates were tested retrospectively for susceptibility to eight antimicrobials and the genes related to quinolone and ampicillin resistance, including gyrA, ParC, qnrA, qnrB, qnrS, aac(6´)-Ib-cr, qepA and blaTEM. The isolates were subtyped by PFGE. Results Of 140 isolates, all were susceptible to ciprofloxacin, cefotaxime, chloramphenicol, and trimethoprim-sulfamethoxazole, 95 (68%) were nalidixic acid resistant, and 74 (53%) were ampicillin resistant. The resistance to ampicillin and nalidixic acid was first observed in 2006. Among the 95 nalidixic acid-resistant S. Typhi isolates, 62 possessed S83F mutation in gyrA and 25 possessed D87Y mutation. All ampicillin-resistant isolates harbored gene blaTEM-1. PFGE generated 47 distinguishable clonal lineages. Overall, 64% (89/140) belonged to seven prevalent lineages of clustering isolates. PFGE results illustrated the prevalence of nalidixic acid-resistant lineages increased steadily from 19% during 2005–2012 to 50% during 2013–2014, and thereafter to 74% during 2015–2017 and similar development of ampicillin-resistant lineages increased from 6% to 38%, and also to 39%. Conclusion The present study indicated the clonal expansion of S. Typhi with ampicillin resistance and reduced ciprofloxacin susceptibility. The findings also suggested that the differential development of antimicrobial resistance to various antimicrobial agents in S. Typhi, showing the rapid increase in ampicillin resistance and reduced ciprofloxacin susceptibility, and the high susceptibility to other traditional antimicrobial agents.
Collapse
Affiliation(s)
- Dingfeng Lv
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Danyang Zhang
- Department of Microbiology, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo, Zhejiang Province, People's Republic of China
| | - Qifa Song
- Department of Microbiology, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo, Zhejiang Province, People's Republic of China
| |
Collapse
|
153
|
Yoon EJ, Kim D, Lee H, Lee HS, Shin JH, Uh Y, Shin KS, Kim YA, Park YS, Shin JH, Jeong SH. Counter Clinical Prognoses of Patients With Bloodstream Infections Between Causative Acinetobacter baumannii Clones ST191 and ST451 Belonging to the International Clonal Lineage II. Front Public Health 2019; 7:233. [PMID: 31475131 PMCID: PMC6707333 DOI: 10.3389/fpubh.2019.00233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to evaluate the possible clinical and bacteriologic features associated with 30-day mortality from Acinetobacter baumannii (A. baumannii) bloodstream infections (BSIs). We conducted a prospective, multicenter, observational study of 181 entire episodes of A. baumannii BSI from six general hospitals between May 2016 and April 2017 in South Korea. Cox proportional-hazards regression model was used to estimate risks of the primary endpoint, i.e., all-cause mortality within 30 days from the initial blood culture. Most (84.5%) of the A. baumannii blood isolates belonged to the international clonal lineage II (ICLII) and 89.5% of the isolates were either multidrug- or extensively-drug resistant. We identified three risk factors including the old age of patient {hazard ratio, 1.033; [95% Confidential Interval (CI), 1.010-1.056]}, the sequential organ failure assessment score [1.133 (1.041-1.233)], and causative A. baumannii sequence type (ST) 191 belonging to ICLII [1.918 (1.073-3.430)], and three protective factors including causative A. baumannii ST451 belonging to ICLII [0.228 (0.078-0.672)], platelet count [0.996 (0.993-0.999)], and definitive therapy within 72 h [0.255 (0.125-0.519)]. Differing 30-day mortality rate in the dominant ICLII was observed by ST, which was much high in ST191 and low in ST451 and it was likely associated with the molecular traits, rather than the drug resistance.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Dokyun Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju-si, South Korea
| | - Kyeong Seob Shin
- Department of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju-si, South Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, South Korea
| | - Yoon Soo Park
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, South Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine and Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
154
|
Rafei R, Osman M, Dabboussi F, Hamze M. Update on the epidemiological typing methods for Acinetobacter baumannii. Future Microbiol 2019; 14:1065-1080. [DOI: 10.2217/fmb-2019-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The outstanding ability of Acinetobacter baumannii to cause outbreaks and acquire multidrug resistance motivated the development of a plethora of typing techniques, which can help infection preventionists and hospital epidemiologists to more efficiently implement intervention controls. Nowadays, the world is witnessing a gradual transition from traditional typing methodology to whole genome sequencing-based approaches. Such approaches are opening new prospects and applications never achieved by existing typing methods. Herein, we provide the reader with an updated review on A. baumannii typing methods recapping the added value of well-established techniques previously applied for A. baumannii and detailing new ones (as clustered regularly interspaced short palindromic repeats-based typing) with a special focus on whole genome sequencing.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
155
|
Kumar S, Patil PP, Singhal L, Ray P, Patil PB, Gautam V. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates reveals the emergence of bla OXA-23 and bla NDM-1 encoding international clones in India. INFECTION GENETICS AND EVOLUTION 2019; 75:103986. [PMID: 31362071 DOI: 10.1016/j.meegid.2019.103986] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 01/09/2023]
Abstract
Acinetobacter baumannii is a nosocomial pathogen increasingly affecting the critically ill patients and represents a major public health challenge. Carbapenem-resistant A. baumannii (CRAB) is found to be associated with International Clones (ICs) and different classes of carbapenemases. The objective of the present study was to investigate the prevalence of carbapenem resistance genes, clonal relationship and genetic structure of clinical isolates of A. baumannii. In the present study, multi-locus sequence typing (MLSTOX) and analysis were carried out using Oxford scheme for 86 clinical isolates of CRAB along with 11 carbapenem sensitive A. baumannii (CSAB) collected over a period of two years (2014-2016) from two tertiary care hospitals of North India. We observed a high prevalence of the blaOXA-23-like (97.7%) among the CRAB followed by blaNDM-1 (29.1%) and blaOXA58-like (3.5%). Forty-seven Sequence Types (STs) were represented by all 97 isolates, out of which, 28 (59.6%) were novel STs that were assigned to 41 isolates. STs 451 (13%), 447 (7%), 195 (6%) and 848 (5%) were the most common STs. The majority of CRAB isolates (44.3%) belonged to the CC92, followed by the CC447 (15.1%), CC109 (9.3%) and CC110 (3.4%), which corresponds to the IC2, 8, 1 and 7 respectively. Phylogenetic and recombination analysis suggested two major and one minor lineage in the population. Further linkage disequilibrium analysis suggested clonal nature of the population as recombination was noticed at a low frequency, which was not enough to split the clonal relationship. The knowledge of genetic structure of CRAB from this study will be invaluable to illustrate epidemiology, surveillance and understanding its global diversity.
Collapse
Affiliation(s)
- Sunil Kumar
- Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India; Department of Biotechnology, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, Haryana 133207, India
| | - Prashant P Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh 160036, India
| | - Lipika Singhal
- Government Medical College and Hospital, Sector -32B, Chandigarh 160030, India
| | - Pallab Ray
- Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh 160036, India.
| | - Vikas Gautam
- Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
156
|
Abstract
The genomes of Acinetobacter baumannii tell us stories about horizontal gene transfer (HGT) events that steadily drive the evolution of this nosocomial pathogen toward multidrug resistance. Natural transformation competence constitutes one of the several possible pathways that mediate HGT in A. baumannii. Here, we describe and discuss the methods for studying DNA uptake in A. baumannii via natural transformation.
Collapse
|
157
|
Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates. mBio 2019; 10:mBio.01083-19. [PMID: 31311879 PMCID: PMC6635527 DOI: 10.1128/mbio.01083-19] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The discovery of antibiotics revolutionized modern medicine and enabled us to cure previously deadly bacterial infections. However, a progressive increase in antibiotic resistance rates is a major and global threat for our health care system. Colistin represents one of our last-resort antibiotics that is still active against most Gram-negative bacterial pathogens, but increasing resistance is reported worldwide, in particular due to the plasmid-encoded protein MCR-1 present in pathogens such as Escherichia coli and Klebsiella pneumoniae. Here, we showed that colistin resistance in A. baumannii, a top-priority pathogen causing deadly nosocomial infections, is mediated through different avenues that result in increased activity of homologous phosphoethanolamine (PetN) transferases. Considering that MCR-1 is also a PetN transferase, our findings indicate that PetN transferases might be the Achilles heel of superbugs and that direct targeting of them may have the potential to preserve the activity of polymyxin antibiotics. Nosocomial infections with Acinetobacter baumannii are a global problem in intensive care units with high mortality rates. Increasing resistance to first- and second-line antibiotics has forced the use of colistin as last-resort treatment, and increasing development of colistin resistance in A. baumannii has been reported. We evaluated the transcriptional regulator PmrA as potential drug target to restore colistin efficacy in A. baumannii. Deletion of pmrA restored colistin susceptibility in 10 of the 12 extensively drug-resistant A. baumannii clinical isolates studied, indicating the importance of PmrA in the drug resistance phenotype. However, two strains remained highly resistant, indicating that PmrA-mediated overexpression of the phosphoethanolamine (PetN) transferase PmrC is not the exclusive colistin resistance mechanism in A. baumannii. A detailed genetic characterization revealed a new colistin resistance mechanism mediated by genetic integration of the insertion element ISAbaI upstream of the PmrC homolog EptA (93% identity), leading to its overexpression. We found that eptA was ubiquitously present in clinical strains belonging to the international clone 2, and ISAbaI integration upstream of eptA was required to mediate the colistin-resistant phenotype. In addition, we found a duplicated ISAbaI-eptA cassette in one isolate, indicating that this colistin resistance determinant may be embedded in a mobile genetic element. Our data disprove PmrA as a drug target for adjuvant therapy but highlight the importance of PetN transferase-mediated colistin resistance in clinical strains. We suggest that direct targeting of the homologous PetN transferases PmrC/EptA may have the potential to overcome colistin resistance in A. baumannii.
Collapse
|
158
|
Phytochemical Properties and Antibacterial Effects of Salvia multicaulis Vahl., Euphorbia microsciadia Boiss., and Reseda lutea on Staphylococcus aureus and Acinetobacter baumanii. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.63640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
159
|
Guo J, Li C. Molecular epidemiology and decreased susceptibility to disinfectants in carbapenem-resistant Acinetobacter baumannii isolated from intensive care unit patients in central China. J Infect Public Health 2019; 12:890-896. [PMID: 31230951 DOI: 10.1016/j.jiph.2019.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/27/2019] [Accepted: 06/09/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Infection with carbapenem-resistant Acinetobacter baumannii (CRAB) is an increasing problem for critically ill patients. The srains are frequently resistant to all antibiotics and disinfectants are often used to block the spread of these bacteria, playing an important role in infection control. OBJECTIVES The aim of this study was to investigate the antibiotic susceptibility, the clonal relationship, disinfectant resistance gene, β-lactamase genes and the disinfectant sensitivity of 82 A. baumannii isolates collected at a large hospital in Wuhan, China. DESIGN A retrospective basic study. METHODS Here we investigated 82 A. baumannii isolates from intensive care unit patients in a major teaching hospital in China for the distribution of resistance-associated genes and susceptibility to chlorine disinfectant (CLR), benzalkonium bromide (BB) and Chlorhexidine gluconate(CHG). Multi-locus sequence typing (MLST) was applied to explore their genetic evolution relationships. RESULTS qacE (30.48%, 25/82) and qac△E1 (76.82%, 63/82) genes were detected in our study, while none were positive for qacA/B, qacC/D or qacG. The MIC values of CLR were 250mg/L; The MIC values ranged from 32 to 128μg/mL for BB; The MIC values ranged from 0.0019% to 0.0078% for CHG. The presence or absence of qacE gene has a significant impact(p<0.05) on MICs of BB or CHG. All isolates harboured blaOXA-51/23 genes, and 98.78% of isolates contained the ISaba1 insertion sequence. All isolates were classified into 8 sequence types(STs) within clonal complex 92(CC92). CONCLUSIONS The predominant CRAB strains in our intensive care unit are blaOXA-23-containing A. baumannii of CC92. The high prevalence of qac genes and reduced susceptibility to disinfectants confirm the need for continued vigilance against nosocomial infections.
Collapse
Affiliation(s)
- Jing Guo
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Congrong Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
160
|
Jiang M, Mu Y, Li N, Zhang Z, Han S. Carbapenem-resistant Acinetobacter baumannii from Air and Patients of Intensive Care Units. Pol J Microbiol 2019; 67:333-338. [PMID: 30451450 PMCID: PMC7256820 DOI: 10.21307/pjm-2018-040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2018] [Indexed: 12/03/2022] Open
Abstract
To understand the molecular epidemiology and antibiotic resistance of air and clinical isolates of Acinetobacter baumannii, the intensive care unit settings of a hospital in Northern China were surveyed in 2014. Twenty non-duplicate A. baumannii isolates were obtained from patients and five isolates of airborne A. baumannii were obtained from the wards’ corridors. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to analyze the homology relationships of isolates. Resistance and resistance genes were detected by drug susceptibility test and PCR. The results demonstrated that all isolates can be classified into eight PFGE types and four sequence types (ST208, ST195, ST369 and ST530). A pair of isolates from patients (TAaba004) and from the air (TAaba012) that share 100% similarity in PFGE was identified, indicating that air might be a potential and important transmission route for A. baumannii. More than 80% of the isolates were resistant to carbapenems and aminoglycoside antibiotics. Twenty-four isolates, which were resistant to carbapenems, carried the blaOXA-23-like gene. The data indicated that air might be an alternative way for the transmission of A. baumannii. Hospitals should pay more attention to this route, and design new measures accordingly.
Collapse
Affiliation(s)
- Meijie Jiang
- Laboratory Medicine, Tai'an City Central Hospital, Tai'an, Shandong, China
| | - Yunqing Mu
- Laboratory Medicine, Dezhou City People's Hospital, Dezhou, Shandong, China
| | - Ning Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhijun Zhang
- Laboratory Medicine, Tai'an City Central Hospital, Tai'an, Shandong, China
| | - Shulin Han
- Department of Public Health, Tai'an City Central Hospital, Tai'an, Shandong, China
| |
Collapse
|
161
|
Kumburu HH, Sonda T, van Zwetselaar M, Leekitcharoenphon P, Lukjancenko O, Mmbaga BT, Alifrangis M, Lund O, Aarestrup FM, Kibiki GS. Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania. J Antimicrob Chemother 2019; 74:1484-1493. [PMID: 30843063 PMCID: PMC6524488 DOI: 10.1093/jac/dkz055] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 12/11/2018] [Accepted: 01/16/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Reliable phenotypic antimicrobial susceptibility testing can be a challenge in clinical settings in low- and middle-income countries. WGS is a promising approach to enhance current capabilities. AIM To study diversity and resistance determinants and to predict and compare resistance patterns from WGS data of Acinetobacter baumannii with phenotypic results from classical microbiological testing at a tertiary care hospital in Tanzania. METHODS AND RESULTS MLST using Pasteur/Oxford schemes yielded eight different STs from each scheme. Of the eight, two STs were identified to be global clones 1 (n = 4) and 2 (n = 1) as per the Pasteur scheme. Resistance testing using classical microbiology determined between 50% and 92.9% resistance across all drugs. Percentage agreement between phenotypic and genotypic prediction of resistance ranged between 57.1% and 100%, with coefficient of agreement (κ) between 0.05 and 1. Seven isolates harboured mutations at significant loci (S81L in gyrA and S84L in parC). A number of novel plasmids were detected, including pKCRI-309C-1 (219000 bp) carrying 10 resistance genes, pKCRI-43-1 (34935 bp) carrying two resistance genes and pKCRI-49-1 (11681 bp) and pKCRI-28-1 (29606 bp), each carrying three resistance genes. New ampC alleles detected included ampC-69, ampC-70 and ampC-71. Global clone 1 and 2 isolates were found to harbour ISAba1 directly upstream of the ampC gene. Finally, SNP-based phylogenetic analysis of the A. baumannii isolates revealed closely related isolates in three clusters. CONCLUSIONS The validity of the use of WGS in the prediction of phenotypic resistance can be appreciated, but at this stage is not sufficient for it to replace conventional antimicrobial susceptibility testing in our setting.
Collapse
Affiliation(s)
- Happiness H Kumburu
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Tolbert Sonda
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | | | | | | | - Blandina T Mmbaga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ole Lund
- DTU-Bioinformatics, Technical University of Denmark, Copenhagen, Denmark
| | | | | |
Collapse
|
162
|
Zhao Y, Hu K, Zhang J, Guo Y, Fan X, Wang Y, Mensah SD, Zhang X. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in ICU of the eastern Heilongjiang Province, China. BMC Infect Dis 2019; 19:452. [PMID: 31113374 PMCID: PMC6530087 DOI: 10.1186/s12879-019-4073-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/02/2022] Open
Abstract
Background To investigate the carbapenem resistance mechanisms and clonal relationship of carbapenem-resistant Acinetobacter baumannii (CRAB) strains isolated in the intensive care unit (ICU) of the First Affiliated Hospital of Jiamusi University, management approaches to ICU clonal CRAB outbreaks were described. Methods The sensitivity of the antibiotic was determined using the VITEK-2 automated system. Carbapenemase genes (blaTEM, blaSHV, blaKPC, blaNDM, blaIMP-4, blaVIM, blaOXA-23, blaOXA-24, blaOXA-51, and blaOXA-58), AmpC enzyme genes (blaACC, blaDHA, blaADC), and ISAba1 were assessed for all collected isolates using polymerase chain reaction (PCR). The transfer of resistance genes was investigated via conjugation experiments. The clonal relationship of isolates was determined via enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus sequence typing (MLST). When the detection rate of CRAB increased from 25% in 2010 to 92% in 2014, a number of actions were initiated, including enhanced infection control, staff education, and the cleaning of the hospital environment. Results Clinical isolates were positive for the following genes: blaOXA23, blaOXA51, blaOXA24, blaADC, blaTEM, ISAba1, ISA-23, and ISA-ADC; however, blaOXA58, ISA-51, blaNDM, blaIMP, blaKPC, blaTEM, blaSHV, blaVIM, and blaACC were not detected. Four carbapenem-resistant isolates successfully transferred plasmids from A. baumannii isolates to E. coli J53. MLST showed that all strains belonged to ST2 except for one isolate, which belonged to the new genotype ST1199. The ERIC-PCR method found the following three genotypes: type A in 8, type B in 12, type C in 1, and two profiles (A, B) belonged to ST2. After taking control measures, the prevalence of CRAB isolates decreased, and the discovery rate of CRAB dropped to 11.4% in 2017. Conclusion The obtained result suggests that blaOXA-23-producing CC2 isolates were prevalent in the ICU of the First Affiliated Hospital of Jiamusi University. Targeted surveillance was implemented to identify the current situation of the ICU and the further implementation of infection control effectively prevented the spread of nosocomial infection.
Collapse
Affiliation(s)
- Yongxin Zhao
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Kewang Hu
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Jisheng Zhang
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Yuhang Guo
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Xuecai Fan
- Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yong Wang
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Sedzro Divine Mensah
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China.,Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiaoli Zhang
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China.
| |
Collapse
|
163
|
Abhari SS, Badmasti F, Modiri L, Aslani MM, Asmar M. Circulation of imipenem-resistant Acinetobacter baumannii ST10, ST2 and ST3 in a university teaching hospital from Tehran, Iran. J Med Microbiol 2019; 68:860-865. [PMID: 31050632 DOI: 10.1099/jmm.0.000987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Multi-drug resistant (MDR) Acinetobacter baumannii has introduced a worldwide health crisis. The purposes of this study were to characterize the clonal relatedness among MDR clinical strains and to introduce a new two-locus typing method confirmed by multi-locus sequence typing (MLST). METHODOLOGY In this study, we determined antimicrobial resistance, detected genes associated with carbapenem resistance and characterized clonal relatedness among 99 clinical isolates extracted from 82 hospitalized inpatients in a university hospital. RESULTS Of the 99 A. baumannii isolates, 92.9% (92/99) were resistant to imipenem and 97.9% (97/99) had an MDR profile. We found that the high prevalence of blaVIM [94.9% (94/99)] and blaOXA-23-like [93.93% (93/99)] is the main mechanism of carbapenem resistance. This study proposes a new two-locus typing (blaOXA-51-like and ampC) method for the rapid identification of clonal complexes (CCs). The results of this method and confirmation by MLST show that clinical isolates carry blaOXA-68 as well as ampC-10 or ampC-20 genes belonging to CC10 (ST10); blaOXA-66 and ampC-2 belonging to CC2 (ST2); and blaOXA-71 and ampC-3 belonging to CC3 (ST3). One isolate had blaOXA-90 with an undetermined allele number of ampC belonging to ST513. CONCLUSION The high prevalence of MDR strains and the circulation of four limited clones, including ST10 (45/99), ST2 (41/99), ST3 (12/99) and ST513 (1/99), in the clinical setting highlights the importance of a rigorous infection control programme. The two-locus typing method has more discrimination than the application of each method separately and it could be applied for the rapid determination of the CC without performing MLST.
Collapse
Affiliation(s)
- Soha Seyyedi Abhari
- 1 Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Gilan, Iran
| | - Farzad Badmasti
- 2 Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Modiri
- 1 Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Gilan, Iran
| | | | - Mehdi Asmar
- 3 Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
164
|
Gaiarsa S, Batisti Biffignandi G, Esposito EP, Castelli M, Jolley KA, Brisse S, Sassera D, Zarrilli R. Comparative Analysis of the Two Acinetobacter baumannii Multilocus Sequence Typing (MLST) Schemes. Front Microbiol 2019; 10:930. [PMID: 31130931 PMCID: PMC6510311 DOI: 10.3389/fmicb.2019.00930] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
Acinetobacter species assigned to the Acinetobacter calcoaceticus-baumannii (Acb) complex, are Gram-negative bacteria responsible for a large number of human infections. The population structure of Acb has been studied using two 7-gene MLST schemes, introduced by Bartual and coworkers (Oxford scheme) and by Diancourt and coworkers (Pasteur scheme). The schemes have three genes in common but underlie two coexisting nomenclatures of sequence types and clonal complexes, which complicates communication on A. baumannii genotypes. The aim of this study was to compare the characteristics of the two schemes to make a recommendation about their usage. Using genome sequences of 730 strains of the Acb complex, we evaluated the phylogenetic congruence of MLST schemes, the correspondence between sequence types, their discriminative power and genotyping reliability from genomic sequences. In silico ST re-assignments highlighted the presence of a second copy of the Oxford gdhB locus, present in 553/730 genomes that has led to the creation of artefactual profiles and STs. The reliability of the two MLST schemes was tested statistically comparing MLST-based phylogenies to two reference phylogenies (core-genome genes and genome-wide SNPs) using topology-based and likelihood-based tests. Additionally, each MLST gene fragment was evaluated by correlating the pairwise nucleotide distances between each pair of genomes calculated on the core-genome and on each single gene fragment. The Pasteur scheme appears to be less discriminant among closely related isolates, but less affected by homologous recombination and more appropriate for precise strain classification in clonal groups, which within this scheme are more often correctly monophyletic. Statistical tests evaluate the tree deriving from the Oxford scheme as more similar to the reference genome trees. Our results, together with previous work, indicate that the Oxford scheme has important issues: gdhB paralogy, recombination, primers sequences, position of the genes on the genome. While there is no complete agreement in all analyses, when considered as a whole the above results indicate that the Pasteur scheme is more appropriate for population biology and epidemiological studies of A. baumannii and related species and we propose that it should be the scheme of choice during the transition toward, and in parallel with, core genome MLST.
Collapse
Affiliation(s)
- Stefano Gaiarsa
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Eliana Pia Esposito
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Michele Castelli
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biosciences, University of Milan, Milan, Italy
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
165
|
Reinventing the wheel: Impact of prolonged antibiotic exposure on multidrug-resistant ventilator-associated pneumonia in trauma patients. J Trauma Acute Care Surg 2019; 85:256-262. [PMID: 29664891 DOI: 10.1097/ta.0000000000001936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Multidrug-resistant (MDR) strains of both Acinetobacter baumannii (AB) and Pseudomonas aeruginosa (PA) as causative ventilator-associated pneumonia (VAP) pathogens are becoming increasingly common. Still, the risk factors associated with this increased resistance have yet to be elucidated. The purpose of this study was to examine the changing sensitivity patterns of these pathogens over time and determine which risk factors predict MDR in trauma patients with VAP. METHODS Patients with either AB or PA VAP over 10 years were stratified by pathogen sensitivity (sensitive [SEN] and MDR), age, severity of shock, and injury severity. Prophylactic and empiric antibiotic days, risk factors for severe VAP, and mortality were compared. Multivariable logistic regression was performed to determine which risk factors were independent predictors of MDR. RESULTS Three hundred ninety-seven patients were identified with AB or PA VAP. There were 173 episodes of AB (91 SEN and 82 MDR) and 224 episodes of PA (170 SEN and 54 MDR). The incidence of MDR VAP did not change over the study (p = 0.633). Groups were clinically similar with the exception of 24-hour transfusions (14 vs. 19 units, p = 0.009) and extremity Abbreviated Injury Scale (AIS) score (1 vs. 3, p < 0.001), both significantly increased in the MDR group. Antibiotic exposure as well as multiple episodes of inadequate empiric antibiotic therapy (mIEAT) (63% vs. 81%, p < 0.001) were significantly increased in the MDR group. Multivariable logistic regression identified prophylactic antibiotic days (odds ratio, 23.1; 95% confidence interval, 16.7-28, p < 0.001) and mIEAT (odds ratio, 18.1; 95% confidence interval, 12.2-26.1, p = 0.001) as independent predictors of MDR after adjusting for severity of shock, injury severity, severity of VAP, and antibiotic exposure. CONCLUSION Prolonged exposure to unnecessary antibiotics remains one of the strongest predictors for the development of antibiotic resistance. Multivariable logistic regression identified prophylactic antibiotic days and mIEAT an independent risk factors for MDR VAP. Thus, limiting prophylactic antibiotic days is the only potentially modifiable risk factor for the development of MDR VAP in trauma patients. LEVEL OF EVIDENCE Level IV Therapeutic; level III Prognostic.
Collapse
|
166
|
Muthuirulandi Sethuvel DP, Devanga Ragupathi NK, Bakthavatchalam YD, Vijayakumar S, Varghese R, Shankar C, Jacob JJ, Vasudevan K, Elangovan D, Balaji V. Current strategy for local- to global-level molecular epidemiological characterisation of global antimicrobial resistance surveillance system pathogens. Indian J Med Microbiol 2019; 37:147-162. [PMID: 31745014 DOI: 10.4103/ijmm.ijmm_19_396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The prime goal of molecular epidemiology is to identify the origin and evolution of pathogens, which can potentially influence the public health worldwide. Traditional methods provide limited information which is not sufficient for outbreak investigation and studying transmission dynamics. The recent advancement of next-generation sequencing had a major impact on molecular epidemiological studies. Currently, whole-genome sequencing (WGS) has become the gold standard typing method, especially for clinically significant pathogens. Here, we aimed to describe the application of appropriate molecular typing methods for global antimicrobial resistance surveillance system pathogens based on the level of discrimination and epidemiological settings. This shows that sequence-based methods such as multi-locus sequence typing (MLST) are widely used due to cost-effectiveness and database accessibility. However, WGS is the only method of choice for studying Escherichia coli and Shigella spp. WGS is shown to have higher discrimination than other methods in typing Klebsiella pneumoniae, Acinetobacter baumannii and Salmonella spp. due to its changing accessory genome content. For Gram positives such as Streptococcus pneumoniae, WGS would be preferable to understand the evolution of the strains. Similarly, for Staphylococcus aureus, combination of MLST, staphylococcal protein A or SCCmec typing along with WGS could be the choice for epidemiological typing of hospital- and community-acquired strains. This review highlights that combinations of different typing methods should be used to get complete information since no one standalone method is sufficient to study the varying genome diversity.
Collapse
Affiliation(s)
| | | | | | - Saranya Vijayakumar
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rosemol Varghese
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Chaitra Shankar
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Divyaa Elangovan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Veeraraghavan Balaji
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
167
|
Popova AV, Shneider MM, Myakinina VP, Bannov VA, Edelstein MV, Rubalskii EO, Aleshkin AV, Fursova NK, Volozhantsev NV. Characterization of myophage AM24 infecting Acinetobacter baumannii of the K9 capsular type. Arch Virol 2019; 164:1493-1497. [PMID: 30895405 DOI: 10.1007/s00705-019-04208-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
In the present study, we investigate the biological properties and genomic organization of virulent bacteriophage AM24, which specifically infects multidrug-resistant clinical Acinetobacter baumannii strains with a K9 capsular polysaccharide structure. The phage was identified as a member of the family Myoviridae by transmission electron microscopy. The AM24 linear double-stranded DNA genome of 97,177 bp contains 167 open reading frames. Putative functions were assigned for products of 40 predicted genes, including proteins involved in nucleotide metabolism and DNA replication, packaging of DNA into the capsid, phage assembly and structural proteins, and bacterial cell lysis. The gene encoding the tailspike, which possesses depolymerase activity towards the corresponding capsular polysaccharides, is situated in the phage genome outside of the structural module, upstream of the genes responsible for packaging of DNA into the capsid. The data on characterization of depolymerase-carrying phage AM24 contributes to our knowledge of the diversity of viruses infecting different capsular types of A. baumannii.
Collapse
Affiliation(s)
- Anastasia V Popova
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia. .,Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia. .,State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia.
| | - Mikhail M Shneider
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vera P Myakinina
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Vasily A Bannov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Mikhail V Edelstein
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | - Evgenii O Rubalskii
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia.,Astrakhan State Medical University, Astrakhan, Russia.,Hannover Medical School, Hannover, Germany
| | - Andrey V Aleshkin
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Nadezhda K Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Nikolay V Volozhantsev
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| |
Collapse
|
168
|
Gales AC, Seifert H, Gur D, Castanheira M, Jones RN, Sader HS. Antimicrobial Susceptibility of Acinetobacter calcoaceticus-Acinetobacter baumannii Complex and Stenotrophomonas maltophilia Clinical Isolates: Results From the SENTRY Antimicrobial Surveillance Program (1997-2016). Open Forum Infect Dis 2019; 6:S34-S46. [PMID: 30895213 PMCID: PMC6419908 DOI: 10.1093/ofid/ofy293] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Acinetobacter calcoaceticus-A. baumannii (Acb) complex and Stenotrophomonas maltophilia represent frequent causes of hospital-acquired infections. We evaluated the frequency and resistance rates of Acb complex and S. maltophilia isolates from medical centers enrolled in the SENTRY Program. Methods A total of 13 752 Acb complex and 6467 S. maltophilia isolates were forwarded to a monitoring laboratory by 259 participating sites from the Asia-Pacific region, Latin America, Europe, and North America between 1997 and 2016. Confirmation of species identification and antimicrobial susceptibility testing were performed using conventional methods and/or matrix-assisted laser desorption ionization-time of flight mass spectrometry and the broth microdilution method, respectively. Antimicrobial susceptibility results were interpreted by CLSI and EUCAST 2018 criteria. Results Acb complex and S. maltophilia were most frequently isolated from patients hospitalized with pneumonia (42.9% and 55.8%, respectively) and bloodstream infections (37.3% and 33.8%, respectively). Colistin and minocycline were the most active agents against Acb complex (colistin MIC50/90, ≤0.5/2 mg/L; 95.9% susceptible) and S. maltophilia (minocycline MIC50/90, ≤1/2 mg/L; 99.5% susceptible) isolates, respectively. Important temporal decreases in susceptibility rates among Acb complex isolates were observed for all antimicrobial agents in all regions. Rates of extensively drug-resistant Acb complex rates were highest in Europe (66.4%), followed by Latin America (61.5%), Asia-Pacific (56.9%), and North America (38.8%). Among S. maltophilia isolates, overall trimethoprim-sulfamethoxazole (TMP-SMX) susceptibility rates decreased from 97.2% in 2001-2004 to 95.7% in 2013-2016, but varied according to the geographic region. Conclusions We observed important reductions of susceptibility rates to all antimicrobial agents among Acb complex isolates obtained from all geographic regions. In contrast, resistance rates to TMP-SMX among S. maltophilia isolates remained low and relatively stable during the study period.
Collapse
Affiliation(s)
- Ana C Gales
- Universidade Federal de São Paulo, São Paulo, Brazil
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, partner site Bonn-Cologne, Germany
| | - Deniz Gur
- Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
169
|
Püntener-Simmen S, Zurfluh K, Schmitt S, Stephan R, Nüesch-Inderbinen M. Phenotypic and Genotypic Characterization of Clinical Isolates Belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) Complex Isolated From Animals Treated at a Veterinary Hospital in Switzerland. Front Vet Sci 2019; 6:17. [PMID: 30805352 PMCID: PMC6370676 DOI: 10.3389/fvets.2019.00017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives: We investigated a collection of strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex obtained from a veterinary clinic with regard to their genetic relatedness, presence of antibiotic resistance genes and antimicrobial susceptibility profiles. Methods: Fifty-eight ACB-complex strains from animals treated at a veterinary clinic between 2006 and 2017, and seven strains collected from the hospital environment during 2012 were analyzed. Assignment to sequence types (ST) and international complexes (IC) was done by multilocus sequence typing (MLST) according to the Pasteur scheme. Genes encoding carbapenemases, aminoglycoside-modifying enzymes, macrolide-, quinolone- and co-trimoxazole resistance genes, the ISAba1 element, virulence associated intI1 genes and plasmid associated toxin-antitoxin markers were identified by microarray. Genes encoding blaOXA−51-like carbapenemases were amplified by PCR and sequenced. Susceptibility profiles were determined by disc diffusion or by broth microdilution. Results: Among 50 A. baumannii isolates from animals, two predominant clones were observed linked to CC1 (n = 27/54% of the isolates) and CC25 (n = 14/28%), respectively. Strains of IC I harbored blaOXA−69, aac(3′)-la, aadA1, sul1, intI1, and splA/T genes. Isolates belonging to CC25 possessed blaOXA−64. Six (12%) isolates belonging to CC2 and carrying blaOXA−66 were also noted. One isolate belonged to CC10 (blaOXA−68), one to CC149 (blaOXA−104), the remaining isolate was assigned to ST1220 and possessed blaOXA−116. Of six environmental A. baumannii, four (66.7%) belonged to CC25 (blaOXA−64), one (16.7%) to CC2 (blaOXA−66) and one to CC3 (blaOXA−71). Nine isolates (eight from animals and one environmental strain) were non-baumannii strains and did not harbor blaOXA−51-like genes. None of the isolates carried blaOXA−23, blaOXA−48, or blaOXA−58, and none were resistant to carbapenems. Conclusions: Clonal lineages of the veterinary A. baumannii isolates in our collection are identical to those globally emerging in humans but do not harbor blaOXA−23. A. baumannii CC25 may be specific for this particular veterinary clinic environment.
Collapse
Affiliation(s)
- Sabrina Püntener-Simmen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Schmitt
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
170
|
Nawfal Dagher T, Al-Bayssari C, Chabou S, Antar N, Diene SM, Azar E, Rolain JM. Investigation of multidrug-resistant ST2 Acinetobacter baumannii isolated from Saint George hospital in Lebanon. BMC Microbiol 2019; 19:29. [PMID: 30710998 PMCID: PMC6359860 DOI: 10.1186/s12866-019-1401-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/24/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is an opportunistic pathogen causing various nosocomial infections. The spread of multidrug-resistant A. baumannii is a major public health problem. The aim of this study was to investigate the molecular epidemiology and the genetic support of multidrug-resistant A. baumannii isolates collected from Saint-Georges Hospital in Lebanon. METHODS Between January and August 2016, 31 A. baumannii isolates were collected from sputum samples of patients infected with ventilator-associated pneumonia (VAP) and treated with colistin-carbapenem combination therapy. Antibiotic susceptibility testing was performed using the disk diffusion method. Carbapenemases, extended spectrum β-lactamases encoding genes and mcr-1/2 genes were investigated by RT-PCR and standard PCR. The epidemiological relatedness of the strains was studied using MLST analysis. RESULTS Most of the isolates exhibited multidrug-resistant phenotypes. All the isolates were carbapenem-resistant and among them, 30 carried the class D carbapenemase blaoxa-23 gene while one isolate carried blaoxa-72 gene. MLST results revealed three sequence types, namely ST2, ST699, and ST627. Isolates having ST2 were the most prevalent clone (29/31, 93.5%). CONCLUSIONS This study shows a nosocomial spread of multidrug-resistant A. baumannii ST2 having blaOXA-23 gene in Saint-George in Lebanon. Monitoring and control measures need to be adopted to avoid the spread of A. baumannii to patients.
Collapse
Affiliation(s)
- Tania Nawfal Dagher
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille, Cedex 05, France.,Saint George Hospital University Medical Center, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | | | - Selma Chabou
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille, Cedex 05, France
| | - Nadine Antar
- Saint George Hospital University Medical Center, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Seydina M Diene
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille, Cedex 05, France
| | - Eid Azar
- Saint George Hospital University Medical Center, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille, Cedex 05, France.
| |
Collapse
|
171
|
Daptomycin as adjunctive treatment for experimental infection by Acinetobacter baumannii with resistance to colistin. Int J Antimicrob Agents 2019; 53:190-194. [DOI: 10.1016/j.ijantimicag.2018.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022]
|
172
|
De Gregorio E, Zarrilli R, Di Nocera PP. Contact-dependent growth inhibition systems in Acinetobacter. Sci Rep 2019; 9:154. [PMID: 30655547 PMCID: PMC6336857 DOI: 10.1038/s41598-018-36427-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/21/2018] [Indexed: 11/09/2022] Open
Abstract
In bacterial contact-dependent growth inhibition (CDI) systems, CdiA proteins are exported to the outer membrane by cognate CdiB proteins. CdiA binds to receptors on susceptible bacteria and subsequently delivers its C-terminal toxin domain (CdiA-CT) into neighbouring target cells. Whereas self bacteria produce CdiI antitoxins, non-self bacteria lack antitoxins and are therefore inhibited in their growth by CdiA. In silico surveys of pathogenic Acinetobacter genomes have enabled us to identify >40 different CDI systems, which we sorted into two distinct groups. Type-II CdiAs are giant proteins (3711 to 5733 residues) with long arrays of 20-mer repeats. Type-I CdiAs are smaller (1900-2400 residues), lack repeats and feature central heterogeneity (HET) regions, that vary in size and sequence and can be exchanged between CdiA proteins. HET regions in most type-I proteins confer the ability to adopt a coiled-coil conformation. CdiA-CT and pretoxin modules differ significantly between type-I and type-II CdiAs. Moreover, type-II genes only have remnants of genes in their 3' end regions that have been displaced by the insertion of novel cdi sequences. Type-I and type-II CDI systems are equally abundant in A. baumannii, whereas A. pittii and A. nosocomialis predominantly feature type-I and type-II systems, respectively.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,Dipartimento di Sanità Pubblica, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Raffaele Zarrilli
- Dipartimento di Sanità Pubblica, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Pier Paolo Di Nocera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.
| |
Collapse
|
173
|
Skerniškytė J, Krasauskas R, Péchoux C, Kulakauskas S, Armalytė J, Sužiedėlienė E. Surface-Related Features and Virulence Among Acinetobacter baumannii Clinical Isolates Belonging to International Clones I and II. Front Microbiol 2019; 9:3116. [PMID: 30671029 PMCID: PMC6331429 DOI: 10.3389/fmicb.2018.03116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii currently represents one of the most important nosocomial infection agent due to its multidrug-resistance and a propensity for the epidemic spread. The A. baumannii strains belonging to the international clonal lineages I (IC I) and II (IC II) are associated with the hospital outbreaks and a high virulence. However, the intra and inter lineage-specific features of strains belonging to these most worldwide spread A. baumannii clones are not thoroughly explored. In this study we have investigated a set of cell surface-related features of A. baumannii IC I (n = 20) and IC II (n = 16) lineage strains, representing 30 distinct pulsed-field gel electrophoresis types in the collection of clinical isolates obtained in Lithuanian tertiary care hospitals. We show that A. baumannii IC II strains are non-motile, do not form pellicle and display distinct capsular polysaccharide profile compared with the IC I strains. Moreover, in contrast to the overall highly hydrophobic IC I strains, IC II strains showed a greater variation in cell surface hydrophobicity. Within the IC II lineage, hydrophilic strains demonstrated reduced ability to form biofilm and adhere to the abiotic surfaces, also possessed twofold thicker cell wall and exhibited higher resistance to desiccation. Furthermore, these strains showed increased adherence to the lung epithelial cells and were more virulent in nematode and mouse infection model compared with the hydrophobic IC II strains. According to the polymerase chain reaction-based locus-typing, the reduction in hydrophobicity of IC II strains was not capsule or lipooligosaccharide locus type-dependent. Hence, this study shows that the most widespread A. baumannii clonal lineages I and II markedly differ in the series of cell surface-related phenotypes including the considerable phenotypic diversification of IC II strains at the intra-lineage level. These findings suggest that the genotypically related A. baumannii strains might evolve the features which could provide an advantage at the specific conditions outside or within the host.
Collapse
Affiliation(s)
- Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Saulius Kulakauskas
- INRA, MICALIS Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
174
|
Tavares LCB, de Vasconcellos FM, de Sousa WV, Rocchetti TT, Mondelli AL, Ferreira AM, Montelli AC, Sadatsune T, Tiba-Casas MR, Camargo CH. Emergence and Persistence of High-Risk Clones Among MDR and XDR A. baumannii at a Brazilian Teaching Hospital. Front Microbiol 2019; 9:2898. [PMID: 30662431 PMCID: PMC6328482 DOI: 10.3389/fmicb.2018.02898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 01/04/2023] Open
Abstract
Dissemination of carbapenem-resistant Acinetobacter baumannii is currently one of the priority themes discussed around the world, including in Brazil, where this pathogen is considered endemic. A total of 107 carbapenem-resistant A. baumannii (CRAB) isolates were collected from patients with bacteraemia attended at a teaching hospital in Brazil from 2008 to 2014. From these samples, 104 (97.2%) carried blaOXA−23−like, all of them associated with ISAba1 The blaOXA−231 (1.9%) and blaOXA−72 (0.9%) genes were also detected in low frequencies. All isolates were susceptible to minocycline, and 38.3% of isolates presented intermediate susceptibility to tigecycline (MIC = 4 μg/ml). Molecular typing assessed by multi-locus sequence typing demonstrated that the strains were mainly associated with clonal complexes CC79 (47.4%), followed by CC1 (16.9%), and CC317 (18.6%), belonging to different pulsotypes and in different prevalences over the years. Changes in the clones' prevalence reinforce the need of identifying and controlling CRAB in hospital settings to preserve the already scarce therapeutic options available.
Collapse
Affiliation(s)
- Laís Calissi Brisolla Tavares
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Carlos Henrique Camargo
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil
| |
Collapse
|
175
|
Hawken SE, Snitkin ES. Genomic epidemiology of multidrug-resistant Gram-negative organisms. Ann N Y Acad Sci 2019; 1435:39-56. [PMID: 29604079 PMCID: PMC6167210 DOI: 10.1111/nyas.13672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 12/12/2022]
Abstract
The emergence and spread of antibiotic-resistant Gram-negative bacteria (rGNB) across global healthcare networks presents a significant threat to public health. As the number of effective antibiotics available to treat these resistant organisms dwindles, it is essential that we devise more effective strategies for controlling their proliferation. Recently, whole-genome sequencing has emerged as a disruptive technology that has transformed our understanding of the evolution and epidemiology of diverse rGNB species, and it has the potential to guide strategies for controlling the evolution and spread of resistance. Here, we review specific areas in which genomics has already made a significant impact, including outbreak investigations, regional epidemiology, clinical diagnostics, resistance evolution, and the study of epidemic lineages. While highlighting early successes, we also point to the next steps needed to translate this technology into strategies to improve public health and clinical medicine.
Collapse
Affiliation(s)
- Shawn E Hawken
- Department of Microbiology and Immunology, University of Michigan Medical School, Michigan, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Michigan, USA
- Division of Infectious Diseases/Department of Medicine, University of Michigan Medical School, Michigan, USA
| |
Collapse
|
176
|
Wareth G, Neubauer H, Sprague LD. Acinetobacter baumannii - a neglected pathogen in veterinary and environmental health in Germany. Vet Res Commun 2018; 43:1-6. [PMID: 30591981 DOI: 10.1007/s11259-018-9742-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/06/2018] [Indexed: 01/01/2023]
Abstract
The emergence and global spread of drug resistant Acinetobacter (A.) baumannii is a cause of great concern. The current knowledge on antibiotic resistance in A. baumannii from animal origin is mostly based on few internationally published case reports, investigations of strain collections and several whole genome analyses. This lack of data results in a somewhat sketchy picture on how to assess the possible impact of drug resistant A. baumannii strains on veterinary and public health in Germany. Consequently, there is an urgent need to intensify the surveillance of A. baumannii in pet animals, the farm animal population and wildlife.
Collapse
Affiliation(s)
- Gamal Wareth
- Institut für bakterielle Infektionen und Zoonosen, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- Institut für bakterielle Infektionen und Zoonosen, Friedrich-Loeffler-Institut, Jena, Germany
| | - Lisa D Sprague
- Institut für bakterielle Infektionen und Zoonosen, Friedrich-Loeffler-Institut, Jena, Germany.
| |
Collapse
|
177
|
An insight into the emergence of Acinetobacter baumannii as an oro-dental pathogen and its drug resistance gene profile - An in silico approach. Heliyon 2018; 4:e01051. [PMID: 30603692 PMCID: PMC6304470 DOI: 10.1016/j.heliyon.2018.e01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
Background Acinetobacter baumannii, a potential nosocomial pathogen has stealthily gained entry into the oral cavity. Their association with other pathogens like Pseudomonas aeruginosa in chronic and aggressive periodontitis cases is well documented. The magnitude of problem caused by A . baumannii could be attributed to resistance genes acquired by the organism. Since the microbiome of oral cavity is heterogeneous and complex, the transfer of genes from multidrug resistant A . baumannii may be a serious threat in infection control and management. In view of this fact, the present study aims to categorize and characterize drug resistant genes present in each of the 19 genomes of Acinetobacter Sp. selected for the study. Methods About 19 genome sequences of Acinetobacter spp. with the predominance of different strains of A . baumannii was genotyped using in silico restriction digestion and pulse field gel electrophoresis (PFGE). Further, the prevalence of common drug resistant genes in the genome of various Acinetobacter spp. was recorded using in silico PCR analysis. Results Based on the PFGE pattern, phylogenetic tree was constructed and the genomes were clustered into 6 genotypes. Genotype 4 (n = 8; 42.10%) and 5 (n = 6; 31.57%) were predominant, followed by genotypes 2 (n = 2; 10.52%), 1, 3 and 6 (n = 1; 5.26%). Three species were excluded from the list since they were negative for most of the drug resistant genes tested. Prevalence of drug resistant genes in each of the 16 genomes analysed found oxa-51, ISAba 1 and ADC 1 to be the major genes found in A . baumannii. Acinetobacter spp. belonging to genotypes 4 and 5 were found to harbour 6-10 and 2-8 potential drug resistant genes respectively. Conclusion The present study showed cluster of multi-drug resistant genes in genomes analysed, thus, warranting the need for antibiotic surveillance, alternate therapeutic measures and development of novel antimicrobials. An extensive study on the genes conferring drug resistance in this pathogen will open new avenues for battling the entry and spread of this pathogen in vulnerable patient groups.
Collapse
|
178
|
Tambe MS, Choudhari A, Sarkar D, Sangshetti J, Patil R, Gholap SS. Design, Synthesis and Biological Screening of Novel 1,3,4‐Oxadiazoles as Antitubercular Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201802227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Macchindra S. Tambe
- DepartmentPost Graduate Department of Chemistry and Research CenterPadmashri Vikhe Patil College of Arts, Science and commerce, Pravaranager(Loni Kd), Tal: Rahata, Dist: Ahmednager Maharashtra, Pin 413713 India
| | - Amit Choudhari
- Organic Chemistry Division Combichem-Bioresource CentreNational Chemical Laboratory Pune- 7 India
| | - Dhiman Sarkar
- Organic Chemistry Division Combichem-Bioresource CentreNational Chemical Laboratory Pune- 7 India
| | | | - Rajesh Patil
- Smt. Kashibai Navale College of Pharmacy, Pune-Saswad Road, Kondhwa (Bk) Pune 411048(MS) India
| | - Somnath S. Gholap
- DepartmentPost Graduate Department of Chemistry and Research CenterPadmashri Vikhe Patil College of Arts, Science and commerce, Pravaranager(Loni Kd), Tal: Rahata, Dist: Ahmednager Maharashtra, Pin 413713 India
| |
Collapse
|
179
|
Epidemiological investigation of an Acinetobacter baumannii outbreak using core genome multilocus sequence typing. J Glob Antimicrob Resist 2018; 17:245-249. [PMID: 30553929 DOI: 10.1016/j.jgar.2018.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Carbapenem-resistant Acinetobacter baumannii (CRAB) is a serious nosocomial pathogen that causes a variety of serious, often life-threatening, infections and outbreaks. This study aimed to investigate the molecular epidemiology of clinical CRAB isolates from an outbreak that occurred in the intensive care unit (ICU) of an Italian hospital. METHODS From December 2016 to April 2017, 13 CRAB isolates were collected from seven patients treated in the ICU at 'L. Spallanzani' Hospital (Rome, Italy). Typing was performed by repetitive extragenic palindromic PCR (rep-PCR) using a DiversiLab® system. Whole-genome sequencing (WGS) data were used for in silico analysis of traditional multilocus sequence typing (MLST) results, to identify resistance genes and for core genome MLST (cgMLST) analysis. Epidemiological data were obtained from hospital records. RESULTS All isolates showed a carbapenem-resistant profile and carried the blaOXA-23 carbapenemase gene. Typing performed by rep-PCR and MLST showed that the isolates clustered into one group, whilst the cgMLST approach, which uses 2390 gene targets to characterise the gene-by-gene allelic profile, highlighted the presence of two cluster types. These results allowed us to identify two patients who were likely to be the source of two separate transmission chains. CONCLUSION These results show that WGS by cgMLST is a valuable tool, better suited for prompt epidemiological investigations than traditional typing methods because of its higher discriminatory ability in determining clonal relatedness.
Collapse
|
180
|
The plasmid-encoded transcription factor ArdK contributes to the repression of the IMP-6 metallo-β-lactamase gene blaIMP-6, leading to a carbapenem-susceptible phenotype in the blaIMP-6-positive Escherichia coli strain A56-1S. PLoS One 2018; 13:e0208976. [PMID: 30533034 PMCID: PMC6289460 DOI: 10.1371/journal.pone.0208976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are a global concern because these bacteria are resistant to almost all β-lactams. Horizontal interspecies gene transfer via plasmid conjugation has increased the global dissemination of CPE. Recently, an Enterobacteriaceae strain positive for carbapenemase gene but showing a carbapenem-susceptible phenotype was identified, suggesting that these susceptible strains may be challenging to detect solely via antimicrobial susceptibility tests without molecular analysis. Here, we isolated a blaIMP-6 carbapenemase-gene positive but imipenem- and meropenem-susceptible Escherichia coli (ISMS-E) strain A56-1S (imipenem and meropenem minimum inhibitory concentration, ≤ 0.125 mg/L), from a human urine specimen in Japan. A56-1S was carbapenemase negative by the Carba NP test, suggesting that IMP-6 production was low or undetectable. Thus, to characterize the mechanism of this phenotype, a meropenem-resistant E. coli A56-1R strain was obtained using meropenem-selection. A56-1R was positive for carbapenemase production by the Carba NP test, and blaIMP-6 transcription in A56-1R was 53-fold higher than in A56-1S, indicating that blaIMP-6 in A56-1S is negatively regulated at the transcriptional level. Comparative genomic analysis between the two strains revealed that the alleviation of restriction of DNA (ardK) gene encoding a putative transcription factor is disrupted by the IS26 insertion in A56-1R. A cotransformation assay of ardK and the regulatory element upstream of blaIMP-6 showed repression of blaIMP-6 transcription, indicating that ArdK negatively modulates blaIMP-6 transcription. ArdK binding and affinity assays demonstrated that ArdK directly binds to the regulatory element upstream of blaIMP-6 with dissociation constant values comparable to those of general transcription factors. The IMP-6 carbapenemase showed low hydrolytic activity against imipenem, resulting in an imipenem-susceptible and meropenem-resistant (ISMR) phenotype (previously reported as a stealth phenotype). However, the low expression of IMP-6 in the A56-1S strain could be a typical characteristic of ISMS-E due to gene repression, indicating that conventional antimicrobial susceptibility tests might be unable to detect such strains even when using both imipenem and meropenem. Bacteria that exhibit the ISMS phenotype could play a potential role as undetectable reservoirs and might facilitate gene transfer to other organisms while avoiding detection.
Collapse
|
181
|
Yao Z, Sun L, Wang Y, Lin L, Guo Z, Li D, Lin W, Lin X. Quantitative Proteomics Reveals Antibiotics Resistance Function of Outer Membrane Proteins in Aeromonas hydrophila. Front Cell Infect Microbiol 2018; 8:390. [PMID: 30460208 PMCID: PMC6232253 DOI: 10.3389/fcimb.2018.00390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022] Open
Abstract
Outer membrane proteins (OMPs) play essential roles in antibiotic resistance, particularly in Gram-negative bacteria; however, they still have many unidentified functions regarding their behavior in response to antibiotic stress. In the current work, quantitative tandem mass tag labeling-based mass spectrometry was used to compare the outer membrane related proteins between an oxytetracycline-resistant (OXY-R) and its original control stain (OXY-O) in Aeromonas hydrophila. Consequently, a total of 261 commonly altered proteins in two biological repeats were identified including 29 proteins that increased and 28 that decreased. Gene ontology analysis showed that the expression of transport proteins was significantly reduced, and translation-related proteins were downregulated in the OXY-R strain. After using western blotting to validate selected altered proteins, eight OMP-related genes were knocked out and their roles in antibiotic resistance were further evaluated. The survival assays showed that some mutants such as ΔAHA_4281, ΔAHA_2766, ΔAHA_2282, ΔAHA_1181, and ΔAHA_1280 affected the susceptibility of A. hydrophila to antimicrobials. Moreover, the minimum inhibitory concentration assay showed that these candidate mutants also respond differently to other types of antibiotics. Our results reveal several novel outer membrane related proteins of A. hydrophila that play important roles in antibiotic resistance, and as such, may be helpful for screening studies to identify novel drug targets.
Collapse
Affiliation(s)
- Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Ling Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Dong Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| |
Collapse
|
182
|
Hamidian M, Hall RM. The AbaR antibiotic resistance islands found in Acinetobacter baumannii global clone 1 - Structure, origin and evolution. Drug Resist Updat 2018; 41:26-39. [PMID: 30472242 DOI: 10.1016/j.drup.2018.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022]
Abstract
In multiply resistant Acinetobacter baumannii, complex transposons located in the chromosomal comM gene carry antibiotic and heavy metal resistance determinants. For one type, known collectively as AbaR, the ancestral form, AbaR0, entered a member of global clone 1 (GC1) in the mid 1970s and continued to evolve in situ forming many variants. In AbaR0, antibiotic and mercuric ion resistance genes are located between copies of a cadmium-zinc resistance transposon, Tn6018, and this composite transposon is in a class III transposon, Tn6019, carrying arsenate/arsenite resistance genes and five tni transposition genes. The antibiotic resistance genes in the AbaR0 and derived AbaR3 configurations are aphA1b, blaTEM, catA1, sul1, tetA(A), and cassette-associated aacC1 and aadA1 genes. These genes are in a specific arrangement of fragments from well-known transposons, e.g. Tn1, Tn1721, Tn1696 and Tn2670, that arose in an IncM1 plasmid. All known GC1 lineage 1 isolates carry AbaR0 or AbaR3, which arose around 1990, or a variant derived from one of them. Variants arose via deletions caused by one of three internal IS26s, by recombination between duplicate copies of sul1 or Tn6018, or by gene cassette addition or replacement. A few GC2 isolates also carry an AbaR island with different cassette-associated genes, aacA4 and oxa20.
Collapse
Affiliation(s)
- Mohammad Hamidian
- School of Molecular and Microbial Biosciences, The University of Sydney, NSW 2006, Australia; The ithree institute, University of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Ruth M Hall
- School of Molecular and Microbial Biosciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
183
|
Abstract
PURPOSE OF REVIEW MDR-Gram-negative bacteria are a great concern in the neonatal population, with a worldwide rise in the reported incidence and with very limited therapeutic options. Acinetobacter baumannii is responsible for many infections in neonates and outbreaks in neonatal intensive care unit (NICU); also, outbreaks caused by other Acinetobacter species have been reported. The aim of this review is to document the epidemiology of Acinetobacter spp. infections in neonates and risk factors for acquisition of Acinetobacter spp. in the NICU using data from published studies. RECENT FINDINGS Acinetobacter spp. infections are increasing in neonates in NICU. Outbreak caused by multidrug resistant (MDR) or extensively drug resistant (XDR) A. baumannii but also outbreak caused by susceptible A. soli and A. septicus sp. nov., were reported in neonates. Acinetobacter spp. were responsible for bloodstream infections and respiratory tract infections in neonates. Risk factors for A. baumannii acquisition in neonates were low birthweight, length of NICU stay, umbilical catheterization, central-venous catheterization, assisted ventilation, and prior antibiotic use. This review highlights the importance of surveillance of risk factors for healthcare-associated infections in NICU to control MDR and XDR A. baumannii infections in neonates.
Collapse
|
184
|
Hamidian M, Hall RM. Genetic structure of four plasmids found in Acinetobacter baumannii isolate D36 belonging to lineage 2 of global clone 1. PLoS One 2018; 13:e0204357. [PMID: 30260997 PMCID: PMC6160057 DOI: 10.1371/journal.pone.0204357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022] Open
Abstract
Four plasmids ranging in size from 4.7 to 44.7 kb found in the extensively antibiotic resistant Acinetobacter baumannii isolate D36 that belongs to lineage 2 of global clone 1 were examined. D36 includes two cryptic plasmids and two carrying antibiotic resistance genes. The smallest plasmid pD36-1 (4.7 kb) carries no resistance genes but includes mobA and mobC mobilisation genes related to those found in pRAY* (pD36-2, 6,078 bp) that also carries the aadB gentamicin, kanamycin and tobramycin resistance gene cassette. These two plasmids do not encode a Rep protein. Plasmid pRAY* was found to be mobilised at high frequency by the large conjugative plasmid pA297-3 but a pRAY* derivative lacking the mobA and mobC genes was not. The two larger plasmids, pD36-3 and pD36-4, encode Rep_3 family proteins (Pfam1051). The cryptic plasmid pD36-3 (6.2 kb) has RepAci1 and pD36-4 (44.7 kb) encodes two novel Rep_3 family proteins suggesting a co-integrate. Plasmid pD36-4 includes the sul2 sulfonamide resistance gene, the aphA1a kanamycin/neomycin resistance gene in Tn4352::ISAba1 and a mer module in a hybrid Tn501/Tn1696 transposon conferring resistance to mercuric ions. New examples of dif modules flanked by pdif sites (XerC-XerD binding sites) that are part of many A. baumannii plasmids were also identified in pD36-3 and pD36-4 which carry three and two dif modules, respectively. Homologs of three dif modules, the sup sulphate permease module in pD36-3, and of the abkAB toxin-antitoxin module and the orf module in pD36-4, were found in different contexts in diverse Acinetobacter plasmids, consistent with module mobility. A novel insertion sequence named ISAba32 found next to the pdif site in the abkAB dif module is related to members of the ISAjo2 group which also are associated with the pdif sites of dif modules. Plasmids found in D36 were also found in some other members of GC1 lineage 2.
Collapse
Affiliation(s)
- Mohammad Hamidian
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia
- * E-mail:
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| |
Collapse
|
185
|
Acinetobacter in veterinary medicine, with an emphasis on Acinetobacter baumannii. J Glob Antimicrob Resist 2018; 16:59-71. [PMID: 30144636 DOI: 10.1016/j.jgar.2018.08.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter spp. are aerobic, rod-shaped, Gram-negative bacteria belonging to the Moraxellaceae family of the class Gammaproteobacteria and are considered ubiquitous organisms. Among them, Acinetobacter baumannii is the most clinically significant species with an extraordinary ability to accumulate antimicrobial resistance and to survive in the hospital environment. Recent reports indicate that A. baumannii has also evolved into a veterinary nosocomial pathogen. Although Acinetobacter spp. can be identified to species level using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) coupled with an updated database, molecular techniques are still necessary for genotyping and determination of clonal lineages. It appears that the majority of infections due to A. baumannii in veterinary medicine are nosocomial. Such isolates have been associated with several types of infection such as canine pyoderma, feline necrotizing fasciitis, urinary tract infection, equine thrombophlebitis and lower respiratory tract infection, foal sepsis, pneumonia in mink, and cutaneous lesions in hybrid falcons. Given the potential multidrug resistance of A. baumannii, treatment of diseased animals is often supportive and should preferably be based on in vitro antimicrobial susceptibility testing results. It should be noted that animal isolates show high genetic diversity and are in general distinct in their sequence types and resistance patterns from those found in humans. However, it cannot be excluded that animals may occasionally play a role as a reservoir of A. baumannii. Thus, it is of importance to implement infection control measures in veterinary hospitals to avoid nosocomial outbreaks with multidrug-resistant A. baumannii.
Collapse
|
186
|
Ramadan RA, Gebriel MG, Kadry HM, Mosallem A. Carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: characterization of carbapenemase genes and E-test evaluation of colistin-based combinations. Infect Drug Resist 2018; 11:1261-1269. [PMID: 30197524 PMCID: PMC6112795 DOI: 10.2147/idr.s170233] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Carbapenamase producing Acinetobacter baumannii and Pseudomonas aeruginosa are emerging worldwide limiting the use of carbapenems as effective and safe drugs. Purpose To characterize different carbapenemase genes carried by carbapenem-resistant (CR) A. baumannii and P. aeruginosa isolates and to evaluate the in vitro effect of some colistin-based combinations by E-test method in Zagazig University Hospitals ICU isolates. Methods CR A. baumannii and P. aeruginosa isolated from the surgical intensive care unit (ICU) were tested for carbapenemase genes by polymerase chain reaction and the effect of colistin/meropenem and colistin/tigecycline combinations was evaluated by E-test. Results Genes coding for OXA-23, NDM and GES were detected in 90, 66.7 and 50% of CR A. baumannii, respectively, while genes coding for VIM, GES, NDM and IMP were detected in 50, 40.9, 27.3 and 18.2% of CR P. aeruginosa, respectively. Colistin/tigecycline combination showed synergistic and additive effect in 20% and 60% of A. baumannii isolates, respectively, while colistin/meropenem combination showed synergistic and additive effect in 63.6% and 36.4% of P. aeruginosa, respectively. Conclusion Carbapenemase genes carriage accounts for high level carbapenem resistance in our isolates. Colistin/tigecycline and colistin/meropenem combinations can be considered for treatment of severe infections by CR A. baumannii and P. aeruginosa, respectively.
Collapse
Affiliation(s)
- Raghdaa A Ramadan
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt,
| | - Manar G Gebriel
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt,
| | - Heba M Kadry
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt,
| | - Ahmed Mosallem
- Anesthesia and Surgical Intensive Care Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| |
Collapse
|
187
|
Genomic mapping of ST85 bla NDM-1 and bla OXA-94 producing Acinetobacter baumannii isolates from Syrian Civil War Victims. Int J Infect Dis 2018; 74:100-108. [PMID: 30053579 DOI: 10.1016/j.ijid.2018.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES The rapid emergence of carbapenem-resistant Acinetobacter baumannii is a global health concern. A comparative genomic analysis was performed on two ST85 A. baumannii strains harboring blaNDM-1 and blaOXA-94 collected in Lebanon from Syrian Civil War victims. METHODS Genome sequencing data of ACMH-6200 and ACMH-6201 were used for in silico extraction of multilocus sequence types (MLST), resistance genes, and virulence factors. Plasmids were genetically mapped in silico and using PCR-based replicon typing (PBRT). The genetic environment of blaNDM-1 and blaOXA-94 was determined, and whole-genome single nucleotide polymorphism (wgSNP) analysis in comparison with 41 publicly available A. baumannii genomes was performed. RESULTS Tn125 carrying blaNDM-1 was truncated by the insertion of ISAba14 downstream of dct, generating ΔTn125. blaOXA-94 was upstream of ISAba13 and ISAba17. Resistance to ceftazidime could be attributed to AmpC cephalosporinase encoded by blaADC-25, and to blaNDM-1 on plasmids. GyrA (S83L) and ParC (S80L) substitutions conferred resistance to fluoroquinolones. wgSNP analysis separated the isolates based on their sequence types. CONCLUSIONS The role of refugees in the transmission of antimicrobial resistance in developing countries is understudied. As such, this study sheds light on the correlation between population mobility and the importation of drug-resistant pathogens. It also highlights the manifold mechanisms underlying antibiotic resistance in A. baumannii.
Collapse
|
188
|
Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. Infect Immun 2018; 86:IAI.00297-18. [PMID: 29735524 DOI: 10.1128/iai.00297-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
The type VI secretion system (T6SS) is a macromolecular machine that delivers protein effectors into host cells and/or competing bacteria. The effectors may be delivered as noncovalently bound cargo of T6SS needle proteins (VgrG/Hcp/PAAR) or as C-terminal extensions of these proteins. Many Acinetobacter baumannii strains produce a T6SS, but little is known about the specific effectors or how they are delivered. In this study, we show that A. baumannii AB307-0294 encodes three vgrG loci, each containing a vgrG gene, a T6SS toxic effector gene, and an antitoxin/immunity gene. Each of the T6SS toxic effectors could kill Escherichia coli when produced in trans unless the cognate immunity protein was coproduced. To determine the role of each VgrG in effector delivery, we performed interbacterial competitive killing assays using A. baumannii AB307-0294 vgrG mutants, together with Acinetobacter baylyi prey cells expressing pairs of immunity genes that protected against two toxic effectors but not a third. Using this approach, we showed that AB307-0294 produces only three T6SS toxic effectors capable of killing A. baylyi and that each VgrG protein is specific for the carriage of one effector. Finally, we analyzed a number of A. baumannii genomes and identified significant diversity in the range of encoded T6SS VgrG and effector proteins, with correlations between effector types and A. baumannii global clone lineages.
Collapse
|
189
|
Rodrigues-Costa F, Cayô R, Matos AP, Girardello R, Martins WMBS, Carrara-Marroni FE, Gales AC. Temporal evolution of Acinetobacter baumannii ST107 clone: conversion of bla OXA-143 into bla OXA-231 coupled with mobilization of ISAba1 upstream occAB1. Res Microbiol 2018; 170:53-59. [PMID: 30003961 DOI: 10.1016/j.resmic.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022]
Abstract
Nine carbapenem-resistant Acinetobacter baumannii isolates carrying blaOXA-231 and an ISAba1 upstream occAB1 were evaluated. They were clonally related and belonged to ST107. An OXA-143-producing A. baumannii ST107 strain (Ac-148) that did not possess ISAba1 upstream occAB1 was included in the analysis. Reduction in the expression of occAB1 and a 4-fold increase of carbapenem MICs were observed for all isolates, except for the Ac-148 strain, probably due to the presence of ISAba1 upstream occAB1 but in the same transcriptional orientation. We reported an A. baumannii ST107 clone carrying blaOXA-143 that acquired a mutation resulting into blaOXA-231 and mobilized ISAba1 upstream occAB1.
Collapse
Affiliation(s)
- Fernanda Rodrigues-Costa
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina - EPM, São Paulo - SP, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina - EPM, São Paulo - SP, Brazil.
| | - Adriana Pereira Matos
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina - EPM, São Paulo - SP, Brazil
| | - Raquel Girardello
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina - EPM, São Paulo - SP, Brazil
| | - Willames M B S Martins
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina - EPM, São Paulo - SP, Brazil
| | - Floristher Elaine Carrara-Marroni
- Laboratório de Microbiologia Clínica, Hospital Universitário de Londrina, Departamento de Patologia Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina - UEL, Londrina - PR, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo - UNIFESP, Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina - EPM, São Paulo - SP, Brazil
| |
Collapse
|
190
|
Levy-Blitchtein S, Roca I, Plasencia-Rebata S, Vicente-Taboada W, Velásquez-Pomar J, Muñoz L, Moreno-Morales J, Pons MJ, Del Valle-Mendoza J, Vila J. Emergence and spread of carbapenem-resistant Acinetobacter baumannii international clones II and III in Lima, Peru. Emerg Microbes Infect 2018; 7:119. [PMID: 29970918 PMCID: PMC6030224 DOI: 10.1038/s41426-018-0127-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 01/17/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii is the top-ranked pathogen in the World Health Organization priority list of antibiotic-resistant bacteria. It emerged as a global pathogen due to the successful expansion of a few epidemic lineages, or international clones (ICs), producing acquired class D carbapenemases (OXA-type). During the past decade, however, reports regarding IC-I isolates in Latin America are scarce and are non-existent for IC-II and IC-III isolates. This study evaluates the molecular mechanisms of carbapenem resistance and the epidemiology of 80 non-duplicate clinical samples of A. baumannii collected from February 2014 through April 2016 at two tertiary care hospitals in Lima. Almost all isolates were carbapenem-resistant (97.5%), and susceptibility only remained high for colistin (95%). Pulsed-field gel electrophoresis showed two main clusters spread between both hospitals: cluster D containing 51 isolates (63.8%) associated with sequence type 2 (ST2) and carrying OXA-72, and cluster F containing 13 isolates (16.3%) associated with ST79 and also carrying OXA-72. ST2 and ST79 were endemic in at least one of the hospitals. ST1 and ST3 OXA-23-producing isolates were also identified. They accounted for sporadic hospital isolates. Interestingly, two isolates carried the novel OXA-253 variant of OXA-143 together with an upstream novel insertion sequence (ISAba47). While the predominant A. baumannii lineages in Latin America are linked to ST79, ST25, ST15, and ST1 producing OXA-23 enzymes, we report the emergence of highly resistant ST2 (IC-II) isolates in Peru producing OXA-72 and the first identification of ST3 isolates (IC-III) in Latin America, both considered a serious threat to public health worldwide.
Collapse
Affiliation(s)
- Saúl Levy-Blitchtein
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, 15067, Lima, Peru
| | - Ignasi Roca
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036, Barcelona, Spain.
| | - Stefany Plasencia-Rebata
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, 15067, Lima, Peru
| | | | | | - Laura Muñoz
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036, Barcelona, Spain
| | | | - Maria J Pons
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, 15067, Lima, Peru.,Laboratorio de Microbiología Molecular y Genética Bacteriana, Universidad Científica del Sur, Lima, Peru
| | - Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, 15067, Lima, Peru.,Instituto de Investigación Nutricional, 15024, Lima, Peru
| | - Jordi Vila
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036, Barcelona, Spain
| |
Collapse
|
191
|
Evaluation of Polymyxin B Susceptibility Profile and Detection of Drug Resistance Genes among Acinetobacter Baumannii Clinical Isolates in Tehran, Iran during 2015-2016. Mediterr J Hematol Infect Dis 2018; 10:e2018044. [PMID: 30002800 PMCID: PMC6039082 DOI: 10.4084/mjhid.2018.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
Acinetobacter baumannii is an important opportunistic pathogen, responsible for approximately 10% of all gram-negative nosocomial infection. The aim of this study was to determine aminoglycoside and quinolone resistance genes and their antimicrobial susceptibility profile in the clinically A. baumannii. In this cross-sectional study, a total of 100 nonduplicative A. baumannii isolates were collected from different clinical samples. Antimicrobial susceptibility test was performed by disk diffusion method. QnrA, anrB, qnrS, aac(3)-IIa, and aac(6')-Ib genes were identified using PCR method. The results of antibiotic susceptibility test showed that polymyxin B was the most effective antimicrobial against A. baumannii. 97%, 95% and 82% of isolates were resistant to cefepime, ceftriaxone, and amikacin, respectively. The molecular distribution of aac(3)-IIa, aac(6')-Ib, and qnrA genes were 45%, 50%, and 50% of isolates, respectively. However, qnrB and qnrS genes could not be detected in any strain. This study showed that polymyxin B was the best drug against A. baumannii clinical isolates. This data is also valid for polymyxin E (colistin), which is mostly used in clinics. There is a high level of resistance genes among clinical A. baumannii isolates. This high prevalence rate highlights the necessity for the development of rapid diagnostic assays and continuous monitoring of antibiotic resistance.
Collapse
|
192
|
Salto IP, Torres Tejerizo G, Wibberg D, Pühler A, Schlüter A, Pistorio M. Comparative genomic analysis of Acinetobacter spp. plasmids originating from clinical settings and environmental habitats. Sci Rep 2018; 8:7783. [PMID: 29773850 PMCID: PMC5958079 DOI: 10.1038/s41598-018-26180-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
Bacteria belonging to the genus Acinetobacter have become of clinical importance over the last decade due to the development of a multi-resistant phenotype and their ability to survive under multiple environmental conditions. The development of these traits among Acinetobacter strains occurs frequently as a result of plasmid-mediated horizontal gene transfer. In this work, plasmids from nosocomial and environmental Acinetobacter spp. collections were separately sequenced and characterized. Assembly of the sequenced data resulted in 19 complete replicons in the nosocomial collection and 77 plasmid contigs in the environmental collection. Comparative genomic analysis showed that many of them had conserved backbones. Plasmid coding sequences corresponding to plasmid specific functions were bioinformatically and functionally analyzed. Replication initiation protein analysis revealed the predominance of the Rep_3 superfamily. The phylogenetic tree constructed from all Acinetobacter Rep_3 superfamily plasmids showed 16 intermingled clades originating from nosocomial and environmental habitats. Phylogenetic analysis of relaxase proteins revealed the presence of a new sub-clade named MOBQAci, composed exclusively of Acinetobacter relaxases. Functional analysis of proteins belonging to this group showed that they behaved differently when mobilized using helper plasmids belonging to different incompatibility groups.
Collapse
Affiliation(s)
- Ileana P Salto
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615, Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615, Bielefeld, Germany
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina.
| |
Collapse
|
193
|
Dafopoulou K, Tsakris A, Pournaras S. Changes in antimicrobial resistance of clinical isolates of Acinetobacter baumannii group isolated in Greece, 2010–2015. J Med Microbiol 2018; 67:496-498. [DOI: 10.1099/jmm.0.000708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- K. Dafopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - A. Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - S. Pournaras
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
194
|
Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, Spelman DW, Padiglione A, Peleg AY, Holt KE. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb Genom 2018; 4. [PMID: 29547094 PMCID: PMC5885017 DOI: 10.1099/mgen.0.000165] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acinetobacter baumannii is a common causative agent of hospital-acquired infections and a leading cause of infection in burns patients. Carbapenem-resistant A. baumannii is considered a major public-health threat and has been identified by the World Health Organization as the top priority organism requiring new antimicrobials. The most common mechanism for carbapenem resistance in A. baumannii is via horizontal acquisition of carbapenemase genes. In this study, we sampled 20 A. baumannii isolates from a patient with extensive burns, and characterized the evolution of carbapenem resistance over a 45 day period via Illumina and Oxford Nanopore sequencing. All isolates were multidrug resistant, carrying two genomic islands that harboured several antibiotic-resistance genes. Most isolates were genetically identical and represented a single founder genotype. We identified three novel non-synonymous substitutions associated with meropenem resistance: F136L and G288S in AdeB (part of the AdeABC efflux pump) associated with an increase in meropenem MIC to ≥8 µg ml−1; and A515V in FtsI (PBP3, a penicillin-binding protein) associated with a further increase in MIC to 32 µg ml−1. Structural modelling of AdeB and FtsI showed that these mutations affected their drug-binding sites and revealed mechanisms for meropenem resistance. Notably, one of the adeB mutations arose prior to meropenem therapy but following ciprofloxacin therapy, suggesting exposure to one drug whose resistance is mediated by the efflux pump can induce collateral resistance to other drugs to which the bacterium has not yet been exposed.
Collapse
Affiliation(s)
- Jane Hawkey
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David B Ascher
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Louise M Judd
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ryan R Wick
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xenia Kostoulias
- 2Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heather Cleland
- 3Victorian Adult Burns Service, The Alfred Hospital, Melbourne, Victoria 3004, Australia.,4Department of Surgery, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Denis W Spelman
- 5Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria 3004, Australia.,6Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Alex Padiglione
- 5Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Anton Y Peleg
- 6Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,2Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.,5Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Kathryn E Holt
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
195
|
Molecular Epidemiology of Emerging blaOXA-23-Like- and blaOXA-24-Like-Carrying Acinetobacter baumannii in Taiwan. Antimicrob Agents Chemother 2018; 62:AAC.01215-17. [PMID: 29311067 DOI: 10.1128/aac.01215-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/07/2017] [Indexed: 01/26/2023] Open
Abstract
The rate of recovery of carbapenem-resistant Acinetobacter baumannii (CRAB) isolates has increased significantly in recent decades in Taiwan. This study investigated the molecular epidemiology of CRAB with a focus on the mechanisms of resistance and spread in isolates with blaOXA-23-like or blaOXA-24-like All 555 CRAB isolates in our multicenter collection, which were recovered from 2002 to 2010, were tested for the presence of class A, B, and D carbapenemase genes. All isolates with blaOXA-23-like or blaOXA-24-like were subjected to pulsed-field gel electrophoresis, and 82 isolates (60 isolates with blaOXA-23-like and 22 isolates with blaOXA-24-like) were selected for multilocus sequence typing to determine the sequence type (ST) and clonal group (CG) and for detection of additional β-lactamase and aminoglycoside resistance genes. The flanking regions of carbapenem and aminoglycoside resistance genes were identified by PCR mapping and sequencing. The localization of blaOXA was determined by S1 nuclease and I-CeuI assays. The numbers of CRAB isolates carrying blaOXA-23-like or blaOXA-24-like, especially those carrying blaOXA-23-like, increased significantly from 2008 onward. The blaOXA-23-like gene was carried by antibiotic resistance genomic island 1 (AbGRI1)-type structures located on plasmids and/or the chromosome in isolates of different STs (CG92 and novel CG786), whereas blaOXA-24-like was carried on plasmids in CRAB isolates of limited STs (CG92). No class A or B carbapenemase genes were identified. Multiple aminoglycoside resistance genes coexisted in CRAB. Tn6180-borne armA was found in 74 (90.2%) CRAB isolates, and 58 (70.7%) isolates had Tn6179 upstream, constituting AbGRI3. blaTEM was present in 38 (46.3%) of the CRAB isolates tested, with 35 (92.1%) isolates containing blaTEM in AbGRI2-type structures, and 61% of ampC genes had ISAba1 upstream. We conclude that the dissemination and spread of a few dominant lineages of CRAB containing various resistance island structures occurred in Taiwan.
Collapse
|
196
|
Qin H, Lo NWS, Loo J, Lin X, Yim AKY, Tsui SKW, Lau TCK, Ip M, Chan TF. Comparative transcriptomics of multidrug-resistant Acinetobacter baumannii in response to antibiotic treatments. Sci Rep 2018; 8:3515. [PMID: 29476162 PMCID: PMC5824817 DOI: 10.1038/s41598-018-21841-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 02/05/2018] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii, a major hospital-acquired pathogen, is a serious health threat and poses a great challenge to healthcare providers. Although there have been many genomic studies on the evolution and antibiotic resistance of this species, there have been very limited transcriptome studies on its responses to antibiotics. We conducted a comparative transcriptomic study on 12 strains with different growth rates and antibiotic resistance profiles, including 3 fast-growing pan-drug-resistant strains, under separate treatment with 3 antibiotics, namely amikacin, imipenem, and meropenem. We performed deep sequencing using a strand-specific RNA-sequencing protocol, and used de novo transcriptome assembly to analyze gene expression in the form of polycistronic transcripts. Our results indicated that genes associated with transposable elements generally showed higher levels of expression under antibiotic-treated conditions, and many of these transposon-associated genes have previously been linked to drug resistance. Using co-expressed transposon genes as markers, we further identified and experimentally validated two novel genes of which overexpression conferred significant increases in amikacin resistance. To the best of our knowledge, this study represents the first comparative transcriptomic analysis of multidrug-resistant A. baumannii under different antibiotic treatments, and revealed a new relationship between transposons and antibiotic resistance.
Collapse
Affiliation(s)
- Hao Qin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- 3D Medicines Corporation, Shanghai, China
| | - Norman Wai-Sing Lo
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacky Loo
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aldrin Kay-Yuen Yim
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
197
|
Distribution and Molecular Characterization of Acinetobacter baumannii International Clone II Lineage in Japan. Antimicrob Agents Chemother 2018; 62:AAC.02190-17. [PMID: 29203489 DOI: 10.1128/aac.02190-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter spp. have been globally disseminated in association with the successful clonal lineage Acinetobacter baumannii international clone II (IC II). Because the prevalence of MDR Acinetobacter spp. in Japan remains very low, we characterized all Acinetobacter spp. (n = 866) from 76 hospitals between October 2012 and March 2013 to describe the entire molecular epidemiology of Acinetobacter spp. The most prevalent species was A. baumannii (n = 645; 74.5%), with A. baumannii IC II (n = 245) accounting for 28.3% of the total. Meropenem-resistant isolates accounted for 2.0% (n = 17) and carried ISAba1-blaOXA-23-like (n = 10), blaIMP (n = 4), or ISAba1-blaOXA-51-like (n = 3). Multilocus sequence typing of 110 representative A. baumannii isolates revealed the considerable prevalence of domestic sequence types (STs). A. baumannii IC II isolates were divided into the domestic sequence type 469 (ST469) (n = 18) and the globally disseminated STs ST208 (n = 14) and ST219 (n = 4). ST469 isolates were susceptible to more antimicrobial agents, while ST208 and ST219 overproduced the intrinsic AmpC β-lactamase. A. baumannii IC II and some A. baumannii non-IC II STs (e.g., ST149 and ST246) were associated with fluoroquinolone resistance. This study revealed that carbapenem-susceptible A. baumannii IC II was moderately disseminated in Japan. The low prevalence of acquired carbapenemase genes and presence of domestic STs could contribute to the low prevalence of MDR A. baumannii A similar epidemiology might have appeared before the global dissemination of MDR epidemic lineages. In addition, fluoroquinolone resistance associated with A. baumannii IC II may provide insight into the significance of A. baumannii epidemic clones.
Collapse
|
198
|
Tavares LCB, de Vasconcellos FM, Sant'Ana DA, Tiba-Casas MR, Camargo CH. Acinetobacter baumannii ST317 can be identified with Martins' trilocus sequence-based multiplex-PCR. INFECTION GENETICS AND EVOLUTION 2018; 58:251-252. [PMID: 29331669 DOI: 10.1016/j.meegid.2018.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Laís Calissi Brisolla Tavares
- Bacteriology Division, Adolfo Lutz Institute, Sao Paulo, Brazil; School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
199
|
Huang H, Chen B, Liu G, Ran J, Lian X, Huang X, Wang N, Huang Z. A multi-center study on the risk factors of infection caused by multi-drug resistant Acinetobacter baumannii. BMC Infect Dis 2018; 18:11. [PMID: 29304746 PMCID: PMC5756379 DOI: 10.1186/s12879-017-2932-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii (AB) is critical for healthcare-associated infections (HAI) with significant regional differences in the resistance rate, but its risk factors and infection trends has not been well studied. We aimed to explore the risk factors, epidemiological characteristics and resistance of multidrug-resistant Acinetobacter baumannii (MDR-AB) in intensive care unit inpatients. METHODS Data of patients with MDR-AB (195 cases), and with antibiotic-sensitive AB infection (294 cases, control) during January to December, 2015 in three medical centers in Xiamen, China were conducted and analyzed in the present retrospective study. RESULTS Lower respiratory tract infection with AB accounted for 68.71%. MDR-AB was detected in 39.88% of all cases. Univariate analysis suggested that mechanical ventilation, indwelling catheter, cancer patients, length of hospitalization in intensive care unit (ICU) ≥15 d, Acute Physiology and Chronic Health Evaluation (APACHE) II score, combined using antibiotic before isolation of AB and use of third-lines cephalosporins were associated with the development of MDR-AB healthcare-associated infections. Dose-response relationship analysis suggested that the age and the days of mechanical ventilation were associated with increased infection with MDR-AB. Logistic regression analysis suggested that, mechanical ventilation, combined using antibiotic before isolation of AB, and indwelling catheter, were associated with MDR-AB infection, with odds ratios (OR) and 95% confidence intervals (CI) of 3.93 (1.52-10.14), 4.11 (1.58-10.73), and 4.15 (1.32-12.99), respectively. CONCLUSIONS MDR-AB infection was associated with mechanical ventilation, combined using antibiotic before isolation of AB, and indwelling catheter. Furthermore, the age and the days of mechanical ventilation were associated with increased infection with MDR-AB.
Collapse
Affiliation(s)
- Huiping Huang
- Department of Infection Control, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Borong Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 55 Zhen Hai Road, Si Ming District, Xiamen, Fujian, 361003, China
| | - Gang Liu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 55 Zhen Hai Road, Si Ming District, Xiamen, Fujian, 361003, China
| | - Jing Ran
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Xianyu Lian
- Department of Infection Control, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Xinhua Huang
- Department of Infection Control, The Second Hospital of Xiamen, Xiamen, Fujian, 361021, China
| | - Nan Wang
- Department of Infection Control, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 55 Zhen Hai Road, Si Ming District, Xiamen, Fujian, 361003, China.
| |
Collapse
|
200
|
Mohd Rani F, A Rahman NI, Ismail S, Alattraqchi AG, Cleary DW, Clarke SC, Yeo CC. Acinetobacter spp. Infections in Malaysia: A Review of Antimicrobial Resistance Trends, Mechanisms and Epidemiology. Front Microbiol 2017; 8:2479. [PMID: 29312188 PMCID: PMC5733036 DOI: 10.3389/fmicb.2017.02479] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter spp. are important nosocomial pathogens, in particular the Acinetobacter baumannii-calcoaceticus complex, which have become a global public health threat due to increasing resistance to carbapenems and almost all other antimicrobial compounds. High rates of resistance have been reported among countries in Southeast Asia, including Malaysia. In this review, we examine the antimicrobial resistance profiles of Acinetobacter spp. hospital isolates from Malaysia over a period of nearly three decades (1987–2016) with data obtained from various peer-reviewed publications as well as the Malaysian National Surveillance on Antibiotic Resistance (NSAR). NSAR data indicated that for most antimicrobial compounds, including carbapenems, the peak resistance rates were reached around 2008–2009 and thereafter, rates have remained fairly constant (e.g., 50–60% for carbapenems). Individual reports from various hospitals in Peninsular Malaysia do not always reflect the nationwide resistance rates and often showed higher rates of resistance. We also reviewed the epidemiology and mechanisms of resistance that have been investigated in Malaysian Acinetobacter spp. isolates, particularly carbapenem resistance and found that blaOXA-23 is the most prevalent acquired carbapenemase-encoding gene. From the very few published reports and whole genome sequences that are available, most of the Acinetobacter spp. isolates from Malaysia belonged to the Global Clone 2 (GC2) CC92 group with ST195 being the predominant sequence type. The quality of data and analysis in the national surveillance reports could be improved and more molecular epidemiology and genomics studies need to be carried out for further in-depth understanding of Malaysian Acinetobacter spp. isolates.
Collapse
Affiliation(s)
- Farahiyah Mohd Rani
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Nor Iza A Rahman
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Salwani Ismail
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | | | - David W Cleary
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom.,Global Health Research Institute, University of Southampton, Southampton, United Kingdom.,International Medical University, Kuala Lumpur, Malaysia
| | - Chew Chieng Yeo
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| |
Collapse
|